1392 lines
49 KiB
Org Mode
1392 lines
49 KiB
Org Mode
#+TITLE: Stewart Platform - Vibration Isolation
|
|
:DRAWER:
|
|
#+STARTUP: overview
|
|
|
|
#+LANGUAGE: en
|
|
#+EMAIL: dehaeze.thomas@gmail.com
|
|
#+AUTHOR: Dehaeze Thomas
|
|
|
|
#+HTML_LINK_HOME: ./index.html
|
|
#+HTML_LINK_UP: ./index.html
|
|
|
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
|
#+HTML_HEAD: <script src="./js/jquery.min.js"></script>
|
|
#+HTML_HEAD: <script src="./js/bootstrap.min.js"></script>
|
|
#+HTML_HEAD: <script src="./js/jquery.stickytableheaders.min.js"></script>
|
|
#+HTML_HEAD: <script src="./js/readtheorg.js"></script>
|
|
|
|
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
#+PROPERTY: header-args:matlab+ :comments org
|
|
#+PROPERTY: header-args:matlab+ :exports both
|
|
#+PROPERTY: header-args:matlab+ :results none
|
|
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
#+PROPERTY: header-args:matlab+ :noweb yes
|
|
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
|
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
|
|
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
|
|
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
|
|
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
|
|
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
|
|
#+PROPERTY: header-args:latex+ :results file raw replace
|
|
#+PROPERTY: header-args:latex+ :buffer no
|
|
#+PROPERTY: header-args:latex+ :eval no-export
|
|
#+PROPERTY: header-args:latex+ :exports results
|
|
#+PROPERTY: header-args:latex+ :mkdirp yes
|
|
#+PROPERTY: header-args:latex+ :output-dir figs
|
|
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
|
|
:END:
|
|
|
|
* Introduction :ignore:
|
|
|
|
* HAC-LAC (Cascade) Control - Integral Control
|
|
** Introduction
|
|
In this section, we wish to study the use of the High Authority Control - Low Authority Control (HAC-LAC) architecture on the Stewart platform.
|
|
|
|
The control architectures are shown in Figures [[fig:control_arch_hac_iff]] and [[fig:control_arch_hac_dvf]].
|
|
|
|
First, the LAC loop is closed (the LAC control is described [[file:active-damping.org][here]]), and then the HAC controller is designed and the outer loop is closed.
|
|
|
|
#+begin_src latex :file control_arch_hac_iff.pdf
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[block={2.0cm}{2.0cm}] (P) {};
|
|
\node[above] at (P.north) {Plant};
|
|
\node[block, below=0.7 of P] (Kiff) {$\bm{K}_\text{IFF}$};
|
|
\node[block, below=0.7 of Kiff] (Khac) {$\bm{K}_\text{HAC}$};
|
|
|
|
% Add
|
|
\node[addb, left=1 of P] (add) {};
|
|
|
|
\node[block, left=1 of add] (J) {$\bm{J}^{-T}$};
|
|
|
|
% Input and outputs coordinates
|
|
\coordinate[] (outputhac) at ($(P.south east)!0.75!(P.north east)$);
|
|
\coordinate[] (outputiff) at ($(P.south east)!0.25!(P.north east)$);
|
|
|
|
\draw[->] (outputiff) node[above right]{$\bm{\tau}_m$} -- ++(0.8, 0) |- (Kiff.east);
|
|
\draw[->] (outputhac) node[above right]{$\bm{\mathcal{X}}$} -- ++(1.6, 0) |- (Khac.east);
|
|
|
|
\draw[->] (Kiff.west) -| (add.south);
|
|
|
|
\draw[->] (J.east) -- (add.west);
|
|
\draw[<-] (J.west) node[above left]{$\bm{\mathcal{F}}$} -- ++(-0.8, 0) |- (Khac.west);
|
|
\draw[->] (add.east) -- (P.west) node[above left]{$\bm{\tau}$};
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:control_arch_hac_iff
|
|
#+caption: HAC-LAC architecture with IFF
|
|
#+RESULTS:
|
|
[[file:figs/control_arch_hac_iff.png]]
|
|
|
|
|
|
#+begin_src latex :file control_arch_hac_dvf.pdf
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[block={2.0cm}{2.0cm}] (P) {};
|
|
\node[above] at (P.north) {Plant};
|
|
\node[block, below=0.7 of P] (Kdvf) {$\bm{K}_\text{DVF}$};
|
|
\node[block, below=0.7 of Kdvf] (Khac) {$\bm{K}_\text{HAC}$};
|
|
|
|
% Add
|
|
\node[addb, left=1 of P] (add) {};
|
|
|
|
\node[block, left=1 of add] (J) {$\bm{J}^{-T}$};
|
|
|
|
% Input and outputs coordinates
|
|
\coordinate[] (outputhac) at ($(P.south east)!0.75!(P.north east)$);
|
|
\coordinate[] (outputdvf) at ($(P.south east)!0.25!(P.north east)$);
|
|
|
|
\draw[->] (outputdvf) node[above right]{$\delta \bm{\mathcal{L}}_m$} -- ++(0.8, 0) |- (Kdvf.east);
|
|
\draw[->] (outputhac) node[above right]{$\bm{\mathcal{X}}$} -- ++(1.6, 0) |- (Khac.east);
|
|
|
|
\draw[->] (Kdvf.west) -| (add.south);
|
|
|
|
\draw[->] (J.east) -- (add.west);
|
|
\draw[<-] (J.west) node[above left]{$\bm{\mathcal{F}}$} -- ++(-0.8, 0) |- (Khac.west);
|
|
\draw[->] (add.east) -- (P.west) node[above left]{$\bm{\tau}$};
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:control_arch_hac_dvf
|
|
#+caption: HAC-LAC architecture with DVF
|
|
#+RESULTS:
|
|
[[file:figs/control_arch_hac_dvf.png]]
|
|
|
|
** Matlab Init :noexport:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
simulinkproject('../');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
open('stewart_platform_model.slx')
|
|
#+end_src
|
|
|
|
** Initialization
|
|
We first initialize the Stewart platform.
|
|
#+begin_src matlab
|
|
stewart = initializeStewartPlatform();
|
|
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
|
stewart = generateGeneralConfiguration(stewart);
|
|
stewart = computeJointsPose(stewart);
|
|
stewart = initializeStrutDynamics(stewart);
|
|
stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
|
|
stewart = initializeCylindricalPlatforms(stewart);
|
|
stewart = initializeCylindricalStruts(stewart);
|
|
stewart = computeJacobian(stewart);
|
|
stewart = initializeStewartPose(stewart);
|
|
stewart = initializeInertialSensor(stewart, 'type', 'none');
|
|
#+end_src
|
|
|
|
The rotation point of the ground is located at the origin of frame $\{A\}$.
|
|
#+begin_src matlab
|
|
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
|
payload = initializePayload('type', 'none');
|
|
#+end_src
|
|
|
|
** Identification
|
|
*** Introduction :ignore:
|
|
We identify the transfer function from the actuator forces $\bm{\tau}$ to the absolute displacement of the mobile platform $\bm{\mathcal{X}}$ in three different cases:
|
|
- Open Loop plant
|
|
- Already damped plant using Integral Force Feedback
|
|
- Already damped plant using Direct velocity feedback
|
|
|
|
*** HAC - Without LAC
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'open-loop');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Name of the Simulink File
|
|
mdl = 'stewart_platform_model';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
|
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad]
|
|
|
|
%% Run the linearization
|
|
G_ol = linearize(mdl, io);
|
|
G_ol.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
G_ol.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
|
|
#+end_src
|
|
|
|
*** HAC - IFF
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'iff');
|
|
K_iff = -(1e4/s)*eye(6);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Name of the Simulink File
|
|
mdl = 'stewart_platform_model';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
|
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad]
|
|
|
|
%% Run the linearization
|
|
G_iff = linearize(mdl, io);
|
|
G_iff.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
G_iff.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
|
|
#+end_src
|
|
|
|
*** HAC - DVF
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'dvf');
|
|
K_dvf = -1e4*s/(1+s/2/pi/5000)*eye(6);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Name of the Simulink File
|
|
mdl = 'stewart_platform_model';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
|
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad]
|
|
|
|
%% Run the linearization
|
|
G_dvf = linearize(mdl, io);
|
|
G_dvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
G_dvf.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
|
|
#+end_src
|
|
|
|
** Control Architecture
|
|
We use the Jacobian to express the actuator forces in the cartesian frame, and thus we obtain the transfer functions from $\bm{\mathcal{F}}$ to $\bm{\mathcal{X}}$.
|
|
|
|
#+begin_src matlab
|
|
Gc_ol = minreal(G_ol)/stewart.kinematics.J';
|
|
Gc_ol.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
|
|
|
Gc_iff = minreal(G_iff)/stewart.kinematics.J';
|
|
Gc_iff.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
|
|
|
Gc_dvf = minreal(G_dvf)/stewart.kinematics.J';
|
|
Gc_dvf.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
|
#+end_src
|
|
|
|
We then design a controller based on the transfer functions from $\bm{\mathcal{F}}$ to $\bm{\mathcal{X}}$, finally, we will pre-multiply the controller by $\bm{J}^{-T}$.
|
|
|
|
** 6x6 Plant Comparison
|
|
#+begin_src matlab :exports none
|
|
p_handle = zeros(6*6,1);
|
|
|
|
fig = figure;
|
|
for ix = 1:6
|
|
for iy = 1:6
|
|
p_handle((ix-1)*6 + iy) = subplot(6, 6, (ix-1)*6 + iy);
|
|
hold on;
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(Gc_ol(ix, iy), freqs, 'Hz'))));
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Gc_iff(ix, iy), freqs, 'Hz'))));
|
|
set(gca,'ColorOrderIndex',3);
|
|
plot(freqs, abs(squeeze(freqresp(Gc_dvf(ix, iy), freqs, 'Hz'))));
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
if ix < 6
|
|
xticklabels({});
|
|
end
|
|
if iy > 1
|
|
yticklabels({});
|
|
end
|
|
end
|
|
end
|
|
|
|
linkaxes(p_handle, 'xy')
|
|
xlim([freqs(1), freqs(end)]);
|
|
ylim([1e-9 1e-3]);
|
|
|
|
han = axes(fig, 'visible', 'off');
|
|
han.XLabel.Visible = 'on';
|
|
han.YLabel.Visible = 'on';
|
|
xlabel(han, 'Frequency [Hz]');
|
|
ylabel(han, 'Plant');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/hac_lac_coupling_jacobian.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:hac_lac_coupling_jacobian
|
|
#+caption: Norm of the transfer functions from $\bm{\mathcal{F}}$ to $\bm{\mathcal{X}}$ ([[./figs/hac_lac_coupling_jacobian.png][png]], [[./figs/hac_lac_coupling_jacobian.pdf][pdf]])
|
|
[[file:figs/hac_lac_coupling_jacobian.png]]
|
|
|
|
** HAC - DVF
|
|
*** Plant
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(Gc_dvf('Dx', 'Fx'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Gc_dvf('Dy', 'Fy'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Gc_dvf('Dz', 'Fz'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Gc_dvf('Rx', 'Mx'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Gc_dvf('Ry', 'My'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Gc_dvf('Rz', 'Mz'), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_dvf('Dx', 'Fx'), freqs, 'Hz'))), 'DisplayName', 'Dx/Fx');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_dvf('Dy', 'Fy'), freqs, 'Hz'))), 'DisplayName', 'Dy/Fy');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_dvf('Dz', 'Fz'), freqs, 'Hz'))), 'DisplayName', 'Dz/Fz');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_dvf('Rx', 'Mx'), freqs, 'Hz'))), 'DisplayName', 'Rx/Mx');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_dvf('Ry', 'My'), freqs, 'Hz'))), 'DisplayName', 'Ry/My');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_dvf('Rz', 'Mz'), freqs, 'Hz'))), 'DisplayName', 'Rz/Mz');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/hac_lac_plant_dvf.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:hac_lac_plant_dvf
|
|
#+caption: Diagonal elements of the plant for HAC control when DVF is previously applied ([[./figs/hac_lac_plant_dvf.png][png]], [[./figs/hac_lac_plant_dvf.pdf][pdf]])
|
|
[[file:figs/hac_lac_plant_dvf.png]]
|
|
|
|
*** Controller Design
|
|
We design a diagonal controller with equal bandwidth for the 6 terms.
|
|
The controller is a pure integrator with a small lead near the crossover.
|
|
|
|
#+begin_src matlab
|
|
wc = 2*pi*300; % Wanted Bandwidth [rad/s]
|
|
|
|
h = 1.2;
|
|
H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h));
|
|
|
|
Kd_dvf = diag(1./abs(diag(freqresp(1/s*Gc_dvf, wc)))) .* H_lead .* 1/s;
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(Kd_dvf(1,1)*Gc_dvf('Dx', 'Fx'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Kd_dvf(2,2)*Gc_dvf('Dy', 'Fy'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Kd_dvf(3,3)*Gc_dvf('Dz', 'Fz'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Kd_dvf(4,4)*Gc_dvf('Rx', 'Mx'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Kd_dvf(5,5)*Gc_dvf('Ry', 'My'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Kd_dvf(6,6)*Gc_dvf('Rz', 'Mz'), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_dvf(1,1)*Gc_dvf('Dx', 'Fx'), freqs, 'Hz'))), 'DisplayName', 'Dx/Fx');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_dvf(2,2)*Gc_dvf('Dy', 'Fy'), freqs, 'Hz'))), 'DisplayName', 'Dy/Fy');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_dvf(3,3)*Gc_dvf('Dz', 'Fz'), freqs, 'Hz'))), 'DisplayName', 'Dz/Fz');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_dvf(4,4)*Gc_dvf('Rx', 'Mx'), freqs, 'Hz'))), 'DisplayName', 'Rx/Mx');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_dvf(5,5)*Gc_dvf('Ry', 'My'), freqs, 'Hz'))), 'DisplayName', 'Ry/My');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_dvf(6,6)*Gc_dvf('Rz', 'Mz'), freqs, 'Hz'))), 'DisplayName', 'Rz/Mz');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/hac_lac_loop_gain_dvf.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:hac_lac_loop_gain_dvf
|
|
#+caption: Diagonal elements of the Loop Gain for the HAC control ([[./figs/hac_lac_loop_gain_dvf.png][png]], [[./figs/hac_lac_loop_gain_dvf.pdf][pdf]])
|
|
[[file:figs/hac_lac_loop_gain_dvf.png]]
|
|
|
|
|
|
Finally, we pre-multiply the diagonal controller by $\bm{J}^{-T}$ prior implementation.
|
|
#+begin_src matlab
|
|
K_hac_dvf = inv(stewart.kinematics.J')*Kd_dvf;
|
|
#+end_src
|
|
|
|
*** Obtained Performance
|
|
We identify the transmissibility and compliance of the system.
|
|
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'open-loop');
|
|
[T_ol, T_norm_ol, freqs] = computeTransmissibility();
|
|
[C_ol, C_norm_ol, ~] = computeCompliance();
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'dvf');
|
|
[T_dvf, T_norm_dvf, ~] = computeTransmissibility();
|
|
[C_dvf, C_norm_dvf, ~] = computeCompliance();
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'hac-dvf');
|
|
[T_hac_dvf, T_norm_hac_dvf, ~] = computeTransmissibility();
|
|
[C_hac_dvf, C_norm_hac_dvf, ~] = computeCompliance();
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
|
|
subplot(1,2,1);
|
|
hold on;
|
|
plot(freqs, T_norm_ol)
|
|
plot(freqs, T_norm_dvf)
|
|
plot(freqs, T_norm_hac_dvf)
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]');
|
|
ylabel('Transmissibility - Frobenius Norm');
|
|
|
|
subplot(1,2,2);
|
|
hold on;
|
|
plot(freqs, C_norm_ol, 'DisplayName', 'OL')
|
|
plot(freqs, C_norm_dvf, 'DisplayName', 'DVF')
|
|
plot(freqs, C_norm_hac_dvf, 'DisplayName', 'HAC-DVF')
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]');
|
|
ylabel('Compliance - Frobenius Norm');
|
|
legend();
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/hac_lac_C_T_dvf.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:hac_lac_C_T_dvf
|
|
#+caption: Obtained Compliance and Transmissibility ([[./figs/hac_lac_C_T_dvf.png][png]], [[./figs/hac_lac_C_T_dvf.pdf][pdf]])
|
|
[[file:figs/hac_lac_C_T_dvf.png]]
|
|
|
|
** HAC - IFF
|
|
*** Plant
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(Gc_iff('Dx', 'Fx'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Gc_iff('Dy', 'Fy'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Gc_iff('Dz', 'Fz'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Gc_iff('Rx', 'Mx'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Gc_iff('Ry', 'My'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Gc_iff('Rz', 'Mz'), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_iff('Dx', 'Fx'), freqs, 'Hz'))), 'DisplayName', 'Dx/Fx');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_iff('Dy', 'Fy'), freqs, 'Hz'))), 'DisplayName', 'Dy/Fy');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_iff('Dz', 'Fz'), freqs, 'Hz'))), 'DisplayName', 'Dz/Fz');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_iff('Rx', 'Mx'), freqs, 'Hz'))), 'DisplayName', 'Rx/Mx');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_iff('Ry', 'My'), freqs, 'Hz'))), 'DisplayName', 'Ry/My');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_iff('Rz', 'Mz'), freqs, 'Hz'))), 'DisplayName', 'Rz/Mz');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/hac_lac_plant_iff.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:hac_lac_plant_iff
|
|
#+caption: Diagonal elements of the plant for HAC control when IFF is previously applied ([[./figs/hac_lac_plant_iff.png][png]], [[./figs/hac_lac_plant_iff.pdf][pdf]])
|
|
[[file:figs/hac_lac_plant_iff.png]]
|
|
|
|
*** Controller Design
|
|
We design a diagonal controller with equal bandwidth for the 6 terms.
|
|
The controller is a pure integrator with a small lead near the crossover.
|
|
|
|
#+begin_src matlab
|
|
wc = 2*pi*300; % Wanted Bandwidth [rad/s]
|
|
|
|
h = 1.2;
|
|
H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h));
|
|
|
|
Kd_iff = diag(1./abs(diag(freqresp(1/s*Gc_iff, wc)))) .* H_lead .* 1/s;
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(Kd_iff(1,1)*Gc_iff('Dx', 'Fx'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Kd_iff(2,2)*Gc_iff('Dy', 'Fy'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Kd_iff(3,3)*Gc_iff('Dz', 'Fz'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Kd_iff(4,4)*Gc_iff('Rx', 'Mx'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Kd_iff(5,5)*Gc_iff('Ry', 'My'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Kd_iff(6,6)*Gc_iff('Rz', 'Mz'), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_iff(1,1)*Gc_iff('Dx', 'Fx'), freqs, 'Hz'))), 'DisplayName', 'Dx/Fx');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_iff(2,2)*Gc_iff('Dy', 'Fy'), freqs, 'Hz'))), 'DisplayName', 'Dy/Fy');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_iff(3,3)*Gc_iff('Dz', 'Fz'), freqs, 'Hz'))), 'DisplayName', 'Dz/Fz');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_iff(4,4)*Gc_iff('Rx', 'Mx'), freqs, 'Hz'))), 'DisplayName', 'Rx/Mx');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_iff(5,5)*Gc_iff('Ry', 'My'), freqs, 'Hz'))), 'DisplayName', 'Ry/My');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_iff(6,6)*Gc_iff('Rz', 'Mz'), freqs, 'Hz'))), 'DisplayName', 'Rz/Mz');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/hac_lac_loop_gain_iff.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:hac_lac_loop_gain_iff
|
|
#+caption: Diagonal elements of the Loop Gain for the HAC control ([[./figs/hac_lac_loop_gain_iff.png][png]], [[./figs/hac_lac_loop_gain_iff.pdf][pdf]])
|
|
[[file:figs/hac_lac_loop_gain_iff.png]]
|
|
|
|
|
|
Finally, we pre-multiply the diagonal controller by $\bm{J}^{-T}$ prior implementation.
|
|
#+begin_src matlab
|
|
K_hac_iff = inv(stewart.kinematics.J')*Kd_iff;
|
|
#+end_src
|
|
|
|
*** Obtained Performance
|
|
We identify the transmissibility and compliance of the system.
|
|
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'open-loop');
|
|
[T_ol, T_norm_ol, freqs] = computeTransmissibility();
|
|
[C_ol, C_norm_ol, ~] = computeCompliance();
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'iff');
|
|
[T_iff, T_norm_iff, ~] = computeTransmissibility();
|
|
[C_iff, C_norm_iff, ~] = computeCompliance();
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'hac-iff');
|
|
[T_hac_iff, T_norm_hac_iff, ~] = computeTransmissibility();
|
|
[C_hac_iff, C_norm_hac_iff, ~] = computeCompliance();
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
|
|
subplot(1,2,1);
|
|
hold on;
|
|
plot(freqs, T_norm_ol)
|
|
plot(freqs, T_norm_iff)
|
|
plot(freqs, T_norm_hac_iff)
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]');
|
|
ylabel('Transmissibility - Frobenius Norm');
|
|
|
|
subplot(1,2,2);
|
|
hold on;
|
|
plot(freqs, C_norm_ol, 'DisplayName', 'OL')
|
|
plot(freqs, C_norm_iff, 'DisplayName', 'IFF')
|
|
plot(freqs, C_norm_hac_iff, 'DisplayName', 'HAC-IFF')
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]');
|
|
ylabel('Compliance - Frobenius Norm');
|
|
legend();
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/hac_lac_C_T_iff.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:hac_lac_C_T_iff
|
|
#+caption: Obtained Compliance and Transmissibility ([[./figs/hac_lac_C_T_iff.png][png]], [[./figs/hac_lac_C_T_iff.pdf][pdf]])
|
|
[[file:figs/hac_lac_C_T_iff.png]]
|
|
|
|
** Comparison
|
|
#+begin_src matlab :exports none
|
|
p_handle = zeros(6*6,1);
|
|
|
|
fig = figure;
|
|
for ix = 1:6
|
|
for iy = 1:6
|
|
p_handle((ix-1)*6 + iy) = subplot(6, 6, (ix-1)*6 + iy);
|
|
hold on;
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(C_ol(ix, iy), freqs, 'Hz'))));
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(C_hac_dvf(ix, iy), freqs, 'Hz'))));
|
|
set(gca,'ColorOrderIndex',3);
|
|
plot(freqs, abs(squeeze(freqresp(C_hac_iff(ix, iy), freqs, 'Hz'))));
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
if ix < 6
|
|
xticklabels({});
|
|
end
|
|
if iy > 1
|
|
yticklabels({});
|
|
end
|
|
end
|
|
end
|
|
|
|
linkaxes(p_handle, 'xy')
|
|
ylim([1e-10, 1e-3]);
|
|
xlim([freqs(1), freqs(end)]);
|
|
|
|
han = axes(fig, 'visible', 'off');
|
|
han.XLabel.Visible = 'on';
|
|
han.YLabel.Visible = 'on';
|
|
xlabel(han, 'Frequency [Hz]');
|
|
ylabel(han, 'Compliance');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/hac_lac_C_full_comparison.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:hac_lac_C_full_comparison
|
|
#+caption: Comparison of the norm of the Compliance matrices for the HAC-LAC architecture ([[./figs/hac_lac_C_full_comparison.png][png]], [[./figs/hac_lac_C_full_comparison.pdf][pdf]])
|
|
[[file:figs/hac_lac_C_full_comparison.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
p_handle = zeros(6*6,1);
|
|
|
|
fig = figure;
|
|
for ix = 1:6
|
|
for iy = 1:6
|
|
p_handle((ix-1)*6 + iy) = subplot(6, 6, (ix-1)*6 + iy);
|
|
hold on;
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(T_ol(ix, iy), freqs, 'Hz'))));
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(T_hac_dvf(ix, iy), freqs, 'Hz'))));
|
|
set(gca,'ColorOrderIndex',3);
|
|
plot(freqs, abs(squeeze(freqresp(T_hac_iff(ix, iy), freqs, 'Hz'))));
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
if ix < 6
|
|
xticklabels({});
|
|
end
|
|
if iy > 1
|
|
yticklabels({});
|
|
end
|
|
end
|
|
end
|
|
|
|
linkaxes(p_handle, 'xy')
|
|
ylim([1e-5, 10]);
|
|
xlim([freqs(1), freqs(end)]);
|
|
|
|
han = axes(fig, 'visible', 'off');
|
|
han.XLabel.Visible = 'on';
|
|
han.YLabel.Visible = 'on';
|
|
xlabel(han, 'Frequency [Hz]');
|
|
ylabel(han, 'Transmissibility');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/hac_lac_T_full_comparison.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:hac_lac_T_full_comparison
|
|
#+caption: Comparison of the norm of the Transmissibility matrices for the HAC-LAC architecture ([[./figs/hac_lac_T_full_comparison.png][png]], [[./figs/hac_lac_T_full_comparison.pdf][pdf]])
|
|
[[file:figs/hac_lac_T_full_comparison.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
|
|
subplot(1,2,1);
|
|
hold on;
|
|
plot(freqs, T_norm_ol)
|
|
plot(freqs, T_norm_hac_dvf)
|
|
plot(freqs, T_norm_hac_iff)
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]');
|
|
ylabel('Transmissibility - Frobenius Norm');
|
|
|
|
subplot(1,2,2);
|
|
hold on;
|
|
plot(freqs, C_norm_ol, 'DisplayName', 'OL')
|
|
plot(freqs, C_norm_hac_dvf, 'DisplayName', 'HAC-DVF')
|
|
plot(freqs, C_norm_hac_iff, 'DisplayName', 'HAC-IFF')
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]');
|
|
ylabel('Compliance - Frobenius Norm');
|
|
legend();
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/hac_lac_C_T_comparison.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:hac_lac_C_T_comparison
|
|
#+caption: Comparison of the Frobenius norm of the Compliance and Transmissibility for the HAC-LAC architecture with both IFF and DVF ([[./figs/hac_lac_C_T_comparison.png][png]], [[./figs/hac_lac_C_T_comparison.pdf][pdf]])
|
|
[[file:figs/hac_lac_C_T_comparison.png]]
|
|
|
|
* MIMO Analysis
|
|
** Introduction :ignore:
|
|
Let's define the system as shown in figure [[fig:general_control_names]].
|
|
|
|
#+begin_src latex :file general_control_names.pdf
|
|
\begin{tikzpicture}
|
|
|
|
% Blocs
|
|
\node[block={2.0cm}{2.0cm}] (P) {$P$};
|
|
\node[block={1.5cm}{1.5cm}, below=0.7 of P] (K) {$K$};
|
|
|
|
% Input and outputs coordinates
|
|
\coordinate[] (inputw) at ($(P.south west)!0.75!(P.north west)$);
|
|
\coordinate[] (inputu) at ($(P.south west)!0.25!(P.north west)$);
|
|
\coordinate[] (outputz) at ($(P.south east)!0.75!(P.north east)$);
|
|
\coordinate[] (outputv) at ($(P.south east)!0.25!(P.north east)$);
|
|
|
|
% Connections and labels
|
|
\draw[<-] (inputw) node[above left, align=right]{(weighted)\\exogenous inputs\\$w$} -- ++(-1.5, 0);
|
|
\draw[<-] (inputu) -- ++(-0.8, 0) |- node[left, near start, align=right]{control signals\\$u$} (K.west);
|
|
|
|
\draw[->] (outputz) node[above right, align=left]{(weighted)\\exogenous outputs\\$z$} -- ++(1.5, 0);
|
|
\draw[->] (outputv) -- ++(0.8, 0) |- node[right, near start, align=left]{sensed output\\$v$} (K.east);
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:general_control_names
|
|
#+caption: General Control Architecture
|
|
#+RESULTS:
|
|
[[file:figs/general_control_names.png]]
|
|
|
|
#+name: tab:general_plant_signals
|
|
#+caption: Signals definition for the generalized plant
|
|
| | *Symbol* | *Meaning* |
|
|
|---------------------+-----------------------------+----------------------------------------|
|
|
| *Exogenous Inputs* | $\bm{\mathcal{X}}_w$ | Ground motion |
|
|
| | $\bm{\mathcal{F}}_d$ | External Forces applied to the Payload |
|
|
| | $\bm{r}$ | Reference signal for tracking |
|
|
|---------------------+-----------------------------+----------------------------------------|
|
|
| *Exogenous Outputs* | $\bm{\mathcal{X}}$ | Absolute Motion of the Payload |
|
|
| | $\bm{\tau}$ | Actuator Rate |
|
|
|---------------------+-----------------------------+----------------------------------------|
|
|
| *Sensed Outputs* | $\bm{\tau}_m$ | Force Sensors in each leg |
|
|
| | $\delta \bm{\mathcal{L}}_m$ | Measured displacement of each leg |
|
|
| | $\bm{\mathcal{X}}$ | Absolute Motion of the Payload |
|
|
|---------------------+-----------------------------+----------------------------------------|
|
|
| *Control Signals* | $\bm{\tau}$ | Actuator Inputs |
|
|
|
|
** Matlab Init :noexport:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
simulinkproject('../');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
open('stewart_platform_model.slx')
|
|
#+end_src
|
|
|
|
** Initialization
|
|
We first initialize the Stewart platform.
|
|
#+begin_src matlab
|
|
stewart = initializeStewartPlatform();
|
|
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
|
stewart = generateGeneralConfiguration(stewart);
|
|
stewart = computeJointsPose(stewart);
|
|
stewart = initializeStrutDynamics(stewart);
|
|
stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
|
|
stewart = initializeCylindricalPlatforms(stewart);
|
|
stewart = initializeCylindricalStruts(stewart);
|
|
stewart = computeJacobian(stewart);
|
|
stewart = initializeStewartPose(stewart);
|
|
stewart = initializeInertialSensor(stewart, 'type', 'none');
|
|
#+end_src
|
|
|
|
The rotation point of the ground is located at the origin of frame $\{A\}$.
|
|
#+begin_src matlab
|
|
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
|
payload = initializePayload('type', 'none');
|
|
#+end_src
|
|
|
|
** Identification
|
|
*** HAC - Without LAC
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'open-loop');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Name of the Simulink File
|
|
mdl = 'stewart_platform_model';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
|
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad]
|
|
|
|
%% Run the linearization
|
|
G_ol = linearize(mdl, io);
|
|
G_ol.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
G_ol.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
|
|
#+end_src
|
|
|
|
*** HAC - DVF
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'dvf');
|
|
K_dvf = -1e4*s/(1+s/2/pi/5000)*eye(6);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Name of the Simulink File
|
|
mdl = 'stewart_platform_model';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
|
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad]
|
|
|
|
%% Run the linearization
|
|
G_dvf = linearize(mdl, io);
|
|
G_dvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
G_dvf.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
|
|
#+end_src
|
|
|
|
*** Cartesian Frame
|
|
#+begin_src matlab
|
|
Gc_ol = minreal(G_ol)/stewart.kinematics.J';
|
|
Gc_ol.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
|
|
|
Gc_dvf = minreal(G_dvf)/stewart.kinematics.J';
|
|
Gc_dvf.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
|
#+end_src
|
|
|
|
** Singular Value Decomposition
|
|
#+begin_src matlab
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
U_ol = zeros(6,6,length(freqs));
|
|
S_ol = zeros(6,length(freqs));
|
|
V_ol = zeros(6,6,length(freqs));
|
|
|
|
U_dvf = zeros(6,6,length(freqs));
|
|
S_dvf = zeros(6,length(freqs));
|
|
V_dvf = zeros(6,6,length(freqs));
|
|
|
|
for i = 1:length(freqs)
|
|
[U,S,V] = svd(freqresp(Gc_ol, freqs(i), 'Hz'));
|
|
U_ol(:,:,i) = U;
|
|
S_ol(:,i) = diag(S);
|
|
V_ol(:,:,i) = V;
|
|
|
|
[U,S,V] = svd(freqresp(Gc_dvf, freqs(i), 'Hz'));
|
|
U_dvf(:,:,i) = U;
|
|
S_dvf(:,i) = diag(S);
|
|
V_dvf(:,:,i) = V;
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
|
|
ax1 = subplot(1,2,1);
|
|
hold on;
|
|
plot(freqs, S_ol(1,:), '-');
|
|
plot(freqs, S_ol(2,:), '--');
|
|
plot(freqs, S_ol(3,:), '-.');
|
|
plot(freqs, S_ol(4,:), '--');
|
|
plot(freqs, S_ol(5,:), '-');
|
|
plot(freqs, S_ol(6,:), '-.');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]');
|
|
ylabel('Singular Values');
|
|
title('Undamped Plant');
|
|
|
|
ax2 = subplot(1,2,2);
|
|
hold on;
|
|
plot(freqs, S_dvf(1,:), '-' , 'DisplayName', '$\sigma_1$');
|
|
plot(freqs, S_dvf(2,:), '--', 'DisplayName', '$\sigma_2$');
|
|
plot(freqs, S_dvf(3,:), '-.', 'DisplayName', '$\sigma_3$');
|
|
plot(freqs, S_dvf(4,:), '-' , 'DisplayName', '$\sigma_4$');
|
|
plot(freqs, S_dvf(5,:), '--', 'DisplayName', '$\sigma_5$');
|
|
plot(freqs, S_dvf(6,:), '-.', 'DisplayName', '$\sigma_6$');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]');
|
|
ylabel('Singular Values');
|
|
title('Damped Plant - DVF');
|
|
|
|
linkaxes([ax1, ax2], 'xy');
|
|
legend();
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
|
|
ax1 = subplot(1,2,1);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(V_ol(i,1,:))), '-' , 'DisplayName', Gc_ol.InputName{i});
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]');
|
|
ylabel('Singular Values');
|
|
legend();
|
|
|
|
ax2 = subplot(1,2,2);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(U_ol(i,1,:))), '-' , 'DisplayName', Gc_ol.OutputName{i});
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]');
|
|
ylabel('Singular Values');
|
|
legend();
|
|
|
|
linkaxes([ax1,ax2], 'x');
|
|
#+end_src
|
|
|
|
* Diagonal Control based on the damped plant
|
|
** Introduction :ignore:
|
|
From cite:skogestad07_multiv_feedb_contr, a simple approach to multivariable control is the following two-step procedure:
|
|
1. *Design a pre-compensator* $W_1$, which counteracts the interactions in the plant and results in a new *shaped plant* $G_S(s) = G(s) W_1(s)$ which is *more diagonal and easier to control* than the original plant $G(s)$.
|
|
2. *Design a diagonal controller* $K_S(s)$ for the shaped plant using methods similar to those for SISO systems.
|
|
|
|
The overall controller is then:
|
|
\[ K(s) = W_1(s)K_s(s) \]
|
|
|
|
There are mainly three different cases:
|
|
1. *Dynamic decoupling*: $G_S(s)$ is diagonal at all frequencies. For that we can choose $W_1(s) = G^{-1}(s)$ and this is an inverse-based controller.
|
|
2. *Steady-state decoupling*: $G_S(0)$ is diagonal. This can be obtained by selecting $W_1(s) = G^{-1}(0)$.
|
|
3. *Approximate decoupling at frequency $\w_0$*: $G_S(j\w_0)$ is as diagonal as possible. Decoupling the system at $\w_0$ is a good choice because the effect on performance of reducing interaction is normally greatest at this frequency.
|
|
|
|
** Initialization
|
|
We first initialize the Stewart platform.
|
|
#+begin_src matlab
|
|
stewart = initializeStewartPlatform();
|
|
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
|
stewart = generateGeneralConfiguration(stewart);
|
|
stewart = computeJointsPose(stewart);
|
|
stewart = initializeStrutDynamics(stewart);
|
|
stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
|
|
stewart = initializeCylindricalPlatforms(stewart);
|
|
stewart = initializeCylindricalStruts(stewart);
|
|
stewart = computeJacobian(stewart);
|
|
stewart = initializeStewartPose(stewart);
|
|
stewart = initializeInertialSensor(stewart, 'type', 'none');
|
|
#+end_src
|
|
|
|
The rotation point of the ground is located at the origin of frame $\{A\}$.
|
|
#+begin_src matlab
|
|
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
|
payload = initializePayload('type', 'none');
|
|
#+end_src
|
|
|
|
** Identification
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'dvf');
|
|
K_dvf = -1e4*s/(1+s/2/pi/5000)*eye(6);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Name of the Simulink File
|
|
mdl = 'stewart_platform_model';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
|
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad]
|
|
|
|
%% Run the linearization
|
|
G_dvf = linearize(mdl, io);
|
|
G_dvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
G_dvf.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
|
|
#+end_src
|
|
|
|
** Steady State Decoupling
|
|
*** Pre-Compensator Design
|
|
We choose $W_1 = G^{-1}(0)$.
|
|
#+begin_src matlab
|
|
W1 = inv(freqresp(G_dvf, 0));
|
|
#+end_src
|
|
|
|
The (static) decoupled plant is $G_s(s) = G(s) W_1$.
|
|
#+begin_src matlab
|
|
Gs = G_dvf*W1;
|
|
#+end_src
|
|
|
|
In the case of the Stewart platform, the pre-compensator for static decoupling is equal to $\mathcal{K} \bm{J}$:
|
|
\begin{align*}
|
|
W_1 &= \left( \frac{\bm{\mathcal{X}}}{\bm{\tau}}(s=0) \right)^{-1}\\
|
|
&= \left( \frac{\bm{\mathcal{X}}}{\bm{\tau}}(s=0) \bm{J}^T \right)^{-1}\\
|
|
&= \left( \bm{C} \bm{J}^T \right)^{-1}\\
|
|
&= \left( \bm{J}^{-1} \mathcal{K}^{-1} \right)^{-1}\\
|
|
&= \mathcal{K} \bm{J}
|
|
\end{align*}
|
|
|
|
The static decoupled plant is schematic shown in Figure [[fig:control_arch_static_decoupling]] and the bode plots of its diagonal elements are shown in Figure [[fig:static_decoupling_diagonal_plant]].
|
|
|
|
#+begin_src latex :file control_arch_static_decoupling.pdf
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[block] (G) {$G(s)$};
|
|
\node[block, left=1 of G] (J) {$\mathcal{K}\bm{J}$};
|
|
\node[block, left=1 of J] (Ks) {$\bm{K}_s(s)$};
|
|
|
|
\draw[->] (Ks.east) -- (J.west);
|
|
\draw[->] (J.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
|
\draw[->] (G.east) node[above right]{$\bm{\mathcal{X}}$} -| ++(0.8, -0.8) -| ($(Ks.west) + (-0.8, 0)$) -- (Ks.west);
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(J.north west) (G.south east)}, inner sep=4pt, draw, dashed, fill=black!20!white, label={$G_s(s)$}] {};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:control_arch_static_decoupling
|
|
#+caption: Static Decoupling of the Stewart platform
|
|
#+RESULTS:
|
|
[[file:figs/control_arch_static_decoupling.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(Gs(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/static_decoupling_diagonal_plant.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:static_decoupling_diagonal_plant
|
|
#+caption: Bode plot of the diagonal elements of $G_s(s)$ ([[./figs/static_decoupling_diagonal_plant.png][png]], [[./figs/static_decoupling_diagonal_plant.pdf][pdf]])
|
|
[[file:figs/static_decoupling_diagonal_plant.png]]
|
|
|
|
*** Diagonal Control Design
|
|
We design a diagonal controller $K_s(s)$ that consist of a pure integrator and a lead around the crossover.
|
|
|
|
#+begin_src matlab
|
|
wc = 2*pi*300; % Wanted Bandwidth [rad/s]
|
|
|
|
h = 1.5;
|
|
H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h));
|
|
|
|
Ks_dvf = diag(1./abs(diag(freqresp(1/s*Gs, wc)))) .* H_lead .* 1/s;
|
|
#+end_src
|
|
|
|
The overall controller is then $K(s) = W_1 K_s(s)$ as shown in Figure [[fig:control_arch_static_decoupling_K]].
|
|
|
|
#+begin_src matlab
|
|
K_hac_dvf = W1 * Ks_dvf;
|
|
#+end_src
|
|
|
|
#+begin_src latex :file control_arch_static_decoupling_K.pdf
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[block] (G) {$G(s)$};
|
|
\node[block, left=1 of G] (J) {$\mathcal{K}\bm{J}$};
|
|
\node[block, left=1 of J] (Ks) {$\bm{K}_s(s)$};
|
|
|
|
\draw[->] (Ks.east) -- (J.west);
|
|
\draw[->] (J.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
|
\draw[->] (G.east) node[above right]{$\bm{\mathcal{X}}$} -| ++(0.8, -0.8) -| ($(Ks.west) + (-0.8, 0)$) -- (Ks.west);
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(Ks.north west) (J.south east)}, inner sep=4pt, draw, dashed, fill=black!20!white, label={$K(s)$}] {};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:control_arch_static_decoupling_K
|
|
#+caption: Controller including the static decoupling matrix
|
|
#+RESULTS:
|
|
[[file:figs/control_arch_static_decoupling_K.png]]
|
|
|
|
*** Results
|
|
We identify the transmissibility and compliance of the Stewart platform under open-loop and closed-loop control.
|
|
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'open-loop');
|
|
[T_ol, T_norm_ol, freqs] = computeTransmissibility();
|
|
[C_ol, C_norm_ol, ~] = computeCompliance();
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'hac-dvf');
|
|
[T_hac_dvf, T_norm_hac_dvf, ~] = computeTransmissibility();
|
|
[C_hac_dvf, C_norm_hac_dvf, ~] = computeCompliance();
|
|
#+end_src
|
|
|
|
The results are shown in figure
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
|
|
subplot(1,2,1);
|
|
hold on;
|
|
plot(freqs, T_norm_ol)
|
|
plot(freqs, T_norm_hac_dvf)
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]');
|
|
ylabel('Transmissibility - Frobenius Norm');
|
|
|
|
subplot(1,2,2);
|
|
hold on;
|
|
plot(freqs, C_norm_ol, 'DisplayName', 'OL')
|
|
plot(freqs, C_norm_hac_dvf, 'DisplayName', 'HAC-DVF - Static decoupl.')
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]');
|
|
ylabel('Compliance - Frobenius Norm');
|
|
legend();
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/static_decoupling_C_T_frobenius_norm.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:static_decoupling_C_T_frobenius_norm
|
|
#+caption: Frobenius norm of the Compliance and transmissibility matrices ([[./figs/static_decoupling_C_T_frobenius_norm.png][png]], [[./figs/static_decoupling_C_T_frobenius_norm.pdf][pdf]])
|
|
[[file:figs/static_decoupling_C_T_frobenius_norm.png]]
|
|
|
|
** TODO Decoupling at Crossover
|
|
- [ ] Find a method for real approximation of a complex matrix
|
|
|
|
* Time Domain Simulation
|
|
** Matlab Init :noexport:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
simulinkproject('../');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
open('stewart_platform_model.slx')
|
|
#+end_src
|
|
|
|
** Initialization
|
|
We first initialize the Stewart platform.
|
|
#+begin_src matlab
|
|
stewart = initializeStewartPlatform();
|
|
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
|
stewart = generateGeneralConfiguration(stewart);
|
|
stewart = computeJointsPose(stewart);
|
|
stewart = initializeStrutDynamics(stewart);
|
|
stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
|
|
stewart = initializeCylindricalPlatforms(stewart);
|
|
stewart = initializeCylindricalStruts(stewart);
|
|
stewart = computeJacobian(stewart);
|
|
stewart = initializeStewartPose(stewart);
|
|
stewart = initializeInertialSensor(stewart, 'type', 'none');
|
|
#+end_src
|
|
|
|
The rotation point of the ground is located at the origin of frame $\{A\}$.
|
|
#+begin_src matlab
|
|
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
|
payload = initializePayload('type', 'none');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
load('./mat/motion_error_ol.mat', 'Eg')
|
|
#+end_src
|
|
|
|
** HAC IFF
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'iff');
|
|
K_iff = -(1e4/s)*eye(6);
|
|
|
|
%% Name of the Simulink File
|
|
mdl = 'stewart_platform_model';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
|
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad]
|
|
|
|
%% Run the linearization
|
|
G_iff = linearize(mdl, io);
|
|
G_iff.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
G_iff.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
|
|
|
|
Gc_iff = minreal(G_iff)/stewart.kinematics.J';
|
|
Gc_iff.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
wc = 2*pi*100; % Wanted Bandwidth [rad/s]
|
|
|
|
h = 1.2;
|
|
H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h));
|
|
|
|
Kd_iff = diag(1./abs(diag(freqresp(1/s*Gc_iff, wc)))) .* H_lead .* 1/s;
|
|
K_hac_iff = inv(stewart.kinematics.J')*Kd_iff;
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'hac-iff');
|
|
#+end_src
|
|
|
|
** HAC-DVF
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'dvf');
|
|
K_dvf = -1e4*s/(1+s/2/pi/5000)*eye(6);
|
|
|
|
%% Name of the Simulink File
|
|
mdl = 'stewart_platform_model';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
|
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad]
|
|
|
|
%% Run the linearization
|
|
G_dvf = linearize(mdl, io);
|
|
G_dvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
G_dvf.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
|
|
|
|
Gc_dvf = minreal(G_dvf)/stewart.kinematics.J';
|
|
Gc_dvf.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
wc = 2*pi*100; % Wanted Bandwidth [rad/s]
|
|
|
|
h = 1.2;
|
|
H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h));
|
|
|
|
Kd_dvf = diag(1./abs(diag(freqresp(1/s*Gc_dvf, wc)))) .* H_lead .* 1/s;
|
|
|
|
K_hac_dvf = inv(stewart.kinematics.J')*Kd_dvf;
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'hac-dvf');
|
|
#+end_src
|
|
|
|
** Results
|
|
|
|
#+begin_src matlab
|
|
figure;
|
|
subplot(1, 2, 1);
|
|
hold on;
|
|
plot(Eg.Time, Eg.Data(:, 1), 'DisplayName', 'X');
|
|
plot(Eg.Time, Eg.Data(:, 2), 'DisplayName', 'Y');
|
|
plot(Eg.Time, Eg.Data(:, 3), 'DisplayName', 'Z');
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Position error [m]');
|
|
legend();
|
|
|
|
subplot(1, 2, 2);
|
|
hold on;
|
|
plot(simout.Xa.Time, simout.Xa.Data(:, 1));
|
|
plot(simout.Xa.Time, simout.Xa.Data(:, 2));
|
|
plot(simout.Xa.Time, simout.Xa.Data(:, 3));
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Orientation error [rad]');
|
|
#+end_src
|
|
|
|
* Functions
|
|
** =initializeController=: Initialize the Controller
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../src/initializeController.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:initializeController>>
|
|
|
|
*** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [controller] = initializeController(args)
|
|
% initializeController - Initialize the Controller
|
|
%
|
|
% Syntax: [] = initializeController(args)
|
|
%
|
|
% Inputs:
|
|
% - args - Can have the following fields:
|
|
#+end_src
|
|
|
|
*** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
arguments
|
|
args.type char {mustBeMember(args.type, {'open-loop', 'iff', 'dvf', 'hac-iff', 'hac-dvf', 'ref-track-L', 'ref-track-X', 'ref-track-hac-dvf'})} = 'open-loop'
|
|
end
|
|
#+end_src
|
|
|
|
*** Structure initialization
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
controller = struct();
|
|
#+end_src
|
|
|
|
*** Add Type
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
switch args.type
|
|
case 'open-loop'
|
|
controller.type = 0;
|
|
case 'iff'
|
|
controller.type = 1;
|
|
case 'dvf'
|
|
controller.type = 2;
|
|
case 'hac-iff'
|
|
controller.type = 3;
|
|
case 'hac-dvf'
|
|
controller.type = 4;
|
|
case 'ref-track-L'
|
|
controller.type = 5;
|
|
case 'ref-track-X'
|
|
controller.type = 6;
|
|
case 'ref-track-hac-dvf'
|
|
controller.type = 7;
|
|
end
|
|
#+end_src
|