785 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			785 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<?xml version="1.0" encoding="utf-8"?>
 | 
						|
<?xml version="1.0" encoding="utf-8"?>
 | 
						|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 | 
						|
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 | 
						|
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 | 
						|
<head>
 | 
						|
<!-- 2020-01-28 mar. 17:38 -->
 | 
						|
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
 | 
						|
<meta name="viewport" content="width=device-width, initial-scale=1" />
 | 
						|
<title>Kinematic Study of the Stewart Platform</title>
 | 
						|
<meta name="generator" content="Org mode" />
 | 
						|
<meta name="author" content="Dehaeze Thomas" />
 | 
						|
<style type="text/css">
 | 
						|
 <!--/*--><![CDATA[/*><!--*/
 | 
						|
  .title  { text-align: center;
 | 
						|
             margin-bottom: .2em; }
 | 
						|
  .subtitle { text-align: center;
 | 
						|
              font-size: medium;
 | 
						|
              font-weight: bold;
 | 
						|
              margin-top:0; }
 | 
						|
  .todo   { font-family: monospace; color: red; }
 | 
						|
  .done   { font-family: monospace; color: green; }
 | 
						|
  .priority { font-family: monospace; color: orange; }
 | 
						|
  .tag    { background-color: #eee; font-family: monospace;
 | 
						|
            padding: 2px; font-size: 80%; font-weight: normal; }
 | 
						|
  .timestamp { color: #bebebe; }
 | 
						|
  .timestamp-kwd { color: #5f9ea0; }
 | 
						|
  .org-right  { margin-left: auto; margin-right: 0px;  text-align: right; }
 | 
						|
  .org-left   { margin-left: 0px;  margin-right: auto; text-align: left; }
 | 
						|
  .org-center { margin-left: auto; margin-right: auto; text-align: center; }
 | 
						|
  .underline { text-decoration: underline; }
 | 
						|
  #postamble p, #preamble p { font-size: 90%; margin: .2em; }
 | 
						|
  p.verse { margin-left: 3%; }
 | 
						|
  pre {
 | 
						|
    border: 1px solid #ccc;
 | 
						|
    box-shadow: 3px 3px 3px #eee;
 | 
						|
    padding: 8pt;
 | 
						|
    font-family: monospace;
 | 
						|
    overflow: auto;
 | 
						|
    margin: 1.2em;
 | 
						|
  }
 | 
						|
  pre.src {
 | 
						|
    position: relative;
 | 
						|
    overflow: visible;
 | 
						|
    padding-top: 1.2em;
 | 
						|
  }
 | 
						|
  pre.src:before {
 | 
						|
    display: none;
 | 
						|
    position: absolute;
 | 
						|
    background-color: white;
 | 
						|
    top: -10px;
 | 
						|
    right: 10px;
 | 
						|
    padding: 3px;
 | 
						|
    border: 1px solid black;
 | 
						|
  }
 | 
						|
  pre.src:hover:before { display: inline;}
 | 
						|
  /* Languages per Org manual */
 | 
						|
  pre.src-asymptote:before { content: 'Asymptote'; }
 | 
						|
  pre.src-awk:before { content: 'Awk'; }
 | 
						|
  pre.src-C:before { content: 'C'; }
 | 
						|
  /* pre.src-C++ doesn't work in CSS */
 | 
						|
  pre.src-clojure:before { content: 'Clojure'; }
 | 
						|
  pre.src-css:before { content: 'CSS'; }
 | 
						|
  pre.src-D:before { content: 'D'; }
 | 
						|
  pre.src-ditaa:before { content: 'ditaa'; }
 | 
						|
  pre.src-dot:before { content: 'Graphviz'; }
 | 
						|
  pre.src-calc:before { content: 'Emacs Calc'; }
 | 
						|
  pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
 | 
						|
  pre.src-fortran:before { content: 'Fortran'; }
 | 
						|
  pre.src-gnuplot:before { content: 'gnuplot'; }
 | 
						|
  pre.src-haskell:before { content: 'Haskell'; }
 | 
						|
  pre.src-hledger:before { content: 'hledger'; }
 | 
						|
  pre.src-java:before { content: 'Java'; }
 | 
						|
  pre.src-js:before { content: 'Javascript'; }
 | 
						|
  pre.src-latex:before { content: 'LaTeX'; }
 | 
						|
  pre.src-ledger:before { content: 'Ledger'; }
 | 
						|
  pre.src-lisp:before { content: 'Lisp'; }
 | 
						|
  pre.src-lilypond:before { content: 'Lilypond'; }
 | 
						|
  pre.src-lua:before { content: 'Lua'; }
 | 
						|
  pre.src-matlab:before { content: 'MATLAB'; }
 | 
						|
  pre.src-mscgen:before { content: 'Mscgen'; }
 | 
						|
  pre.src-ocaml:before { content: 'Objective Caml'; }
 | 
						|
  pre.src-octave:before { content: 'Octave'; }
 | 
						|
  pre.src-org:before { content: 'Org mode'; }
 | 
						|
  pre.src-oz:before { content: 'OZ'; }
 | 
						|
  pre.src-plantuml:before { content: 'Plantuml'; }
 | 
						|
  pre.src-processing:before { content: 'Processing.js'; }
 | 
						|
  pre.src-python:before { content: 'Python'; }
 | 
						|
  pre.src-R:before { content: 'R'; }
 | 
						|
  pre.src-ruby:before { content: 'Ruby'; }
 | 
						|
  pre.src-sass:before { content: 'Sass'; }
 | 
						|
  pre.src-scheme:before { content: 'Scheme'; }
 | 
						|
  pre.src-screen:before { content: 'Gnu Screen'; }
 | 
						|
  pre.src-sed:before { content: 'Sed'; }
 | 
						|
  pre.src-sh:before { content: 'shell'; }
 | 
						|
  pre.src-sql:before { content: 'SQL'; }
 | 
						|
  pre.src-sqlite:before { content: 'SQLite'; }
 | 
						|
  /* additional languages in org.el's org-babel-load-languages alist */
 | 
						|
  pre.src-forth:before { content: 'Forth'; }
 | 
						|
  pre.src-io:before { content: 'IO'; }
 | 
						|
  pre.src-J:before { content: 'J'; }
 | 
						|
  pre.src-makefile:before { content: 'Makefile'; }
 | 
						|
  pre.src-maxima:before { content: 'Maxima'; }
 | 
						|
  pre.src-perl:before { content: 'Perl'; }
 | 
						|
  pre.src-picolisp:before { content: 'Pico Lisp'; }
 | 
						|
  pre.src-scala:before { content: 'Scala'; }
 | 
						|
  pre.src-shell:before { content: 'Shell Script'; }
 | 
						|
  pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
 | 
						|
  /* additional language identifiers per "defun org-babel-execute"
 | 
						|
       in ob-*.el */
 | 
						|
  pre.src-cpp:before  { content: 'C++'; }
 | 
						|
  pre.src-abc:before  { content: 'ABC'; }
 | 
						|
  pre.src-coq:before  { content: 'Coq'; }
 | 
						|
  pre.src-groovy:before  { content: 'Groovy'; }
 | 
						|
  /* additional language identifiers from org-babel-shell-names in
 | 
						|
     ob-shell.el: ob-shell is the only babel language using a lambda to put
 | 
						|
     the execution function name together. */
 | 
						|
  pre.src-bash:before  { content: 'bash'; }
 | 
						|
  pre.src-csh:before  { content: 'csh'; }
 | 
						|
  pre.src-ash:before  { content: 'ash'; }
 | 
						|
  pre.src-dash:before  { content: 'dash'; }
 | 
						|
  pre.src-ksh:before  { content: 'ksh'; }
 | 
						|
  pre.src-mksh:before  { content: 'mksh'; }
 | 
						|
  pre.src-posh:before  { content: 'posh'; }
 | 
						|
  /* Additional Emacs modes also supported by the LaTeX listings package */
 | 
						|
  pre.src-ada:before { content: 'Ada'; }
 | 
						|
  pre.src-asm:before { content: 'Assembler'; }
 | 
						|
  pre.src-caml:before { content: 'Caml'; }
 | 
						|
  pre.src-delphi:before { content: 'Delphi'; }
 | 
						|
  pre.src-html:before { content: 'HTML'; }
 | 
						|
  pre.src-idl:before { content: 'IDL'; }
 | 
						|
  pre.src-mercury:before { content: 'Mercury'; }
 | 
						|
  pre.src-metapost:before { content: 'MetaPost'; }
 | 
						|
  pre.src-modula-2:before { content: 'Modula-2'; }
 | 
						|
  pre.src-pascal:before { content: 'Pascal'; }
 | 
						|
  pre.src-ps:before { content: 'PostScript'; }
 | 
						|
  pre.src-prolog:before { content: 'Prolog'; }
 | 
						|
  pre.src-simula:before { content: 'Simula'; }
 | 
						|
  pre.src-tcl:before { content: 'tcl'; }
 | 
						|
  pre.src-tex:before { content: 'TeX'; }
 | 
						|
  pre.src-plain-tex:before { content: 'Plain TeX'; }
 | 
						|
  pre.src-verilog:before { content: 'Verilog'; }
 | 
						|
  pre.src-vhdl:before { content: 'VHDL'; }
 | 
						|
  pre.src-xml:before { content: 'XML'; }
 | 
						|
  pre.src-nxml:before { content: 'XML'; }
 | 
						|
  /* add a generic configuration mode; LaTeX export needs an additional
 | 
						|
     (add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
 | 
						|
  pre.src-conf:before { content: 'Configuration File'; }
 | 
						|
 | 
						|
  table { border-collapse:collapse; }
 | 
						|
  caption.t-above { caption-side: top; }
 | 
						|
  caption.t-bottom { caption-side: bottom; }
 | 
						|
  td, th { vertical-align:top;  }
 | 
						|
  th.org-right  { text-align: center;  }
 | 
						|
  th.org-left   { text-align: center;   }
 | 
						|
  th.org-center { text-align: center; }
 | 
						|
  td.org-right  { text-align: right;  }
 | 
						|
  td.org-left   { text-align: left;   }
 | 
						|
  td.org-center { text-align: center; }
 | 
						|
  dt { font-weight: bold; }
 | 
						|
  .footpara { display: inline; }
 | 
						|
  .footdef  { margin-bottom: 1em; }
 | 
						|
  .figure { padding: 1em; }
 | 
						|
  .figure p { text-align: center; }
 | 
						|
  .equation-container {
 | 
						|
    display: table;
 | 
						|
    text-align: center;
 | 
						|
    width: 100%;
 | 
						|
  }
 | 
						|
  .equation {
 | 
						|
    vertical-align: middle;
 | 
						|
  }
 | 
						|
  .equation-label {
 | 
						|
    display: table-cell;
 | 
						|
    text-align: right;
 | 
						|
    vertical-align: middle;
 | 
						|
  }
 | 
						|
  .inlinetask {
 | 
						|
    padding: 10px;
 | 
						|
    border: 2px solid gray;
 | 
						|
    margin: 10px;
 | 
						|
    background: #ffffcc;
 | 
						|
  }
 | 
						|
  #org-div-home-and-up
 | 
						|
   { text-align: right; font-size: 70%; white-space: nowrap; }
 | 
						|
  textarea { overflow-x: auto; }
 | 
						|
  .linenr { font-size: smaller }
 | 
						|
  .code-highlighted { background-color: #ffff00; }
 | 
						|
  .org-info-js_info-navigation { border-style: none; }
 | 
						|
  #org-info-js_console-label
 | 
						|
    { font-size: 10px; font-weight: bold; white-space: nowrap; }
 | 
						|
  .org-info-js_search-highlight
 | 
						|
    { background-color: #ffff00; color: #000000; font-weight: bold; }
 | 
						|
  .org-svg { width: 90%; }
 | 
						|
  /*]]>*/-->
 | 
						|
</style>
 | 
						|
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
 | 
						|
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
 | 
						|
<script src="./js/jquery.min.js"></script>
 | 
						|
<script src="./js/bootstrap.min.js"></script>
 | 
						|
<script src="./js/jquery.stickytableheaders.min.js"></script>
 | 
						|
<script src="./js/readtheorg.js"></script>
 | 
						|
<script type="text/javascript">
 | 
						|
/*
 | 
						|
@licstart  The following is the entire license notice for the
 | 
						|
JavaScript code in this tag.
 | 
						|
 | 
						|
Copyright (C) 2012-2020 Free Software Foundation, Inc.
 | 
						|
 | 
						|
The JavaScript code in this tag is free software: you can
 | 
						|
redistribute it and/or modify it under the terms of the GNU
 | 
						|
General Public License (GNU GPL) as published by the Free Software
 | 
						|
Foundation, either version 3 of the License, or (at your option)
 | 
						|
any later version.  The code is distributed WITHOUT ANY WARRANTY;
 | 
						|
without even the implied warranty of MERCHANTABILITY or FITNESS
 | 
						|
FOR A PARTICULAR PURPOSE.  See the GNU GPL for more details.
 | 
						|
 | 
						|
As additional permission under GNU GPL version 3 section 7, you
 | 
						|
may distribute non-source (e.g., minimized or compacted) forms of
 | 
						|
that code without the copy of the GNU GPL normally required by
 | 
						|
section 4, provided you include this license notice and a URL
 | 
						|
through which recipients can access the Corresponding Source.
 | 
						|
 | 
						|
 | 
						|
@licend  The above is the entire license notice
 | 
						|
for the JavaScript code in this tag.
 | 
						|
*/
 | 
						|
<!--/*--><![CDATA[/*><!--*/
 | 
						|
 function CodeHighlightOn(elem, id)
 | 
						|
 {
 | 
						|
   var target = document.getElementById(id);
 | 
						|
   if(null != target) {
 | 
						|
     elem.cacheClassElem = elem.className;
 | 
						|
     elem.cacheClassTarget = target.className;
 | 
						|
     target.className = "code-highlighted";
 | 
						|
     elem.className   = "code-highlighted";
 | 
						|
   }
 | 
						|
 }
 | 
						|
 function CodeHighlightOff(elem, id)
 | 
						|
 {
 | 
						|
   var target = document.getElementById(id);
 | 
						|
   if(elem.cacheClassElem)
 | 
						|
     elem.className = elem.cacheClassElem;
 | 
						|
   if(elem.cacheClassTarget)
 | 
						|
     target.className = elem.cacheClassTarget;
 | 
						|
 }
 | 
						|
/*]]>*///-->
 | 
						|
</script>
 | 
						|
<script type="text/x-mathjax-config">
 | 
						|
    MathJax.Hub.Config({
 | 
						|
        displayAlign: "center",
 | 
						|
        displayIndent: "0em",
 | 
						|
 | 
						|
        "HTML-CSS": { scale: 100,
 | 
						|
                        linebreaks: { automatic: "false" },
 | 
						|
                        webFont: "TeX"
 | 
						|
                       },
 | 
						|
        SVG: {scale: 100,
 | 
						|
              linebreaks: { automatic: "false" },
 | 
						|
              font: "TeX"},
 | 
						|
        NativeMML: {scale: 100},
 | 
						|
        TeX: { equationNumbers: {autoNumber: "AMS"},
 | 
						|
               MultLineWidth: "85%",
 | 
						|
               TagSide: "right",
 | 
						|
               TagIndent: ".8em",
 | 
						|
               Macros: {
 | 
						|
                 bm: ["{\\boldsymbol #1}",1],
 | 
						|
               }
 | 
						|
             }
 | 
						|
});
 | 
						|
</script>
 | 
						|
<script type="text/javascript"
 | 
						|
        src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_HTML"></script>
 | 
						|
</head>
 | 
						|
<body>
 | 
						|
<div id="org-div-home-and-up">
 | 
						|
 <a accesskey="h" href="./index.html"> UP </a>
 | 
						|
 |
 | 
						|
 <a accesskey="H" href="./index.html"> HOME </a>
 | 
						|
</div><div id="content">
 | 
						|
<h1 class="title">Kinematic Study of the Stewart Platform</h1>
 | 
						|
<div id="table-of-contents">
 | 
						|
<h2>Table of Contents</h2>
 | 
						|
<div id="text-table-of-contents">
 | 
						|
<ul>
 | 
						|
<li><a href="#org63c8faa">1. Needed Actuator Stroke</a>
 | 
						|
<ul>
 | 
						|
<li><a href="#orged5be9e">1.1. Stewart architecture definition</a></li>
 | 
						|
<li><a href="#org73e5cf8">1.2. Wanted translations and rotations</a></li>
 | 
						|
<li><a href="#org9825ccf">1.3. Needed stroke for “pure” rotations or translations</a></li>
 | 
						|
<li><a href="#org0440602">1.4. Needed stroke for combined translations and rotations</a></li>
 | 
						|
</ul>
 | 
						|
</li>
 | 
						|
<li><a href="#org092f7f8">2. Maximum Stroke</a></li>
 | 
						|
<li><a href="#org720ba56">3. Functions</a>
 | 
						|
<ul>
 | 
						|
<li><a href="#org8125766">3.1. getMaxPositions</a></li>
 | 
						|
<li><a href="#org91e4101">3.2. getMaxPureDisplacement</a></li>
 | 
						|
<li><a href="#orgf75fefe">3.3. <code>computeJacobian</code>: Compute the Jacobian Matrix</a>
 | 
						|
<ul>
 | 
						|
<li><a href="#orgae47616">3.3.1. Function description</a></li>
 | 
						|
<li><a href="#org78705da">3.3.2. Compute Jacobian Matrix</a></li>
 | 
						|
<li><a href="#orgb7dc1d7">3.3.3. Compute Stiffness Matrix</a></li>
 | 
						|
<li><a href="#org7aa6c04">3.3.4. Compute Compliance Matrix</a></li>
 | 
						|
</ul>
 | 
						|
</li>
 | 
						|
<li><a href="#org9c46957">3.4. <code>inverseKinematics</code>: Compute Inverse Kinematics</a>
 | 
						|
<ul>
 | 
						|
<li><a href="#org9da7af0">3.4.1. Function description</a></li>
 | 
						|
<li><a href="#orge2cc540">3.4.2. Optional Parameters</a></li>
 | 
						|
<li><a href="#orga1a0cc7">3.4.3. Theory</a></li>
 | 
						|
<li><a href="#org9b86eb9">3.4.4. Compute</a></li>
 | 
						|
</ul>
 | 
						|
</li>
 | 
						|
<li><a href="#org7e6d65c">3.5. <code>forwardKinematicsApprox</code>: Compute the Approximate Forward Kinematics</a>
 | 
						|
<ul>
 | 
						|
<li><a href="#org65e0ce7">3.5.1. Function description</a></li>
 | 
						|
<li><a href="#orgf6a32e1">3.5.2. Optional Parameters</a></li>
 | 
						|
<li><a href="#orgce0b559">3.5.3. Computation</a></li>
 | 
						|
</ul>
 | 
						|
</li>
 | 
						|
</ul>
 | 
						|
</li>
 | 
						|
</ul>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org63c8faa" class="outline-2">
 | 
						|
<h2 id="org63c8faa"><span class="section-number-2">1</span> Needed Actuator Stroke</h2>
 | 
						|
<div class="outline-text-2" id="text-1">
 | 
						|
<p>
 | 
						|
The goal is to determine the needed stroke of the actuators to obtain wanted translations and rotations.
 | 
						|
</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orged5be9e" class="outline-3">
 | 
						|
<h3 id="orged5be9e"><span class="section-number-3">1.1</span> Stewart architecture definition</h3>
 | 
						|
<div class="outline-text-3" id="text-1-1">
 | 
						|
<p>
 | 
						|
We use a cubic architecture.
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">opts = struct(...
 | 
						|
    <span class="org-string">'H_tot'</span>, 90, ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
 | 
						|
    <span class="org-string">'L'</span>,     200<span class="org-type">/</span>sqrt(3), ...<span class="org-comment"> % Size of the Cube [mm]</span>
 | 
						|
    <span class="org-string">'H'</span>,     60, ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
 | 
						|
    <span class="org-string">'H0'</span>,    200<span class="org-type">/</span>2<span class="org-type">-</span>60<span class="org-type">/</span>2 ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
 | 
						|
    );
 | 
						|
stewart = initializeCubicConfiguration(opts);
 | 
						|
opts = struct(...
 | 
						|
    <span class="org-string">'Jd_pos'</span>, [0, 0, 100], ...<span class="org-comment"> % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
 | 
						|
    <span class="org-string">'Jf_pos'</span>, [0, 0, <span class="org-type">-</span>50]  ...<span class="org-comment"> % Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
 | 
						|
    );
 | 
						|
stewart = computeGeometricalProperties(stewart, opts);
 | 
						|
opts = struct(...
 | 
						|
    <span class="org-string">'stroke'</span>, 50e<span class="org-type">-</span>6 ...<span class="org-comment"> % Maximum stroke of each actuator [m]</span>
 | 
						|
    );
 | 
						|
stewart = initializeMechanicalElements(stewart, opts);
 | 
						|
 | 
						|
save(<span class="org-string">'./mat/stewart.mat'</span>, <span class="org-string">'stewart'</span>);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org73e5cf8" class="outline-3">
 | 
						|
<h3 id="org73e5cf8"><span class="section-number-3">1.2</span> Wanted translations and rotations</h3>
 | 
						|
<div class="outline-text-3" id="text-1-2">
 | 
						|
<p>
 | 
						|
We define wanted translations and rotations
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Tx_max = 15e<span class="org-type">-</span>6; <span class="org-comment">% Translation [m]</span>
 | 
						|
Ty_max = 15e<span class="org-type">-</span>6; <span class="org-comment">% Translation [m]</span>
 | 
						|
Tz_max = 15e<span class="org-type">-</span>6; <span class="org-comment">% Translation [m]</span>
 | 
						|
Rx_max = 30e<span class="org-type">-</span>6; <span class="org-comment">% Rotation [rad]</span>
 | 
						|
Ry_max = 30e<span class="org-type">-</span>6; <span class="org-comment">% Rotation [rad]</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org9825ccf" class="outline-3">
 | 
						|
<h3 id="org9825ccf"><span class="section-number-3">1.3</span> Needed stroke for “pure” rotations or translations</h3>
 | 
						|
<div class="outline-text-3" id="text-1-3">
 | 
						|
<p>
 | 
						|
First, we estimate the needed actuator stroke for “pure” rotations and translation.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">LTx = stewart.Jd<span class="org-type">*</span>[Tx_max 0 0 0 0 0]<span class="org-type">'</span>;
 | 
						|
LTy = stewart.Jd<span class="org-type">*</span>[0 Ty_max 0 0 0 0]<span class="org-type">'</span>;
 | 
						|
LTz = stewart.Jd<span class="org-type">*</span>[0 0 Tz_max 0 0 0]<span class="org-type">'</span>;
 | 
						|
LRx = stewart.Jd<span class="org-type">*</span>[0 0 0 Rx_max 0 0]<span class="org-type">'</span>;
 | 
						|
LRy = stewart.Jd<span class="org-type">*</span>[0 0 0 0 Ry_max 0]<span class="org-type">'</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<pre class="example">
 | 
						|
From -1.2e-05[m] to 1.1e-05[m]: Total stroke = 22.9[um]
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org0440602" class="outline-3">
 | 
						|
<h3 id="org0440602"><span class="section-number-3">1.4</span> Needed stroke for combined translations and rotations</h3>
 | 
						|
<div class="outline-text-3" id="text-1-4">
 | 
						|
<p>
 | 
						|
Now, we combine translations and rotations, and we try to find the worst case (that we suppose to happen at the border).
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Lmax = 0;
 | 
						|
Lmin = 0;
 | 
						|
pos = [0, 0, 0, 0, 0];
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name">Tx</span> = <span class="org-constant">[-Tx_max</span>,Tx_max]
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name">Ty</span> = <span class="org-constant">[-Ty_max</span>,Ty_max]
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name">Tz</span> = <span class="org-constant">[-Tz_max</span>,Tz_max]
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name">Rx</span> = <span class="org-constant">[-Rx_max</span>,Rx_max]
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name">Ry</span> = <span class="org-constant">[-Ry_max</span>,Ry_max]
 | 
						|
    lmax = max(stewart.Jd<span class="org-type">*</span>[Tx Ty Tz Rx Ry 0]<span class="org-type">'</span>);
 | 
						|
    lmin = min(stewart.Jd<span class="org-type">*</span>[Tx Ty Tz Rx Ry 0]<span class="org-type">'</span>);
 | 
						|
    <span class="org-keyword">if</span> lmax <span class="org-type">></span> Lmax
 | 
						|
        Lmax = lmax;
 | 
						|
        pos = [Tx Ty Tz Rx Ry];
 | 
						|
    <span class="org-keyword">end</span>
 | 
						|
    <span class="org-keyword">if</span> lmin <span class="org-type"><</span> Lmin
 | 
						|
        Lmin = lmin;
 | 
						|
    <span class="org-keyword">end</span>
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
We obtain a needed stroke shown below (almost two times the needed stroke for “pure” rotations and translations).
 | 
						|
</p>
 | 
						|
<pre class="example">
 | 
						|
From -3.1e-05[m] to 3.1e-05[m]: Total stroke = 61.5[um]
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org092f7f8" class="outline-2">
 | 
						|
<h2 id="org092f7f8"><span class="section-number-2">2</span> Maximum Stroke</h2>
 | 
						|
<div class="outline-text-2" id="text-2">
 | 
						|
<p>
 | 
						|
From a specified actuator stroke, we try to estimate the available maneuverability of the Stewart platform.
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">[X, Y, Z] = getMaxPositions(<span class="org-variable-name">stewart</span>);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-type">figure</span>;
 | 
						|
plot3(X, Y, Z, <span class="org-string">'k-'</span>)
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org720ba56" class="outline-2">
 | 
						|
<h2 id="org720ba56"><span class="section-number-2">3</span> Functions</h2>
 | 
						|
<div class="outline-text-2" id="text-3">
 | 
						|
</div>
 | 
						|
<div id="outline-container-org8125766" class="outline-3">
 | 
						|
<h3 id="org8125766"><span class="section-number-3">3.1</span> getMaxPositions</h3>
 | 
						|
<div class="outline-text-3" id="text-3-1">
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[X, Y, Z]</span> = <span class="org-function-name">getMaxPositions</span>(<span class="org-variable-name">stewart</span>)
 | 
						|
    Leg = stewart.Leg;
 | 
						|
    J = stewart.Jd;
 | 
						|
    theta = linspace(0, 2<span class="org-type">*</span><span class="org-constant">pi</span>, 100);
 | 
						|
    phi = linspace(<span class="org-type">-</span><span class="org-constant">pi</span><span class="org-type">/</span>2 , <span class="org-constant">pi</span><span class="org-type">/</span>2, 100);
 | 
						|
    dmax = zeros(length(theta), length(phi));
 | 
						|
 | 
						|
    <span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(theta)</span>
 | 
						|
        <span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">j</span></span> = <span class="org-constant">1:length(phi)</span>
 | 
						|
            L = J<span class="org-type">*</span>[cos(phi(<span class="org-constant">j</span>))<span class="org-type">*</span>cos(theta(<span class="org-constant">i</span>)) cos(phi(<span class="org-constant">j</span>))<span class="org-type">*</span>sin(theta(<span class="org-constant">i</span>)) sin(phi(<span class="org-constant">j</span>)) 0 0 0]<span class="org-type">'</span>;
 | 
						|
            dmax(<span class="org-constant">i</span>, <span class="org-constant">j</span>) = Leg.stroke<span class="org-type">/</span>max(abs(L));
 | 
						|
        <span class="org-keyword">end</span>
 | 
						|
    <span class="org-keyword">end</span>
 | 
						|
 | 
						|
    X = dmax<span class="org-type">.*</span>cos(repmat(phi,length(theta),1))<span class="org-type">.*</span>cos(repmat(theta,length(phi),1))<span class="org-type">'</span>;
 | 
						|
    Y = dmax<span class="org-type">.*</span>cos(repmat(phi,length(theta),1))<span class="org-type">.*</span>sin(repmat(theta,length(phi),1))<span class="org-type">'</span>;
 | 
						|
    Z = dmax<span class="org-type">.*</span>sin(repmat(phi,length(theta),1));
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org91e4101" class="outline-3">
 | 
						|
<h3 id="org91e4101"><span class="section-number-3">3.2</span> getMaxPureDisplacement</h3>
 | 
						|
<div class="outline-text-3" id="text-3-2">
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[max_disp]</span> = <span class="org-function-name">getMaxPureDisplacement</span>(<span class="org-variable-name">Leg</span>, <span class="org-variable-name">J</span>)
 | 
						|
    max_disp = zeros(6, 1);
 | 
						|
    max_disp<span class="org-type">(1) </span>= Leg.stroke<span class="org-type">/</span>max(abs(J<span class="org-type">*</span>[1 0 0 0 0 0]<span class="org-type">'</span>));
 | 
						|
    max_disp<span class="org-type">(2) </span>= Leg.stroke<span class="org-type">/</span>max(abs(J<span class="org-type">*</span>[0 1 0 0 0 0]<span class="org-type">'</span>));
 | 
						|
    max_disp<span class="org-type">(3) </span>= Leg.stroke<span class="org-type">/</span>max(abs(J<span class="org-type">*</span>[0 0 1 0 0 0]<span class="org-type">'</span>));
 | 
						|
    max_disp<span class="org-type">(4) </span>= Leg.stroke<span class="org-type">/</span>max(abs(J<span class="org-type">*</span>[0 0 0 1 0 0]<span class="org-type">'</span>));
 | 
						|
    max_disp<span class="org-type">(5) </span>= Leg.stroke<span class="org-type">/</span>max(abs(J<span class="org-type">*</span>[0 0 0 0 1 0]<span class="org-type">'</span>));
 | 
						|
    max_disp<span class="org-type">(6) </span>= Leg.stroke<span class="org-type">/</span>max(abs(J<span class="org-type">*</span>[0 0 0 0 0 1]<span class="org-type">'</span>));
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
<div id="outline-container-orgf75fefe" class="outline-3">
 | 
						|
<h3 id="orgf75fefe"><span class="section-number-3">3.3</span> <code>computeJacobian</code>: Compute the Jacobian Matrix</h3>
 | 
						|
<div class="outline-text-3" id="text-3-3">
 | 
						|
<p>
 | 
						|
<a id="org02bdbb2"></a>
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
This Matlab function is accessible <a href="src/computeJacobian.m">here</a>.
 | 
						|
</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orgae47616" class="outline-4">
 | 
						|
<h4 id="orgae47616"><span class="section-number-4">3.3.1</span> Function description</h4>
 | 
						|
<div class="outline-text-4" id="text-3-3-1">
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[stewart]</span> = <span class="org-function-name">computeJacobian</span>(<span class="org-variable-name">stewart</span>)
 | 
						|
<span class="org-comment">% computeJacobian -</span>
 | 
						|
<span class="org-comment">%</span>
 | 
						|
<span class="org-comment">% Syntax: [stewart] = computeJacobian(stewart)</span>
 | 
						|
<span class="org-comment">%</span>
 | 
						|
<span class="org-comment">% Inputs:</span>
 | 
						|
<span class="org-comment">%    - stewart - With at least the following fields:</span>
 | 
						|
<span class="org-comment">%        - As [3x6] - The 6 unit vectors for each strut expressed in {A}</span>
 | 
						|
<span class="org-comment">%        - Ab [3x6] - The 6 position of the joints bi expressed in {A}</span>
 | 
						|
<span class="org-comment">%</span>
 | 
						|
<span class="org-comment">% Outputs:</span>
 | 
						|
<span class="org-comment">%    - stewart - With the 3 added field:</span>
 | 
						|
<span class="org-comment">%        - J [6x6] - The Jacobian Matrix</span>
 | 
						|
<span class="org-comment">%        - K [6x6] - The Stiffness Matrix</span>
 | 
						|
<span class="org-comment">%        - C [6x6] - The Compliance Matrix</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org78705da" class="outline-4">
 | 
						|
<h4 id="org78705da"><span class="section-number-4">3.3.2</span> Compute Jacobian Matrix</h4>
 | 
						|
<div class="outline-text-4" id="text-3-3-2">
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">stewart.J = [stewart.As<span class="org-type">'</span> , cross(stewart.Ab, stewart.As)<span class="org-type">'</span>];
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orgb7dc1d7" class="outline-4">
 | 
						|
<h4 id="orgb7dc1d7"><span class="section-number-4">3.3.3</span> Compute Stiffness Matrix</h4>
 | 
						|
<div class="outline-text-4" id="text-3-3-3">
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">stewart.K = stewart.J<span class="org-type">'*</span>diag(stewart.Ki)<span class="org-type">*</span>stewart.J;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org7aa6c04" class="outline-4">
 | 
						|
<h4 id="org7aa6c04"><span class="section-number-4">3.3.4</span> Compute Compliance Matrix</h4>
 | 
						|
<div class="outline-text-4" id="text-3-3-4">
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">stewart.C = inv(stewart.K);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org9c46957" class="outline-3">
 | 
						|
<h3 id="org9c46957"><span class="section-number-3">3.4</span> <code>inverseKinematics</code>: Compute Inverse Kinematics</h3>
 | 
						|
<div class="outline-text-3" id="text-3-4">
 | 
						|
<p>
 | 
						|
<a id="orgab617cc"></a>
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
This Matlab function is accessible <a href="src/inverseKinematics.m">here</a>.
 | 
						|
</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org9da7af0" class="outline-4">
 | 
						|
<h4 id="org9da7af0"><span class="section-number-4">3.4.1</span> Function description</h4>
 | 
						|
<div class="outline-text-4" id="text-3-4-1">
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[Li, dLi]</span> = <span class="org-function-name">inverseKinematics</span>(<span class="org-variable-name">stewart</span>, <span class="org-variable-name">args</span>)
 | 
						|
<span class="org-comment">% inverseKinematics - Compute the needed length of each strut to have the wanted position and orientation of {B} with respect to {A}</span>
 | 
						|
<span class="org-comment">%</span>
 | 
						|
<span class="org-comment">% Syntax: [stewart] = inverseKinematics(stewart)</span>
 | 
						|
<span class="org-comment">%</span>
 | 
						|
<span class="org-comment">% Inputs:</span>
 | 
						|
<span class="org-comment">%    - stewart - A structure with the following fields</span>
 | 
						|
<span class="org-comment">%        - Aa   [3x6] - The positions ai expressed in {A}</span>
 | 
						|
<span class="org-comment">%        - Bb   [3x6] - The positions bi expressed in {B}</span>
 | 
						|
<span class="org-comment">%    - args - Can have the following fields:</span>
 | 
						|
<span class="org-comment">%        - AP   [3x1] - The wanted position of {B} with respect to {A}</span>
 | 
						|
<span class="org-comment">%        - ARB  [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}</span>
 | 
						|
<span class="org-comment">%</span>
 | 
						|
<span class="org-comment">% Outputs:</span>
 | 
						|
<span class="org-comment">%    - Li   [6x1] - The 6 needed length of the struts in [m] to have the wanted pose of {B} w.r.t. {A}</span>
 | 
						|
<span class="org-comment">%    - dLi  [6x1] - The 6 needed displacement of the struts from the initial position in [m] to have the wanted pose of {B} w.r.t. {A}</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orge2cc540" class="outline-4">
 | 
						|
<h4 id="orge2cc540"><span class="section-number-4">3.4.2</span> Optional Parameters</h4>
 | 
						|
<div class="outline-text-4" id="text-3-4-2">
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">arguments
 | 
						|
    stewart
 | 
						|
    args.AP  (3,1) double {mustBeNumeric} = zeros(3,1)
 | 
						|
    args.ARB (3,3) double {mustBeNumeric} = eye(3)
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orga1a0cc7" class="outline-4">
 | 
						|
<h4 id="orga1a0cc7"><span class="section-number-4">3.4.3</span> Theory</h4>
 | 
						|
<div class="outline-text-4" id="text-3-4-3">
 | 
						|
<p>
 | 
						|
For inverse kinematic analysis, it is assumed that the position \({}^A\bm{P}\) and orientation of the moving platform \({}^A\bm{R}_B\) are given and the problem is to obtain the joint variables, namely, \(\bm{L} = [l_1, l_2, \dots, l_6]^T\).
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
From the geometry of the manipulator, the loop closure for each limb, \(i = 1, 2, \dots, 6\) can be written as
 | 
						|
</p>
 | 
						|
\begin{align*}
 | 
						|
  l_i {}^A\hat{\bm{s}}_i &= {}^A\bm{A} + {}^A\bm{b}_i - {}^A\bm{a}_i \\
 | 
						|
                         &= {}^A\bm{A} + {}^A\bm{R}_b {}^B\bm{b}_i - {}^A\bm{a}_i
 | 
						|
\end{align*}
 | 
						|
 | 
						|
<p>
 | 
						|
To obtain the length of each actuator and eliminate \(\hat{\bm{s}}_i\), it is sufficient to dot multiply each side by itself:
 | 
						|
</p>
 | 
						|
\begin{equation}
 | 
						|
  l_i^2 \left[ {}^A\hat{\bm{s}}_i^T {}^A\hat{\bm{s}}_i \right] = \left[ {}^A\bm{P} + {}^A\bm{R}_B {}^B\bm{b}_i - {}^A\bm{a}_i \right]^T \left[ {}^A\bm{P} + {}^A\bm{R}_B {}^B\bm{b}_i - {}^A\bm{a}_i \right]
 | 
						|
\end{equation}
 | 
						|
 | 
						|
<p>
 | 
						|
Hence, for \(i = 1, 2, \dots, 6\), each limb length can be uniquely determined by:
 | 
						|
</p>
 | 
						|
\begin{equation}
 | 
						|
  l_i = \sqrt{{}^A\bm{P}^T {}^A\bm{P} + {}^B\bm{b}_i^T {}^B\bm{b}_i + {}^A\bm{a}_i^T {}^A\bm{a}_i - 2 {}^A\bm{P}^T {}^A\bm{a}_i + 2 {}^A\bm{P}^T \left[{}^A\bm{R}_B {}^B\bm{b}_i\right] - 2 \left[{}^A\bm{R}_B {}^B\bm{b}_i\right]^T {}^A\bm{a}_i}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
<p>
 | 
						|
If the position and orientation of the moving platform lie in the feasible workspace of the manipulator, one unique solution to the limb length is determined by the above equation.
 | 
						|
Otherwise, when the limbs’ lengths derived yield complex numbers, then the position or orientation of the moving platform is not reachable.
 | 
						|
</p>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org9b86eb9" class="outline-4">
 | 
						|
<h4 id="org9b86eb9"><span class="section-number-4">3.4.4</span> Compute</h4>
 | 
						|
<div class="outline-text-4" id="text-3-4-4">
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Li = sqrt(args.AP<span class="org-type">'*</span>args.AP <span class="org-type">+</span> diag(stewart.Bb<span class="org-type">'*</span>stewart.Bb) <span class="org-type">+</span> diag(stewart.Aa<span class="org-type">'*</span>stewart.Aa) <span class="org-type">-</span> (2<span class="org-type">*</span>args.AP<span class="org-type">'*</span>stewart.Aa)<span class="org-type">'</span> <span class="org-type">+</span> (2<span class="org-type">*</span>args.AP<span class="org-type">'*</span>(args.ARB<span class="org-type">*</span>stewart.Bb))<span class="org-type">'</span> <span class="org-type">-</span> diag(2<span class="org-type">*</span>(args.ARB<span class="org-type">*</span>stewart.Bb)<span class="org-type">'*</span>stewart.Aa));
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">dLi = Li<span class="org-type">-</span>stewart.l;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org7e6d65c" class="outline-3">
 | 
						|
<h3 id="org7e6d65c"><span class="section-number-3">3.5</span> <code>forwardKinematicsApprox</code>: Compute the Approximate Forward Kinematics</h3>
 | 
						|
<div class="outline-text-3" id="text-3-5">
 | 
						|
<p>
 | 
						|
<a id="orgee3cdbf"></a>
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
This Matlab function is accessible <a href="src/forwardKinematicsApprox.m">here</a>.
 | 
						|
</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org65e0ce7" class="outline-4">
 | 
						|
<h4 id="org65e0ce7"><span class="section-number-4">3.5.1</span> Function description</h4>
 | 
						|
<div class="outline-text-4" id="text-3-5-1">
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[P, R]</span> = <span class="org-function-name">forwardKinematicsApprox</span>(<span class="org-variable-name">stewart</span>, <span class="org-variable-name">args</span>)
 | 
						|
<span class="org-comment">% forwardKinematicsApprox - Computed the approximate pose of {B} with respect to {A} from the length of each strut and using</span>
 | 
						|
<span class="org-comment">%                           the Jacobian Matrix</span>
 | 
						|
<span class="org-comment">%</span>
 | 
						|
<span class="org-comment">% Syntax: [P, R] = forwardKinematicsApprox(stewart, args)</span>
 | 
						|
<span class="org-comment">%</span>
 | 
						|
<span class="org-comment">% Inputs:</span>
 | 
						|
<span class="org-comment">%    - stewart - A structure with the following fields</span>
 | 
						|
<span class="org-comment">%        - J  [6x6] - The Jacobian Matrix</span>
 | 
						|
<span class="org-comment">%    - args - Can have the following fields:</span>
 | 
						|
<span class="org-comment">%        - dL [6x1] - Displacement of each strut [m]</span>
 | 
						|
<span class="org-comment">%</span>
 | 
						|
<span class="org-comment">% Outputs:</span>
 | 
						|
<span class="org-comment">%    - P  [3x1] - The estimated position of {B} with respect to {A}</span>
 | 
						|
<span class="org-comment">%    - R  [3x3] - The estimated rotation matrix that gives the orientation of {B} with respect to {A}</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orgf6a32e1" class="outline-4">
 | 
						|
<h4 id="orgf6a32e1"><span class="section-number-4">3.5.2</span> Optional Parameters</h4>
 | 
						|
<div class="outline-text-4" id="text-3-5-2">
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">arguments
 | 
						|
    stewart
 | 
						|
    args.dL (6,1) double {mustBeNumeric} = zeros(6,1)
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orgce0b559" class="outline-4">
 | 
						|
<h4 id="orgce0b559"><span class="section-number-4">3.5.3</span> Computation</h4>
 | 
						|
<div class="outline-text-4" id="text-3-5-3">
 | 
						|
<p>
 | 
						|
From a small displacement of each strut \(d\bm{\mathcal{L}}\), we can compute the
 | 
						|
position and orientation of {B} with respect to {A} using the following formula:
 | 
						|
\[ d \bm{\mathcal{X}} = \bm{J}^{-1} d\bm{\mathcal{L}} \]
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">X = stewart.J<span class="org-type">\</span>args.dL;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
The position vector corresponds to the first 3 elements.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">P = X(1<span class="org-type">:</span>3);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
The next 3 elements are the orientation of {B} with respect to {A} expressed
 | 
						|
using the screw axis.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">theta = norm(X(4<span class="org-type">:</span>6));
 | 
						|
s = X(4<span class="org-type">:</span>6)<span class="org-type">/</span>theta;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
We then compute the corresponding rotation matrix.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">R = [s(1)<span class="org-type">^</span>2<span class="org-type">*</span>(1<span class="org-type">-</span>cos(theta)) <span class="org-type">+</span> cos(theta) ,        s(1)<span class="org-type">*</span>s(2)<span class="org-type">*</span>(1<span class="org-type">-</span>cos(theta)) <span class="org-type">-</span> s(3)<span class="org-type">*</span>sin(theta), s(1)<span class="org-type">*</span>s(3)<span class="org-type">*</span>(1<span class="org-type">-</span>cos(theta)) <span class="org-type">+</span> s(2)<span class="org-type">*</span>sin(theta);
 | 
						|
     s<span class="org-type">(2)*s(1)*(1-cos(theta)) + s(3)*sin(theta), s(2)^2*(1-cos(theta)) + cos(theta),         s(2)*s(3)*(1-cos(theta)) - s(1)*sin(theta);</span>
 | 
						|
     s<span class="org-type">(3)*s(1)*(1-cos(theta)) - s(2)*sin(theta), s(3)*s(2)*(1-cos(theta)) + s(1)*sin(theta), s(3)^2*(1-cos(theta)) + cos(theta)];</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
<div id="postamble" class="status">
 | 
						|
<p class="author">Author: Dehaeze Thomas</p>
 | 
						|
<p class="date">Created: 2020-01-28 mar. 17:38</p>
 | 
						|
</div>
 | 
						|
</body>
 | 
						|
</html>
 |