958 lines
35 KiB
Org Mode
958 lines
35 KiB
Org Mode
#+TITLE: Stewart Platform - Decentralized Active Damping
|
|
:DRAWER:
|
|
#+STARTUP: overview
|
|
|
|
#+LANGUAGE: en
|
|
#+EMAIL: dehaeze.thomas@gmail.com
|
|
#+AUTHOR: Dehaeze Thomas
|
|
|
|
#+HTML_LINK_HOME: ./index.html
|
|
#+HTML_LINK_UP: ./index.html
|
|
|
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
|
|
#+HTML_HEAD: <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
|
|
|
|
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
#+PROPERTY: header-args:matlab+ :comments org
|
|
#+PROPERTY: header-args:matlab+ :exports both
|
|
#+PROPERTY: header-args:matlab+ :results none
|
|
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
#+PROPERTY: header-args:matlab+ :noweb yes
|
|
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
|
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
|
|
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
|
|
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
|
|
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
|
|
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
|
|
#+PROPERTY: header-args:latex+ :results file raw replace
|
|
#+PROPERTY: header-args:latex+ :buffer no
|
|
#+PROPERTY: header-args:latex+ :eval no-export
|
|
#+PROPERTY: header-args:latex+ :exports results
|
|
#+PROPERTY: header-args:latex+ :mkdirp yes
|
|
#+PROPERTY: header-args:latex+ :output-dir figs
|
|
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
|
|
:END:
|
|
|
|
* Introduction :ignore:
|
|
The following decentralized active damping techniques are briefly studied:
|
|
- Inertial Control (proportional feedback of the absolute velocity): Section [[sec:active_damping_inertial]]
|
|
- Integral Force Feedback: Section [[sec:active_damping_iff]]
|
|
- Direct feedback of the relative velocity of each strut: Section [[sec:active_damping_dvf]]
|
|
|
|
* Inertial Control
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../matlab/active_damping_inertial.m
|
|
:header-args:matlab+: :comments org :mkdirp yes
|
|
:END:
|
|
<<sec:active_damping_inertial>>
|
|
|
|
#+begin_note
|
|
The Matlab script corresponding to this section is accessible [[file:../matlab/active_damping_inertial.m][here]].
|
|
|
|
To run the script, open the Simulink Project, and type =run active_damping_inertial.m=.
|
|
#+end_note
|
|
|
|
** Introduction :ignore:
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
simulinkproject('../');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
open('stewart_platform_model.slx')
|
|
#+end_src
|
|
|
|
** Identification of the Dynamics
|
|
#+begin_src matlab
|
|
stewart = initializeStewartPlatform();
|
|
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
|
stewart = generateGeneralConfiguration(stewart);
|
|
stewart = computeJointsPose(stewart);
|
|
stewart = initializeStrutDynamics(stewart);
|
|
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
|
|
stewart = initializeCylindricalPlatforms(stewart);
|
|
stewart = initializeCylindricalStruts(stewart);
|
|
stewart = computeJacobian(stewart);
|
|
stewart = initializeStewartPose(stewart);
|
|
stewart = initializeInertialSensor(stewart, 'type', 'accelerometer', 'freq', 5e3);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
|
payload = initializePayload('type', 'none');
|
|
controller = initializeController('type', 'open-loop');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Options for Linearized
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
%% Name of the Simulink File
|
|
mdl = 'stewart_platform_model';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
|
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Vm'); io_i = io_i + 1; % Absolute velocity of each leg [m/s]
|
|
|
|
%% Run the linearization
|
|
G = linearize(mdl, io, options);
|
|
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
G.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'};
|
|
#+end_src
|
|
|
|
The transfer function from actuator forces to force sensors is shown in Figure [[fig:inertial_plant_coupling]].
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(G(['Vm', num2str(i)], 'F1'), freqs, 'Hz'))));
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(G('Vm1', 'F1'), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [$\frac{m/s}{N}$]'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(['Vm', num2str(i)], 'F1'), freqs, 'Hz'))));
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G('Vm1', 'F1'), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
legend([p1, p2], {'$F_{m,i}/F_i$', '$F_{m,j}/F_i$'})
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/inertial_plant_coupling.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:inertial_plant_coupling
|
|
#+caption: Transfer function from the Actuator force $F_{i}$ to the absolute velocity of the same leg $v_{m,i}$ and to the absolute velocity of the other legs $v_{m,j}$ with $i \neq j$ in grey ([[./figs/inertial_plant_coupling.png][png]], [[./figs/inertial_plant_coupling.pdf][pdf]])
|
|
[[file:figs/inertial_plant_coupling.png]]
|
|
|
|
** Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics
|
|
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
|
|
#+begin_src matlab
|
|
stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
|
|
Gf = linearize(mdl, io, options);
|
|
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
Gf.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'};
|
|
#+end_src
|
|
|
|
We now use the amplified actuators and re-identify the dynamics
|
|
#+begin_src matlab
|
|
stewart = initializeAmplifiedStrutDynamics(stewart);
|
|
Ga = linearize(mdl, io, options);
|
|
Ga.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
Ga.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'};
|
|
#+end_src
|
|
|
|
The new dynamics from force actuator to force sensor is shown in Figure [[fig:inertial_plant_flexible_joint_decentralized]].
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(G( 'Vm1', 'F1'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Gf('Vm1', 'F1'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Ga('Vm1', 'F1'), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [$\frac{m/s}{N}$]'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G( 'Vm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Perfect Joints');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf('Vm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Flexible Joints');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Ga('Vm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Amplified Actuator');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
legend('location', 'southwest')
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/inertial_plant_flexible_joint_decentralized.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:inertial_plant_flexible_joint_decentralized
|
|
#+caption: Transfer function from the Actuator force $F_{i}$ to the absolute velocity sensor $v_{m,i}$ ([[./figs/inertial_plant_flexible_joint_decentralized.png][png]], [[./figs/inertial_plant_flexible_joint_decentralized.pdf][pdf]])
|
|
[[file:figs/inertial_plant_flexible_joint_decentralized.png]]
|
|
|
|
** Obtained Damping
|
|
The control is a performed in a decentralized manner.
|
|
The $6 \times 6$ control is a diagonal matrix with pure proportional action on the diagonal:
|
|
\[ K(s) = g
|
|
\begin{bmatrix}
|
|
1 & & 0 \\
|
|
& \ddots & \\
|
|
0 & & 1
|
|
\end{bmatrix} \]
|
|
|
|
The root locus is shown in figure [[fig:root_locus_inertial_rot_stiffness]].
|
|
#+begin_src matlab :exports none
|
|
gains = logspace(2, 5, 100);
|
|
|
|
figure;
|
|
hold on;
|
|
plot(real(pole(G)), imag(pole(G)), 'x');
|
|
plot(real(pole(Gf)), imag(pole(Gf)), 'x');
|
|
plot(real(pole(Ga)), imag(pole(Ga)), 'x');
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(real(tzero(G)), imag(tzero(G)), 'o');
|
|
plot(real(tzero(Gf)), imag(tzero(Gf)), 'o');
|
|
plot(real(tzero(Ga)), imag(tzero(Ga)), 'o');
|
|
for i = 1:length(gains)
|
|
set(gca,'ColorOrderIndex',1);
|
|
cl_poles = pole(feedback(G, gains(i)*eye(6)));
|
|
p1 = plot(real(cl_poles), imag(cl_poles), '.');
|
|
|
|
set(gca,'ColorOrderIndex',2);
|
|
cl_poles = pole(feedback(Gf, gains(i)*eye(6)));
|
|
p2 = plot(real(cl_poles), imag(cl_poles), '.');
|
|
|
|
set(gca,'ColorOrderIndex',3);
|
|
cl_poles = pole(feedback(Ga, gains(i)*eye(6)));
|
|
p3 = plot(real(cl_poles), imag(cl_poles), '.');
|
|
end
|
|
ylim([0, 3*max(imag(pole(G)))]);
|
|
xlim([-3*max(imag(pole(G))),0]);
|
|
xlabel('Real Part')
|
|
ylabel('Imaginary Part')
|
|
axis square
|
|
legend([p1, p2, p3], {'Perfect Joints', 'Flexible Joints', 'Amplified Actuator'}, 'location', 'northwest');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/root_locus_inertial_rot_stiffness.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:root_locus_inertial_rot_stiffness
|
|
#+caption: Root Locus plot with Decentralized Inertial Control when considering the stiffness of flexible joints ([[./figs/root_locus_inertial_rot_stiffness.png][png]], [[./figs/root_locus_inertial_rot_stiffness.pdf][pdf]])
|
|
[[file:figs/root_locus_inertial_rot_stiffness.png]]
|
|
|
|
** Conclusion
|
|
#+begin_important
|
|
We do not have guaranteed stability with Inertial control. This is because of the flexibility inside the internal sensor.
|
|
#+end_important
|
|
|
|
* Integral Force Feedback
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../matlab/active_damping_iff.m
|
|
:header-args:matlab+: :comments org :mkdirp yes
|
|
:END:
|
|
<<sec:active_damping_iff>>
|
|
|
|
#+begin_note
|
|
The Matlab script corresponding to this section is accessible [[file:../matlab/active_damping_iff.m][here]].
|
|
|
|
To run the script, open the Simulink Project, and type =run active_damping_iff.m=.
|
|
#+end_note
|
|
|
|
** Introduction :ignore:
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
simulinkproject('../');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
open('stewart_platform_model.slx')
|
|
#+end_src
|
|
|
|
** Identification of the Dynamics with perfect Joints
|
|
We first initialize the Stewart platform without joint stiffness.
|
|
#+begin_src matlab
|
|
stewart = initializeStewartPlatform();
|
|
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
|
stewart = generateGeneralConfiguration(stewart);
|
|
stewart = computeJointsPose(stewart);
|
|
stewart = initializeStrutDynamics(stewart);
|
|
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
|
|
stewart = initializeCylindricalPlatforms(stewart);
|
|
stewart = initializeCylindricalStruts(stewart);
|
|
stewart = computeJacobian(stewart);
|
|
stewart = initializeStewartPose(stewart);
|
|
stewart = initializeInertialSensor(stewart, 'type', 'none');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
|
payload = initializePayload('type', 'none');
|
|
controller = initializeController('type', 'open-loop');
|
|
#+end_src
|
|
|
|
And we identify the dynamics from force actuators to force sensors.
|
|
#+begin_src matlab
|
|
%% Name of the Simulink File
|
|
mdl = 'stewart_platform_model';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
|
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Taum'); io_i = io_i + 1; % Force Sensor Outputs [N]
|
|
|
|
%% Run the linearization
|
|
G = linearize(mdl, io);
|
|
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
G.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
|
|
#+end_src
|
|
|
|
The transfer function from actuator forces to force sensors is shown in Figure [[fig:iff_plant_coupling]].
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(G(['Fm', num2str(i)], 'F1'), freqs, 'Hz'))));
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(G('Fm1', 'F1'), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(['Fm', num2str(i)], 'F1'), freqs, 'Hz'))));
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G('Fm1', 'F1'), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
legend([p1, p2], {'$F_{m,i}/F_i$', '$F_{m,j}/F_i$'})
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/iff_plant_coupling.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:iff_plant_coupling
|
|
#+caption: Transfer function from the Actuator force $F_{i}$ to the Force sensor of the same leg $F_{m,i}$ and to the force sensor of the other legs $F_{m,j}$ with $i \neq j$ in grey ([[./figs/iff_plant_coupling.png][png]], [[./figs/iff_plant_coupling.pdf][pdf]])
|
|
[[file:figs/iff_plant_coupling.png]]
|
|
|
|
** Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics
|
|
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
|
|
#+begin_src matlab
|
|
stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
|
|
Gf = linearize(mdl, io);
|
|
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
Gf.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
|
|
#+end_src
|
|
|
|
We now use the amplified actuators and re-identify the dynamics
|
|
#+begin_src matlab
|
|
stewart = initializeAmplifiedStrutDynamics(stewart);
|
|
Ga = linearize(mdl, io);
|
|
Ga.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
Ga.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
|
|
#+end_src
|
|
|
|
The new dynamics from force actuator to force sensor is shown in Figure [[fig:iff_plant_flexible_joint_decentralized]].
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(G( 'Fm1', 'F1'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Gf('Fm1', 'F1'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Ga('Fm1', 'F1'), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G( 'Fm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Perfect Joints');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf('Fm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Flexible Joints');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Ga('Fm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Amplified Actuators');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
legend('location', 'southwest')
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/iff_plant_flexible_joint_decentralized.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:iff_plant_flexible_joint_decentralized
|
|
#+caption: Transfer function from the Actuator force $F_{i}$ to the force sensor $F_{m,i}$ ([[./figs/iff_plant_flexible_joint_decentralized.png][png]], [[./figs/iff_plant_flexible_joint_decentralized.pdf][pdf]])
|
|
[[file:figs/iff_plant_flexible_joint_decentralized.png]]
|
|
|
|
** Obtained Damping
|
|
The control is a performed in a decentralized manner.
|
|
The $6 \times 6$ control is a diagonal matrix with pure integration action on the diagonal:
|
|
\[ K(s) = g
|
|
\begin{bmatrix}
|
|
\frac{1}{s} & & 0 \\
|
|
& \ddots & \\
|
|
0 & & \frac{1}{s}
|
|
\end{bmatrix} \]
|
|
|
|
The root locus is shown in figure [[fig:root_locus_iff_rot_stiffness]] and the obtained pole damping function of the control gain is shown in figure [[fig:pole_damping_gain_iff_rot_stiffness]].
|
|
#+begin_src matlab :exports none
|
|
gains = logspace(0, 5, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
plot(real(pole(G)), imag(pole(G)), 'x');
|
|
plot(real(pole(Gf)), imag(pole(Gf)), 'x');
|
|
plot(real(pole(Ga)), imag(pole(Ga)), 'x');
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(real(tzero(G)), imag(tzero(G)), 'o');
|
|
plot(real(tzero(Gf)), imag(tzero(Gf)), 'o');
|
|
plot(real(tzero(Ga)), imag(tzero(Ga)), 'o');
|
|
for i = 1:length(gains)
|
|
cl_poles = pole(feedback(G, (gains(i)/s)*eye(6)));
|
|
set(gca,'ColorOrderIndex',1);
|
|
p1 = plot(real(cl_poles), imag(cl_poles), '.');
|
|
|
|
cl_poles = pole(feedback(Gf, (gains(i)/s)*eye(6)));
|
|
set(gca,'ColorOrderIndex',2);
|
|
p2 = plot(real(cl_poles), imag(cl_poles), '.');
|
|
|
|
cl_poles = pole(feedback(Ga, (gains(i)/s)*eye(6)));
|
|
set(gca,'ColorOrderIndex',3);
|
|
p3 = plot(real(cl_poles), imag(cl_poles), '.');
|
|
end
|
|
ylim([0, 1.1*max(imag(pole(G)))]);
|
|
xlim([-1.1*max(imag(pole(G))),0]);
|
|
xlabel('Real Part')
|
|
ylabel('Imaginary Part')
|
|
axis square
|
|
legend([p1, p2, p3], {'Perfect Joints', 'Flexible Joints', 'Amplified Actuator'}, 'location', 'northwest');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/root_locus_iff_rot_stiffness.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:root_locus_iff_rot_stiffness
|
|
#+caption: Root Locus plot with Decentralized Integral Force Feedback when considering the stiffness of flexible joints ([[./figs/root_locus_iff_rot_stiffness.png][png]], [[./figs/root_locus_iff_rot_stiffness.pdf][pdf]])
|
|
[[file:figs/root_locus_iff_rot_stiffness.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
gains = logspace(0, 5, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:length(gains)
|
|
set(gca,'ColorOrderIndex',1);
|
|
cl_poles = pole(feedback(G, (gains(i)/s)*eye(6)));
|
|
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
|
|
p1 = plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
|
|
|
|
set(gca,'ColorOrderIndex',2);
|
|
cl_poles = pole(feedback(Gf, (gains(i)/s)*eye(6)));
|
|
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
|
|
p2 = plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
|
|
|
|
set(gca,'ColorOrderIndex',3);
|
|
cl_poles = pole(feedback(Ga, (gains(i)/s)*eye(6)));
|
|
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
|
|
p3 = plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
|
|
end
|
|
xlabel('Control Gain');
|
|
ylabel('Damping of the Poles');
|
|
set(gca, 'XScale', 'log');
|
|
ylim([0,pi/2]);
|
|
legend([p1, p2, p3], {'Perfect Joints', 'Flexible Joints', 'Amplified Actuator'}, 'location', 'northwest');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/pole_damping_gain_iff_rot_stiffness.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:pole_damping_gain_iff_rot_stiffness
|
|
#+caption: Damping of the poles with respect to the gain of the Decentralized Integral Force Feedback when considering the stiffness of flexible joints ([[./figs/pole_damping_gain_iff_rot_stiffness.png][png]], [[./figs/pole_damping_gain_iff_rot_stiffness.pdf][pdf]])
|
|
[[file:figs/pole_damping_gain_iff_rot_stiffness.png]]
|
|
|
|
** Conclusion
|
|
#+begin_important
|
|
The joint stiffness has a huge impact on the attainable active damping performance when using force sensors.
|
|
Thus, if Integral Force Feedback is to be used in a Stewart platform with flexible joints, the rotational stiffness of the joints should be minimized.
|
|
#+end_important
|
|
|
|
* Direct Velocity Feedback
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../matlab/active_damping_dvf.m
|
|
:header-args:matlab+: :comments org :mkdirp yes
|
|
:END:
|
|
<<sec:active_damping_dvf>>
|
|
|
|
#+begin_note
|
|
The Matlab script corresponding to this section is accessible [[file:../matlab/active_damping_dvf.m][here]].
|
|
|
|
To run the script, open the Simulink Project, and type =run active_damping_dvf.m=.
|
|
#+end_note
|
|
|
|
** Introduction :ignore:
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
simulinkproject('../');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
open('stewart_platform_model.slx')
|
|
#+end_src
|
|
|
|
** Identification of the Dynamics with perfect Joints
|
|
We first initialize the Stewart platform without joint stiffness.
|
|
#+begin_src matlab
|
|
stewart = initializeStewartPlatform();
|
|
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
|
stewart = generateGeneralConfiguration(stewart);
|
|
stewart = computeJointsPose(stewart);
|
|
stewart = initializeStrutDynamics(stewart);
|
|
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
|
|
stewart = initializeCylindricalPlatforms(stewart);
|
|
stewart = initializeCylindricalStruts(stewart);
|
|
stewart = computeJacobian(stewart);
|
|
stewart = initializeStewartPose(stewart);
|
|
stewart = initializeInertialSensor(stewart, 'type', 'none');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
|
payload = initializePayload('type', 'none');
|
|
controller = initializeController('type', 'open-loop');
|
|
#+end_src
|
|
|
|
And we identify the dynamics from force actuators to force sensors.
|
|
#+begin_src matlab
|
|
%% Options for Linearized
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
%% Name of the Simulink File
|
|
mdl = 'stewart_platform_model';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
|
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m]
|
|
|
|
%% Run the linearization
|
|
G = linearize(mdl, io, options);
|
|
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
G.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'};
|
|
#+end_src
|
|
|
|
The transfer function from actuator forces to relative motion sensors is shown in Figure [[fig:dvf_plant_coupling]].
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(G(['Dm', num2str(i)], 'F1'), freqs, 'Hz'))));
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(G('Dm1', 'F1'), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(['Dm', num2str(i)], 'F1'), freqs, 'Hz'))));
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G('Dm1', 'F1'), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
legend([p1, p2], {'$D_{m,i}/F_i$', '$D_{m,j}/F_i$'})
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/dvf_plant_coupling.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:dvf_plant_coupling
|
|
#+caption: Transfer function from the Actuator force $F_{i}$ to the Relative Motion Sensor $D_{m,j}$ with $i \neq j$ ([[./figs/dvf_plant_coupling.png][png]], [[./figs/dvf_plant_coupling.pdf][pdf]])
|
|
[[file:figs/dvf_plant_coupling.png]]
|
|
|
|
|
|
** Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics
|
|
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
|
|
#+begin_src matlab
|
|
stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
|
|
Gf = linearize(mdl, io, options);
|
|
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
Gf.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'};
|
|
#+end_src
|
|
|
|
We now use the amplified actuators and re-identify the dynamics
|
|
#+begin_src matlab
|
|
stewart = initializeAmplifiedStrutDynamics(stewart);
|
|
Ga = linearize(mdl, io, options);
|
|
Ga.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
Ga.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'};
|
|
#+end_src
|
|
|
|
The new dynamics from force actuator to relative motion sensor is shown in Figure [[fig:dvf_plant_flexible_joint_decentralized]].
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(G( 'Dm1', 'F1'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Gf('Dm1', 'F1'), freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(Ga('Dm1', 'F1'), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G( 'Dm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Perfect Joints');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf('Dm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Flexible Joints');
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Ga('Dm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Amplified Actuators');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
legend('location', 'northeast');
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/dvf_plant_flexible_joint_decentralized.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:dvf_plant_flexible_joint_decentralized
|
|
#+caption: Transfer function from the Actuator force $F_{i}$ to the relative displacement sensor $D_{m,i}$ ([[./figs/dvf_plant_flexible_joint_decentralized.png][png]], [[./figs/dvf_plant_flexible_joint_decentralized.pdf][pdf]])
|
|
[[file:figs/dvf_plant_flexible_joint_decentralized.png]]
|
|
|
|
** Obtained Damping
|
|
The control is a performed in a decentralized manner.
|
|
The $6 \times 6$ control is a diagonal matrix with pure derivative action on the diagonal:
|
|
\[ K(s) = g
|
|
\begin{bmatrix}
|
|
s & & \\
|
|
& \ddots & \\
|
|
& & s
|
|
\end{bmatrix} \]
|
|
|
|
The root locus is shown in figure [[fig:root_locus_dvf_rot_stiffness]].
|
|
#+begin_src matlab :exports none
|
|
gains = logspace(0, 5, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
plot(real(pole(G)), imag(pole(G)), 'x');
|
|
plot(real(pole(Gf)), imag(pole(Gf)), 'x');
|
|
plot(real(pole(Ga)), imag(pole(Gf)), 'x');
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(real(tzero(G)), imag(tzero(G)), 'o');
|
|
plot(real(tzero(Gf)), imag(tzero(Gf)), 'o');
|
|
plot(real(tzero(Ga)), imag(tzero(Gf)), 'o');
|
|
for i = 1:length(gains)
|
|
set(gca,'ColorOrderIndex',1);
|
|
cl_poles = pole(feedback(G, (gains(i)*s)*eye(6)));
|
|
p1 = plot(real(cl_poles), imag(cl_poles), '.');
|
|
|
|
set(gca,'ColorOrderIndex',2);
|
|
cl_poles = pole(feedback(Gf, (gains(i)*s)*eye(6)));
|
|
p2 = plot(real(cl_poles), imag(cl_poles), '.');
|
|
|
|
set(gca,'ColorOrderIndex',3);
|
|
cl_poles = pole(feedback(Ga, (gains(i)*s)*eye(6)));
|
|
p3 = plot(real(cl_poles), imag(cl_poles), '.');
|
|
end
|
|
ylim([0, 1.1*max(imag(pole(G)))]);
|
|
xlim([-1.1*max(imag(pole(G))),0]);
|
|
xlabel('Real Part')
|
|
ylabel('Imaginary Part')
|
|
axis square
|
|
legend([p1, p2, p3], {'Perfect Joints', 'Flexible Joints', 'Amplified Actuator'}, 'location', 'northwest');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/root_locus_dvf_rot_stiffness.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:root_locus_dvf_rot_stiffness
|
|
#+caption: Root Locus plot with Direct Velocity Feedback when considering the Stiffness of flexible joints ([[./figs/root_locus_dvf_rot_stiffness.png][png]], [[./figs/root_locus_dvf_rot_stiffness.pdf][pdf]])
|
|
[[file:figs/root_locus_dvf_rot_stiffness.png]]
|
|
|
|
** Conclusion
|
|
#+begin_important
|
|
Joint stiffness does increase the resonance frequencies of the system but does not change the attainable damping when using relative motion sensors.
|
|
#+end_important
|
|
|
|
* Compliance and Transmissibility Comparison
|
|
** Introduction :ignore:
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
simulinkproject('../');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
open('stewart_platform_model.slx')
|
|
#+end_src
|
|
|
|
** Initialization
|
|
We first initialize the Stewart platform without joint stiffness.
|
|
#+begin_src matlab
|
|
stewart = initializeStewartPlatform();
|
|
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
|
stewart = generateGeneralConfiguration(stewart);
|
|
stewart = computeJointsPose(stewart);
|
|
stewart = initializeStrutDynamics(stewart);
|
|
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
|
|
stewart = initializeCylindricalPlatforms(stewart);
|
|
stewart = initializeCylindricalStruts(stewart);
|
|
stewart = computeJacobian(stewart);
|
|
stewart = initializeStewartPose(stewart);
|
|
stewart = initializeInertialSensor(stewart, 'type', 'none');
|
|
#+end_src
|
|
|
|
The rotation point of the ground is located at the origin of frame $\{A\}$.
|
|
#+begin_src matlab
|
|
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
|
payload = initializePayload('type', 'none');
|
|
controller = initializeController('type', 'open-loop');
|
|
#+end_src
|
|
|
|
** Identification
|
|
Let's first identify the transmissibility and compliance in the open-loop case.
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'open-loop');
|
|
[T_ol, T_norm_ol, freqs] = computeTransmissibility();
|
|
[C_ol, C_norm_ol, freqs] = computeCompliance();
|
|
#+end_src
|
|
|
|
Now, let's identify the transmissibility and compliance for the Integral Force Feedback architecture.
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'iff');
|
|
K_iff = (1e4/s)*eye(6);
|
|
|
|
[T_iff, T_norm_iff, ~] = computeTransmissibility();
|
|
[C_iff, C_norm_iff, ~] = computeCompliance();
|
|
#+end_src
|
|
|
|
And for the Direct Velocity Feedback.
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'dvf');
|
|
K_dvf = 1e4*s/(1+s/2/pi/5000)*eye(6);
|
|
|
|
[T_dvf, T_norm_dvf, ~] = computeTransmissibility();
|
|
[C_dvf, C_norm_dvf, ~] = computeCompliance();
|
|
#+end_src
|
|
|
|
** Results
|
|
#+begin_src matlab :exports none
|
|
p_handle = zeros(6*6,1);
|
|
|
|
fig = figure;
|
|
for ix = 1:6
|
|
for iy = 1:6
|
|
p_handle((ix-1)*6 + iy) = subplot(6, 6, (ix-1)*6 + iy);
|
|
hold on;
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(T_ol(ix, iy), freqs, 'Hz'))));
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(T_iff(ix, iy), freqs, 'Hz'))));
|
|
set(gca,'ColorOrderIndex',3);
|
|
plot(freqs, abs(squeeze(freqresp(T_dvf(ix, iy), freqs, 'Hz'))));
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
if ix < 6
|
|
xticklabels({});
|
|
end
|
|
if iy > 1
|
|
yticklabels({});
|
|
end
|
|
end
|
|
end
|
|
|
|
linkaxes(p_handle, 'xy')
|
|
xlim([freqs(1), freqs(end)]);
|
|
|
|
han = axes(fig, 'visible', 'off');
|
|
han.XLabel.Visible = 'on';
|
|
han.YLabel.Visible = 'on';
|
|
xlabel(han, 'Frequency [Hz]');
|
|
ylabel(han, 'Transmissibility');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/transmissibility_iff_dvf.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:transmissibility_iff_dvf
|
|
#+caption: Obtained transmissibility for Open-Loop Control (Blue), Integral Force Feedback (Red) and Direct Velocity Feedback (Yellow) ([[./figs/transmissibility_iff_dvf.png][png]], [[./figs/transmissibility_iff_dvf.pdf][pdf]])
|
|
[[file:figs/transmissibility_iff_dvf.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
p_handle = zeros(6*6,1);
|
|
|
|
fig = figure;
|
|
for ix = 1:6
|
|
for iy = 1:6
|
|
p_handle((ix-1)*6 + iy) = subplot(6, 6, (ix-1)*6 + iy);
|
|
hold on;
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(C_ol(ix, iy), freqs, 'Hz'))));
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(C_iff(ix, iy), freqs, 'Hz'))));
|
|
set(gca,'ColorOrderIndex',3);
|
|
plot(freqs, abs(squeeze(freqresp(C_dvf(ix, iy), freqs, 'Hz'))));
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
if ix < 6
|
|
xticklabels({});
|
|
end
|
|
if iy > 1
|
|
yticklabels({});
|
|
end
|
|
end
|
|
end
|
|
|
|
linkaxes(p_handle, 'xy')
|
|
xlim([freqs(1), freqs(end)]);
|
|
|
|
han = axes(fig, 'visible', 'off');
|
|
han.XLabel.Visible = 'on';
|
|
han.YLabel.Visible = 'on';
|
|
xlabel(han, 'Frequency [Hz]');
|
|
ylabel(han, 'Compliance');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/compliance_iff_dvf.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:compliance_iff_dvf
|
|
#+caption: Obtained compliance for Open-Loop Control (Blue), Integral Force Feedback (Red) and Direct Velocity Feedback (Yellow) ([[./figs/compliance_iff_dvf.png][png]], [[./figs/compliance_iff_dvf.pdf][pdf]])
|
|
[[file:figs/compliance_iff_dvf.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
|
|
subplot(1,2,1);
|
|
hold on;
|
|
plot(freqs, T_norm_ol)
|
|
plot(freqs, T_norm_iff)
|
|
plot(freqs, T_norm_dvf)
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]');
|
|
ylabel('Transmissibility - Frobenius Norm');
|
|
|
|
subplot(1,2,2);
|
|
hold on;
|
|
plot(freqs, C_norm_ol, 'DisplayName', 'OL')
|
|
plot(freqs, C_norm_iff, 'DisplayName', 'IFF')
|
|
plot(freqs, C_norm_dvf, 'DisplayName', 'DVF')
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]');
|
|
ylabel('Compliance - Frobenius Norm');
|
|
legend();
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/frobenius_norm_T_C_iff_dvf.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:frobenius_norm_T_C_iff_dvf
|
|
#+caption: Frobenius norm of the Transmissibility and Compliance Matrices ([[./figs/frobenius_norm_T_C_iff_dvf.png][png]], [[./figs/frobenius_norm_T_C_iff_dvf.pdf][pdf]])
|
|
[[file:figs/frobenius_norm_T_C_iff_dvf.png]]
|