9.6 KiB
Stewart Platform - Dynamics Study
Some tests
Simscape Model
open('stewart_platform_dynamics.slx')
test
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
Estimation of the transfer function from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$:
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_dynamics';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1;
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_dynamics';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/J-T'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1;
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
G_cart = minreal(G*inv(stewart.J'));
G_cart.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};
figure; bode(G, G_cart)
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_dynamics';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Fext'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1;
%% Run the linearization
Gd = linearize(mdl, io, options);
Gd.InputName = {'Fex', 'Fey', 'Fez', 'Mex', 'Mey', 'Mez'};
Gd.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
freqs = logspace(0, 3, 1000);
figure;
bode(Gd, G)
Compare external forces and forces applied by the actuators
Initialization of the Stewart platform.
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
Estimation of the transfer function from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$:
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_dynamics';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1;
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
Estimation of the transfer function from $\mathcal{\bm{F}}_{d}$ to $\mathcal{\bm{X}}$:
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_dynamics';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Fext'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1;
%% Run the linearization
Gd = linearize(mdl, io, options);
Gd.InputName = {'Fex', 'Fey', 'Fez', 'Mex', 'Mey', 'Mez'};
Gd.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
Comparison of the two transfer function matrices.
freqs = logspace(0, 4, 1000);
figure;
bode(Gd, G, freqs)
Seems quite similar.
Comparison of the static transfer function and the Compliance matrix
Initialization of the Stewart platform.
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
Estimation of the transfer function from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$:
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_dynamics';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1;
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
Let's first look at the low frequency transfer function matrix from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$.
2.0e-06 | -9.1e-19 | -5.3e-12 | 7.3e-18 | 1.7e-05 | 1.3e-18 |
-1.7e-18 | 2.0e-06 | 8.6e-19 | -1.7e-05 | -1.5e-17 | 6.7e-12 |
3.6e-13 | 3.2e-19 | 5.0e-07 | -2.5e-18 | 8.1e-12 | -1.5e-19 |
1.0e-17 | -1.7e-05 | -5.0e-18 | 1.9e-04 | 9.1e-17 | -3.5e-11 |
1.7e-05 | -6.9e-19 | -5.3e-11 | 6.9e-18 | 1.9e-04 | 4.8e-18 |
-3.5e-18 | -4.5e-12 | 1.5e-18 | 7.1e-11 | -3.4e-17 | 4.6e-05 |
And now at the Compliance matrix.
2.0e-06 | 2.9e-22 | 2.8e-22 | -3.2e-21 | 1.7e-05 | 1.5e-37 |
-2.1e-22 | 2.0e-06 | -1.8e-23 | -1.7e-05 | -2.3e-21 | 1.1e-22 |
3.1e-22 | -1.6e-23 | 5.0e-07 | 1.7e-22 | 2.2e-21 | -8.1e-39 |
2.1e-21 | -1.7e-05 | 2.0e-22 | 1.9e-04 | 2.3e-20 | -8.7e-21 |
1.7e-05 | 2.5e-21 | 2.0e-21 | -2.8e-20 | 1.9e-04 | 1.3e-36 |
3.7e-23 | 3.1e-22 | -6.0e-39 | -1.0e-20 | 3.1e-22 | 4.6e-05 |
The low frequency transfer function matrix from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$ corresponds to the compliance matrix of the Stewart platform.
Transfer function from forces applied in the legs to the displacement of the legs
Initialization of the Stewart platform.
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
Estimation of the transfer function from $\bm{\tau}$ to $\bm{L}$:
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_dynamics';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/J-T'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/L'], 1, 'openoutput'); io_i = io_i + 1;
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'L1', 'L2', 'L3', 'L4', 'L5', 'L6'};
freqs = logspace(1, 3, 1000);
figure; bode(G, 2*pi*freqs)
bodeFig({G(1,1), G(1,2)}, freqs, struct('phase', true));