917 lines
26 KiB
HTML
917 lines
26 KiB
HTML
<?xml version="1.0" encoding="utf-8"?>
|
||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||
<head>
|
||
<!-- 2020-08-05 mer. 13:27 -->
|
||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||
<title>Identification of the Stewart Platform using Simscape</title>
|
||
<meta name="generator" content="Org mode" />
|
||
<meta name="author" content="Dehaeze Thomas" />
|
||
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
||
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
||
<script src="./js/jquery.min.js"></script>
|
||
<script src="./js/bootstrap.min.js"></script>
|
||
<script src="./js/jquery.stickytableheaders.min.js"></script>
|
||
<script src="./js/readtheorg.js"></script>
|
||
<script>MathJax = {
|
||
tex: {
|
||
tags: 'ams',
|
||
macros: {bm: ["\\boldsymbol{#1}",1],}
|
||
}
|
||
};
|
||
</script>
|
||
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
||
</head>
|
||
<body>
|
||
<div id="org-div-home-and-up">
|
||
<a accesskey="h" href="./index.html"> UP </a>
|
||
|
|
||
<a accesskey="H" href="./index.html"> HOME </a>
|
||
</div><div id="content">
|
||
<h1 class="title">Identification of the Stewart Platform using Simscape</h1>
|
||
<div id="table-of-contents">
|
||
<h2>Table of Contents</h2>
|
||
<div id="text-table-of-contents">
|
||
<ul>
|
||
<li><a href="#orgcb2f4c2">1. Modal Analysis of the Stewart Platform</a>
|
||
<ul>
|
||
<li><a href="#org66d09e9">1.1. Initialize the Stewart Platform</a></li>
|
||
<li><a href="#org8b1c587">1.2. Identification</a></li>
|
||
<li><a href="#orge68adea">1.3. Coordinate transformation</a></li>
|
||
<li><a href="#org4973ae1">1.4. Analysis</a></li>
|
||
<li><a href="#orge7b97c8">1.5. Visualizing the modes</a></li>
|
||
</ul>
|
||
</li>
|
||
<li><a href="#org2891722">2. Transmissibility Analysis</a>
|
||
<ul>
|
||
<li><a href="#orgc00b850">2.1. Initialize the Stewart platform</a></li>
|
||
<li><a href="#org5338f20">2.2. Transmissibility</a></li>
|
||
</ul>
|
||
</li>
|
||
<li><a href="#orgc94edbd">3. Compliance Analysis</a>
|
||
<ul>
|
||
<li><a href="#orge13761a">3.1. Initialize the Stewart platform</a></li>
|
||
<li><a href="#org1177029">3.2. Compliance</a></li>
|
||
</ul>
|
||
</li>
|
||
<li><a href="#org68ca336">4. Functions</a>
|
||
<ul>
|
||
<li><a href="#org487c4d4">4.1. Compute the Transmissibility</a>
|
||
<ul>
|
||
<li><a href="#orgd5cf0cf">Function description</a></li>
|
||
<li><a href="#orgdce5d62">Optional Parameters</a></li>
|
||
<li><a href="#org4629501">Identification of the Transmissibility Matrix</a></li>
|
||
<li><a href="#orge202ae7">Computation of the Frobenius norm</a></li>
|
||
</ul>
|
||
</li>
|
||
<li><a href="#org50e35a6">4.2. Compute the Compliance</a>
|
||
<ul>
|
||
<li><a href="#org4630aae">Function description</a></li>
|
||
<li><a href="#orgc2d7cfd">Optional Parameters</a></li>
|
||
<li><a href="#orgef06b63">Identification of the Compliance Matrix</a></li>
|
||
<li><a href="#org45205c2">Computation of the Frobenius norm</a></li>
|
||
</ul>
|
||
</li>
|
||
</ul>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
|
||
<p>
|
||
In this document, we discuss the various methods to identify the behavior of the Stewart platform.
|
||
</p>
|
||
|
||
<ul class="org-ul">
|
||
<li><a href="#org7981e88">1</a></li>
|
||
<li><a href="#orga989615">2</a></li>
|
||
<li><a href="#org4579374">3</a></li>
|
||
</ul>
|
||
|
||
<div id="outline-container-orgcb2f4c2" class="outline-2">
|
||
<h2 id="orgcb2f4c2"><span class="section-number-2">1</span> Modal Analysis of the Stewart Platform</h2>
|
||
<div class="outline-text-2" id="text-1">
|
||
<p>
|
||
<a id="org7981e88"></a>
|
||
</p>
|
||
</div>
|
||
<div id="outline-container-org66d09e9" class="outline-3">
|
||
<h3 id="org66d09e9"><span class="section-number-3">1.1</span> Initialize the Stewart Platform</h3>
|
||
<div class="outline-text-3" id="text-1-1">
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||
stewart = initializeFramesPositions(stewart);
|
||
stewart = generateGeneralConfiguration(stewart);
|
||
stewart = computeJointsPose(stewart);
|
||
stewart = initializeStrutDynamics(stewart);
|
||
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
|
||
stewart = initializeCylindricalPlatforms(stewart);
|
||
stewart = initializeCylindricalStruts(stewart);
|
||
stewart = computeJacobian(stewart);
|
||
stewart = initializeStewartPose(stewart);
|
||
stewart = initializeInertialSensor(stewart);
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">ground = initializeGround('type', 'none');
|
||
payload = initializePayload('type', 'none');
|
||
controller = initializeController('type', 'open-loop');
|
||
</pre>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org8b1c587" class="outline-3">
|
||
<h3 id="org8b1c587"><span class="section-number-3">1.2</span> Identification</h3>
|
||
<div class="outline-text-3" id="text-1-2">
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">%% Options for Linearized
|
||
options = linearizeOptions;
|
||
options.SampleTime = 0;
|
||
|
||
%% Name of the Simulink File
|
||
mdl = 'stewart_platform_model';
|
||
|
||
%% Input/Output definition
|
||
clear io; io_i = 1;
|
||
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
||
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}
|
||
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 2, 'openoutput'); io_i = io_i + 1; % Velocity of {B} w.r.t. {A}
|
||
|
||
%% Run the linearization
|
||
G = linearize(mdl, io);
|
||
% G.InputName = {'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'};
|
||
% G.OutputName = {'Xdx', 'Xdy', 'Xdz', 'Xrx', 'Xry', 'Xrz', 'Vdx', 'Vdy', 'Vdz', 'Vrx', 'Vry', 'Vrz'};
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
Let’s check the size of <code>G</code>:
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">size(G)
|
||
</pre>
|
||
</div>
|
||
|
||
<pre class="example">
|
||
size(G)
|
||
State-space model with 12 outputs, 6 inputs, and 18 states.
|
||
'org_babel_eoe'
|
||
ans =
|
||
'org_babel_eoe'
|
||
</pre>
|
||
|
||
|
||
<p>
|
||
We expect to have only 12 states (corresponding to the 6dof of the mobile platform).
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">Gm = minreal(G);
|
||
</pre>
|
||
</div>
|
||
|
||
<pre class="example">
|
||
Gm = minreal(G);
|
||
6 states removed.
|
||
</pre>
|
||
|
||
|
||
<p>
|
||
And indeed, we obtain 12 states.
|
||
</p>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orge68adea" class="outline-3">
|
||
<h3 id="orge68adea"><span class="section-number-3">1.3</span> Coordinate transformation</h3>
|
||
<div class="outline-text-3" id="text-1-3">
|
||
<p>
|
||
We can perform the following transformation using the <code>ss2ss</code> command.
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">Gt = ss2ss(Gm, Gm.C);
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
Then, the <code>C</code> matrix of <code>Gt</code> is the unity matrix which means that the states of the state space model are equal to the measurements \(\bm{Y}\).
|
||
</p>
|
||
|
||
<p>
|
||
The measurements are the 6 displacement and 6 velocities of mobile platform with respect to \(\{B\}\).
|
||
</p>
|
||
|
||
<p>
|
||
We could perform the transformation by hand:
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">At = Gm.C*Gm.A*pinv(Gm.C);
|
||
|
||
Bt = Gm.C*Gm.B;
|
||
|
||
Ct = eye(12);
|
||
Dt = zeros(12, 6);
|
||
|
||
Gt = ss(At, Bt, Ct, Dt);
|
||
</pre>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org4973ae1" class="outline-3">
|
||
<h3 id="org4973ae1"><span class="section-number-3">1.4</span> Analysis</h3>
|
||
<div class="outline-text-3" id="text-1-4">
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">[V,D] = eig(Gt.A);
|
||
</pre>
|
||
</div>
|
||
|
||
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||
|
||
|
||
<colgroup>
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
</colgroup>
|
||
<thead>
|
||
<tr>
|
||
<th scope="col" class="org-right">Mode Number</th>
|
||
<th scope="col" class="org-right">Resonance Frequency [Hz]</th>
|
||
<th scope="col" class="org-right">Damping Ratio [%]</th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<td class="org-right">1.0</td>
|
||
<td class="org-right">780.6</td>
|
||
<td class="org-right">0.4</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">2.0</td>
|
||
<td class="org-right">780.6</td>
|
||
<td class="org-right">0.3</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">3.0</td>
|
||
<td class="org-right">903.9</td>
|
||
<td class="org-right">0.3</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">4.0</td>
|
||
<td class="org-right">1061.4</td>
|
||
<td class="org-right">0.3</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">5.0</td>
|
||
<td class="org-right">1061.4</td>
|
||
<td class="org-right">0.2</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">6.0</td>
|
||
<td class="org-right">1269.6</td>
|
||
<td class="org-right">0.2</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orge7b97c8" class="outline-3">
|
||
<h3 id="orge7b97c8"><span class="section-number-3">1.5</span> Visualizing the modes</h3>
|
||
<div class="outline-text-3" id="text-1-5">
|
||
<p>
|
||
To visualize the i’th mode, we may excite the system using the inputs \(U_i\) such that \(B U_i\) is co-linear to \(\xi_i\) (the mode we want to excite).
|
||
</p>
|
||
|
||
<p>
|
||
\[ U(t) = e^{\alpha t} ( ) \]
|
||
</p>
|
||
|
||
<p>
|
||
Let’s first sort the modes and just take the modes corresponding to a eigenvalue with a positive imaginary part.
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">ws = imag(diag(D));
|
||
[ws,I] = sort(ws)
|
||
ws = ws(7:end); I = I(7:end);
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">for i = 1:length(ws)
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">i_mode = I(i); % the argument is the i'th mode
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">lambda_i = D(i_mode, i_mode);
|
||
xi_i = V(:,i_mode);
|
||
|
||
a_i = real(lambda_i);
|
||
b_i = imag(lambda_i);
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
Let do 10 periods of the mode.
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">t = linspace(0, 10/(imag(lambda_i)/2/pi), 1000);
|
||
U_i = pinv(Gt.B) * real(xi_i * lambda_i * (cos(b_i * t) + 1i*sin(b_i * t)));
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">U = timeseries(U_i, t);
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
Simulation:
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">load('mat/conf_simscape.mat');
|
||
set_param(conf_simscape, 'StopTime', num2str(t(end)));
|
||
sim(mdl);
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
Save the movie of the mode shape.
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">smwritevideo(mdl, sprintf('figs/mode%i', i), ...
|
||
'PlaybackSpeedRatio', 1/(b_i/2/pi), ...
|
||
'FrameRate', 30, ...
|
||
'FrameSize', [800, 400]);
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">end
|
||
</pre>
|
||
</div>
|
||
|
||
|
||
<div id="orgb15855a" class="figure">
|
||
<p><img src="figs/mode1.gif" alt="mode1.gif" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 1: </span>Identified mode - 1</p>
|
||
</div>
|
||
|
||
|
||
<div id="org1816e59" class="figure">
|
||
<p><img src="figs/mode3.gif" alt="mode3.gif" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 2: </span>Identified mode - 3</p>
|
||
</div>
|
||
|
||
|
||
<div id="org01c8dca" class="figure">
|
||
<p><img src="figs/mode5.gif" alt="mode5.gif" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 3: </span>Identified mode - 5</p>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org2891722" class="outline-2">
|
||
<h2 id="org2891722"><span class="section-number-2">2</span> Transmissibility Analysis</h2>
|
||
<div class="outline-text-2" id="text-2">
|
||
<p>
|
||
<a id="orga989615"></a>
|
||
</p>
|
||
</div>
|
||
<div id="outline-container-orgc00b850" class="outline-3">
|
||
<h3 id="orgc00b850"><span class="section-number-3">2.1</span> Initialize the Stewart platform</h3>
|
||
<div class="outline-text-3" id="text-2-1">
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
||
stewart = generateGeneralConfiguration(stewart);
|
||
stewart = computeJointsPose(stewart);
|
||
stewart = initializeStrutDynamics(stewart);
|
||
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
|
||
stewart = initializeCylindricalPlatforms(stewart);
|
||
stewart = initializeCylindricalStruts(stewart);
|
||
stewart = computeJacobian(stewart);
|
||
stewart = initializeStewartPose(stewart);
|
||
stewart = initializeInertialSensor(stewart, 'type', 'accelerometer', 'freq', 5e3);
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
We set the rotation point of the ground to be at the same point at frames \(\{A\}\) and \(\{B\}\).
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
||
payload = initializePayload('type', 'rigid');
|
||
controller = initializeController('type', 'open-loop');
|
||
</pre>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org5338f20" class="outline-3">
|
||
<h3 id="org5338f20"><span class="section-number-3">2.2</span> Transmissibility</h3>
|
||
<div class="outline-text-3" id="text-2-2">
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">%% Options for Linearized
|
||
options = linearizeOptions;
|
||
options.SampleTime = 0;
|
||
|
||
%% Name of the Simulink File
|
||
mdl = 'stewart_platform_model';
|
||
|
||
%% Input/Output definition
|
||
clear io; io_i = 1;
|
||
io(io_i) = linio([mdl, '/Disturbances/D_w'], 1, 'openinput'); io_i = io_i + 1; % Base Motion [m, rad]
|
||
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad]
|
||
|
||
%% Run the linearization
|
||
T = linearize(mdl, io, options);
|
||
T.InputName = {'Wdx', 'Wdy', 'Wdz', 'Wrx', 'Wry', 'Wrz'};
|
||
T.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">freqs = logspace(1, 4, 1000);
|
||
|
||
figure;
|
||
for ix = 1:6
|
||
for iy = 1:6
|
||
subplot(6, 6, (ix-1)*6 + iy);
|
||
hold on;
|
||
plot(freqs, abs(squeeze(freqresp(T(ix, iy), freqs, 'Hz'))), 'k-');
|
||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
ylim([1e-5, 10]);
|
||
xlim([freqs(1), freqs(end)]);
|
||
if ix < 6
|
||
xticklabels({});
|
||
end
|
||
if iy > 1
|
||
yticklabels({});
|
||
end
|
||
end
|
||
end
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
From (<a href="#citeproc_bib_item_1">Preumont et al. 2007</a>), one can use the Frobenius norm of the transmissibility matrix to obtain a scalar indicator of the transmissibility performance of the system:
|
||
</p>
|
||
\begin{align*}
|
||
\| \bm{T}(\omega) \| &= \sqrt{\text{Trace}[\bm{T}(\omega) \bm{T}(\omega)^H]}\\
|
||
&= \sqrt{\Sigma_{i=1}^6 \Sigma_{j=1}^6 |T_{ij}|^2}
|
||
\end{align*}
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">freqs = logspace(1, 4, 1000);
|
||
|
||
T_norm = zeros(length(freqs), 1);
|
||
|
||
for i = 1:length(freqs)
|
||
T_norm(i) = sqrt(trace(freqresp(T, freqs(i), 'Hz')*freqresp(T, freqs(i), 'Hz')'));
|
||
end
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
And we normalize by a factor \(\sqrt{6}\) to obtain a performance metric comparable to the transmissibility of a one-axis isolator:
|
||
\[ \Gamma(\omega) = \|\bm{T}(\omega)\| / \sqrt{6} \]
|
||
</p>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">Gamma = T_norm/sqrt(6);
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">figure;
|
||
plot(freqs, Gamma)
|
||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
</pre>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orgc94edbd" class="outline-2">
|
||
<h2 id="orgc94edbd"><span class="section-number-2">3</span> Compliance Analysis</h2>
|
||
<div class="outline-text-2" id="text-3">
|
||
<p>
|
||
<a id="org4579374"></a>
|
||
</p>
|
||
</div>
|
||
<div id="outline-container-orge13761a" class="outline-3">
|
||
<h3 id="orge13761a"><span class="section-number-3">3.1</span> Initialize the Stewart platform</h3>
|
||
<div class="outline-text-3" id="text-3-1">
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
||
stewart = generateGeneralConfiguration(stewart);
|
||
stewart = computeJointsPose(stewart);
|
||
stewart = initializeStrutDynamics(stewart);
|
||
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
|
||
stewart = initializeCylindricalPlatforms(stewart);
|
||
stewart = initializeCylindricalStruts(stewart);
|
||
stewart = computeJacobian(stewart);
|
||
stewart = initializeStewartPose(stewart);
|
||
stewart = initializeInertialSensor(stewart, 'type', 'accelerometer', 'freq', 5e3);
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
We set the rotation point of the ground to be at the same point at frames \(\{A\}\) and \(\{B\}\).
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">ground = initializeGround('type', 'none');
|
||
payload = initializePayload('type', 'rigid');
|
||
controller = initializeController('type', 'open-loop');
|
||
</pre>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org1177029" class="outline-3">
|
||
<h3 id="org1177029"><span class="section-number-3">3.2</span> Compliance</h3>
|
||
<div class="outline-text-3" id="text-3-2">
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">%% Options for Linearized
|
||
options = linearizeOptions;
|
||
options.SampleTime = 0;
|
||
|
||
%% Name of the Simulink File
|
||
mdl = 'stewart_platform_model';
|
||
|
||
%% Input/Output definition
|
||
clear io; io_i = 1;
|
||
io(io_i) = linio([mdl, '/Disturbances/F_ext'], 1, 'openinput'); io_i = io_i + 1; % Base Motion [m, rad]
|
||
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad]
|
||
|
||
%% Run the linearization
|
||
C = linearize(mdl, io, options);
|
||
C.InputName = {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'};
|
||
C.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">freqs = logspace(1, 4, 1000);
|
||
|
||
figure;
|
||
for ix = 1:6
|
||
for iy = 1:6
|
||
subplot(6, 6, (ix-1)*6 + iy);
|
||
hold on;
|
||
plot(freqs, abs(squeeze(freqresp(C(ix, iy), freqs, 'Hz'))), 'k-');
|
||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
ylim([1e-10, 1e-3]);
|
||
xlim([freqs(1), freqs(end)]);
|
||
if ix < 6
|
||
xticklabels({});
|
||
end
|
||
if iy > 1
|
||
yticklabels({});
|
||
end
|
||
end
|
||
end
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
We can try to use the Frobenius norm to obtain a scalar value representing the 6-dof compliance of the Stewart platform.
|
||
</p>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">freqs = logspace(1, 4, 1000);
|
||
|
||
C_norm = zeros(length(freqs), 1);
|
||
|
||
for i = 1:length(freqs)
|
||
C_norm(i) = sqrt(trace(freqresp(C, freqs(i), 'Hz')*freqresp(C, freqs(i), 'Hz')'));
|
||
end
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">figure;
|
||
plot(freqs, C_norm)
|
||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
</pre>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org68ca336" class="outline-2">
|
||
<h2 id="org68ca336"><span class="section-number-2">4</span> Functions</h2>
|
||
<div class="outline-text-2" id="text-4">
|
||
</div>
|
||
<div id="outline-container-org487c4d4" class="outline-3">
|
||
<h3 id="org487c4d4"><span class="section-number-3">4.1</span> Compute the Transmissibility</h3>
|
||
<div class="outline-text-3" id="text-4-1">
|
||
<p>
|
||
<a id="orgbca579c"></a>
|
||
</p>
|
||
</div>
|
||
|
||
<div id="outline-container-orgd5cf0cf" class="outline-4">
|
||
<h4 id="orgd5cf0cf">Function description</h4>
|
||
<div class="outline-text-4" id="text-orgd5cf0cf">
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">function [T, T_norm, freqs] = computeTransmissibility(args)
|
||
% computeTransmissibility -
|
||
%
|
||
% Syntax: [T, T_norm, freqs] = computeTransmissibility(args)
|
||
%
|
||
% Inputs:
|
||
% - args - Structure with the following fields:
|
||
% - plots [true/false] - Should plot the transmissilibty matrix and its Frobenius norm
|
||
% - freqs [] - Frequency vector to estimate the Frobenius norm
|
||
%
|
||
% Outputs:
|
||
% - T [6x6 ss] - Transmissibility matrix
|
||
% - T_norm [length(freqs)x1] - Frobenius norm of the Transmissibility matrix
|
||
% - freqs [length(freqs)x1] - Frequency vector in [Hz]
|
||
</pre>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orgdce5d62" class="outline-4">
|
||
<h4 id="orgdce5d62">Optional Parameters</h4>
|
||
<div class="outline-text-4" id="text-orgdce5d62">
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">arguments
|
||
args.plots logical {mustBeNumericOrLogical} = false
|
||
args.freqs double {mustBeNumeric, mustBeNonnegative} = logspace(1,4,1000)
|
||
end
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">freqs = args.freqs;
|
||
</pre>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org4629501" class="outline-4">
|
||
<h4 id="org4629501">Identification of the Transmissibility Matrix</h4>
|
||
<div class="outline-text-4" id="text-org4629501">
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">%% Options for Linearized
|
||
options = linearizeOptions;
|
||
options.SampleTime = 0;
|
||
|
||
%% Name of the Simulink File
|
||
mdl = 'stewart_platform_model';
|
||
|
||
%% Input/Output definition
|
||
clear io; io_i = 1;
|
||
io(io_i) = linio([mdl, '/Disturbances/D_w'], 1, 'openinput'); io_i = io_i + 1; % Base Motion [m, rad]
|
||
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'output'); io_i = io_i + 1; % Absolute Motion [m, rad]
|
||
|
||
%% Run the linearization
|
||
T = linearize(mdl, io, options);
|
||
T.InputName = {'Wdx', 'Wdy', 'Wdz', 'Wrx', 'Wry', 'Wrz'};
|
||
T.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
If wanted, the 6x6 transmissibility matrix is plotted.
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">p_handle = zeros(6*6,1);
|
||
|
||
if args.plots
|
||
fig = figure;
|
||
for ix = 1:6
|
||
for iy = 1:6
|
||
p_handle((ix-1)*6 + iy) = subplot(6, 6, (ix-1)*6 + iy);
|
||
hold on;
|
||
plot(freqs, abs(squeeze(freqresp(T(ix, iy), freqs, 'Hz'))), 'k-');
|
||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
if ix < 6
|
||
xticklabels({});
|
||
end
|
||
if iy > 1
|
||
yticklabels({});
|
||
end
|
||
end
|
||
end
|
||
|
||
linkaxes(p_handle, 'xy')
|
||
xlim([freqs(1), freqs(end)]);
|
||
ylim([1e-5, 1e2]);
|
||
|
||
han = axes(fig, 'visible', 'off');
|
||
han.XLabel.Visible = 'on';
|
||
han.YLabel.Visible = 'on';
|
||
xlabel(han, 'Frequency [Hz]');
|
||
ylabel(han, 'Transmissibility [m/m]');
|
||
end
|
||
</pre>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orge202ae7" class="outline-4">
|
||
<h4 id="orge202ae7">Computation of the Frobenius norm</h4>
|
||
<div class="outline-text-4" id="text-orge202ae7">
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">T_norm = zeros(length(freqs), 1);
|
||
|
||
for i = 1:length(freqs)
|
||
T_norm(i) = sqrt(trace(freqresp(T, freqs(i), 'Hz')*freqresp(T, freqs(i), 'Hz')'));
|
||
end
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">T_norm = T_norm/sqrt(6);
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">if args.plots
|
||
figure;
|
||
plot(freqs, T_norm)
|
||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
xlabel('Frequency [Hz]');
|
||
ylabel('Transmissibility - Frobenius Norm');
|
||
end
|
||
</pre>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org50e35a6" class="outline-3">
|
||
<h3 id="org50e35a6"><span class="section-number-3">4.2</span> Compute the Compliance</h3>
|
||
<div class="outline-text-3" id="text-4-2">
|
||
<p>
|
||
<a id="org0a73574"></a>
|
||
</p>
|
||
</div>
|
||
|
||
<div id="outline-container-org4630aae" class="outline-4">
|
||
<h4 id="org4630aae">Function description</h4>
|
||
<div class="outline-text-4" id="text-org4630aae">
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">function [C, C_norm, freqs] = computeCompliance(args)
|
||
% computeCompliance -
|
||
%
|
||
% Syntax: [C, C_norm, freqs] = computeCompliance(args)
|
||
%
|
||
% Inputs:
|
||
% - args - Structure with the following fields:
|
||
% - plots [true/false] - Should plot the transmissilibty matrix and its Frobenius norm
|
||
% - freqs [] - Frequency vector to estimate the Frobenius norm
|
||
%
|
||
% Outputs:
|
||
% - C [6x6 ss] - Compliance matrix
|
||
% - C_norm [length(freqs)x1] - Frobenius norm of the Compliance matrix
|
||
% - freqs [length(freqs)x1] - Frequency vector in [Hz]
|
||
</pre>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orgc2d7cfd" class="outline-4">
|
||
<h4 id="orgc2d7cfd">Optional Parameters</h4>
|
||
<div class="outline-text-4" id="text-orgc2d7cfd">
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">arguments
|
||
args.plots logical {mustBeNumericOrLogical} = false
|
||
args.freqs double {mustBeNumeric, mustBeNonnegative} = logspace(1,4,1000)
|
||
end
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">freqs = args.freqs;
|
||
</pre>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orgef06b63" class="outline-4">
|
||
<h4 id="orgef06b63">Identification of the Compliance Matrix</h4>
|
||
<div class="outline-text-4" id="text-orgef06b63">
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">%% Options for Linearized
|
||
options = linearizeOptions;
|
||
options.SampleTime = 0;
|
||
|
||
%% Name of the Simulink File
|
||
mdl = 'stewart_platform_model';
|
||
|
||
%% Input/Output definition
|
||
clear io; io_i = 1;
|
||
io(io_i) = linio([mdl, '/Disturbances/F_ext'], 1, 'openinput'); io_i = io_i + 1; % External forces [N, N*m]
|
||
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'output'); io_i = io_i + 1; % Absolute Motion [m, rad]
|
||
|
||
%% Run the linearization
|
||
C = linearize(mdl, io, options);
|
||
C.InputName = {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'};
|
||
C.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
If wanted, the 6x6 transmissibility matrix is plotted.
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">p_handle = zeros(6*6,1);
|
||
|
||
if args.plots
|
||
fig = figure;
|
||
for ix = 1:6
|
||
for iy = 1:6
|
||
p_handle((ix-1)*6 + iy) = subplot(6, 6, (ix-1)*6 + iy);
|
||
hold on;
|
||
plot(freqs, abs(squeeze(freqresp(C(ix, iy), freqs, 'Hz'))), 'k-');
|
||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
if ix < 6
|
||
xticklabels({});
|
||
end
|
||
if iy > 1
|
||
yticklabels({});
|
||
end
|
||
end
|
||
end
|
||
|
||
linkaxes(p_handle, 'xy')
|
||
xlim([freqs(1), freqs(end)]);
|
||
|
||
han = axes(fig, 'visible', 'off');
|
||
han.XLabel.Visible = 'on';
|
||
han.YLabel.Visible = 'on';
|
||
xlabel(han, 'Frequency [Hz]');
|
||
ylabel(han, 'Compliance [m/N, rad/(N*m)]');
|
||
end
|
||
</pre>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org45205c2" class="outline-4">
|
||
<h4 id="org45205c2">Computation of the Frobenius norm</h4>
|
||
<div class="outline-text-4" id="text-org45205c2">
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">freqs = args.freqs;
|
||
|
||
C_norm = zeros(length(freqs), 1);
|
||
|
||
for i = 1:length(freqs)
|
||
C_norm(i) = sqrt(trace(freqresp(C, freqs(i), 'Hz')*freqresp(C, freqs(i), 'Hz')'));
|
||
end
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">if args.plots
|
||
figure;
|
||
plot(freqs, C_norm)
|
||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
xlabel('Frequency [Hz]');
|
||
ylabel('Compliance - Frobenius Norm');
|
||
end
|
||
</pre>
|
||
</div>
|
||
|
||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><h2 class='citeproc-org-bib-h2'>Bibliography</h2>
|
||
<div class="csl-bib-body">
|
||
<div class="csl-entry"><a name="citeproc_bib_item_1"></a>Preumont, A., M. Horodinca, I. Romanescu, B. de Marneffe, M. Avraam, A. Deraemaeker, F. Bossens, and A. Abu Hanieh. 2007. “A Six-Axis Single-Stage Active Vibration Isolator Based on Stewart Platform.” <i>Journal of Sound and Vibration</i> 300 (3-5):644–61. <a href="https://doi.org/10.1016/j.jsv.2006.07.050">https://doi.org/10.1016/j.jsv.2006.07.050</a>.</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<div id="postamble" class="status">
|
||
<p class="author">Author: Dehaeze Thomas</p>
|
||
<p class="date">Created: 2020-08-05 mer. 13:27</p>
|
||
</div>
|
||
</body>
|
||
</html>
|