stewart-simscape/org/cubic-configuration.org

1622 lines
67 KiB
Org Mode

#+TITLE: Cubic configuration for the Stewart Platform
:DRAWER:
#+STARTUP: overview
#+LANGUAGE: en
#+EMAIL: dehaeze.thomas@gmail.com
#+AUTHOR: Dehaeze Thomas
#+HTML_LINK_HOME: ./index.html
#+HTML_LINK_UP: ./index.html
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
#+HTML_HEAD: <script src="./js/jquery.min.js"></script>
#+HTML_HEAD: <script src="./js/bootstrap.min.js"></script>
#+HTML_HEAD: <script src="./js/jquery.stickytableheaders.min.js"></script>
#+HTML_HEAD: <script src="./js/readtheorg.js"></script>
#+PROPERTY: header-args:matlab :session *MATLAB*
#+PROPERTY: header-args:matlab+ :comments org
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :results none
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :noweb yes
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:matlab+ :output-dir figs
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
#+PROPERTY: header-args:latex+ :results file raw replace
#+PROPERTY: header-args:latex+ :buffer no
#+PROPERTY: header-args:latex+ :eval no-export
#+PROPERTY: header-args:latex+ :exports results
#+PROPERTY: header-args:latex+ :mkdirp yes
#+PROPERTY: header-args:latex+ :output-dir figs
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
:END:
* Introduction :ignore:
The Cubic configuration for the Stewart platform was first proposed in cite:geng94_six_degree_of_freed_activ.
This configuration is quite specific in the sense that the active struts are arranged in a mutually orthogonal configuration connecting the corners of a cube.
This configuration is now widely used (cite:preumont07_six_axis_singl_stage_activ,jafari03_orthog_gough_stewar_platf_microm).
According to cite:preumont07_six_axis_singl_stage_activ, the cubic configuration offers the following advantages:
#+begin_quote
This topology provides a *uniform control capability* and a *uniform stiffness* in all directions, and it *minimizes the cross-coupling amongst actuators and sensors of different legs* (being orthogonal to each other).
#+end_quote
In this document, the cubic architecture is analyzed:
- In section [[sec:cubic_conf_stiffness]], we study the *uniform stiffness* of such configuration and we find the conditions to obtain a diagonal stiffness matrix
- In section [[sec:cubic_conf_above_platform]], we find cubic configurations where the cube's center is located above the mobile platform
- In section [[sec:cubic_conf_size_analysis]], we study the effect of the cube's size on the Stewart platform properties
- In section [[sec:cubic_conf_coupling_cartesian]], we study the dynamics of the cubic configuration in the cartesian frame
- In section [[sec:cubic_conf_coupling_struts]], we study the dynamic *cross-coupling* of the cubic configuration from actuators to sensors of each strut
- In section [[sec:functions]], function related to the cubic configuration are defined. To generate and study the Stewart platform with a Cubic configuration, the Matlab function =generateCubicConfiguration= is used (described [[sec:generateCubicConfiguration][here]]).
* Stiffness Matrix for the Cubic configuration
:PROPERTIES:
:header-args:matlab+: :tangle ../matlab/cubic_conf_stiffnessl.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
<<sec:cubic_conf_stiffness>>
#+begin_note
The Matlab script corresponding to this section is accessible [[file:../matlab/cubic_conf_stiffnessl.m][here]].
To run the script, open the Simulink Project, and type =run cubic_conf_stiffness.m=.
#+end_note
** Introduction :ignore:
First, we have to understand what is the physical meaning of the Stiffness matrix $\bm{K}$.
The Stiffness matrix links forces $\bm{f}$ and torques $\bm{n}$ applied on the mobile platform at $\{B\}$ to the displacement $\Delta\bm{\mathcal{X}}$ of the mobile platform represented by $\{B\}$ with respect to $\{A\}$:
\[ \bm{\mathcal{F}} = \bm{K} \Delta\bm{\mathcal{X}} \]
with:
- $\bm{\mathcal{F}} = [\bm{f}\ \bm{n}]^{T}$
- $\Delta\bm{\mathcal{X}} = [\delta x, \delta y, \delta z, \delta \theta_{x}, \delta \theta_{y}, \delta \theta_{z}]^{T}$
If the stiffness matrix is inversible, its inverse is the compliance matrix: $\bm{C} = \bm{K}^{-1$ and:
\[ \Delta \bm{\mathcal{X}} = C \bm{\mathcal{F}} \]
Thus, if the stiffness matrix is diagonal, the compliance matrix is also diagonal and a force (resp. torque) $\bm{\mathcal{F}}_i$ applied on the mobile platform at $\{B\}$ will induce a pure translation (resp. rotation) of the mobile platform represented by $\{B\}$ with respect to $\{A\}$.
One has to note that this is only valid in a static way.
We here study what makes the Stiffness matrix diagonal when using a cubic configuration.
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
#+begin_src matlab :results none :exports none
simulinkproject('../');
#+end_src
** Cubic Stewart platform centered with the cube center - Jacobian estimated at the cube center
We create a cubic Stewart platform (figure [[fig:cubic_conf_centered_J_center]]) in such a way that the center of the cube (black star) is located at the center of the Stewart platform (blue dot).
The Jacobian matrix is estimated at the location of the center of the cube.
#+begin_src matlab
H = 100e-3; % height of the Stewart platform [m]
MO_B = -H/2; % Position {B} with respect to {M} [m]
Hc = H; % Size of the useful part of the cube [m]
FOc = H + MO_B; % Center of the cube with respect to {F}
#+end_src
#+begin_src matlab
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B);
stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 0, 'MHb', 0);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, 'K', ones(6,1));
stewart = computeJacobian(stewart);
stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 175e-3, 'Mpr', 150e-3);
#+end_src
#+begin_src matlab :exports none
displayArchitecture(stewart, 'labels', false);
scatter3(0, 0, FOc, 200, 'kh');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/cubic_conf_centered_J_center.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:cubic_conf_centered_J_center
#+caption: Cubic Stewart platform centered with the cube center - Jacobian estimated at the cube center ([[./figs/cubic_conf_centered_J_center.png][png]], [[./figs/cubic_conf_centered_J_center.pdf][pdf]])
[[file:figs/cubic_conf_centered_J_center.png]]
#+begin_src matlab :exports results :results value table replace :tangle no
data2orgtable(stewart.kinematics.K, {}, {}, ' %.2g ');
#+end_src
#+name: tab:cubic_conf_centered_J_center
#+caption: Stiffness Matrix
#+RESULTS:
| 2 | 0 | -2.5e-16 | 0 | 2.1e-17 | 0 |
| 0 | 2 | 0 | -7.8e-19 | 0 | 0 |
| -2.5e-16 | 0 | 2 | -2.4e-18 | -1.4e-17 | 0 |
| 0 | -7.8e-19 | -2.4e-18 | 0.015 | -4.3e-19 | 1.7e-18 |
| 1.8e-17 | 0 | -1.1e-17 | 0 | 0.015 | 0 |
| 6.6e-18 | -3.3e-18 | 0 | 1.7e-18 | 0 | 0.06 |
** Cubic Stewart platform centered with the cube center - Jacobian not estimated at the cube center
We create a cubic Stewart platform with center of the cube located at the center of the Stewart platform (figure [[fig:cubic_conf_centered_J_not_center]]).
The Jacobian matrix is not estimated at the location of the center of the cube.
#+begin_src matlab
H = 100e-3; % height of the Stewart platform [m]
MO_B = 20e-3; % Position {B} with respect to {M} [m]
Hc = H; % Size of the useful part of the cube [m]
FOc = H/2; % Center of the cube with respect to {F}
#+end_src
#+begin_src matlab
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B);
stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 0, 'MHb', 0);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, 'K', ones(6,1));
stewart = computeJacobian(stewart);
stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 175e-3, 'Mpr', 150e-3);
#+end_src
#+begin_src matlab :exports none
displayArchitecture(stewart, 'labels', false);
scatter3(0, 0, FOc, 200, 'kh');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/cubic_conf_centered_J_not_center.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:cubic_conf_centered_J_not_center
#+caption: Cubic Stewart platform centered with the cube center - Jacobian not estimated at the cube center ([[./figs/cubic_conf_centered_J_not_center.png][png]], [[./figs/cubic_conf_centered_J_not_center.pdf][pdf]])
[[file:figs/cubic_conf_centered_J_not_center.png]]
#+begin_src matlab :exports results :results value table replace :tangle no
data2orgtable(stewart.kinematics.K, {}, {}, ' %.2g ');
#+end_src
#+name: tab:cubic_conf_centered_J_not_center
#+caption: Stiffness Matrix
#+RESULTS:
| 2 | 0 | -2.5e-16 | 0 | -0.14 | 0 |
| 0 | 2 | 0 | 0.14 | 0 | 0 |
| -2.5e-16 | 0 | 2 | -5.3e-19 | 0 | 0 |
| 0 | 0.14 | -5.3e-19 | 0.025 | 0 | 8.7e-19 |
| -0.14 | 0 | 2.6e-18 | 1.6e-19 | 0.025 | 0 |
| 6.6e-18 | -3.3e-18 | 0 | 8.9e-19 | 0 | 0.06 |
** Cubic Stewart platform not centered with the cube center - Jacobian estimated at the cube center
Here, the "center" of the Stewart platform is not at the cube center (figure [[fig:cubic_conf_not_centered_J_center]]).
The Jacobian is estimated at the cube center.
#+begin_src matlab
H = 80e-3; % height of the Stewart platform [m]
MO_B = -30e-3; % Position {B} with respect to {M} [m]
Hc = 100e-3; % Size of the useful part of the cube [m]
FOc = H + MO_B; % Center of the cube with respect to {F}
#+end_src
#+begin_src matlab
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B);
stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 0, 'MHb', 0);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, 'K', ones(6,1));
stewart = computeJacobian(stewart);
stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 175e-3, 'Mpr', 150e-3);
#+end_src
#+begin_src matlab :exports none
displayArchitecture(stewart, 'labels', false);
scatter3(0, 0, FOc, 200, 'kh');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/cubic_conf_not_centered_J_center.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:cubic_conf_not_centered_J_center
#+caption: Cubic Stewart platform not centered with the cube center - Jacobian estimated at the cube center ([[./figs/cubic_conf_not_centered_J_center.png][png]], [[./figs/cubic_conf_not_centered_J_center.pdf][pdf]])
[[file:figs/cubic_conf_not_centered_J_center.png]]
#+begin_src matlab :exports results :results value table replace :tangle no
data2orgtable(stewart.kinematics.K, {}, {}, ' %.2g ');
#+end_src
#+name: tab:cubic_conf_not_centered_J_center
#+caption: Stiffness Matrix
#+RESULTS:
| 2 | 0 | -1.7e-16 | 0 | 4.9e-17 | 0 |
| 0 | 2 | 0 | -2.2e-17 | 0 | 2.8e-17 |
| -1.7e-16 | 0 | 2 | 1.1e-18 | -1.4e-17 | 1.4e-17 |
| 0 | -2.2e-17 | 1.1e-18 | 0.015 | 0 | 3.5e-18 |
| 4.4e-17 | 0 | -1.4e-17 | -5.7e-20 | 0.015 | -8.7e-19 |
| 6.6e-18 | 2.5e-17 | 0 | 3.5e-18 | -8.7e-19 | 0.06 |
We obtain $k_x = k_y = k_z$ and $k_{\theta_x} = k_{\theta_y}$, but the Stiffness matrix is not diagonal.
** Cubic Stewart platform not centered with the cube center - Jacobian estimated at the Stewart platform center
Here, the "center" of the Stewart platform is not at the cube center.
The Jacobian is estimated at the center of the Stewart platform.
The center of the cube is at $z = 110$.
The Stewart platform is from $z = H_0 = 75$ to $z = H_0 + H_{tot} = 175$.
The center height of the Stewart platform is then at $z = \frac{175-75}{2} = 50$.
The center of the cube from the top platform is at $z = 110 - 175 = -65$.
#+begin_src matlab
H = 100e-3; % height of the Stewart platform [m]
MO_B = -H/2; % Position {B} with respect to {M} [m]
Hc = 1.5*H; % Size of the useful part of the cube [m]
FOc = H/2 + 10e-3; % Center of the cube with respect to {F}
#+end_src
#+begin_src matlab
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B);
stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 0, 'MHb', 0);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, 'K', ones(6,1));
stewart = computeJacobian(stewart);
stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 215e-3, 'Mpr', 195e-3);
#+end_src
#+begin_src matlab :exports none
displayArchitecture(stewart, 'labels', false);
scatter3(0, 0, FOc, 200, 'kh');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/cubic_conf_not_centered_J_stewart_center.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:cubic_conf_not_centered_J_stewart_center
#+caption: Cubic Stewart platform not centered with the cube center - Jacobian estimated at the Stewart platform center ([[./figs/cubic_conf_not_centered_J_stewart_center.png][png]], [[./figs/cubic_conf_not_centered_J_stewart_center.pdf][pdf]])
[[file:figs/cubic_conf_not_centered_J_stewart_center.png]]
#+begin_src matlab :exports results :results value table replace :tangle no
data2orgtable(stewart.kinematics.K, {}, {}, ' %.2g ');
#+end_src
#+name: tab:cubic_conf_not_centered_J_stewart_center
#+caption: Stiffness Matrix
#+RESULTS:
| 2 | 0 | 1.5e-16 | 0 | 0.02 | 0 |
| 0 | 2 | 0 | -0.02 | 0 | 0 |
| 1.5e-16 | 0 | 2 | -3e-18 | -2.8e-17 | 0 |
| 0 | -0.02 | -3e-18 | 0.034 | -8.7e-19 | 5.2e-18 |
| 0.02 | 0 | -2.2e-17 | -4.4e-19 | 0.034 | 0 |
| 5.9e-18 | -7.5e-18 | 0 | 3.5e-18 | 0 | 0.14 |
** Conclusion
#+begin_important
Here are the conclusion about the Stiffness matrix for the Cubic configuration:
- The cubic configuration permits to have $k_x = k_y = k_z$ and $k_{\theta_x} = k_{\theta_y}$
- The stiffness matrix $K$ is diagonal for the cubic configuration if the Jacobian is estimated at the cube center.
#+end_important
* Configuration with the Cube's center above the mobile platform
:PROPERTIES:
:header-args:matlab+: :tangle ../matlab/cubic_conf_above_platforml.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
<<sec:cubic_conf_above_platform>>
#+begin_note
The Matlab script corresponding to this section is accessible [[file:../matlab/cubic_conf_above_platforml.m][here]].
To run the script, open the Simulink Project, and type =run cubic_conf_above_platform.m=.
#+end_note
** Introduction :ignore:
We saw in section [[sec:cubic_conf_stiffness]] that in order to have a diagonal stiffness matrix, we need the cube's center to be located at frames $\{A\}$ and $\{B\}$.
Or, we usually want to have $\{A\}$ and $\{B\}$ located above the top platform where forces are applied and where displacements are expressed.
We here see if the cubic configuration can provide a diagonal stiffness matrix when $\{A\}$ and $\{B\}$ are above the mobile platform.
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
#+begin_src matlab :results none :exports none
simulinkproject('../');
#+end_src
** Having Cube's center above the top platform
Let's say we want to have a diagonal stiffness matrix when $\{A\}$ and $\{B\}$ are located above the top platform.
Thus, we want the cube's center to be located above the top center.
Let's fix the Height of the Stewart platform and the position of frames $\{A\}$ and $\{B\}$:
#+begin_src matlab
H = 100e-3; % height of the Stewart platform [m]
MO_B = 20e-3; % Position {B} with respect to {M} [m]
#+end_src
We find the several Cubic configuration for the Stewart platform where the center of the cube is located at frame $\{A\}$.
The differences between the configuration are the cube's size:
- Small Cube Size in Figure [[fig:stewart_cubic_conf_type_1]]
- Medium Cube Size in Figure [[fig:stewart_cubic_conf_type_2]]
- Large Cube Size in Figure [[fig:stewart_cubic_conf_type_3]]
For each of the configuration, the Stiffness matrix is diagonal with $k_x = k_y = k_y = 2k$ with $k$ is the stiffness of each strut.
However, the rotational stiffnesses are increasing with the cube's size but the required size of the platform is also increasing, so there is a trade-off here.
#+begin_src matlab
Hc = 0.4*H; % Size of the useful part of the cube [m]
FOc = H + MO_B; % Center of the cube with respect to {F}
#+end_src
#+begin_src matlab :exports none
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B);
stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 0, 'MHb', 0);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, 'K', ones(6,1));
stewart = computeJacobian(stewart);
stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 1.2*max(vecnorm(stewart.platform_F.Fa)), 'Mpr', 1.2*max(vecnorm(stewart.platform_M.Mb)));
displayArchitecture(stewart, 'labels', false);
scatter3(0, 0, FOc, 200, 'kh');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/stewart_cubic_conf_type_1.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:stewart_cubic_conf_type_1
#+caption: Cubic Configuration for the Stewart Platform - Small Cube Size ([[./figs/stewart_cubic_conf_type_1.png][png]], [[./figs/stewart_cubic_conf_type_1.pdf][pdf]])
[[file:figs/stewart_cubic_conf_type_1.png]]
#+begin_src matlab :exports results :results value table replace :tangle no
data2orgtable(stewart.kinematics.K, {}, {}, ' %.2g ');
#+end_src
#+name: tab:stewart_cubic_conf_type_1
#+caption: Stiffness Matrix
#+RESULTS:
| 2 | 0 | -2.8e-16 | 0 | 2.4e-17 | 0 |
| 0 | 2 | 0 | -2.3e-17 | 0 | 0 |
| -2.8e-16 | 0 | 2 | -2.1e-19 | 0 | 0 |
| 0 | -2.3e-17 | -2.1e-19 | 0.0024 | -5.4e-20 | 6.5e-19 |
| 2.4e-17 | 0 | 4.9e-19 | -2.3e-20 | 0.0024 | 0 |
| -1.2e-18 | 1.1e-18 | 0 | 6.2e-19 | 0 | 0.0096 |
#+begin_src matlab
Hc = 1.5*H; % Size of the useful part of the cube [m]
FOc = H + MO_B; % Center of the cube with respect to {F}
#+end_src
#+begin_src matlab :exports none
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B);
stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 0, 'MHb', 0);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, 'K', ones(6,1));
stewart = computeJacobian(stewart);
stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 1.2*max(vecnorm(stewart.platform_F.Fa)), 'Mpr', 1.2*max(vecnorm(stewart.platform_M.Mb)));
displayArchitecture(stewart, 'labels', false);
scatter3(0, 0, FOc, 200, 'kh');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/stewart_cubic_conf_type_2.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:stewart_cubic_conf_type_2
#+caption: Cubic Configuration for the Stewart Platform - Medium Cube Size ([[./figs/stewart_cubic_conf_type_2.png][png]], [[./figs/stewart_cubic_conf_type_2.pdf][pdf]])
[[file:figs/stewart_cubic_conf_type_2.png]]
#+begin_src matlab :exports results :results value table replace :tangle no
data2orgtable(stewart.kinematics.K, {}, {}, ' %.2g ');
#+end_src
#+name: tab:stewart_cubic_conf_type_2
#+caption: Stiffness Matrix
#+RESULTS:
| 2 | 0 | -1.9e-16 | 0 | 5.6e-17 | 0 |
| 0 | 2 | 0 | -7.6e-17 | 0 | 0 |
| -1.9e-16 | 0 | 2 | 2.5e-18 | 2.8e-17 | 0 |
| 0 | -7.6e-17 | 2.5e-18 | 0.034 | 8.7e-19 | 8.7e-18 |
| 5.7e-17 | 0 | 3.2e-17 | 2.9e-19 | 0.034 | 0 |
| -1e-18 | -1.3e-17 | 5.6e-17 | 8.4e-18 | 0 | 0.14 |
#+begin_src matlab
Hc = 2.5*H; % Size of the useful part of the cube [m]
FOc = H + MO_B; % Center of the cube with respect to {F}
#+end_src
#+begin_src matlab :exports none
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B);
stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 0, 'MHb', 0);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, 'K', ones(6,1));
stewart = computeJacobian(stewart);
stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 1.2*max(vecnorm(stewart.platform_F.Fa)), 'Mpr', 1.2*max(vecnorm(stewart.platform_M.Mb)));
displayArchitecture(stewart, 'labels', false);
scatter3(0, 0, FOc, 200, 'kh');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/stewart_cubic_conf_type_3.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:stewart_cubic_conf_type_3
#+caption: Cubic Configuration for the Stewart Platform - Large Cube Size ([[./figs/stewart_cubic_conf_type_3.png][png]], [[./figs/stewart_cubic_conf_type_3.pdf][pdf]])
[[file:figs/stewart_cubic_conf_type_3.png]]
#+begin_src matlab :exports results :results value table replace :tangle no
data2orgtable(stewart.kinematics.K, {}, {}, ' %.2g ');
#+end_src
#+name: tab:stewart_cubic_conf_type_3
#+caption: Stiffness Matrix
#+RESULTS:
| 2 | 0 | -3e-16 | 0 | -8.3e-17 | 0 |
| 0 | 2 | 0 | -2.2e-17 | 0 | 5.6e-17 |
| -3e-16 | 0 | 2 | -9.3e-19 | -2.8e-17 | 0 |
| 0 | -2.2e-17 | -9.3e-19 | 0.094 | 0 | 2.1e-17 |
| -8e-17 | 0 | -3e-17 | -6.1e-19 | 0.094 | 0 |
| -6.2e-18 | 7.2e-17 | 5.6e-17 | 2.3e-17 | 0 | 0.37 |
** Size of the platforms
The minimum size of the platforms depends on the cube's size and the height between the platform and the cube's center.
Let's denote:
- $H$ the height between the cube's center and the considered platform
- $D$ the size of the cube's edges
Let's denote by $a$ and $b$ the points of both ends of one of the cube's edge.
Initially, we have:
\begin{align}
a &= \frac{D}{2} \begin{bmatrix}-1 \\ -1 \\ 1\end{bmatrix} \\
b &= \frac{D}{2} \begin{bmatrix} 1 \\ -1 \\ 1\end{bmatrix}
\end{align}
We rotate the cube around its center (origin of the rotated frame) such that one of its diagonal is vertical.
\[ R = \begin{bmatrix}
\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}}
\end{bmatrix} \]
After rotation, the points $a$ and $b$ become:
\begin{align}
a &= \frac{D}{2} \begin{bmatrix}-\frac{\sqrt{2}}{\sqrt{3}} \\ -\sqrt{2} \\ -\frac{1}{\sqrt{3}}\end{bmatrix} \\
b &= \frac{D}{2} \begin{bmatrix} \frac{\sqrt{2}}{\sqrt{3}} \\ -\sqrt{2} \\ \frac{1}{\sqrt{3}}\end{bmatrix}
\end{align}
Points $a$ and $b$ define a vector $u = b - a$ that gives the orientation of one of the Stewart platform strut:
\[ u = \frac{D}{\sqrt{3}} \begin{bmatrix} -\sqrt{2} \\ 0 \\ -1\end{bmatrix} \]
Then we want to find the intersection between the line that defines the strut with the plane defined by the height $H$ from the cube's center.
To do so, we first find $g$ such that:
\[ a_z + g u_z = -H \]
We obtain:
\begin{align}
g &= - \frac{H + a_z}{u_z} \\
&= \sqrt{3} \frac{H}{D} - \frac{1}{2}
\end{align}
Then, the intersection point $P$ is given by:
\begin{align}
P &= a + g u \\
&= \begin{bmatrix}
H \sqrt{2} \\
D \frac{1}{\sqrt{2}} \\
H
\end{bmatrix}
\end{align}
Finally, the circle can contains the intersection point has a radius $r$:
\begin{align}
r &= \sqrt{P_x^2 + P_y^2} \\
&= \sqrt{2 H^2 + \frac{1}{2}D^2}
\end{align}
By symmetry, we can show that all the other intersection points will also be on the circle with a radius $r$.
For a small cube:
\[ r \approx \sqrt{2} H \]
** Conclusion
#+begin_important
We found that we can have a diagonal stiffness matrix using the cubic architecture when $\{A\}$ and $\{B\}$ are located above the top platform.
Depending on the cube's size, we obtain 3 different configurations.
| Cube's Size | Paper with the corresponding cubic architecture |
|-------------+--------------------------------------------------|
| Small | cite:furutani04_nanom_cuttin_machin_using_stewar |
| Medium | cite:yang19_dynam_model_decoup_contr_flexib |
| Large | |
#+end_important
* Cubic size analysis
:PROPERTIES:
:header-args:matlab+: :tangle ../matlab/cubic_conf_size_analysisl.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
<<sec:cubic_conf_size_analysis>>
#+begin_note
The Matlab script corresponding to this section is accessible [[file:../matlab/cubic_conf_size_analysisl.m][here]].
To run the script, open the Simulink Project, and type =run cubic_conf_size_analysis.m=.
#+end_note
** Introduction :ignore:
We here study the effect of the size of the cube used for the Stewart Cubic configuration.
We fix the height of the Stewart platform, the center of the cube is at the center of the Stewart platform and the frames $\{A\}$ and $\{B\}$ are also taken at the center of the cube.
We only vary the size of the cube.
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
#+begin_src matlab :results none :exports none
simulinkproject('../');
#+end_src
** Analysis
We initialize the wanted cube's size.
#+begin_src matlab :results silent
Hcs = 1e-3*[250:20:350]; % Heights for the Cube [m]
Ks = zeros(6, 6, length(Hcs));
#+end_src
The height of the Stewart platform is fixed:
#+begin_src matlab
H = 100e-3; % height of the Stewart platform [m]
#+end_src
The frames $\{A\}$ and $\{B\}$ are positioned at the Stewart platform center as well as the cube's center:
#+begin_src matlab
MO_B = -50e-3; % Position {B} with respect to {M} [m]
FOc = H + MO_B; % Center of the cube with respect to {F}
#+end_src
#+begin_src matlab :exports none
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B);
for i = 1:length(Hcs)
Hc = Hcs(i);
stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 0, 'MHb', 0);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, 'K', ones(6,1));
stewart = computeJacobian(stewart);
Ks(:,:,i) = stewart.kinematics.K;
end
#+end_src
We find that for all the cube's size, $k_x = k_y = k_z = k$ where $k$ is the strut stiffness.
We also find that $k_{\theta_x} = k_{\theta_y}$ and $k_{\theta_z}$ are varying with the cube's size (figure [[fig:stiffness_cube_size]]).
#+begin_src matlab :exports none
figure;
hold on;
plot(Hcs, squeeze(Ks(4, 4, :)), 'DisplayName', '$k_{\theta_x} = k_{\theta_y}$');
plot(Hcs, squeeze(Ks(6, 6, :)), 'DisplayName', '$k_{\theta_z}$');
hold off;
legend('location', 'northwest');
xlabel('Cube Size [m]'); ylabel('Rotational stiffnes [normalized]');
#+end_src
#+NAME: fig:stiffness_cube_size
#+HEADER: :tangle no :exports results :results raw :noweb yes
#+begin_src matlab :var filepath="figs/stiffness_cube_size.pdf" :var figsize="normal-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:stiffness_cube_size
#+CAPTION: $k_{\theta_x} = k_{\theta_y}$ and $k_{\theta_z}$ function of the size of the cube
#+RESULTS: fig:stiffness_cube_size
[[file:figs/stiffness_cube_size.png]]
** Conclusion
We observe that $k_{\theta_x} = k_{\theta_y}$ and $k_{\theta_z}$ increase linearly with the cube size.
#+begin_important
In order to maximize the rotational stiffness of the Stewart platform, the size of the cube should be the highest possible.
#+end_important
* Dynamic Coupling in the Cartesian Frame
:PROPERTIES:
:header-args:matlab+: :tangle ../matlab/cubic_conf_coupling_cartesianl.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
<<sec:cubic_conf_coupling_cartesian>>
#+begin_note
The Matlab script corresponding to this section is accessible [[file:../matlab/cubic_conf_coupling_cartesianl.m][here]].
To run the script, open the Simulink Project, and type =run cubic_conf_coupling_cartesian.m=.
#+end_note
** Introduction :ignore:
In this section, we study the dynamics of the platform in the cartesian frame.
We here suppose that there is one relative motion sensor in each strut ($\delta\bm{\mathcal{L}}$ is measured) and we would like to control the position of the top platform pose $\delta \bm{\mathcal{X}}$.
Thanks to the Jacobian matrix, we can use the "architecture" shown in Figure [[fig:local_to_cartesian_coordinates]] to obtain the dynamics of the system from forces/torques applied by the actuators on the top platform to translations/rotations of the top platform.
#+begin_src latex :file local_to_cartesian_coordinates.pdf
\begin{tikzpicture}
\node[block] (Jt) at (0, 0) {$\bm{J}^{-T}$};
\node[block, right= of Jt] (G) {$\bm{G}$};
\node[block, right= of G] (J) {$\bm{J}^{-1}$};
\draw[->] ($(Jt.west)+(-0.8, 0)$) -- (Jt.west) node[above left]{$\bm{\mathcal{F}}$};
\draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$};
\draw[->] (G.east) -- (J.west) node[above left]{$\delta\bm{\mathcal{L}}$};
\draw[->] (J.east) -- ++(0.8, 0) node[above left]{$\delta\bm{\mathcal{X}}$};
\end{tikzpicture}
#+end_src
#+name: fig:local_to_cartesian_coordinates
#+caption: From Strut coordinate to Cartesian coordinate using the Jacobian matrix
#+RESULTS:
[[file:figs/local_to_cartesian_coordinates.png]]
We here study the dynamics from $\bm{\mathcal{F}}$ to $\delta\bm{\mathcal{X}}$.
One has to note that when considering the static behavior:
\[ \bm{G}(s = 0) = \begin{bmatrix}
1/k_1 & & 0 \\
& \ddots & 0 \\
0 & & 1/k_6
\end{bmatrix}\]
And thus:
\[ \frac{\delta\bm{\mathcal{X}}}{\bm{\mathcal{F}}}(s = 0) = \bm{J}^{-1} \bm{G}(s = 0) \bm{J}^{-T} = \bm{K}^{-1} = \bm{C} \]
We conclude that the *static* behavior of the platform depends on the stiffness matrix.
For the cubic configuration, we have a diagonal stiffness matrix is the frames $\{A\}$ and $\{B\}$ are coincident with the cube's center.
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
#+begin_src matlab :results none :exports none
simulinkproject('../');
#+end_src
** Cube's center at the Center of Mass of the mobile platform
Let's create a Cubic Stewart Platform where the *Center of Mass of the mobile platform is located at the center of the cube*.
We define the size of the Stewart platform and the position of frames $\{A\}$ and $\{B\}$.
#+begin_src matlab
H = 200e-3; % height of the Stewart platform [m]
MO_B = -10e-3; % Position {B} with respect to {M} [m]
#+end_src
Now, we set the cube's parameters such that the center of the cube is coincident with $\{A\}$ and $\{B\}$.
#+begin_src matlab
Hc = 2.5*H; % Size of the useful part of the cube [m]
FOc = H + MO_B; % Center of the cube with respect to {F}
#+end_src
#+begin_src matlab
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B);
stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 25e-3, 'MHb', 25e-3);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, 'K', 1e6*ones(6,1), 'C', 1e1*ones(6,1));
stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
#+end_src
Now we set the geometry and mass of the mobile platform such that its center of mass is coincident with $\{A\}$ and $\{B\}$.
#+begin_src matlab
stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 1.2*max(vecnorm(stewart.platform_F.Fa)), ...
'Mpm', 10, ...
'Mph', 20e-3, ...
'Mpr', 1.2*max(vecnorm(stewart.platform_M.Mb)));
#+end_src
And we set small mass for the struts.
#+begin_src matlab
stewart = initializeCylindricalStruts(stewart, 'Fsm', 1e-3, 'Msm', 1e-3);
stewart = initializeInertialSensor(stewart);
#+end_src
No flexibility below the Stewart platform and no payload.
#+begin_src matlab
ground = initializeGround('type', 'none');
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
#+end_src
The obtain geometry is shown in figure [[fig:stewart_cubic_conf_decouple_dynamics]].
#+begin_src matlab :exports none
displayArchitecture(stewart, 'labels', false, 'view', 'all');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/stewart_cubic_conf_decouple_dynamics.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:stewart_cubic_conf_decouple_dynamics
#+caption: Geometry used for the simulations - The cube's center, the frames $\{A\}$ and $\{B\}$ and the Center of mass of the mobile platform are coincident ([[./figs/stewart_cubic_conf_decouple_dynamics.png][png]], [[./figs/stewart_cubic_conf_decouple_dynamics.pdf][pdf]])
[[file:figs/stewart_cubic_conf_decouple_dynamics.png]]
We now identify the dynamics from forces applied in each strut $\bm{\tau}$ to the displacement of each strut $d \bm{\mathcal{L}}$.
#+begin_src matlab
open('stewart_platform_model.slx')
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m]
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'};
#+end_src
Now, thanks to the Jacobian (Figure [[fig:local_to_cartesian_coordinates]]), we compute the transfer function from $\bm{\mathcal{F}}$ to $\bm{\mathcal{X}}$.
#+begin_src matlab
Gc = inv(stewart.kinematics.J)*G*inv(stewart.kinematics.J');
Gc = inv(stewart.kinematics.J)*G*stewart.kinematics.J;
Gc.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Gc.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
#+end_src
The obtain dynamics $\bm{G}_{c}(s) = \bm{J}^{-T} \bm{G}(s) \bm{J}^{-1}$ is shown in Figure [[fig:stewart_cubic_decoupled_dynamics_cartesian]].
#+begin_src matlab :exports none
freqs = logspace(1, 3, 500);
figure;
ax1 = subplot(2, 2, 1);
hold on;
for i = 1:6
for j = i+1:6
plot(freqs, abs(squeeze(freqresp(Gc(i, j), freqs, 'Hz'))), 'k-');
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(Gc(1, 1), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gc(2, 2), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gc(3, 3), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax3 = subplot(2, 2, 3);
hold on;
for i = 1:6
for j = i+1:6
p4 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(i, j), freqs, 'Hz'))), 'k-');
end
end
set(gca,'ColorOrderIndex',1);
p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(1, 1), freqs, 'Hz'))));
p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(2, 2), freqs, 'Hz'))));
p3 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(3, 3), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend([p1, p2, p3, p4], {'$D_x/F_x$','$D_y/F_y$', '$D_z/F_z$', '$D_i/F_j$'})
ax2 = subplot(2, 2, 2);
hold on;
for i = 1:6
for j = i+1:6
plot(freqs, abs(squeeze(freqresp(Gc(i, j), freqs, 'Hz'))), 'k-');
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(Gc(4, 4), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gc(5, 5), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gc(6, 6), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax4 = subplot(2, 2, 4);
hold on;
for i = 1:6
for j = i+1:6
p4 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(i, j), freqs, 'Hz'))), 'k-');
end
end
set(gca,'ColorOrderIndex',1);
p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(4, 4), freqs, 'Hz'))));
p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(5, 5), freqs, 'Hz'))));
p3 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(6, 6), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend([p1, p2, p3, p4], {'$R_x/M_x$','$R_y/M_y$', '$R_z/M_z$', '$R_i/M_j$'})
linkaxes([ax1,ax2,ax3,ax4],'x');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/stewart_cubic_decoupled_dynamics_cartesian.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:stewart_cubic_decoupled_dynamics_cartesian
#+caption: Dynamics from $\bm{\mathcal{F}}$ to $\bm{\mathcal{X}}$ ([[./figs/stewart_cubic_decoupled_dynamics_cartesian.png][png]], [[./figs/stewart_cubic_decoupled_dynamics_cartesian.pdf][pdf]])
[[file:figs/stewart_cubic_decoupled_dynamics_cartesian.png]]
It is interesting to note here that the system shown in Figure [[fig:local_to_cartesian_coordinates_bis]] also yield a decoupled system (explained in section 1.3.3 in cite:li01_simul_fault_vibrat_isolat_point).
#+begin_src latex :file local_to_cartesian_coordinates_bis.pdf
\begin{tikzpicture}
\node[block] (Jt) at (0, 0) {$\bm{J}$};
\node[block, right= of Jt] (G) {$\bm{G}$};
\node[block, right= of G] (J) {$\bm{J}^{-1}$};
\draw[->] ($(Jt.west)+(-0.8, 0)$) -- (Jt.west);
\draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$};
\draw[->] (G.east) -- (J.west) node[above left]{$\delta\bm{\mathcal{L}}$};
\draw[->] (J.east) -- ++(0.8, 0) node[above left]{$\delta\bm{\mathcal{X}}$};
\end{tikzpicture}
#+end_src
#+name: fig:local_to_cartesian_coordinates_bis
#+caption: Alternative way to decouple the system
#+RESULTS:
[[file:figs/local_to_cartesian_coordinates_bis.png]]
#+begin_important
The dynamics is well decoupled at all frequencies.
We have the same dynamics for:
- $D_x/F_x$, $D_y/F_y$ and $D_z/F_z$
- $R_x/M_x$ and $D_y/F_y$
The Dynamics from $F_i$ to $D_i$ is just a 1-dof mass-spring-damper system.
This is because the Mass, Damping and Stiffness matrices are all diagonal.
#+end_important
** Cube's center not coincident with the Mass of the Mobile platform
Let's create a Stewart platform with a cubic architecture where the cube's center is at the center of the Stewart platform.
#+begin_src matlab
H = 200e-3; % height of the Stewart platform [m]
MO_B = -100e-3; % Position {B} with respect to {M} [m]
#+end_src
Now, we set the cube's parameters such that the center of the cube is coincident with $\{A\}$ and $\{B\}$.
#+begin_src matlab
Hc = 2.5*H; % Size of the useful part of the cube [m]
FOc = H + MO_B; % Center of the cube with respect to {F}
#+end_src
#+begin_src matlab
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B);
stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 25e-3, 'MHb', 25e-3);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, 'K', 1e6*ones(6,1), 'C', 1e1*ones(6,1));
stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
#+end_src
However, the Center of Mass of the mobile platform is *not* located at the cube's center.
#+begin_src matlab
stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 1.2*max(vecnorm(stewart.platform_F.Fa)), ...
'Mpm', 10, ...
'Mph', 20e-3, ...
'Mpr', 1.2*max(vecnorm(stewart.platform_M.Mb)));
#+end_src
And we set small mass for the struts.
#+begin_src matlab
stewart = initializeCylindricalStruts(stewart, 'Fsm', 1e-3, 'Msm', 1e-3);
stewart = initializeInertialSensor(stewart);
#+end_src
No flexibility below the Stewart platform and no payload.
#+begin_src matlab
ground = initializeGround('type', 'none');
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
#+end_src
The obtain geometry is shown in figure [[fig:stewart_cubic_conf_mass_above]].
#+begin_src matlab :exports none
displayArchitecture(stewart, 'labels', false, 'view', 'all');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/stewart_cubic_conf_mass_above.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:stewart_cubic_conf_mass_above
#+caption: Geometry used for the simulations - The cube's center is coincident with the frames $\{A\}$ and $\{B\}$ but not with the Center of mass of the mobile platform ([[./figs/stewart_cubic_conf_mass_above.png][png]], [[./figs/stewart_cubic_conf_mass_above.pdf][pdf]])
[[file:figs/stewart_cubic_conf_mass_above.png]]
We now identify the dynamics from forces applied in each strut $\bm{\tau}$ to the displacement of each strut $d \bm{\mathcal{L}}$.
#+begin_src matlab
open('stewart_platform_model.slx')
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m]
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'};
#+end_src
And we use the Jacobian to compute the transfer function from $\bm{\mathcal{F}}$ to $\bm{\mathcal{X}}$.
#+begin_src matlab
Gc = inv(stewart.kinematics.J)*G*inv(stewart.kinematics.J');
Gc.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Gc.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
#+end_src
The obtain dynamics $\bm{G}_{c}(s) = \bm{J}^{-T} \bm{G}(s) \bm{J}^{-1}$ is shown in Figure [[fig:stewart_conf_coupling_mass_matrix]].
#+begin_src matlab :exports none
freqs = logspace(1, 3, 500);
figure;
ax1 = subplot(2, 2, 1);
hold on;
for i = 1:6
for j = i+1:6
plot(freqs, abs(squeeze(freqresp(Gc(i, j), freqs, 'Hz'))), 'k-');
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(Gc(1, 1), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gc(2, 2), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gc(3, 3), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax3 = subplot(2, 2, 3);
hold on;
for i = 1:6
for j = i+1:6
p4 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(i, j), freqs, 'Hz'))), 'k-');
end
end
set(gca,'ColorOrderIndex',1);
p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(1, 1), freqs, 'Hz'))));
p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(2, 2), freqs, 'Hz'))));
p3 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(3, 3), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend([p1, p2, p3, p4], {'$D_x/F_x$','$D_y/F_y$', '$D_z/F_z$', '$D_i/F_j$'})
ax2 = subplot(2, 2, 2);
hold on;
for i = 1:6
for j = i+1:6
plot(freqs, abs(squeeze(freqresp(Gc(i, j), freqs, 'Hz'))), 'k-');
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(Gc(4, 4), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gc(5, 5), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gc(6, 6), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax4 = subplot(2, 2, 4);
hold on;
for i = 1:6
for j = i+1:6
p4 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(i, j), freqs, 'Hz'))), 'k-');
end
end
set(gca,'ColorOrderIndex',1);
p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(4, 4), freqs, 'Hz'))));
p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(5, 5), freqs, 'Hz'))));
p3 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(6, 6), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend([p1, p2, p3, p4], {'$R_x/M_x$','$R_y/M_y$', '$R_z/M_z$', '$R_i/M_j$'})
linkaxes([ax1,ax2,ax3,ax4],'x');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/stewart_conf_coupling_mass_matrix.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:stewart_conf_coupling_mass_matrix
#+caption: Obtained Dynamics from $\bm{\mathcal{F}}$ to $\bm{\mathcal{X}}$ ([[./figs/stewart_conf_coupling_mass_matrix.png][png]], [[./figs/stewart_conf_coupling_mass_matrix.pdf][pdf]])
[[file:figs/stewart_conf_coupling_mass_matrix.png]]
#+begin_important
The system is decoupled at low frequency (the Stiffness matrix being diagonal), but it is *not* decoupled at all frequencies.
This was expected as the mass matrix is not diagonal (the Center of Mass of the mobile platform not being coincident with the frame $\{B\}$).
#+end_important
** Conclusion
#+begin_important
Some conclusions can be drawn from the above analysis:
- Static Decoupling <=> Diagonal Stiffness matrix <=> {A} and {B} at the cube's center
- Dynamic Decoupling <=> Static Decoupling + CoM of mobile platform coincident with {A} and {B}.
#+end_important
* Dynamic Coupling between actuators and sensors of each strut
:PROPERTIES:
:header-args:matlab+: :tangle ../matlab/cubic_conf_coupling_strutsl.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
<<sec:cubic_conf_coupling_struts>>
#+begin_note
The Matlab script corresponding to this section is accessible [[file:../matlab/cubic_conf_coupling_strutsl.m][here]].
To run the script, open the Simulink Project, and type =run cubic_conf_coupling_struts.m=.
#+end_note
** Introduction :ignore:
From cite:preumont07_six_axis_singl_stage_activ, the cubic configuration "/minimizes the cross-coupling amongst actuators and sensors of different legs (being orthogonal to each other)/".
In this section, we wish to study such properties of the cubic architecture.
We will compare the transfer function from sensors to actuators in each strut for a cubic architecture and for a non-cubic architecture (where the struts are not orthogonal with each other).
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
#+begin_src matlab :results none :exports none
simulinkproject('../');
#+end_src
** Coupling between the actuators and sensors - Cubic Architecture
Let's generate a Cubic architecture where the cube's center and the frames $\{A\}$ and $\{B\}$ are coincident.
#+begin_src matlab
H = 200e-3; % height of the Stewart platform [m]
MO_B = -10e-3; % Position {B} with respect to {M} [m]
Hc = 2.5*H; % Size of the useful part of the cube [m]
FOc = H + MO_B; % Center of the cube with respect to {F}
#+end_src
#+begin_src matlab
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B);
stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 25e-3, 'MHb', 25e-3);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, 'K', 1e6*ones(6,1), 'C', 1e1*ones(6,1));
stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 1.2*max(vecnorm(stewart.platform_F.Fa)), ...
'Mpm', 10, ...
'Mph', 20e-3, ...
'Mpr', 1.2*max(vecnorm(stewart.platform_M.Mb)));
stewart = initializeCylindricalStruts(stewart, 'Fsm', 1e-3, 'Msm', 1e-3);
stewart = initializeInertialSensor(stewart);
#+end_src
No flexibility below the Stewart platform and no payload.
#+begin_src matlab
ground = initializeGround('type', 'none');
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
#+end_src
#+begin_src matlab
disturbances = initializeDisturbances();
references = initializeReferences(stewart);
#+end_src
#+begin_src matlab :exports none
displayArchitecture(stewart, 'labels', false, 'view', 'all');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/stewart_architecture_coupling_struts_cubic.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:stewart_architecture_coupling_struts_cubic
#+caption: Geometry of the generated Stewart platform ([[./figs/stewart_architecture_coupling_struts_cubic.png][png]], [[./figs/stewart_architecture_coupling_struts_cubic.pdf][pdf]])
[[file:figs/stewart_architecture_coupling_struts_cubic.png]]
And we identify the dynamics from the actuator forces $\tau_{i}$ to the relative motion sensors $\delta \mathcal{L}_{i}$ (Figure [[fig:coupling_struts_relative_sensor_cubic]]) and to the force sensors $\tau_{m,i}$ (Figure [[fig:coupling_struts_force_sensor_cubic]]).
#+begin_src matlab :exports none
open('stewart_platform_model.slx')
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m]
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'};
#+end_src
#+begin_src matlab :exports none
freqs = logspace(1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:6
for j = i+1:6
plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-');
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax3 = subplot(2, 1, 2);
hold on;
for i = 1:6
for j = i+1:6
p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-');
end
end
set(gca,'ColorOrderIndex',1);
p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend([p1, p2], {'$L_i/\tau_i$', '$L_i/\tau_j$'})
linkaxes([ax1,ax2],'x');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/coupling_struts_relative_sensor_cubic.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:coupling_struts_relative_sensor_cubic
#+caption: Dynamics from the force actuators to the relative motion sensors ([[./figs/coupling_struts_relative_sensor_cubic.png][png]], [[./figs/coupling_struts_relative_sensor_cubic.pdf][pdf]])
[[file:figs/coupling_struts_relative_sensor_cubic.png]]
#+begin_src matlab :exports none
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Taum'); io_i = io_i + 1; % Force Sensor Outputs [N]
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
#+end_src
#+begin_src matlab :exports none
freqs = logspace(1, 3, 500);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:6
for j = i+1:6
plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-');
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
ax3 = subplot(2, 1, 2);
hold on;
for i = 1:6
for j = i+1:6
p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-');
end
end
set(gca,'ColorOrderIndex',1);
p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend([p1, p2], {'$F_{m,i}/\tau_i$', '$F_{m,i}/\tau_j$'})
linkaxes([ax1,ax2],'x');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/coupling_struts_force_sensor_cubic.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:coupling_struts_force_sensor_cubic
#+caption: Dynamics from the force actuators to the force sensors ([[./figs/coupling_struts_force_sensor_cubic.png][png]], [[./figs/coupling_struts_force_sensor_cubic.pdf][pdf]])
[[file:figs/coupling_struts_force_sensor_cubic.png]]
** Coupling between the actuators and sensors - Non-Cubic Architecture
Now we generate a Stewart platform which is not cubic but with approximately the same size as the previous cubic architecture.
#+begin_src matlab
H = 200e-3; % height of the Stewart platform [m]
MO_B = -10e-3; % Position {B} with respect to {M} [m]
#+end_src
#+begin_src matlab
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B);
stewart = generateGeneralConfiguration(stewart, 'FR', 250e-3, 'MR', 150e-3);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, 'K', 1e6*ones(6,1), 'C', 1e1*ones(6,1));
stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 1.2*max(vecnorm(stewart.platform_F.Fa)), ...
'Mpm', 10, ...
'Mph', 20e-3, ...
'Mpr', 1.2*max(vecnorm(stewart.platform_M.Mb)));
stewart = initializeCylindricalStruts(stewart, 'Fsm', 1e-3, 'Msm', 1e-3);
stewart = initializeInertialSensor(stewart);
#+end_src
No flexibility below the Stewart platform and no payload.
#+begin_src matlab
ground = initializeGround('type', 'none');
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
#+end_src
#+begin_src matlab :exports none
displayArchitecture(stewart, 'labels', false, 'view', 'all');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/stewart_architecture_coupling_struts_non_cubic.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:stewart_architecture_coupling_struts_non_cubic
#+caption: Geometry of the generated Stewart platform ([[./figs/stewart_architecture_coupling_struts_non_cubic.png][png]], [[./figs/stewart_architecture_coupling_struts_non_cubic.pdf][pdf]])
[[file:figs/stewart_architecture_coupling_struts_non_cubic.png]]
And we identify the dynamics from the actuator forces $\tau_{i}$ to the relative motion sensors $\delta \mathcal{L}_{i}$ (Figure [[fig:coupling_struts_relative_sensor_non_cubic]]) and to the force sensors $\tau_{m,i}$ (Figure [[fig:coupling_struts_force_sensor_non_cubic]]).
#+begin_src matlab :exports none
open('stewart_platform_model.slx')
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m]
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'};
#+end_src
#+begin_src matlab :exports none
freqs = logspace(1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:6
for j = i+1:6
plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-');
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax3 = subplot(2, 1, 2);
hold on;
for i = 1:6
for j = i+1:6
p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-');
end
end
set(gca,'ColorOrderIndex',1);
p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend([p1, p2], {'$L_i/\tau_i$', '$L_i/\tau_j$'})
linkaxes([ax1,ax2],'x');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/coupling_struts_relative_sensor_non_cubic.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:coupling_struts_relative_sensor_non_cubic
#+caption: Dynamics from the force actuators to the relative motion sensors ([[./figs/coupling_struts_relative_sensor_non_cubic.png][png]], [[./figs/coupling_struts_relative_sensor_non_cubic.pdf][pdf]])
[[file:figs/coupling_struts_relative_sensor_non_cubic.png]]
#+begin_src matlab :exports none
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Taum'); io_i = io_i + 1; % Force Sensor Outputs [N]
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
#+end_src
#+begin_src matlab :exports none
freqs = logspace(1, 3, 500);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:6
for j = i+1:6
plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-');
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
ax3 = subplot(2, 1, 2);
hold on;
for i = 1:6
for j = i+1:6
p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-');
end
end
set(gca,'ColorOrderIndex',1);
p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend([p1, p2], {'$F_{m,i}/\tau_i$', '$F_{m,i}/\tau_j$'})
linkaxes([ax1,ax2],'x');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/coupling_struts_force_sensor_non_cubic.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:coupling_struts_force_sensor_non_cubic
#+caption: Dynamics from the force actuators to the force sensors ([[./figs/coupling_struts_force_sensor_non_cubic.png][png]], [[./figs/coupling_struts_force_sensor_non_cubic.pdf][pdf]])
[[file:figs/coupling_struts_force_sensor_non_cubic.png]]
** Conclusion
#+begin_important
The Cubic architecture seems to not have any significant effect on the coupling between actuator and sensors of each strut and thus provides no advantages for decentralized control.
#+end_important
* Functions
<<sec:functions>>
** =generateCubicConfiguration=: Generate a Cubic Configuration
:PROPERTIES:
:header-args:matlab+: :tangle ../src/generateCubicConfiguration.m
:header-args:matlab+: :comments none :mkdirp yes :eval no
:END:
<<sec:generateCubicConfiguration>>
This Matlab function is accessible [[file:../src/generateCubicConfiguration.m][here]].
*** Function description
:PROPERTIES:
:UNNUMBERED: t
:END:
#+begin_src matlab
function [stewart] = generateCubicConfiguration(stewart, args)
% generateCubicConfiguration - Generate a Cubic Configuration
%
% Syntax: [stewart] = generateCubicConfiguration(stewart, args)
%
% Inputs:
% - stewart - A structure with the following fields
% - geometry.H [1x1] - Total height of the platform [m]
% - args - Can have the following fields:
% - Hc [1x1] - Height of the "useful" part of the cube [m]
% - FOc [1x1] - Height of the center of the cube with respect to {F} [m]
% - FHa [1x1] - Height of the plane joining the points ai with respect to the frame {F} [m]
% - MHb [1x1] - Height of the plane joining the points bi with respect to the frame {M} [m]
%
% Outputs:
% - stewart - updated Stewart structure with the added fields:
% - platform_F.Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
% - platform_M.Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}
#+end_src
*** Documentation
:PROPERTIES:
:UNNUMBERED: t
:END:
#+name: fig:cubic-configuration-definition
#+caption: Cubic Configuration
[[file:figs/cubic-configuration-definition.png]]
*** Optional Parameters
:PROPERTIES:
:UNNUMBERED: t
:END:
#+begin_src matlab
arguments
stewart
args.Hc (1,1) double {mustBeNumeric, mustBePositive} = 60e-3
args.FOc (1,1) double {mustBeNumeric} = 50e-3
args.FHa (1,1) double {mustBeNumeric, mustBeNonnegative} = 15e-3
args.MHb (1,1) double {mustBeNumeric, mustBeNonnegative} = 15e-3
end
#+end_src
*** Check the =stewart= structure elements
:PROPERTIES:
:UNNUMBERED: t
:END:
#+begin_src matlab
assert(isfield(stewart.geometry, 'H'), 'stewart.geometry should have attribute H')
H = stewart.geometry.H;
#+end_src
*** Position of the Cube
:PROPERTIES:
:UNNUMBERED: t
:END:
We define the useful points of the cube with respect to the Cube's center.
${}^{C}C$ are the 6 vertices of the cubes expressed in a frame {C} which is located at the center of the cube and aligned with {F} and {M}.
#+begin_src matlab
sx = [ 2; -1; -1];
sy = [ 0; 1; -1];
sz = [ 1; 1; 1];
R = [sx, sy, sz]./vecnorm([sx, sy, sz]);
L = args.Hc*sqrt(3);
Cc = R'*[[0;0;L],[L;0;L],[L;0;0],[L;L;0],[0;L;0],[0;L;L]] - [0;0;1.5*args.Hc];
CCf = [Cc(:,1), Cc(:,3), Cc(:,3), Cc(:,5), Cc(:,5), Cc(:,1)]; % CCf(:,i) corresponds to the bottom cube's vertice corresponding to the i'th leg
CCm = [Cc(:,2), Cc(:,2), Cc(:,4), Cc(:,4), Cc(:,6), Cc(:,6)]; % CCm(:,i) corresponds to the top cube's vertice corresponding to the i'th leg
#+end_src
*** Compute the pose
:PROPERTIES:
:UNNUMBERED: t
:END:
We can compute the vector of each leg ${}^{C}\hat{\bm{s}}_{i}$ (unit vector from ${}^{C}C_{f}$ to ${}^{C}C_{m}$).
#+begin_src matlab
CSi = (CCm - CCf)./vecnorm(CCm - CCf);
#+end_src
We now which to compute the position of the joints $a_{i}$ and $b_{i}$.
#+begin_src matlab
Fa = CCf + [0; 0; args.FOc] + ((args.FHa-(args.FOc-args.Hc/2))./CSi(3,:)).*CSi;
Mb = CCf + [0; 0; args.FOc-H] + ((H-args.MHb-(args.FOc-args.Hc/2))./CSi(3,:)).*CSi;
#+end_src
*** Populate the =stewart= structure
:PROPERTIES:
:UNNUMBERED: t
:END:
#+begin_src matlab
stewart.platform_F.Fa = Fa;
stewart.platform_M.Mb = Mb;
#+end_src
* Bibliography :ignore:
bibliographystyle:unsrtnat
bibliography:ref.bib