210 lines
7.0 KiB
Matlab
210 lines
7.0 KiB
Matlab
%% Clear Workspace and Close figures
|
|
clear; close all; clc;
|
|
|
|
%% Intialize Laplace variable
|
|
s = zpk('s');
|
|
|
|
simulinkproject('../');
|
|
|
|
open('stewart_platform_model.slx')
|
|
|
|
% Identification of the Dynamics with perfect Joints
|
|
% We first initialize the Stewart platform without joint stiffness.
|
|
|
|
stewart = initializeStewartPlatform();
|
|
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
|
stewart = generateGeneralConfiguration(stewart);
|
|
stewart = computeJointsPose(stewart);
|
|
stewart = initializeStrutDynamics(stewart);
|
|
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
|
|
stewart = initializeCylindricalPlatforms(stewart);
|
|
stewart = initializeCylindricalStruts(stewart);
|
|
stewart = computeJacobian(stewart);
|
|
stewart = initializeStewartPose(stewart);
|
|
stewart = initializeInertialSensor(stewart, 'type', 'none');
|
|
|
|
ground = initializeGround('type', 'none');
|
|
payload = initializePayload('type', 'none');
|
|
|
|
|
|
|
|
% And we identify the dynamics from force actuators to force sensors.
|
|
|
|
%% Options for Linearized
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
%% Name of the Simulink File
|
|
mdl = 'stewart_platform_model';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
|
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Taum'); io_i = io_i + 1; % Force Sensor Outputs [N]
|
|
|
|
%% Run the linearization
|
|
G = linearize(mdl, io, options);
|
|
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
G.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
|
|
|
|
|
|
|
|
% The transfer function from actuator forces to force sensors is shown in Figure [[fig:iff_plant_coupling]].
|
|
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(G(['Fm', num2str(i)], 'F1'), freqs, 'Hz'))));
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(G('Fm1', 'F1'), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(['Fm', num2str(i)], 'F1'), freqs, 'Hz'))));
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G('Fm1', 'F1'), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
legend([p1, p2], {'$F_{m,i}/F_i$', '$F_{m,j}/F_i$'})
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
|
|
% Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics
|
|
% We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
|
|
|
|
stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
|
|
Gf = linearize(mdl, io, options);
|
|
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
Gf.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
|
|
|
|
|
|
|
|
% We now use the amplified actuators and re-identify the dynamics
|
|
|
|
stewart = initializeAmplifiedStrutDynamics(stewart);
|
|
Ga = linearize(mdl, io, options);
|
|
Ga.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
Ga.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
|
|
|
|
|
|
|
|
% The new dynamics from force actuator to force sensor is shown in Figure [[fig:iff_plant_flexible_joint_decentralized]].
|
|
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(G( 'Fm1', 'F1'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Gf('Fm1', 'F1'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Ga('Fm1', 'F1'), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G( 'Fm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Perfect Joints');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf('Fm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Flexible Joints');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Ga('Fm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Amplified Actuators');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
legend('location', 'southwest')
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
|
|
% Obtained Damping
|
|
% The control is a performed in a decentralized manner.
|
|
% The $6 \times 6$ control is a diagonal matrix with pure integration action on the diagonal:
|
|
% \[ K(s) = g
|
|
% \begin{bmatrix}
|
|
% \frac{1}{s} & & 0 \\
|
|
% & \ddots & \\
|
|
% 0 & & \frac{1}{s}
|
|
% \end{bmatrix} \]
|
|
|
|
% The root locus is shown in figure [[fig:root_locus_iff_rot_stiffness]] and the obtained pole damping function of the control gain is shown in figure [[fig:pole_damping_gain_iff_rot_stiffness]].
|
|
|
|
gains = logspace(0, 5, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
plot(real(pole(G)), imag(pole(G)), 'x');
|
|
plot(real(pole(Gf)), imag(pole(Gf)), 'x');
|
|
plot(real(pole(Ga)), imag(pole(Ga)), 'x');
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(real(tzero(G)), imag(tzero(G)), 'o');
|
|
plot(real(tzero(Gf)), imag(tzero(Gf)), 'o');
|
|
plot(real(tzero(Ga)), imag(tzero(Ga)), 'o');
|
|
for i = 1:length(gains)
|
|
cl_poles = pole(feedback(G, (gains(i)/s)*eye(6)));
|
|
set(gca,'ColorOrderIndex',1);
|
|
p1 = plot(real(cl_poles), imag(cl_poles), '.');
|
|
|
|
cl_poles = pole(feedback(Gf, (gains(i)/s)*eye(6)));
|
|
set(gca,'ColorOrderIndex',2);
|
|
p2 = plot(real(cl_poles), imag(cl_poles), '.');
|
|
|
|
cl_poles = pole(feedback(Ga, (gains(i)/s)*eye(6)));
|
|
set(gca,'ColorOrderIndex',3);
|
|
p3 = plot(real(cl_poles), imag(cl_poles), '.');
|
|
end
|
|
ylim([0, 1.1*max(imag(pole(G)))]);
|
|
xlim([-1.1*max(imag(pole(G))),0]);
|
|
xlabel('Real Part')
|
|
ylabel('Imaginary Part')
|
|
axis square
|
|
legend([p1, p2, p3], {'Perfect Joints', 'Flexible Joints', 'Amplified Actuator'}, 'location', 'northwest');
|
|
|
|
|
|
|
|
% #+name: fig:root_locus_iff_rot_stiffness
|
|
% #+caption: Root Locus plot with Decentralized Integral Force Feedback when considering the stiffness of flexible joints ([[./figs/root_locus_iff_rot_stiffness.png][png]], [[./figs/root_locus_iff_rot_stiffness.pdf][pdf]])
|
|
% [[file:figs/root_locus_iff_rot_stiffness.png]]
|
|
|
|
|
|
gains = logspace(0, 5, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:length(gains)
|
|
set(gca,'ColorOrderIndex',1);
|
|
cl_poles = pole(feedback(G, (gains(i)/s)*eye(6)));
|
|
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
|
|
p1 = plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
|
|
|
|
set(gca,'ColorOrderIndex',2);
|
|
cl_poles = pole(feedback(Gf, (gains(i)/s)*eye(6)));
|
|
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
|
|
p2 = plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
|
|
|
|
set(gca,'ColorOrderIndex',3);
|
|
cl_poles = pole(feedback(Ga, (gains(i)/s)*eye(6)));
|
|
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
|
|
p3 = plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
|
|
end
|
|
xlabel('Control Gain');
|
|
ylabel('Damping of the Poles');
|
|
set(gca, 'XScale', 'log');
|
|
ylim([0,pi/2]);
|
|
legend([p1, p2, p3], {'Perfect Joints', 'Flexible Joints', 'Amplified Actuator'}, 'location', 'northwest');
|