stewart-simscape/org/dynamics-study.org

16 KiB

Stewart Platform - Dynamics Study

Compare external forces and forces applied by the actuators

Introduction   ignore

In this section, we wish to compare the effect of forces/torques applied by the actuators with the effect of external forces/torques on the displacement of the mobile platform.

Comparison with fixed support

Let's generate a Stewart platform.

  stewart = initializeStewartPlatform();
  stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
  stewart = generateGeneralConfiguration(stewart);
  stewart = computeJointsPose(stewart);
  stewart = initializeStrutDynamics(stewart);
  stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
  stewart = initializeCylindricalPlatforms(stewart);
  stewart = initializeCylindricalStruts(stewart);
  stewart = computeJacobian(stewart);
  stewart = initializeStewartPose(stewart);
  stewart = initializeInertialSensor(stewart, 'type', 'none');

We don't put any flexibility below the Stewart platform such that its base is fixed to an inertial frame. We also don't put any payload on top of the Stewart platform.

  ground = initializeGround('type', 'none');
  payload = initializePayload('type', 'none');
  controller = initializeController('type', 'open-loop');

The transfer function from actuator forces $\bm{\tau}$ to the relative displacement of the mobile platform $\mathcal{\bm{X}}$ is extracted.

  %% Options for Linearized
  options = linearizeOptions;
  options.SampleTime = 0;

  %% Name of the Simulink File
  mdl = 'stewart_platform_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Controller'],              1, 'openinput');  io_i = io_i + 1; % Actuator Force Inputs [N]
  io(io_i) = linio([mdl, '/Relative Motion Sensor'],  1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}

  %% Run the linearization
  G = linearize(mdl, io, options);
  G.InputName  = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
  G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};

Using the Jacobian matrix, we compute the transfer function from force/torques applied by the actuators on the frame $\{B\}$ fixed to the mobile platform:

  Gc = minreal(G*inv(stewart.kinematics.J'));
  Gc.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};

We also extract the transfer function from external forces $\bm{\mathcal{F}}_{\text{ext}}$ on the frame $\{B\}$ fixed to the mobile platform to the relative displacement $\mathcal{\bm{X}}$ of $\{B\}$ with respect to frame $\{A\}$:

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'F_ext');  io_i = io_i + 1; % External forces/torques applied on {B}
  io(io_i) = linio([mdl, '/Relative Motion Sensor'],  1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}

  %% Run the linearization
  Gd = linearize(mdl, io, options);
  Gd.InputName  = {'Fex', 'Fey', 'Fez', 'Mex', 'Mey', 'Mez'};
  Gd.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};

The comparison of the two transfer functions is shown in Figure fig:comparison_Fext_F_fixed_base.

<<plt-matlab>>
/tdehaeze/stewart-simscape/media/commit/467a04e2393ca46ef34b1d3cc399ed54ed508023/org/figs/comparison_Fext_F_fixed_base.png
Comparison of the transfer functions from $\bm{\mathcal{F}}$ to $\mathcal{\bm{X}}$ and from $\bm{\mathcal{F}}_{\text{ext}}$ to $\mathcal{\bm{X}}$ (png, pdf)

This can be understood from figure fig:1dof_actuator_external_forces where $\mathcal{F}_{x}$ and $\mathcal{F}_{x,\text{ext}}$ have clearly the same effect on $\mathcal{X}_{x}$.

  \begin{tikzpicture}
    \draw[ground] (-1, 0) -- (1, 0);

    \draw[spring]   (-0.6, 0) -- (-0.6, 1.5) node[midway, left=0.1]{$k$};
    \draw[actuator] ( 0.6, 0) -- ( 0.6, 1.5) node[midway, left=0.1](F){$\mathcal{F}_{x}$};

    \draw[fill=white] (-1, 1.5) rectangle (1, 2) node[pos=0.5]{$m$};

    \draw[dashed] (1, 2) -- ++(0.5, 0);
    \draw[->] (1.5, 2) -- ++(0, 0.5) node[right]{$\mathcal{X}_{x}$};

    \draw[->] (0, 2) node[]{$\bullet$} -- (0, 2.8) node[below right]{$\mathcal{F}_{x,\text{ext}}$};
  \end{tikzpicture}

/tdehaeze/stewart-simscape/media/commit/467a04e2393ca46ef34b1d3cc399ed54ed508023/org/figs/1dof_actuator_external_forces.png

Schematic representation of the stewart platform on a rigid support

Comparison with a flexible support

We now add a flexible support under the Stewart platform.

  ground = initializeGround('type', 'flexible');

And we perform again the identification.

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Controller'],              1, 'openinput');  io_i = io_i + 1; % Actuator Force Inputs [N]
  io(io_i) = linio([mdl, '/Relative Motion Sensor'],  1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}

  %% Run the linearization
  G = linearize(mdl, io, options);
  G.InputName  = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
  G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};

  Gc = minreal(G*inv(stewart.kinematics.J'));
  Gc.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'F_ext');  io_i = io_i + 1; % External forces/torques applied on {B}
  io(io_i) = linio([mdl, '/Relative Motion Sensor'],  1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}

  %% Run the linearization
  Gd = linearize(mdl, io, options);
  Gd.InputName  = {'Fex', 'Fey', 'Fez', 'Mex', 'Mey', 'Mez'};
  Gd.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};

The comparison between the obtained transfer functions is shown in Figure fig:comparison_Fext_F_flexible_base.

<<plt-matlab>>
/tdehaeze/stewart-simscape/media/commit/467a04e2393ca46ef34b1d3cc399ed54ed508023/org/figs/comparison_Fext_F_flexible_base.png
Comparison of the transfer functions from $\bm{\mathcal{F}}$ to $\mathcal{\bm{X}}$ and from $\bm{\mathcal{F}}_{\text{ext}}$ to $\mathcal{\bm{X}}$ (png, pdf)

The addition of a flexible support can be schematically represented in Figure fig:2dof_actuator_external_forces. We see that $\mathcal{F}_{x}$ applies a force both on $m$ and $m^{\prime}$ whereas $\mathcal{F}_{x,\text{ext}}$ only applies a force on $m$. And thus $\mathcal{F}_{x}$ and $\mathcal{F}_{x,\text{ext}}$ have clearly not the same effect on $\mathcal{X}_{x}$.

  \begin{tikzpicture}
    \draw[ground] (-1, 0) -- (1, 0);

    \draw[spring]   (0, 0) -- (0, 1.5) node[midway, left=0.1]{$k^{\prime}$};
    \draw[fill=white] (-1, 1.5) rectangle (1, 2) node[pos=0.5]{$m^{\prime}$};

    \draw[spring]   (-0.6, 2) -- (-0.6, 3.5) node[midway, left=0.1]{$k$};
    \draw[actuator] ( 0.6, 2) -- ( 0.6, 3.5) node[midway, left=0.1](F){$\mathcal{F}_{x}$};

    \draw[fill=white] (-1, 3.5) rectangle (1, 4) node[pos=0.5]{$m$};

    \draw[dashed] (1, 4) -- ++(0.5, 0);
    \draw[->] (1.5, 4) -- ++(0, 0.5) node[right]{$\mathcal{X}_{x}$};

    \draw[->] (0, 4) node[]{$\bullet$} -- (0, 4.8) node[below right]{$\mathcal{F}_{x,\text{ext}}$};
  \end{tikzpicture}

/tdehaeze/stewart-simscape/media/commit/467a04e2393ca46ef34b1d3cc399ed54ed508023/org/figs/2dof_actuator_external_forces.png

Schematic representation of the stewart platform on top of a flexible support

Conclusion

The transfer function from forces/torques applied by the actuators on the payload $\bm{\mathcal{F}} = \bm{J}^T \bm{\tau}$ to the pose of the mobile platform $\bm{\mathcal{X}}$ is the same as the transfer function from external forces/torques to $\bm{\mathcal{X}}$ as long as the Stewart platform's base is fixed.

Comparison of the static transfer function and the Compliance matrix

Introduction   ignore

In this section, we see how the Compliance matrix of the Stewart platform is linked to the static relation between $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$.

Analysis

Initialization of the Stewart platform.

  stewart = initializeStewartPlatform();
  stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
  stewart = generateGeneralConfiguration(stewart);
  stewart = computeJointsPose(stewart);
  stewart = initializeStrutDynamics(stewart);
  stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
  stewart = initializeCylindricalPlatforms(stewart);
  stewart = initializeCylindricalStruts(stewart);
  stewart = computeJacobian(stewart);
  stewart = initializeStewartPose(stewart);
  stewart = initializeInertialSensor(stewart, 'type', 'none');

No flexibility below the Stewart platform and no payload.

  ground = initializeGround('type', 'none');
  payload = initializePayload('type', 'none');
  controller = initializeController('type', 'open-loop');

Estimation of the transfer function from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$:

  %% Options for Linearized
  options = linearizeOptions;
  options.SampleTime = 0;

  %% Name of the Simulink File
  mdl = 'stewart_platform_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Controller'],              1, 'openinput');  io_i = io_i + 1; % Actuator Force Inputs [N]
  io(io_i) = linio([mdl, '/Relative Motion Sensor'],  1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}

  %% Run the linearization
  G = linearize(mdl, io, options);
  G.InputName  = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
  G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
  Gc = minreal(G*inv(stewart.kinematics.J'));
  Gc.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};

Let's first look at the low frequency transfer function matrix from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$.

4.7e-08 -7.2e-19 5.0e-18 -8.9e-18 3.2e-07 9.9e-18
4.7e-18 4.7e-08 -5.7e-18 -3.2e-07 -1.6e-17 -1.7e-17
3.3e-18 -6.3e-18 2.1e-08 4.4e-17 6.6e-18 7.4e-18
-3.2e-17 -3.2e-07 6.2e-18 5.2e-06 -3.5e-16 6.3e-17
3.2e-07 2.7e-17 4.8e-17 -4.5e-16 5.2e-06 -1.2e-19
4.0e-17 -9.5e-17 8.4e-18 4.3e-16 5.8e-16 1.7e-06

And now at the Compliance matrix.

4.7e-08 -2.0e-24 7.4e-25 5.9e-23 3.2e-07 5.9e-24
-7.1e-25 4.7e-08 2.9e-25 -3.2e-07 -5.4e-24 -3.3e-23
7.9e-26 -6.4e-25 2.1e-08 1.9e-23 5.3e-25 -6.5e-40
1.4e-23 -3.2e-07 1.3e-23 5.2e-06 4.9e-22 -3.8e-24
3.2e-07 7.6e-24 1.2e-23 6.9e-22 5.2e-06 -2.6e-22
7.3e-24 -3.2e-23 -1.6e-39 9.9e-23 -3.3e-22 1.7e-06

Conclusion

The low frequency transfer function matrix from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$ corresponds to the compliance matrix of the Stewart platform.