stewart-simscape/static-analysis.org
2020-01-27 17:42:09 +01:00

3.2 KiB

Stewart Platform - Static Analysis

Jacobian

Relation to platform parameters

A Jacobian is defined by:

  • the orientations of the struts $\hat{s}_i$ expressed in a frame $\{A\}$ linked to the fixed platform.
  • the vectors from $O_B$ to $b_i$ expressed in the frame $\{A\}$

Then, the choice of $O_B$ changes the Jacobian.

Jacobian for displacement

\[ \dot{q} = J \dot{X} \] With:

  • $q = [q_1\ q_2\ q_3\ q_4\ q_5\ q_6]$ vector of linear displacement of actuated joints
  • $X = [x\ y\ z\ \theta_x\ \theta_y\ \theta_z]$ position and orientation of $O_B$ expressed in the frame $\{A\}$

For very small displacements $\delta q$ and $\delta X$, we have $\delta q = J \delta X$.

Jacobian for forces

\[ F = J^T \tau \] With:

  • $\tau = [\tau_1\ \tau_2\ \tau_3\ \tau_4\ \tau_5\ \tau_6]$ vector of actuator forces
  • $F = [f_x\ f_y\ f_z\ n_x\ n_y\ n_z]$ force and torque acting on point $O_B$

Stiffness matrix $K$

\[ K = J^T \text{diag}(k_i) J \]

If all the struts have the same stiffness $k$, then $K = k J^T J$

$K$ only depends of the geometry of the stewart platform: it depends on the Jacobian, that is on the orientations of the struts, position of the joints and choice of frame $\{B\}$.

\[ F = K X \]

With $F$ forces and torques applied to the moving platform at the origin of $\{B\}$ and $X$ the translations and rotations of $\{B\}$ with respect to $\{A\}$.

\[ C = K^{-1} \]

The compliance element $C_{ij}$ is then the stiffness \[ X_i = C_{ij} F_j \]

Coupling

What causes the coupling from $F_i$ to $X_i$ ?

  \begin{tikzpicture}
    \node[block] (Jt) at (0, 0) {$J^{-T}$};
    \node[block, right= of Jt] (G) {$G$};
    \node[block, right= of G] (J) {$J^{-1}$};

    \draw[->] ($(Jt.west)+(-0.8, 0)$) -- (Jt.west) node[above left]{$F_i$};
    \draw[->] (Jt.east) -- (G.west) node[above left]{$\tau_i$};
    \draw[->] (G.east) -- (J.west) node[above left]{$q_i$};
    \draw[->] (J.east) -- ++(0.8, 0) node[above left]{$X_i$};
  \end{tikzpicture}

/tdehaeze/stewart-simscape/media/commit/58cbe3cfaedd232be64fabd23b5ae5645290bbf1/figs/coupling.png

Block diagram to control an hexapod

There is no coupling from $F_i$ to $X_j$ if $J^{-1} G J^{-T}$ is diagonal.

If $G$ is diagonal (cubic configuration), then $J^{-1} G J^{-T} = G J^{-1} J^{-T} = G (J^{T} J)^{-1} = G K^{-1}$

Thus, the system is uncoupled if $G$ and $K$ are diagonal.