Update doc

This commit is contained in:
Thomas Dehaeze 2020-08-05 13:28:14 +02:00
parent 08f3f2faea
commit ebb928b890
14 changed files with 3231 additions and 5326 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,240 +1,27 @@
<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-03-13 ven. 10:34 -->
<!-- 2020-08-05 mer. 13:27 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Stewart Platform - Decentralized Active Damping</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<style type="text/css">
<!--/*--><![CDATA[/*><!--*/
.title { text-align: center;
margin-bottom: .2em; }
.subtitle { text-align: center;
font-size: medium;
font-weight: bold;
margin-top:0; }
.todo { font-family: monospace; color: red; }
.done { font-family: monospace; color: green; }
.priority { font-family: monospace; color: orange; }
.tag { background-color: #eee; font-family: monospace;
padding: 2px; font-size: 80%; font-weight: normal; }
.timestamp { color: #bebebe; }
.timestamp-kwd { color: #5f9ea0; }
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
.underline { text-decoration: underline; }
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
p.verse { margin-left: 3%; }
pre {
border: 1px solid #ccc;
box-shadow: 3px 3px 3px #eee;
padding: 8pt;
font-family: monospace;
overflow: auto;
margin: 1.2em;
}
pre.src {
position: relative;
overflow: visible;
padding-top: 1.2em;
}
pre.src:before {
display: none;
position: absolute;
background-color: white;
top: -10px;
right: 10px;
padding: 3px;
border: 1px solid black;
}
pre.src:hover:before { display: inline;}
/* Languages per Org manual */
pre.src-asymptote:before { content: 'Asymptote'; }
pre.src-awk:before { content: 'Awk'; }
pre.src-C:before { content: 'C'; }
/* pre.src-C++ doesn't work in CSS */
pre.src-clojure:before { content: 'Clojure'; }
pre.src-css:before { content: 'CSS'; }
pre.src-D:before { content: 'D'; }
pre.src-ditaa:before { content: 'ditaa'; }
pre.src-dot:before { content: 'Graphviz'; }
pre.src-calc:before { content: 'Emacs Calc'; }
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
pre.src-fortran:before { content: 'Fortran'; }
pre.src-gnuplot:before { content: 'gnuplot'; }
pre.src-haskell:before { content: 'Haskell'; }
pre.src-hledger:before { content: 'hledger'; }
pre.src-java:before { content: 'Java'; }
pre.src-js:before { content: 'Javascript'; }
pre.src-latex:before { content: 'LaTeX'; }
pre.src-ledger:before { content: 'Ledger'; }
pre.src-lisp:before { content: 'Lisp'; }
pre.src-lilypond:before { content: 'Lilypond'; }
pre.src-lua:before { content: 'Lua'; }
pre.src-matlab:before { content: 'MATLAB'; }
pre.src-mscgen:before { content: 'Mscgen'; }
pre.src-ocaml:before { content: 'Objective Caml'; }
pre.src-octave:before { content: 'Octave'; }
pre.src-org:before { content: 'Org mode'; }
pre.src-oz:before { content: 'OZ'; }
pre.src-plantuml:before { content: 'Plantuml'; }
pre.src-processing:before { content: 'Processing.js'; }
pre.src-python:before { content: 'Python'; }
pre.src-R:before { content: 'R'; }
pre.src-ruby:before { content: 'Ruby'; }
pre.src-sass:before { content: 'Sass'; }
pre.src-scheme:before { content: 'Scheme'; }
pre.src-screen:before { content: 'Gnu Screen'; }
pre.src-sed:before { content: 'Sed'; }
pre.src-sh:before { content: 'shell'; }
pre.src-sql:before { content: 'SQL'; }
pre.src-sqlite:before { content: 'SQLite'; }
/* additional languages in org.el's org-babel-load-languages alist */
pre.src-forth:before { content: 'Forth'; }
pre.src-io:before { content: 'IO'; }
pre.src-J:before { content: 'J'; }
pre.src-makefile:before { content: 'Makefile'; }
pre.src-maxima:before { content: 'Maxima'; }
pre.src-perl:before { content: 'Perl'; }
pre.src-picolisp:before { content: 'Pico Lisp'; }
pre.src-scala:before { content: 'Scala'; }
pre.src-shell:before { content: 'Shell Script'; }
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
/* additional language identifiers per "defun org-babel-execute"
in ob-*.el */
pre.src-cpp:before { content: 'C++'; }
pre.src-abc:before { content: 'ABC'; }
pre.src-coq:before { content: 'Coq'; }
pre.src-groovy:before { content: 'Groovy'; }
/* additional language identifiers from org-babel-shell-names in
ob-shell.el: ob-shell is the only babel language using a lambda to put
the execution function name together. */
pre.src-bash:before { content: 'bash'; }
pre.src-csh:before { content: 'csh'; }
pre.src-ash:before { content: 'ash'; }
pre.src-dash:before { content: 'dash'; }
pre.src-ksh:before { content: 'ksh'; }
pre.src-mksh:before { content: 'mksh'; }
pre.src-posh:before { content: 'posh'; }
/* Additional Emacs modes also supported by the LaTeX listings package */
pre.src-ada:before { content: 'Ada'; }
pre.src-asm:before { content: 'Assembler'; }
pre.src-caml:before { content: 'Caml'; }
pre.src-delphi:before { content: 'Delphi'; }
pre.src-html:before { content: 'HTML'; }
pre.src-idl:before { content: 'IDL'; }
pre.src-mercury:before { content: 'Mercury'; }
pre.src-metapost:before { content: 'MetaPost'; }
pre.src-modula-2:before { content: 'Modula-2'; }
pre.src-pascal:before { content: 'Pascal'; }
pre.src-ps:before { content: 'PostScript'; }
pre.src-prolog:before { content: 'Prolog'; }
pre.src-simula:before { content: 'Simula'; }
pre.src-tcl:before { content: 'tcl'; }
pre.src-tex:before { content: 'TeX'; }
pre.src-plain-tex:before { content: 'Plain TeX'; }
pre.src-verilog:before { content: 'Verilog'; }
pre.src-vhdl:before { content: 'VHDL'; }
pre.src-xml:before { content: 'XML'; }
pre.src-nxml:before { content: 'XML'; }
/* add a generic configuration mode; LaTeX export needs an additional
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
pre.src-conf:before { content: 'Configuration File'; }
table { border-collapse:collapse; }
caption.t-above { caption-side: top; }
caption.t-bottom { caption-side: bottom; }
td, th { vertical-align:top; }
th.org-right { text-align: center; }
th.org-left { text-align: center; }
th.org-center { text-align: center; }
td.org-right { text-align: right; }
td.org-left { text-align: left; }
td.org-center { text-align: center; }
dt { font-weight: bold; }
.footpara { display: inline; }
.footdef { margin-bottom: 1em; }
.figure { padding: 1em; }
.figure p { text-align: center; }
.equation-container {
display: table;
text-align: center;
width: 100%;
}
.equation {
vertical-align: middle;
}
.equation-label {
display: table-cell;
text-align: right;
vertical-align: middle;
}
.inlinetask {
padding: 10px;
border: 2px solid gray;
margin: 10px;
background: #ffffcc;
}
#org-div-home-and-up
{ text-align: right; font-size: 70%; white-space: nowrap; }
textarea { overflow-x: auto; }
.linenr { font-size: smaller }
.code-highlighted { background-color: #ffff00; }
.org-info-js_info-navigation { border-style: none; }
#org-info-js_console-label
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
.org-info-js_search-highlight
{ background-color: #ffff00; color: #000000; font-weight: bold; }
.org-svg { width: 90%; }
/*]]>*/-->
</style>
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
<script src="./js/jquery.min.js"></script>
<script src="./js/bootstrap.min.js"></script>
<script src="./js/jquery.stickytableheaders.min.js"></script>
<script src="./js/readtheorg.js"></script>
<script type="text/javascript">
// @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later
<!--/*--><![CDATA[/*><!--*/
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
// @license-end
</script>
<script>
MathJax = {
tex: { macros: {
bm: ["\\boldsymbol{#1}",1],
}
}
<script>MathJax = {
tex: {
tags: 'ams',
macros: {bm: ["\\boldsymbol{#1}",1],}
}
};
</script>
<script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
@ -250,25 +37,25 @@
<li><a href="#orgc22d5d6">1. Inertial Control</a>
<ul>
<li><a href="#org1671c0b">1.1. Identification of the Dynamics</a></li>
<li><a href="#org89b6ab8">1.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
<li><a href="#orgf4665ef">1.3. Obtained Damping</a></li>
<li><a href="#orgf2dd409">1.4. Conclusion</a></li>
<li><a href="#orgdae44ba">1.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
<li><a href="#org89e2002">1.3. Obtained Damping</a></li>
<li><a href="#org3904320">1.4. Conclusion</a></li>
</ul>
</li>
<li><a href="#org89e426a">2. Integral Force Feedback</a>
<ul>
<li><a href="#orgbcaaa33">2.1. Identification of the Dynamics with perfect Joints</a></li>
<li><a href="#org422d0e7">2.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
<li><a href="#orgbf1f2d6">2.3. Obtained Damping</a></li>
<li><a href="#orgb9ae491">2.4. Conclusion</a></li>
<li><a href="#orgcb85703">2.1. Identification of the Dynamics with perfect Joints</a></li>
<li><a href="#org4ca24f7">2.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
<li><a href="#org11e5ee2">2.3. Obtained Damping</a></li>
<li><a href="#orgca67baa">2.4. Conclusion</a></li>
</ul>
</li>
<li><a href="#org47a29be">3. Direct Velocity Feedback</a>
<ul>
<li><a href="#orge88ed78">3.1. Identification of the Dynamics with perfect Joints</a></li>
<li><a href="#org8ebebbc">3.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
<li><a href="#org9dac8fd">3.3. Obtained Damping</a></li>
<li><a href="#org8c078af">3.4. Conclusion</a></li>
<li><a href="#orgc82a6a7">3.1. Identification of the Dynamics with perfect Joints</a></li>
<li><a href="#org92d6cb1">3.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
<li><a href="#org7497409">3.3. Obtained Damping</a></li>
<li><a href="#org61c422b">3.4. Conclusion</a></li>
</ul>
</li>
<li><a href="#orgc84bb75">4. Compliance and Transmissibility Comparison</a>
@ -315,43 +102,43 @@ To run the script, open the Simulink Project, and type <code>run active_damping_
<div class="outline-text-3" id="text-1-1">
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'accelerometer'</span>, <span class="org-string">'freq'</span>, 5e3);
stewart = initializeInertialSensor(stewart, 'type', 'accelerometer', 'freq', 5e3);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
<pre class="src src-matlab">ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
<pre class="src src-matlab">%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'stewart_platform_model'</span>;
%% Name of the Simulink File
mdl = 'stewart_platform_model';
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'Vm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute velocity of each leg [m/s]</span>
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Vm'); io_i = io_i + 1; % Absolute velocity of each leg [m/s]
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'Vm1'</span>, <span class="org-string">'Vm2'</span>, <span class="org-string">'Vm3'</span>, <span class="org-string">'Vm4'</span>, <span class="org-string">'Vm5'</span>, <span class="org-string">'Vm6'</span>};
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'};
</pre>
</div>
@ -367,17 +154,17 @@ The transfer function from actuator forces to force sensors is shown in Figure <
</div>
</div>
<div id="outline-container-org89b6ab8" class="outline-3">
<h3 id="org89b6ab8"><span class="section-number-3">1.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
<div id="outline-container-orgdae44ba" class="outline-3">
<h3 id="orgdae44ba"><span class="section-number-3">1.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
<div class="outline-text-3" id="text-1-2">
<p>
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
Gf = linearize(mdl, io, options);
Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Gf.OutputName = {<span class="org-string">'Vm1'</span>, <span class="org-string">'Vm2'</span>, <span class="org-string">'Vm3'</span>, <span class="org-string">'Vm4'</span>, <span class="org-string">'Vm5'</span>, <span class="org-string">'Vm6'</span>};
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gf.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'};
</pre>
</div>
@ -387,8 +174,8 @@ We now use the amplified actuators and re-identify the dynamics
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeAmplifiedStrutDynamics(stewart);
Ga = linearize(mdl, io, options);
Ga.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Ga.OutputName = {<span class="org-string">'Vm1'</span>, <span class="org-string">'Vm2'</span>, <span class="org-string">'Vm3'</span>, <span class="org-string">'Vm4'</span>, <span class="org-string">'Vm5'</span>, <span class="org-string">'Vm6'</span>};
Ga.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Ga.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'};
</pre>
</div>
@ -404,8 +191,8 @@ The new dynamics from force actuator to force sensor is shown in Figure <a href=
</div>
</div>
<div id="outline-container-orgf4665ef" class="outline-3">
<h3 id="orgf4665ef"><span class="section-number-3">1.3</span> Obtained Damping</h3>
<div id="outline-container-org89e2002" class="outline-3">
<h3 id="org89e2002"><span class="section-number-3">1.3</span> Obtained Damping</h3>
<div class="outline-text-3" id="text-1-3">
<p>
The control is a performed in a decentralized manner.
@ -430,8 +217,8 @@ The root locus is shown in figure <a href="#org9cabaee">3</a>.
</div>
</div>
<div id="outline-container-orgf2dd409" class="outline-3">
<h3 id="orgf2dd409"><span class="section-number-3">1.4</span> Conclusion</h3>
<div id="outline-container-org3904320" class="outline-3">
<h3 id="org3904320"><span class="section-number-3">1.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-1-4">
<div class="important">
<p>
@ -462,31 +249,31 @@ To run the script, open the Simulink Project, and type <code>run active_damping_
</div>
</div>
<div id="outline-container-orgbcaaa33" class="outline-3">
<h3 id="orgbcaaa33"><span class="section-number-3">2.1</span> Identification of the Dynamics with perfect Joints</h3>
<div id="outline-container-orgcb85703" class="outline-3">
<h3 id="orgcb85703"><span class="section-number-3">2.1</span> Identification of the Dynamics with perfect Joints</h3>
<div class="outline-text-3" id="text-2-1">
<p>
We first initialize the Stewart platform without joint stiffness.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
stewart = initializeInertialSensor(stewart, 'type', 'none');
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
<pre class="src src-matlab">ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
</pre>
</div>
@ -494,18 +281,18 @@ controller = initializeController(<span class="org-string">'type'</span>, <span
And we identify the dynamics from force actuators to force sensors.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'stewart_platform_model'</span>;
<pre class="src src-matlab">%% Name of the Simulink File
mdl = 'stewart_platform_model';
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'Taum'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Force Sensor Outputs [N]</span>
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Taum'); io_i = io_i + 1; % Force Sensor Outputs [N]
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
%% Run the linearization
G = linearize(mdl, io);
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>};
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
</pre>
</div>
@ -521,17 +308,17 @@ The transfer function from actuator forces to force sensors is shown in Figure <
</div>
</div>
<div id="outline-container-org422d0e7" class="outline-3">
<h3 id="org422d0e7"><span class="section-number-3">2.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
<div id="outline-container-org4ca24f7" class="outline-3">
<h3 id="org4ca24f7"><span class="section-number-3">2.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
<div class="outline-text-3" id="text-2-2">
<p>
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
Gf = linearize(mdl, io);
Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Gf.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>};
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gf.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
</pre>
</div>
@ -541,8 +328,8 @@ We now use the amplified actuators and re-identify the dynamics
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeAmplifiedStrutDynamics(stewart);
Ga = linearize(mdl, io);
Ga.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Ga.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>};
Ga.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Ga.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
</pre>
</div>
@ -558,8 +345,8 @@ The new dynamics from force actuator to force sensor is shown in Figure <a href=
</div>
</div>
<div id="outline-container-orgbf1f2d6" class="outline-3">
<h3 id="orgbf1f2d6"><span class="section-number-3">2.3</span> Obtained Damping</h3>
<div id="outline-container-org11e5ee2" class="outline-3">
<h3 id="org11e5ee2"><span class="section-number-3">2.3</span> Obtained Damping</h3>
<div class="outline-text-3" id="text-2-3">
<p>
The control is a performed in a decentralized manner.
@ -591,8 +378,8 @@ The root locus is shown in figure <a href="#orgc8981ba">6</a> and the obtained p
</div>
</div>
<div id="outline-container-orgb9ae491" class="outline-3">
<h3 id="orgb9ae491"><span class="section-number-3">2.4</span> Conclusion</h3>
<div id="outline-container-orgca67baa" class="outline-3">
<h3 id="orgca67baa"><span class="section-number-3">2.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-2-4">
<div class="important">
<p>
@ -624,31 +411,31 @@ To run the script, open the Simulink Project, and type <code>run active_damping_
</div>
</div>
<div id="outline-container-orge88ed78" class="outline-3">
<h3 id="orge88ed78"><span class="section-number-3">3.1</span> Identification of the Dynamics with perfect Joints</h3>
<div id="outline-container-orgc82a6a7" class="outline-3">
<h3 id="orgc82a6a7"><span class="section-number-3">3.1</span> Identification of the Dynamics with perfect Joints</h3>
<div class="outline-text-3" id="text-3-1">
<p>
We first initialize the Stewart platform without joint stiffness.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
stewart = initializeInertialSensor(stewart, 'type', 'none');
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
<pre class="src src-matlab">ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
</pre>
</div>
@ -656,22 +443,22 @@ controller = initializeController(<span class="org-string">'type'</span>, <span
And we identify the dynamics from force actuators to force sensors.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
<pre class="src src-matlab">%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'stewart_platform_model'</span>;
%% Name of the Simulink File
mdl = 'stewart_platform_model';
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'dLm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Relative Displacement Outputs [m]</span>
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m]
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>};
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'};
</pre>
</div>
@ -688,17 +475,17 @@ The transfer function from actuator forces to relative motion sensors is shown i
</div>
<div id="outline-container-org8ebebbc" class="outline-3">
<h3 id="org8ebebbc"><span class="section-number-3">3.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
<div id="outline-container-org92d6cb1" class="outline-3">
<h3 id="org92d6cb1"><span class="section-number-3">3.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
<div class="outline-text-3" id="text-3-2">
<p>
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
Gf = linearize(mdl, io, options);
Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Gf.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>};
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gf.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'};
</pre>
</div>
@ -708,8 +495,8 @@ We now use the amplified actuators and re-identify the dynamics
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeAmplifiedStrutDynamics(stewart);
Ga = linearize(mdl, io, options);
Ga.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Ga.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>};
Ga.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Ga.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'};
</pre>
</div>
@ -725,8 +512,8 @@ The new dynamics from force actuator to relative motion sensor is shown in Figur
</div>
</div>
<div id="outline-container-org9dac8fd" class="outline-3">
<h3 id="org9dac8fd"><span class="section-number-3">3.3</span> Obtained Damping</h3>
<div id="outline-container-org7497409" class="outline-3">
<h3 id="org7497409"><span class="section-number-3">3.3</span> Obtained Damping</h3>
<div class="outline-text-3" id="text-3-3">
<p>
The control is a performed in a decentralized manner.
@ -751,8 +538,8 @@ The root locus is shown in figure <a href="#org5e168d0">10</a>.
</div>
</div>
<div id="outline-container-org8c078af" class="outline-3">
<h3 id="org8c078af"><span class="section-number-3">3.4</span> Conclusion</h3>
<div id="outline-container-org61c422b" class="outline-3">
<h3 id="org61c422b"><span class="section-number-3">3.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-3-4">
<div class="important">
<p>
@ -776,16 +563,16 @@ We first initialize the Stewart platform without joint stiffness.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
stewart = initializeInertialSensor(stewart, 'type', 'none');
</pre>
</div>
@ -793,9 +580,9 @@ stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</spa
The rotation point of the ground is located at the origin of frame \(\{A\}\).
</p>
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
<pre class="src src-matlab">ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
</pre>
</div>
</div>
@ -808,7 +595,7 @@ controller = initializeController(<span class="org-string">'type'</span>, <span
Let&rsquo;s first identify the transmissibility and compliance in the open-loop case.
</p>
<div class="org-src-container">
<pre class="src src-matlab">controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
<pre class="src src-matlab">controller = initializeController('type', 'open-loop');
[T_ol, T_norm_ol, freqs] = computeTransmissibility();
[C_ol, C_norm_ol, freqs] = computeCompliance();
</pre>
@ -818,11 +605,11 @@ Let&rsquo;s first identify the transmissibility and compliance in the open-loop
Now, let&rsquo;s identify the transmissibility and compliance for the Integral Force Feedback architecture.
</p>
<div class="org-src-container">
<pre class="src src-matlab">controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'iff'</span>);
K_iff = (1e4<span class="org-type">/</span>s)<span class="org-type">*</span>eye(6);
<pre class="src src-matlab">controller = initializeController('type', 'iff');
K_iff = (1e4/s)*eye(6);
[T_iff, T_norm_iff, <span class="org-type">~</span>] = computeTransmissibility();
[C_iff, C_norm_iff, <span class="org-type">~</span>] = computeCompliance();
[T_iff, T_norm_iff, ~] = computeTransmissibility();
[C_iff, C_norm_iff, ~] = computeCompliance();
</pre>
</div>
@ -830,11 +617,11 @@ K_iff = (1e4<span class="org-type">/</span>s)<span class="org-type">*</span>eye(
And for the Direct Velocity Feedback.
</p>
<div class="org-src-container">
<pre class="src src-matlab">controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'dvf'</span>);
K_dvf = 1e4<span class="org-type">*</span>s<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>5000)<span class="org-type">*</span>eye(6);
<pre class="src src-matlab">controller = initializeController('type', 'dvf');
K_dvf = 1e4*s/(1+s/2/pi/5000)*eye(6);
[T_dvf, T_norm_dvf, <span class="org-type">~</span>] = computeTransmissibility();
[C_dvf, C_norm_dvf, <span class="org-type">~</span>] = computeCompliance();
[T_dvf, T_norm_dvf, ~] = computeTransmissibility();
[C_dvf, C_norm_dvf, ~] = computeCompliance();
</pre>
</div>
</div>
@ -869,7 +656,7 @@ K_dvf = 1e4<span class="org-type">*</span>s<span class="org-type">/</span>(1<spa
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-03-13 ven. 10:34</p>
<p class="date">Created: 2020-08-05 mer. 13:27</p>
</div>
</body>
</html>

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,239 +1,27 @@
<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-03-02 lun. 17:57 -->
<!-- 2020-08-05 mer. 13:27 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Stewart Platform - Dynamics Study</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<style type="text/css">
<!--/*--><![CDATA[/*><!--*/
.title { text-align: center;
margin-bottom: .2em; }
.subtitle { text-align: center;
font-size: medium;
font-weight: bold;
margin-top:0; }
.todo { font-family: monospace; color: red; }
.done { font-family: monospace; color: green; }
.priority { font-family: monospace; color: orange; }
.tag { background-color: #eee; font-family: monospace;
padding: 2px; font-size: 80%; font-weight: normal; }
.timestamp { color: #bebebe; }
.timestamp-kwd { color: #5f9ea0; }
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
.underline { text-decoration: underline; }
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
p.verse { margin-left: 3%; }
pre {
border: 1px solid #ccc;
box-shadow: 3px 3px 3px #eee;
padding: 8pt;
font-family: monospace;
overflow: auto;
margin: 1.2em;
}
pre.src {
position: relative;
overflow: visible;
padding-top: 1.2em;
}
pre.src:before {
display: none;
position: absolute;
background-color: white;
top: -10px;
right: 10px;
padding: 3px;
border: 1px solid black;
}
pre.src:hover:before { display: inline;}
/* Languages per Org manual */
pre.src-asymptote:before { content: 'Asymptote'; }
pre.src-awk:before { content: 'Awk'; }
pre.src-C:before { content: 'C'; }
/* pre.src-C++ doesn't work in CSS */
pre.src-clojure:before { content: 'Clojure'; }
pre.src-css:before { content: 'CSS'; }
pre.src-D:before { content: 'D'; }
pre.src-ditaa:before { content: 'ditaa'; }
pre.src-dot:before { content: 'Graphviz'; }
pre.src-calc:before { content: 'Emacs Calc'; }
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
pre.src-fortran:before { content: 'Fortran'; }
pre.src-gnuplot:before { content: 'gnuplot'; }
pre.src-haskell:before { content: 'Haskell'; }
pre.src-hledger:before { content: 'hledger'; }
pre.src-java:before { content: 'Java'; }
pre.src-js:before { content: 'Javascript'; }
pre.src-latex:before { content: 'LaTeX'; }
pre.src-ledger:before { content: 'Ledger'; }
pre.src-lisp:before { content: 'Lisp'; }
pre.src-lilypond:before { content: 'Lilypond'; }
pre.src-lua:before { content: 'Lua'; }
pre.src-matlab:before { content: 'MATLAB'; }
pre.src-mscgen:before { content: 'Mscgen'; }
pre.src-ocaml:before { content: 'Objective Caml'; }
pre.src-octave:before { content: 'Octave'; }
pre.src-org:before { content: 'Org mode'; }
pre.src-oz:before { content: 'OZ'; }
pre.src-plantuml:before { content: 'Plantuml'; }
pre.src-processing:before { content: 'Processing.js'; }
pre.src-python:before { content: 'Python'; }
pre.src-R:before { content: 'R'; }
pre.src-ruby:before { content: 'Ruby'; }
pre.src-sass:before { content: 'Sass'; }
pre.src-scheme:before { content: 'Scheme'; }
pre.src-screen:before { content: 'Gnu Screen'; }
pre.src-sed:before { content: 'Sed'; }
pre.src-sh:before { content: 'shell'; }
pre.src-sql:before { content: 'SQL'; }
pre.src-sqlite:before { content: 'SQLite'; }
/* additional languages in org.el's org-babel-load-languages alist */
pre.src-forth:before { content: 'Forth'; }
pre.src-io:before { content: 'IO'; }
pre.src-J:before { content: 'J'; }
pre.src-makefile:before { content: 'Makefile'; }
pre.src-maxima:before { content: 'Maxima'; }
pre.src-perl:before { content: 'Perl'; }
pre.src-picolisp:before { content: 'Pico Lisp'; }
pre.src-scala:before { content: 'Scala'; }
pre.src-shell:before { content: 'Shell Script'; }
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
/* additional language identifiers per "defun org-babel-execute"
in ob-*.el */
pre.src-cpp:before { content: 'C++'; }
pre.src-abc:before { content: 'ABC'; }
pre.src-coq:before { content: 'Coq'; }
pre.src-groovy:before { content: 'Groovy'; }
/* additional language identifiers from org-babel-shell-names in
ob-shell.el: ob-shell is the only babel language using a lambda to put
the execution function name together. */
pre.src-bash:before { content: 'bash'; }
pre.src-csh:before { content: 'csh'; }
pre.src-ash:before { content: 'ash'; }
pre.src-dash:before { content: 'dash'; }
pre.src-ksh:before { content: 'ksh'; }
pre.src-mksh:before { content: 'mksh'; }
pre.src-posh:before { content: 'posh'; }
/* Additional Emacs modes also supported by the LaTeX listings package */
pre.src-ada:before { content: 'Ada'; }
pre.src-asm:before { content: 'Assembler'; }
pre.src-caml:before { content: 'Caml'; }
pre.src-delphi:before { content: 'Delphi'; }
pre.src-html:before { content: 'HTML'; }
pre.src-idl:before { content: 'IDL'; }
pre.src-mercury:before { content: 'Mercury'; }
pre.src-metapost:before { content: 'MetaPost'; }
pre.src-modula-2:before { content: 'Modula-2'; }
pre.src-pascal:before { content: 'Pascal'; }
pre.src-ps:before { content: 'PostScript'; }
pre.src-prolog:before { content: 'Prolog'; }
pre.src-simula:before { content: 'Simula'; }
pre.src-tcl:before { content: 'tcl'; }
pre.src-tex:before { content: 'TeX'; }
pre.src-plain-tex:before { content: 'Plain TeX'; }
pre.src-verilog:before { content: 'Verilog'; }
pre.src-vhdl:before { content: 'VHDL'; }
pre.src-xml:before { content: 'XML'; }
pre.src-nxml:before { content: 'XML'; }
/* add a generic configuration mode; LaTeX export needs an additional
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
pre.src-conf:before { content: 'Configuration File'; }
table { border-collapse:collapse; }
caption.t-above { caption-side: top; }
caption.t-bottom { caption-side: bottom; }
td, th { vertical-align:top; }
th.org-right { text-align: center; }
th.org-left { text-align: center; }
th.org-center { text-align: center; }
td.org-right { text-align: right; }
td.org-left { text-align: left; }
td.org-center { text-align: center; }
dt { font-weight: bold; }
.footpara { display: inline; }
.footdef { margin-bottom: 1em; }
.figure { padding: 1em; }
.figure p { text-align: center; }
.equation-container {
display: table;
text-align: center;
width: 100%;
}
.equation {
vertical-align: middle;
}
.equation-label {
display: table-cell;
text-align: right;
vertical-align: middle;
}
.inlinetask {
padding: 10px;
border: 2px solid gray;
margin: 10px;
background: #ffffcc;
}
#org-div-home-and-up
{ text-align: right; font-size: 70%; white-space: nowrap; }
textarea { overflow-x: auto; }
.linenr { font-size: smaller }
.code-highlighted { background-color: #ffff00; }
.org-info-js_info-navigation { border-style: none; }
#org-info-js_console-label
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
.org-info-js_search-highlight
{ background-color: #ffff00; color: #000000; font-weight: bold; }
.org-svg { width: 90%; }
/*]]>*/-->
</style>
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
<script src="./js/jquery.min.js"></script>
<script src="./js/bootstrap.min.js"></script>
<script src="./js/jquery.stickytableheaders.min.js"></script>
<script src="./js/readtheorg.js"></script>
<script type="text/javascript">
// @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later
<!--/*--><![CDATA[/*><!--*/
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
// @license-end
</script>
<script>
MathJax = {
tex: { macros: {
bm: ["\\boldsymbol{#1}",1],
}
}
<script>MathJax = {
tex: {
tags: 'ams',
macros: {bm: ["\\boldsymbol{#1}",1],}
}
};
</script>
<script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
@ -250,13 +38,13 @@
<ul>
<li><a href="#org4509b7d">1.1. Comparison with fixed support</a></li>
<li><a href="#org8662186">1.2. Comparison with a flexible support</a></li>
<li><a href="#orgbb930ae">1.3. Conclusion</a></li>
<li><a href="#org55e0dad">1.3. Conclusion</a></li>
</ul>
</li>
<li><a href="#org81ab204">2. Comparison of the static transfer function and the Compliance matrix</a>
<ul>
<li><a href="#orge7e7242">2.1. Analysis</a></li>
<li><a href="#org5acc4c0">2.2. Conclusion</a></li>
<li><a href="#org9ee3939">2.2. Conclusion</a></li>
</ul>
</li>
</ul>
@ -279,16 +67,16 @@ Let&rsquo;s generate a Stewart platform.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
stewart = initializeInertialSensor(stewart, 'type', 'none');
</pre>
</div>
@ -297,9 +85,9 @@ We don&rsquo;t put any flexibility below the Stewart platform such that <b>its b
We also don&rsquo;t put any payload on top of the Stewart platform.
</p>
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
<pre class="src src-matlab">ground = initializeGround('type', 'none');
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
</pre>
</div>
@ -307,22 +95,22 @@ controller = initializeController(<span class="org-string">'type'</span>, <span
The transfer function from actuator forces \(\bm{\tau}\) to the relative displacement of the mobile platform \(\mathcal{\bm{X}}\) is extracted.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
<pre class="src src-matlab">%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'stewart_platform_model'</span>;
%% Name of the Simulink File
mdl = 'stewart_platform_model';
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span>
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
</pre>
</div>
@ -330,8 +118,8 @@ G.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">
Using the Jacobian matrix, we compute the transfer function from force/torques applied by the actuators on the frame \(\{B\}\) fixed to the mobile platform:
</p>
<div class="org-src-container">
<pre class="src src-matlab">Gc = minreal(G<span class="org-type">*</span>inv(stewart.kinematics.J<span class="org-type">'</span>));
Gc.InputName = {<span class="org-string">'Fnx'</span>, <span class="org-string">'Fny'</span>, <span class="org-string">'Fnz'</span>, <span class="org-string">'Mnx'</span>, <span class="org-string">'Mny'</span>, <span class="org-string">'Mnz'</span>};
<pre class="src src-matlab">Gc = minreal(G*inv(stewart.kinematics.J'));
Gc.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};
</pre>
</div>
@ -339,15 +127,15 @@ Gc.InputName = {<span class="org-string">'Fnx'</span>, <span class="org-string">
We also extract the transfer function from external forces \(\bm{\mathcal{F}}_{\text{ext}}\) on the frame \(\{B\}\) fixed to the mobile platform to the relative displacement \(\mathcal{\bm{X}}\) of \(\{B\}\) with respect to frame \(\{A\}\):
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
<pre class="src src-matlab">%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances'</span>], 1, <span class="org-string">'openinput'</span>, [], <span class="org-string">'F_ext'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% External forces/torques applied on {B}</span>
io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span>
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'F_ext'); io_i = io_i + 1; % External forces/torques applied on {B}
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
%% Run the linearization
Gd = linearize(mdl, io, options);
Gd.InputName = {<span class="org-string">'Fex'</span>, <span class="org-string">'Fey'</span>, <span class="org-string">'Fez'</span>, <span class="org-string">'Mex'</span>, <span class="org-string">'Mey'</span>, <span class="org-string">'Mez'</span>};
Gd.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
Gd.InputName = {'Fex', 'Fey', 'Fez', 'Mex', 'Mey', 'Mez'};
Gd.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
</pre>
</div>
@ -382,7 +170,7 @@ This can be understood from figure <a href="#org8bd3e63">2</a> where \(\mathcal{
We now add a flexible support under the Stewart platform.
</p>
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'flexible'</span>);
<pre class="src src-matlab">ground = initializeGround('type', 'flexible');
</pre>
</div>
@ -390,28 +178,28 @@ We now add a flexible support under the Stewart platform.
And we perform again the identification.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
<pre class="src src-matlab">%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span>
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
Gc = minreal(G<span class="org-type">*</span>inv(stewart.kinematics.J<span class="org-type">'</span>));
Gc.InputName = {<span class="org-string">'Fnx'</span>, <span class="org-string">'Fny'</span>, <span class="org-string">'Fnz'</span>, <span class="org-string">'Mnx'</span>, <span class="org-string">'Mny'</span>, <span class="org-string">'Mnz'</span>};
Gc = minreal(G*inv(stewart.kinematics.J'));
Gc.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances'</span>], 1, <span class="org-string">'openinput'</span>, [], <span class="org-string">'F_ext'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% External forces/torques applied on {B}</span>
io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span>
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'F_ext'); io_i = io_i + 1; % External forces/torques applied on {B}
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
%% Run the linearization
Gd = linearize(mdl, io, options);
Gd.InputName = {<span class="org-string">'Fex'</span>, <span class="org-string">'Fey'</span>, <span class="org-string">'Fez'</span>, <span class="org-string">'Mex'</span>, <span class="org-string">'Mey'</span>, <span class="org-string">'Mez'</span>};
Gd.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
Gd.InputName = {'Fex', 'Fey', 'Fez', 'Mex', 'Mey', 'Mez'};
Gd.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
</pre>
</div>
@ -442,8 +230,8 @@ And thus \(\mathcal{F}_{x}\) and \(\mathcal{F}_{x,\text{ext}}\) have clearly <b>
</div>
<div id="outline-container-orgbb930ae" class="outline-3">
<h3 id="orgbb930ae"><span class="section-number-3">1.3</span> Conclusion</h3>
<div id="outline-container-org55e0dad" class="outline-3">
<h3 id="org55e0dad"><span class="section-number-3">1.3</span> Conclusion</h3>
<div class="outline-text-3" id="text-1-3">
<div class="important">
<p>
@ -471,16 +259,16 @@ Initialization of the Stewart platform.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
stewart = initializeInertialSensor(stewart, 'type', 'none');
</pre>
</div>
@ -488,9 +276,9 @@ stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</spa
No flexibility below the Stewart platform and no payload.
</p>
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
<pre class="src src-matlab">ground = initializeGround('type', 'none');
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
</pre>
</div>
@ -498,28 +286,28 @@ controller = initializeController(<span class="org-string">'type'</span>, <span
Estimation of the transfer function from \(\mathcal{\bm{F}}\) to \(\mathcal{\bm{X}}\):
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
<pre class="src src-matlab">%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'stewart_platform_model'</span>;
%% Name of the Simulink File
mdl = 'stewart_platform_model';
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span>
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">Gc = minreal(G<span class="org-type">*</span>inv(stewart.kinematics.J<span class="org-type">'</span>));
Gc.InputName = {<span class="org-string">'Fnx'</span>, <span class="org-string">'Fny'</span>, <span class="org-string">'Fnz'</span>, <span class="org-string">'Mnx'</span>, <span class="org-string">'Mny'</span>, <span class="org-string">'Mnz'</span>};
<pre class="src src-matlab">Gc = minreal(G*inv(stewart.kinematics.J'));
Gc.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};
</pre>
</div>
@ -677,8 +465,8 @@ And now at the Compliance matrix.
</div>
</div>
<div id="outline-container-org5acc4c0" class="outline-3">
<h3 id="org5acc4c0"><span class="section-number-3">2.2</span> Conclusion</h3>
<div id="outline-container-org9ee3939" class="outline-3">
<h3 id="org9ee3939"><span class="section-number-3">2.2</span> Conclusion</h3>
<div class="outline-text-3" id="text-2-2">
<div class="important">
<p>
@ -692,7 +480,7 @@ The low frequency transfer function matrix from \(\mathcal{\bm{F}}\) to \(\mathc
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-03-02 lun. 17:57</p>
<p class="date">Created: 2020-08-05 mer. 13:27</p>
</div>
</body>
</html>

View File

@ -0,0 +1,472 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-08-05 mer. 13:27 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Stewart Platform with Flexible Elements</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
<script src="./js/jquery.min.js"></script>
<script src="./js/bootstrap.min.js"></script>
<script src="./js/jquery.stickytableheaders.min.js"></script>
<script src="./js/readtheorg.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
<a accesskey="h" href="./index.html"> UP </a>
|
<a accesskey="H" href="./index.html"> HOME </a>
</div><div id="content">
<h1 class="title">Stewart Platform with Flexible Elements</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#orgbdb2a68">1. Simscape Model</a>
<ul>
<li><a href="#org6768ff7">1.1. Flexible APA</a></li>
<li><a href="#org3650a90">1.2. Flexible Joint</a></li>
<li><a href="#org75c496c">1.3. Identification</a></li>
<li><a href="#org52d500c">1.4. No Flexible Elements</a></li>
<li><a href="#org6800cf5">1.5. Flexible joints</a></li>
<li><a href="#orgd80e541">1.6. Flexible APA</a></li>
<li><a href="#org1609aa1">1.7. Flexible Joints and APA</a></li>
<li><a href="#orge9b9e81">1.8. Direct Velocity Feedback</a></li>
<li><a href="#org265a0a3">1.9. Integral Force Feedback</a></li>
</ul>
</li>
</ul>
</div>
</div>
<div id="outline-container-orgbdb2a68" class="outline-2">
<h2 id="orgbdb2a68"><span class="section-number-2">1</span> Simscape Model</h2>
<div class="outline-text-2" id="text-1">
</div>
<div id="outline-container-org6768ff7" class="outline-3">
<h3 id="org6768ff7"><span class="section-number-3">1.1</span> Flexible APA</h3>
<div class="outline-text-3" id="text-1-1">
<div class="org-src-container">
<pre class="src src-matlab">apa = load('./mat/APA300ML.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K');
</pre>
</div>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-left" />
<col class="org-right" />
</colgroup>
<tbody>
<tr>
<td class="org-left">Total number of Nodes</td>
<td class="org-right">7</td>
</tr>
<tr>
<td class="org-left">Number of interface Nodes</td>
<td class="org-right">7</td>
</tr>
<tr>
<td class="org-left">Number of Modes</td>
<td class="org-right">6</td>
</tr>
<tr>
<td class="org-left">Size of M and K matrices</td>
<td class="org-right">48</td>
</tr>
</tbody>
</table>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 1:</span> Coordinates of the interface nodes</caption>
<colgroup>
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-right">Node i</th>
<th scope="col" class="org-right">Node Number</th>
<th scope="col" class="org-right">x [m]</th>
<th scope="col" class="org-right">y [m]</th>
<th scope="col" class="org-right">z [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-right">1.0</td>
<td class="org-right">53917.0</td>
<td class="org-right">0.0</td>
<td class="org-right">-0.015</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">2.0</td>
<td class="org-right">53918.0</td>
<td class="org-right">0.0</td>
<td class="org-right">0.015</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">3.0</td>
<td class="org-right">53919.0</td>
<td class="org-right">-0.0325</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">4.0</td>
<td class="org-right">53920.0</td>
<td class="org-right">-0.0125</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">5.0</td>
<td class="org-right">53921.0</td>
<td class="org-right">-0.0075</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">6.0</td>
<td class="org-right">53922.0</td>
<td class="org-right">0.0125</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">7.0</td>
<td class="org-right">53923.0</td>
<td class="org-right">0.0325</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="outline-container-org3650a90" class="outline-3">
<h3 id="org3650a90"><span class="section-number-3">1.2</span> Flexible Joint</h3>
<div class="outline-text-3" id="text-1-2">
<div class="org-src-container">
<pre class="src src-matlab">flex_joint = load('./mat/flexor_ID16.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K');
</pre>
</div>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-left" />
<col class="org-right" />
</colgroup>
<tbody>
<tr>
<td class="org-left">Total number of Nodes</td>
<td class="org-right">2</td>
</tr>
<tr>
<td class="org-left">Number of interface Nodes</td>
<td class="org-right">2</td>
</tr>
<tr>
<td class="org-left">Number of Modes</td>
<td class="org-right">6</td>
</tr>
<tr>
<td class="org-left">Size of M and K matrices</td>
<td class="org-right">18</td>
</tr>
</tbody>
</table>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 2:</span> Coordinates of the interface nodes</caption>
<colgroup>
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-right">Node i</th>
<th scope="col" class="org-right">Node Number</th>
<th scope="col" class="org-right">x [m]</th>
<th scope="col" class="org-right">y [m]</th>
<th scope="col" class="org-right">z [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-right">1.0</td>
<td class="org-right">181278.0</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">2.0</td>
<td class="org-right">181279.0</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
<td class="org-right">-0.0</td>
</tr>
</tbody>
</table>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-left" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left"><b>Caracteristic</b></th>
<th scope="col" class="org-right"><b>Value</b></th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left">Axial Stiffness [N/um]</td>
<td class="org-right">119</td>
</tr>
<tr>
<td class="org-left">Bending Stiffness [Nm/rad]</td>
<td class="org-right">33</td>
</tr>
<tr>
<td class="org-left">Bending Stiffness [Nm/rad]</td>
<td class="org-right">33</td>
</tr>
<tr>
<td class="org-left">Torsion Stiffness [Nm/rad]</td>
<td class="org-right">236</td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="outline-container-org75c496c" class="outline-3">
<h3 id="org75c496c"><span class="section-number-3">1.3</span> Identification</h3>
<div class="outline-text-3" id="text-1-3">
<p>
And we identify the dynamics from force actuators to force sensors.
</p>
<div class="org-src-container">
<pre class="src src-matlab">%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m]
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Taum'); io_i = io_i + 1; % Force Sensors [N]
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround('type', 'none');
payload = initializePayload('type', 'rigid', 'm', 50);
controller = initializeController('type', 'open-loop');
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">disturbances = initializeDisturbances();
references = initializeReferences(stewart);
</pre>
</div>
</div>
</div>
<div id="outline-container-org52d500c" class="outline-3">
<h3 id="org52d500c"><span class="section-number-3">1.4</span> No Flexible Elements</h3>
<div class="outline-text-3" id="text-1-4">
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
% stewart = initializeStrutDynamics(stewart, 'K', 1.8e6*ones(6,1));
stewart = initializeAmplifiedStrutDynamics(stewart, 'Kr', 0.9e6*ones(6,1), 'Ka', 0.9e6*ones(6,1));
stewart = initializeJointDynamics(stewart, 'Kf_M', 33*ones(6,1), 'Kt_M', 235*ones(6,1), 'Kf_F', 33*ones(6,1), 'Kt_F', 235*ones(6,1));
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6', 'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
</pre>
</div>
</div>
</div>
<div id="outline-container-org6800cf5" class="outline-3">
<h3 id="org6800cf5"><span class="section-number-3">1.5</span> Flexible joints</h3>
<div class="outline-text-3" id="text-1-5">
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeAmplifiedStrutDynamics(stewart, 'Kr', 0.9e6*ones(6,1), 'Ka', 0.9e6*ones(6,1));
stewart = initializeJointDynamics(stewart, 'type_F', 'flexible', 'K_F', flex_joint.K, 'M_F', flex_joint.M, 'n_xyz_F', flex_joint.n_xyz, 'xi_F', 0.1, 'step_file_F', 'mat/flexor_ID16.STEP', 'type_M', 'flexible', 'K_M', flex_joint.K, 'M_M', flex_joint.M, 'n_xyz_M', flex_joint.n_xyz, 'xi_M', 0.1, 'step_file_M', 'mat/flexor_ID16.STEP');
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">%% Run the linearization
Gj = linearize(mdl, io, options);
Gj.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gj.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6', 'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
</pre>
</div>
</div>
</div>
<div id="outline-container-orgd80e541" class="outline-3">
<h3 id="orgd80e541"><span class="section-number-3">1.6</span> Flexible APA</h3>
<div class="outline-text-3" id="text-1-6">
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeFlexibleStrutDynamics(stewart, 'H', 0.03, 'K', apa.K, 'M', apa.M, 'n_xyz', apa.n_xyz, 'xi', 0.1, 'step_file', 'mat/APA300ML.STEP');
stewart = initializeJointDynamics(stewart, 'Kf_M', 33*ones(6,1), 'Kt_M', 235, 'Kf_F', 33*ones(6,1), 'Kt_F', 235);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart, 'type_F', 'none', 'type_M', 'none');
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">%% Run the linearization
Ga = -linearize(mdl, io, options);
Ga.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Ga.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6', 'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
</pre>
</div>
</div>
</div>
<div id="outline-container-org1609aa1" class="outline-3">
<h3 id="org1609aa1"><span class="section-number-3">1.7</span> Flexible Joints and APA</h3>
<div class="outline-text-3" id="text-1-7">
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeFlexibleStrutDynamics(stewart, 'H', 0.03, 'K', apa.K, 'M', apa.M, 'n_xyz', apa.n_xyz, 'xi', 0.1, 'step_file', 'mat/APA300ML.STEP');
stewart = initializeJointDynamics(stewart, 'type_F', 'flexible', 'K_F', flex_joint.K, 'M_F', flex_joint.M, 'n_xyz_F', flex_joint.n_xyz, 'xi_F', 0.1, 'step_file_F', 'mat/flexor_ID16.STEP', 'type_M', 'flexible', 'K_M', flex_joint.K, 'M_M', flex_joint.M, 'n_xyz_M', flex_joint.n_xyz, 'xi_M', 0.1, 'step_file_M', 'mat/flexor_ID16.STEP');
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart, 'type_F', 'none', 'type_M', 'none');
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">Gf = -linearize(mdl, io, options);
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gf.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6', 'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
</pre>
</div>
</div>
</div>
<div id="outline-container-orge9b9e81" class="outline-3">
<h3 id="orge9b9e81"><span class="section-number-3">1.8</span> Direct Velocity Feedback</h3>
<div class="outline-text-3" id="text-1-8">
<div id="org2d35259" class="figure">
<p><img src="figs/flexible_elements_effect_dvf.png" alt="flexible_elements_effect_dvf.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Change of the DVF plant dynamics with the added flexible elements</p>
</div>
</div>
</div>
<div id="outline-container-org265a0a3" class="outline-3">
<h3 id="org265a0a3"><span class="section-number-3">1.9</span> Integral Force Feedback</h3>
<div class="outline-text-3" id="text-1-9">
<div id="org81cc646" class="figure">
<p><img src="figs/flexible_elements_effect_iff.png" alt="flexible_elements_effect_iff.png" />
</p>
<p><span class="figure-number">Figure 2: </span>Change of the IFF plant dynamics with the added flexible elements</p>
</div>
</div>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-08-05 mer. 13:27</p>
</div>
</body>
</html>

File diff suppressed because it is too large Load Diff

View File

@ -1,229 +1,19 @@
<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-03-13 ven. 10:34 -->
<!-- 2020-08-05 mer. 13:27 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Stewart Platforms</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<style type="text/css">
<!--/*--><![CDATA[/*><!--*/
.title { text-align: center;
margin-bottom: .2em; }
.subtitle { text-align: center;
font-size: medium;
font-weight: bold;
margin-top:0; }
.todo { font-family: monospace; color: red; }
.done { font-family: monospace; color: green; }
.priority { font-family: monospace; color: orange; }
.tag { background-color: #eee; font-family: monospace;
padding: 2px; font-size: 80%; font-weight: normal; }
.timestamp { color: #bebebe; }
.timestamp-kwd { color: #5f9ea0; }
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
.underline { text-decoration: underline; }
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
p.verse { margin-left: 3%; }
pre {
border: 1px solid #ccc;
box-shadow: 3px 3px 3px #eee;
padding: 8pt;
font-family: monospace;
overflow: auto;
margin: 1.2em;
}
pre.src {
position: relative;
overflow: visible;
padding-top: 1.2em;
}
pre.src:before {
display: none;
position: absolute;
background-color: white;
top: -10px;
right: 10px;
padding: 3px;
border: 1px solid black;
}
pre.src:hover:before { display: inline;}
/* Languages per Org manual */
pre.src-asymptote:before { content: 'Asymptote'; }
pre.src-awk:before { content: 'Awk'; }
pre.src-C:before { content: 'C'; }
/* pre.src-C++ doesn't work in CSS */
pre.src-clojure:before { content: 'Clojure'; }
pre.src-css:before { content: 'CSS'; }
pre.src-D:before { content: 'D'; }
pre.src-ditaa:before { content: 'ditaa'; }
pre.src-dot:before { content: 'Graphviz'; }
pre.src-calc:before { content: 'Emacs Calc'; }
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
pre.src-fortran:before { content: 'Fortran'; }
pre.src-gnuplot:before { content: 'gnuplot'; }
pre.src-haskell:before { content: 'Haskell'; }
pre.src-hledger:before { content: 'hledger'; }
pre.src-java:before { content: 'Java'; }
pre.src-js:before { content: 'Javascript'; }
pre.src-latex:before { content: 'LaTeX'; }
pre.src-ledger:before { content: 'Ledger'; }
pre.src-lisp:before { content: 'Lisp'; }
pre.src-lilypond:before { content: 'Lilypond'; }
pre.src-lua:before { content: 'Lua'; }
pre.src-matlab:before { content: 'MATLAB'; }
pre.src-mscgen:before { content: 'Mscgen'; }
pre.src-ocaml:before { content: 'Objective Caml'; }
pre.src-octave:before { content: 'Octave'; }
pre.src-org:before { content: 'Org mode'; }
pre.src-oz:before { content: 'OZ'; }
pre.src-plantuml:before { content: 'Plantuml'; }
pre.src-processing:before { content: 'Processing.js'; }
pre.src-python:before { content: 'Python'; }
pre.src-R:before { content: 'R'; }
pre.src-ruby:before { content: 'Ruby'; }
pre.src-sass:before { content: 'Sass'; }
pre.src-scheme:before { content: 'Scheme'; }
pre.src-screen:before { content: 'Gnu Screen'; }
pre.src-sed:before { content: 'Sed'; }
pre.src-sh:before { content: 'shell'; }
pre.src-sql:before { content: 'SQL'; }
pre.src-sqlite:before { content: 'SQLite'; }
/* additional languages in org.el's org-babel-load-languages alist */
pre.src-forth:before { content: 'Forth'; }
pre.src-io:before { content: 'IO'; }
pre.src-J:before { content: 'J'; }
pre.src-makefile:before { content: 'Makefile'; }
pre.src-maxima:before { content: 'Maxima'; }
pre.src-perl:before { content: 'Perl'; }
pre.src-picolisp:before { content: 'Pico Lisp'; }
pre.src-scala:before { content: 'Scala'; }
pre.src-shell:before { content: 'Shell Script'; }
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
/* additional language identifiers per "defun org-babel-execute"
in ob-*.el */
pre.src-cpp:before { content: 'C++'; }
pre.src-abc:before { content: 'ABC'; }
pre.src-coq:before { content: 'Coq'; }
pre.src-groovy:before { content: 'Groovy'; }
/* additional language identifiers from org-babel-shell-names in
ob-shell.el: ob-shell is the only babel language using a lambda to put
the execution function name together. */
pre.src-bash:before { content: 'bash'; }
pre.src-csh:before { content: 'csh'; }
pre.src-ash:before { content: 'ash'; }
pre.src-dash:before { content: 'dash'; }
pre.src-ksh:before { content: 'ksh'; }
pre.src-mksh:before { content: 'mksh'; }
pre.src-posh:before { content: 'posh'; }
/* Additional Emacs modes also supported by the LaTeX listings package */
pre.src-ada:before { content: 'Ada'; }
pre.src-asm:before { content: 'Assembler'; }
pre.src-caml:before { content: 'Caml'; }
pre.src-delphi:before { content: 'Delphi'; }
pre.src-html:before { content: 'HTML'; }
pre.src-idl:before { content: 'IDL'; }
pre.src-mercury:before { content: 'Mercury'; }
pre.src-metapost:before { content: 'MetaPost'; }
pre.src-modula-2:before { content: 'Modula-2'; }
pre.src-pascal:before { content: 'Pascal'; }
pre.src-ps:before { content: 'PostScript'; }
pre.src-prolog:before { content: 'Prolog'; }
pre.src-simula:before { content: 'Simula'; }
pre.src-tcl:before { content: 'tcl'; }
pre.src-tex:before { content: 'TeX'; }
pre.src-plain-tex:before { content: 'Plain TeX'; }
pre.src-verilog:before { content: 'Verilog'; }
pre.src-vhdl:before { content: 'VHDL'; }
pre.src-xml:before { content: 'XML'; }
pre.src-nxml:before { content: 'XML'; }
/* add a generic configuration mode; LaTeX export needs an additional
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
pre.src-conf:before { content: 'Configuration File'; }
table { border-collapse:collapse; }
caption.t-above { caption-side: top; }
caption.t-bottom { caption-side: bottom; }
td, th { vertical-align:top; }
th.org-right { text-align: center; }
th.org-left { text-align: center; }
th.org-center { text-align: center; }
td.org-right { text-align: right; }
td.org-left { text-align: left; }
td.org-center { text-align: center; }
dt { font-weight: bold; }
.footpara { display: inline; }
.footdef { margin-bottom: 1em; }
.figure { padding: 1em; }
.figure p { text-align: center; }
.equation-container {
display: table;
text-align: center;
width: 100%;
}
.equation {
vertical-align: middle;
}
.equation-label {
display: table-cell;
text-align: right;
vertical-align: middle;
}
.inlinetask {
padding: 10px;
border: 2px solid gray;
margin: 10px;
background: #ffffcc;
}
#org-div-home-and-up
{ text-align: right; font-size: 70%; white-space: nowrap; }
textarea { overflow-x: auto; }
.linenr { font-size: smaller }
.code-highlighted { background-color: #ffff00; }
.org-info-js_info-navigation { border-style: none; }
#org-info-js_console-label
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
.org-info-js_search-highlight
{ background-color: #ffff00; color: #000000; font-weight: bold; }
.org-svg { width: 90%; }
/*]]>*/-->
</style>
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
<script src="./js/jquery.min.js"></script>
<script src="./js/bootstrap.min.js"></script>
<script src="./js/jquery.stickytableheaders.min.js"></script>
<script src="./js/readtheorg.js"></script>
<script type="text/javascript">
// @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later
<!--/*--><![CDATA[/*><!--*/
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
// @license-end
</script>
</head>
<body>
<div id="org-div-home-and-up">
@ -270,7 +60,7 @@ Such project is briefly presented <a href="simulink-project.html">here</a>.
<h2 id="org38b9089"><span class="section-number-2">2</span> Stewart Platform Architecture Definition (<a href="stewart-architecture.html">link</a>)</h2>
<div class="outline-text-2" id="text-2">
<p>
The way the Stewart Platform is defined <a href="stewart-architecture.html">here</a>.
The way the Stewart Platform is defined is explained <a href="stewart-architecture.html">here</a>.
</p>
<p>
@ -416,7 +206,7 @@ Many text books, PhD thesis and articles related to parallel robots and Stewart
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-03-13 ven. 10:34</p>
<p class="date">Created: 2020-08-05 mer. 13:27</p>
</div>
</body>
</html>

View File

@ -1,239 +1,27 @@
<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-03-02 lun. 17:57 -->
<!-- 2020-08-05 mer. 13:27 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Kinematic Study of the Stewart Platform</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<style type="text/css">
<!--/*--><![CDATA[/*><!--*/
.title { text-align: center;
margin-bottom: .2em; }
.subtitle { text-align: center;
font-size: medium;
font-weight: bold;
margin-top:0; }
.todo { font-family: monospace; color: red; }
.done { font-family: monospace; color: green; }
.priority { font-family: monospace; color: orange; }
.tag { background-color: #eee; font-family: monospace;
padding: 2px; font-size: 80%; font-weight: normal; }
.timestamp { color: #bebebe; }
.timestamp-kwd { color: #5f9ea0; }
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
.underline { text-decoration: underline; }
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
p.verse { margin-left: 3%; }
pre {
border: 1px solid #ccc;
box-shadow: 3px 3px 3px #eee;
padding: 8pt;
font-family: monospace;
overflow: auto;
margin: 1.2em;
}
pre.src {
position: relative;
overflow: visible;
padding-top: 1.2em;
}
pre.src:before {
display: none;
position: absolute;
background-color: white;
top: -10px;
right: 10px;
padding: 3px;
border: 1px solid black;
}
pre.src:hover:before { display: inline;}
/* Languages per Org manual */
pre.src-asymptote:before { content: 'Asymptote'; }
pre.src-awk:before { content: 'Awk'; }
pre.src-C:before { content: 'C'; }
/* pre.src-C++ doesn't work in CSS */
pre.src-clojure:before { content: 'Clojure'; }
pre.src-css:before { content: 'CSS'; }
pre.src-D:before { content: 'D'; }
pre.src-ditaa:before { content: 'ditaa'; }
pre.src-dot:before { content: 'Graphviz'; }
pre.src-calc:before { content: 'Emacs Calc'; }
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
pre.src-fortran:before { content: 'Fortran'; }
pre.src-gnuplot:before { content: 'gnuplot'; }
pre.src-haskell:before { content: 'Haskell'; }
pre.src-hledger:before { content: 'hledger'; }
pre.src-java:before { content: 'Java'; }
pre.src-js:before { content: 'Javascript'; }
pre.src-latex:before { content: 'LaTeX'; }
pre.src-ledger:before { content: 'Ledger'; }
pre.src-lisp:before { content: 'Lisp'; }
pre.src-lilypond:before { content: 'Lilypond'; }
pre.src-lua:before { content: 'Lua'; }
pre.src-matlab:before { content: 'MATLAB'; }
pre.src-mscgen:before { content: 'Mscgen'; }
pre.src-ocaml:before { content: 'Objective Caml'; }
pre.src-octave:before { content: 'Octave'; }
pre.src-org:before { content: 'Org mode'; }
pre.src-oz:before { content: 'OZ'; }
pre.src-plantuml:before { content: 'Plantuml'; }
pre.src-processing:before { content: 'Processing.js'; }
pre.src-python:before { content: 'Python'; }
pre.src-R:before { content: 'R'; }
pre.src-ruby:before { content: 'Ruby'; }
pre.src-sass:before { content: 'Sass'; }
pre.src-scheme:before { content: 'Scheme'; }
pre.src-screen:before { content: 'Gnu Screen'; }
pre.src-sed:before { content: 'Sed'; }
pre.src-sh:before { content: 'shell'; }
pre.src-sql:before { content: 'SQL'; }
pre.src-sqlite:before { content: 'SQLite'; }
/* additional languages in org.el's org-babel-load-languages alist */
pre.src-forth:before { content: 'Forth'; }
pre.src-io:before { content: 'IO'; }
pre.src-J:before { content: 'J'; }
pre.src-makefile:before { content: 'Makefile'; }
pre.src-maxima:before { content: 'Maxima'; }
pre.src-perl:before { content: 'Perl'; }
pre.src-picolisp:before { content: 'Pico Lisp'; }
pre.src-scala:before { content: 'Scala'; }
pre.src-shell:before { content: 'Shell Script'; }
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
/* additional language identifiers per "defun org-babel-execute"
in ob-*.el */
pre.src-cpp:before { content: 'C++'; }
pre.src-abc:before { content: 'ABC'; }
pre.src-coq:before { content: 'Coq'; }
pre.src-groovy:before { content: 'Groovy'; }
/* additional language identifiers from org-babel-shell-names in
ob-shell.el: ob-shell is the only babel language using a lambda to put
the execution function name together. */
pre.src-bash:before { content: 'bash'; }
pre.src-csh:before { content: 'csh'; }
pre.src-ash:before { content: 'ash'; }
pre.src-dash:before { content: 'dash'; }
pre.src-ksh:before { content: 'ksh'; }
pre.src-mksh:before { content: 'mksh'; }
pre.src-posh:before { content: 'posh'; }
/* Additional Emacs modes also supported by the LaTeX listings package */
pre.src-ada:before { content: 'Ada'; }
pre.src-asm:before { content: 'Assembler'; }
pre.src-caml:before { content: 'Caml'; }
pre.src-delphi:before { content: 'Delphi'; }
pre.src-html:before { content: 'HTML'; }
pre.src-idl:before { content: 'IDL'; }
pre.src-mercury:before { content: 'Mercury'; }
pre.src-metapost:before { content: 'MetaPost'; }
pre.src-modula-2:before { content: 'Modula-2'; }
pre.src-pascal:before { content: 'Pascal'; }
pre.src-ps:before { content: 'PostScript'; }
pre.src-prolog:before { content: 'Prolog'; }
pre.src-simula:before { content: 'Simula'; }
pre.src-tcl:before { content: 'tcl'; }
pre.src-tex:before { content: 'TeX'; }
pre.src-plain-tex:before { content: 'Plain TeX'; }
pre.src-verilog:before { content: 'Verilog'; }
pre.src-vhdl:before { content: 'VHDL'; }
pre.src-xml:before { content: 'XML'; }
pre.src-nxml:before { content: 'XML'; }
/* add a generic configuration mode; LaTeX export needs an additional
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
pre.src-conf:before { content: 'Configuration File'; }
table { border-collapse:collapse; }
caption.t-above { caption-side: top; }
caption.t-bottom { caption-side: bottom; }
td, th { vertical-align:top; }
th.org-right { text-align: center; }
th.org-left { text-align: center; }
th.org-center { text-align: center; }
td.org-right { text-align: right; }
td.org-left { text-align: left; }
td.org-center { text-align: center; }
dt { font-weight: bold; }
.footpara { display: inline; }
.footdef { margin-bottom: 1em; }
.figure { padding: 1em; }
.figure p { text-align: center; }
.equation-container {
display: table;
text-align: center;
width: 100%;
}
.equation {
vertical-align: middle;
}
.equation-label {
display: table-cell;
text-align: right;
vertical-align: middle;
}
.inlinetask {
padding: 10px;
border: 2px solid gray;
margin: 10px;
background: #ffffcc;
}
#org-div-home-and-up
{ text-align: right; font-size: 70%; white-space: nowrap; }
textarea { overflow-x: auto; }
.linenr { font-size: smaller }
.code-highlighted { background-color: #ffff00; }
.org-info-js_info-navigation { border-style: none; }
#org-info-js_console-label
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
.org-info-js_search-highlight
{ background-color: #ffff00; color: #000000; font-weight: bold; }
.org-svg { width: 90%; }
/*]]>*/-->
</style>
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
<script src="./js/jquery.min.js"></script>
<script src="./js/bootstrap.min.js"></script>
<script src="./js/jquery.stickytableheaders.min.js"></script>
<script src="./js/readtheorg.js"></script>
<script type="text/javascript">
// @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later
<!--/*--><![CDATA[/*><!--*/
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
// @license-end
</script>
<script>
MathJax = {
tex: { macros: {
bm: ["\\boldsymbol{#1}",1],
}
}
<script>MathJax = {
tex: {
tags: 'ams',
macros: {bm: ["\\boldsymbol{#1}",1],}
}
};
</script>
<script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
@ -267,14 +55,14 @@
</li>
<li><a href="#org86b4b35">4. Estimation of the range validity of the approximate inverse kinematics</a>
<ul>
<li><a href="#org7423428">4.1. Stewart architecture definition</a></li>
<li><a href="#orga78aa66">4.1. Stewart architecture definition</a></li>
<li><a href="#orgd83ccf3">4.2. Comparison for &ldquo;pure&rdquo; translations</a></li>
<li><a href="#org4871c83">4.3. Conclusion</a></li>
</ul>
</li>
<li><a href="#org63255f9">5. Estimated required actuator stroke from specified platform mobility</a>
<ul>
<li><a href="#org3e1d400">5.1. Stewart architecture definition</a></li>
<li><a href="#orgadaa219">5.1. Stewart architecture definition</a></li>
<li><a href="#orgde50dd3">5.2. Wanted translations and rotations</a></li>
<li><a href="#org24e45ca">5.3. Needed stroke for &ldquo;pure&rdquo; rotations or translations</a></li>
<li><a href="#orgf6ba90c">5.4. Needed stroke for &ldquo;combined&rdquo; rotations or translations</a></li>
@ -282,36 +70,41 @@
</li>
<li><a href="#orgbbbf7b3">6. Estimated platform mobility from specified actuator stroke</a>
<ul>
<li><a href="#org53d6532">6.1. Stewart architecture definition</a></li>
<li><a href="#org6a6a5df">6.1. Stewart architecture definition</a></li>
<li><a href="#org2c6819e">6.2. Pure translations</a></li>
</ul>
</li>
<li><a href="#orgc4916dc">7. Functions</a>
<li><a href="#orgad495dd">7. Estimation of the Joint required Stroke</a>
<ul>
<li><a href="#org26e8b28">7.1. <code>computeJacobian</code>: Compute the Jacobian Matrix</a>
<li><a href="#orgae20178">7.1. Example of the initialization of a Stewart Platform</a></li>
</ul>
</li>
<li><a href="#orgc4916dc">8. Functions</a>
<ul>
<li><a href="#orgd0d007d">Function description</a></li>
<li><a href="#orge1b5b04">Check the <code>stewart</code> structure elements</a></li>
<li><a href="#org26e8b28">8.1. <code>computeJacobian</code>: Compute the Jacobian Matrix</a>
<ul>
<li><a href="#orgcde905e">Function description</a></li>
<li><a href="#org5be121e">Check the <code>stewart</code> structure elements</a></li>
<li><a href="#org0cd57b5">Compute Jacobian Matrix</a></li>
<li><a href="#orge21dcfc">Compute Stiffness Matrix</a></li>
<li><a href="#orgae76071">Compute Compliance Matrix</a></li>
<li><a href="#org78f18d7">Populate the <code>stewart</code> structure</a></li>
</ul>
</li>
<li><a href="#orgb82066f">7.2. <code>inverseKinematics</code>: Compute Inverse Kinematics</a>
<li><a href="#orgb82066f">8.2. <code>inverseKinematics</code>: Compute Inverse Kinematics</a>
<ul>
<li><a href="#org89930b7">Theory</a></li>
<li><a href="#org755b2ae">Function description</a></li>
<li><a href="#org867b3a0">Optional Parameters</a></li>
<li><a href="#org318eb5f">Check the <code>stewart</code> structure elements</a></li>
<li><a href="#orgb66d0e9">Function description</a></li>
<li><a href="#org0aeb7ad">Optional Parameters</a></li>
<li><a href="#orga54645b">Check the <code>stewart</code> structure elements</a></li>
<li><a href="#org0d64c23">Compute</a></li>
</ul>
</li>
<li><a href="#orgf5d8f0b">7.3. <code>forwardKinematicsApprox</code>: Compute the Approximate Forward Kinematics</a>
<li><a href="#orgf5d8f0b">8.3. <code>forwardKinematicsApprox</code>: Compute the Approximate Forward Kinematics</a>
<ul>
<li><a href="#orgba3bc64">Function description</a></li>
<li><a href="#org7af7974">Optional Parameters</a></li>
<li><a href="#org2ba5e64">Check the <code>stewart</code> structure elements</a></li>
<li><a href="#orgc074bc3">Function description</a></li>
<li><a href="#org9a855b1">Optional Parameters</a></li>
<li><a href="#orgdc0187a">Check the <code>stewart</code> structure elements</a></li>
<li><a href="#orge5ade24">Computation</a></li>
</ul>
</li>
@ -322,7 +115,7 @@
</div>
<p>
The kinematic analysis of a parallel manipulator is well described in <a class='org-ref-reference' href="#taghirad13_paral">taghirad13_paral</a>:
The kinematic analysis of a parallel manipulator is well described in (<a href="#citeproc_bib_item_1">Taghirad 2013</a>):
</p>
<blockquote>
<p>
@ -349,7 +142,7 @@ The current document is divided in the following sections:
<a id="orgc45d118"></a>
</p>
<p>
From <a class='org-ref-reference' href="#taghirad13_paral">taghirad13_paral</a>:
From (<a href="#citeproc_bib_item_1">Taghirad 2013</a>):
</p>
<blockquote>
<p>
@ -478,6 +271,7 @@ As explain in <a href="stewart-architecture.html">this</a> document, each Actuat
<ul class="org-ul">
<li>A spring with a stiffness \(k_{i}\)</li>
<li>A dashpot with a damping \(c_{i}\)</li>
<li>A force source \(\tau_i\)</li>
</ul>
<p>
@ -657,15 +451,15 @@ This will also gives us the range for which the approximate forward kinematic is
</p>
</div>
<div id="outline-container-org7423428" class="outline-3">
<h3 id="org7423428"><span class="section-number-3">4.1</span> Stewart architecture definition</h3>
<div id="outline-container-orga78aa66" class="outline-3">
<h3 id="orga78aa66"><span class="section-number-3">4.1</span> Stewart architecture definition</h3>
<div class="outline-text-3" id="text-4-1">
<p>
We first define some general Stewart architecture.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStewartPose(stewart);
@ -692,16 +486,16 @@ The estimate required strut stroke for both the approximate and exact solutions
The relative strut length displacement is shown in Figure <a href="#org02d8e34">2</a>.
</p>
<div class="org-src-container">
<pre class="src src-matlab">Xrs = logspace(<span class="org-type">-</span>6, <span class="org-type">-</span>1, 100); <span class="org-comment">% Wanted X translation of the mobile platform [m]</span>
<pre class="src src-matlab">Xrs = logspace(-6, -1, 100); % Wanted X translation of the mobile platform [m]
Ls_approx = zeros(6, length(Xrs));
Ls_exact = zeros(6, length(Xrs));
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(Xrs)</span>
Xr = Xrs(<span class="org-constant">i</span>);
L_approx(<span class="org-type">:</span>, <span class="org-constant">i</span>) = stewart.kinematics.J<span class="org-type">*</span>[Xr; 0; 0; 0; 0; 0;];
[<span class="org-type">~</span>, L_exact(<span class="org-type">:</span>, <span class="org-constant">i</span>)] = inverseKinematics(stewart, <span class="org-string">'AP'</span>, [Xr; 0; 0]);
<span class="org-keyword">end</span>
for i = 1:length(Xrs)
Xr = Xrs(i);
L_approx(:, i) = stewart.kinematics.J*[Xr; 0; 0; 0; 0; 0;];
[~, L_exact(:, i)] = inverseKinematics(stewart, 'AP', [Xr; 0; 0]);
end
</pre>
</div>
@ -758,15 +552,15 @@ This is what is analyzed in this section.
</p>
</div>
<div id="outline-container-org3e1d400" class="outline-3">
<h3 id="org3e1d400"><span class="section-number-3">5.1</span> Stewart architecture definition</h3>
<div id="outline-container-orgadaa219" class="outline-3">
<h3 id="orgadaa219"><span class="section-number-3">5.1</span> Stewart architecture definition</h3>
<div class="outline-text-3" id="text-5-1">
<p>
Let&rsquo;s first define the Stewart platform architecture that we want to study.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStewartPose(stewart);
@ -787,12 +581,12 @@ stewart = computeJacobian(stewart);
Let&rsquo;s now define the wanted extreme translations and rotations.
</p>
<div class="org-src-container">
<pre class="src src-matlab">Tx_max = 50e<span class="org-type">-</span>6; <span class="org-comment">% Translation [m]</span>
Ty_max = 50e<span class="org-type">-</span>6; <span class="org-comment">% Translation [m]</span>
Tz_max = 50e<span class="org-type">-</span>6; <span class="org-comment">% Translation [m]</span>
Rx_max = 30e<span class="org-type">-</span>6; <span class="org-comment">% Rotation [rad]</span>
Ry_max = 30e<span class="org-type">-</span>6; <span class="org-comment">% Rotation [rad]</span>
Rz_max = 0; <span class="org-comment">% Rotation [rad]</span>
<pre class="src src-matlab">Tx_max = 50e-6; % Translation [m]
Ty_max = 50e-6; % Translation [m]
Tz_max = 50e-6; % Translation [m]
Rx_max = 30e-6; % Rotation [rad]
Ry_max = 30e-6; % Rotation [rad]
Rz_max = 0; % Rotation [rad]
</pre>
</div>
</div>
@ -807,12 +601,12 @@ We do that using either the Inverse Kinematic solution or the Jacobian matrix as
</p>
<div class="org-src-container">
<pre class="src src-matlab">LTx = stewart.kinematics.J<span class="org-type">*</span>[Tx_max 0 0 0 0 0]<span class="org-type">'</span>;
LTy = stewart.kinematics.J<span class="org-type">*</span>[0 Ty_max 0 0 0 0]<span class="org-type">'</span>;
LTz = stewart.kinematics.J<span class="org-type">*</span>[0 0 Tz_max 0 0 0]<span class="org-type">'</span>;
LRx = stewart.kinematics.J<span class="org-type">*</span>[0 0 0 Rx_max 0 0]<span class="org-type">'</span>;
LRy = stewart.kinematics.J<span class="org-type">*</span>[0 0 0 0 Ry_max 0]<span class="org-type">'</span>;
LRz = stewart.kinematics.J<span class="org-type">*</span>[0 0 0 0 0 Rz_max]<span class="org-type">'</span>;
<pre class="src src-matlab">LTx = stewart.kinematics.J*[Tx_max 0 0 0 0 0]';
LTy = stewart.kinematics.J*[0 Ty_max 0 0 0 0]';
LTz = stewart.kinematics.J*[0 0 Tz_max 0 0 0]';
LRx = stewart.kinematics.J*[0 0 0 Rx_max 0 0]';
LRy = stewart.kinematics.J*[0 0 0 0 Ry_max 0]';
LRz = stewart.kinematics.J*[0 0 0 0 0 Rz_max]';
</pre>
</div>
@ -845,7 +639,7 @@ To do so, we may estimate the required actuator stroke for all possible combinat
Let&rsquo;s first generate all the possible combination of maximum translation and rotations.
</p>
<div class="org-src-container">
<pre class="src src-matlab">Ps = [2<span class="org-type">*</span>(dec2bin(0<span class="org-type">:</span>5<span class="org-type">^</span>2<span class="org-type">-</span>1,5)<span class="org-type">-</span><span class="org-string">'0'</span>)<span class="org-type">-</span>1, zeros(5<span class="org-type">^</span>2, 1)]<span class="org-type">.*</span>[Tx_max Ty_max Tz_max Rx_max Ry_max Rz_max];
<pre class="src src-matlab">Ps = [2*(dec2bin(0:5^2-1,5)-'0')-1, zeros(5^2, 1)].*[Tx_max Ty_max Tz_max Rx_max Ry_max Rz_max];
</pre>
</div>
@ -1110,29 +904,29 @@ For all possible combination, we compute the required actuator stroke using the
<pre class="src src-matlab">L_min = 0;
L_max = 0;
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:size(Ps,1)</span>
for i = 1:size(Ps,1)
Rx = [1 0 0;
0 cos(Ps(<span class="org-constant">i</span>, 4)) <span class="org-type">-</span>sin(Ps(<span class="org-constant">i</span>, 4));
0 sin(Ps(<span class="org-constant">i</span>, 4)) cos(Ps(<span class="org-constant">i</span>, 4))];
0 cos(Ps(i, 4)) -sin(Ps(i, 4));
0 sin(Ps(i, 4)) cos(Ps(i, 4))];
Ry = [ cos(Ps(<span class="org-constant">i</span>, 5)) 0 sin(Ps(<span class="org-constant">i</span>, 5));
Ry = [ cos(Ps(i, 5)) 0 sin(Ps(i, 5));
0 1 0;
<span class="org-type">-</span>sin(Ps(<span class="org-constant">i</span>, 5)) 0 cos(Ps(<span class="org-constant">i</span>, 5))];
-sin(Ps(i, 5)) 0 cos(Ps(i, 5))];
Rz = [cos(Ps(<span class="org-constant">i</span>, 6)) <span class="org-type">-</span>sin(Ps(<span class="org-constant">i</span>, 6)) 0;
sin(Ps(<span class="org-constant">i</span>, 6)) cos(Ps(<span class="org-constant">i</span>, 6)) 0;
Rz = [cos(Ps(i, 6)) -sin(Ps(i, 6)) 0;
sin(Ps(i, 6)) cos(Ps(i, 6)) 0;
0 0 1];
ARB = Rz<span class="org-type">*</span>Ry<span class="org-type">*</span>Rx;
[<span class="org-type">~</span>, Ls] = inverseKinematics(stewart, <span class="org-string">'AP'</span>, Ps(<span class="org-constant">i</span>, 1<span class="org-type">:</span>3)<span class="org-type">'</span>, <span class="org-string">'ARB'</span>, ARB);
ARB = Rz*Ry*Rx;
[~, Ls] = inverseKinematics(stewart, 'AP', Ps(i, 1:3)', 'ARB', ARB);
<span class="org-keyword">if</span> min(Ls) <span class="org-type">&lt;</span> L_min
if min(Ls) &lt; L_min
L_min = min(Ls)
<span class="org-keyword">end</span>
<span class="org-keyword">if</span> max(Ls) <span class="org-type">&gt;</span> L_max
end
if max(Ls) &gt; L_max
L_max = max(Ls)
<span class="org-keyword">end</span>
<span class="org-keyword">end</span>
end
end
</pre>
</div>
@ -1178,15 +972,15 @@ However, for small displacements, we can use the Jacobian as an approximate solu
</p>
</div>
<div id="outline-container-org53d6532" class="outline-3">
<h3 id="org53d6532"><span class="section-number-3">6.1</span> Stewart architecture definition</h3>
<div id="outline-container-org6a6a5df" class="outline-3">
<h3 id="org6a6a5df"><span class="section-number-3">6.1</span> Stewart architecture definition</h3>
<div class="outline-text-3" id="text-6-1">
<p>
Let&rsquo;s first define the Stewart platform architecture that we want to study.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStewartPose(stewart);
@ -1202,8 +996,8 @@ stewart = computeJacobian(stewart);
Let&rsquo;s now define the actuator stroke.
</p>
<div class="org-src-container">
<pre class="src src-matlab">L_min = <span class="org-type">-</span>50e<span class="org-type">-</span>6; <span class="org-comment">% [m]</span>
L_max = 50e<span class="org-type">-</span>6; <span class="org-comment">% [m]</span>
<pre class="src src-matlab">L_min = -50e-6; % [m]
L_max = 50e-6; % [m]
</pre>
</div>
</div>
@ -1231,21 +1025,21 @@ To obtain the mobility &ldquo;volume&rdquo; attainable by the Stewart platform w
For each possible value of \((\theta, \phi)\), we compute the maximum radius \(r\) attainable with the constraint that the stroke of each actuator should be between <code>L_min</code> and <code>L_max</code>.
</p>
<div class="org-src-container">
<pre class="src src-matlab">thetas = linspace(0, <span class="org-constant">pi</span>, 50);
phis = linspace(0, 2<span class="org-type">*</span><span class="org-constant">pi</span>, 50);
<pre class="src src-matlab">thetas = linspace(0, pi, 50);
phis = linspace(0, 2*pi, 50);
rs = zeros(length(thetas), length(phis));
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(thetas)</span>
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">j</span></span> = <span class="org-constant">1:length(phis)</span>
Tx = sin(thetas(<span class="org-constant">i</span>))<span class="org-type">*</span>cos(phis(<span class="org-constant">j</span>));
Ty = sin(thetas(<span class="org-constant">i</span>))<span class="org-type">*</span>sin(phis(<span class="org-constant">j</span>));
Tz = cos(thetas(<span class="org-constant">i</span>));
for i = 1:length(thetas)
for j = 1:length(phis)
Tx = sin(thetas(i))*cos(phis(j));
Ty = sin(thetas(i))*sin(phis(j));
Tz = cos(thetas(i));
dL = stewart.kinematics.J<span class="org-type">*</span>[Tx; Ty; Tz; 0; 0; 0;]; <span class="org-comment">% dL required for 1m displacement in theta/phi direction</span>
dL = stewart.kinematics.J*[Tx; Ty; Tz; 0; 0; 0;]; % dL required for 1m displacement in theta/phi direction
rs(<span class="org-constant">i</span>, <span class="org-constant">j</span>) = max([dL(dL<span class="org-type">&lt;</span>0)<span class="org-type">*</span>L_min; dL(dL<span class="org-type">&gt;</span>0)<span class="org-type">*</span>L_max]);
<span class="org-keyword">end</span>
<span class="org-keyword">end</span>
rs(i, j) = max([dL(dL&lt;0)*L_min; dL(dL&gt;0)*L_max]);
end
end
</pre>
</div>
@ -1291,16 +1085,77 @@ We can also approximate the mobility by a sphere with a radius equal to the mini
</div>
</div>
<div id="outline-container-orgc4916dc" class="outline-2">
<h2 id="orgc4916dc"><span class="section-number-2">7</span> Functions</h2>
<div id="outline-container-orgad495dd" class="outline-2">
<h2 id="orgad495dd"><span class="section-number-2">7</span> Estimation of the Joint required Stroke</h2>
<div class="outline-text-2" id="text-7">
</div>
<div id="outline-container-orgae20178" class="outline-3">
<h3 id="orgae20178"><span class="section-number-3">7.1</span> Example of the initialization of a Stewart Platform</h3>
<div class="outline-text-3" id="text-7-1">
<p>
Let&rsquo;s first define the Stewart Platform Geometry.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 150e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
As_init = stewart.geometry.As;
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">Tx_max = 50e-6; % Translation [m]
Ty_max = 50e-6; % Translation [m]
Tz_max = 50e-6; % Translation [m]
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">Ps = [2*(dec2bin(0:3^2-2,3)-'0')-1].*[Tx_max Ty_max Tz_max];
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">flex_ang = zeros(size(Ps, 1), 6);
for Ps_i = 1:size(Ps, 1)
stewart.geometry.FO_M = [0; 0; 90e-3] + Ps(Ps_i, :)';
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
flex_ang(Ps_i, :) = acos(sum(As_init.*stewart.geometry.As));
end
</pre>
</div>
<p>
And the maximum bending of the flexible joints is: (in [mrad])
</p>
<div class="org-src-container">
<pre class="src src-matlab">1e3*max(max(abs(flex_ang)))
</pre>
</div>
<pre class="example">
0.90937
</pre>
</div>
</div>
</div>
<div id="outline-container-orgc4916dc" class="outline-2">
<h2 id="orgc4916dc"><span class="section-number-2">8</span> Functions</h2>
<div class="outline-text-2" id="text-8">
<p>
<a id="orgf9a6042"></a>
</p>
</div>
<div id="outline-container-org26e8b28" class="outline-3">
<h3 id="org26e8b28"><span class="section-number-3">7.1</span> <code>computeJacobian</code>: Compute the Jacobian Matrix</h3>
<div class="outline-text-3" id="text-7-1">
<h3 id="org26e8b28"><span class="section-number-3">8.1</span> <code>computeJacobian</code>: Compute the Jacobian Matrix</h3>
<div class="outline-text-3" id="text-8-1">
<p>
<a id="org2387f19"></a>
</p>
@ -1310,42 +1165,42 @@ This Matlab function is accessible <a href="../src/computeJacobian.m">here</a>.
</p>
</div>
<div id="outline-container-orgd0d007d" class="outline-4">
<h4 id="orgd0d007d">Function description</h4>
<div class="outline-text-4" id="text-orgd0d007d">
<div id="outline-container-orgcde905e" class="outline-4">
<h4 id="orgcde905e">Function description</h4>
<div class="outline-text-4" id="text-orgcde905e">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[stewart]</span> = <span class="org-function-name">computeJacobian</span>(<span class="org-variable-name">stewart</span>)
<span class="org-comment">% computeJacobian -</span>
<span class="org-comment">%</span>
<span class="org-comment">% Syntax: [stewart] = computeJacobian(stewart)</span>
<span class="org-comment">%</span>
<span class="org-comment">% Inputs:</span>
<span class="org-comment">% - stewart - With at least the following fields:</span>
<span class="org-comment">% - geometry.As [3x6] - The 6 unit vectors for each strut expressed in {A}</span>
<span class="org-comment">% - geometry.Ab [3x6] - The 6 position of the joints bi expressed in {A}</span>
<span class="org-comment">% - actuators.K [6x1] - Total stiffness of the actuators</span>
<span class="org-comment">%</span>
<span class="org-comment">% Outputs:</span>
<span class="org-comment">% - stewart - With the 3 added field:</span>
<span class="org-comment">% - kinematics.J [6x6] - The Jacobian Matrix</span>
<span class="org-comment">% - kinematics.K [6x6] - The Stiffness Matrix</span>
<span class="org-comment">% - kinematics.C [6x6] - The Compliance Matrix</span>
<pre class="src src-matlab">function [stewart] = computeJacobian(stewart)
% computeJacobian -
%
% Syntax: [stewart] = computeJacobian(stewart)
%
% Inputs:
% - stewart - With at least the following fields:
% - geometry.As [3x6] - The 6 unit vectors for each strut expressed in {A}
% - geometry.Ab [3x6] - The 6 position of the joints bi expressed in {A}
% - actuators.K [6x1] - Total stiffness of the actuators
%
% Outputs:
% - stewart - With the 3 added field:
% - kinematics.J [6x6] - The Jacobian Matrix
% - kinematics.K [6x6] - The Stiffness Matrix
% - kinematics.C [6x6] - The Compliance Matrix
</pre>
</div>
</div>
</div>
<div id="outline-container-orge1b5b04" class="outline-4">
<h4 id="orge1b5b04">Check the <code>stewart</code> structure elements</h4>
<div class="outline-text-4" id="text-orge1b5b04">
<div id="outline-container-org5be121e" class="outline-4">
<h4 id="org5be121e">Check the <code>stewart</code> structure elements</h4>
<div class="outline-text-4" id="text-org5be121e">
<div class="org-src-container">
<pre class="src src-matlab">assert(isfield(stewart.geometry, <span class="org-string">'As'</span>), <span class="org-string">'stewart.geometry should have attribute As'</span>)
<pre class="src src-matlab">assert(isfield(stewart.geometry, 'As'), 'stewart.geometry should have attribute As')
As = stewart.geometry.As;
assert(isfield(stewart.geometry, <span class="org-string">'Ab'</span>), <span class="org-string">'stewart.geometry should have attribute Ab'</span>)
assert(isfield(stewart.geometry, 'Ab'), 'stewart.geometry should have attribute Ab')
Ab = stewart.geometry.Ab;
assert(isfield(stewart.actuators, <span class="org-string">'K'</span>), <span class="org-string">'stewart.actuators should have attribute K'</span>)
assert(isfield(stewart.actuators, 'K'), 'stewart.actuators should have attribute K')
Ki = stewart.actuators.K;
</pre>
</div>
@ -1357,7 +1212,7 @@ Ki = stewart.actuators.K;
<h4 id="org0cd57b5">Compute Jacobian Matrix</h4>
<div class="outline-text-4" id="text-org0cd57b5">
<div class="org-src-container">
<pre class="src src-matlab">J = [As<span class="org-type">'</span> , cross(Ab, As)<span class="org-type">'</span>];
<pre class="src src-matlab">J = [As' , cross(Ab, As)'];
</pre>
</div>
</div>
@ -1367,7 +1222,7 @@ Ki = stewart.actuators.K;
<h4 id="orge21dcfc">Compute Stiffness Matrix</h4>
<div class="outline-text-4" id="text-orge21dcfc">
<div class="org-src-container">
<pre class="src src-matlab">K = J<span class="org-type">'*</span>diag(Ki)<span class="org-type">*</span>J;
<pre class="src src-matlab">K = J'*diag(Ki)*J;
</pre>
</div>
</div>
@ -1398,8 +1253,8 @@ stewart.kinematics.C = C;
<div id="outline-container-orgb82066f" class="outline-3">
<h3 id="orgb82066f"><span class="section-number-3">7.2</span> <code>inverseKinematics</code>: Compute Inverse Kinematics</h3>
<div class="outline-text-3" id="text-7-2">
<h3 id="orgb82066f"><span class="section-number-3">8.2</span> <code>inverseKinematics</code>: Compute Inverse Kinematics</h3>
<div class="outline-text-3" id="text-8-2">
<p>
<a id="orgb8859d7"></a>
</p>
@ -1445,57 +1300,57 @@ Otherwise, when the limbs&rsquo; lengths derived yield complex numbers, then the
</div>
</div>
<div id="outline-container-org755b2ae" class="outline-4">
<h4 id="org755b2ae">Function description</h4>
<div class="outline-text-4" id="text-org755b2ae">
<div id="outline-container-orgb66d0e9" class="outline-4">
<h4 id="orgb66d0e9">Function description</h4>
<div class="outline-text-4" id="text-orgb66d0e9">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[Li, dLi]</span> = <span class="org-function-name">inverseKinematics</span>(<span class="org-variable-name">stewart</span>, <span class="org-variable-name">args</span>)
<span class="org-comment">% inverseKinematics - Compute the needed length of each strut to have the wanted position and orientation of {B} with respect to {A}</span>
<span class="org-comment">%</span>
<span class="org-comment">% Syntax: [stewart] = inverseKinematics(stewart)</span>
<span class="org-comment">%</span>
<span class="org-comment">% Inputs:</span>
<span class="org-comment">% - stewart - A structure with the following fields</span>
<span class="org-comment">% - geometry.Aa [3x6] - The positions ai expressed in {A}</span>
<span class="org-comment">% - geometry.Bb [3x6] - The positions bi expressed in {B}</span>
<span class="org-comment">% - geometry.l [6x1] - Length of each strut</span>
<span class="org-comment">% - args - Can have the following fields:</span>
<span class="org-comment">% - AP [3x1] - The wanted position of {B} with respect to {A}</span>
<span class="org-comment">% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}</span>
<span class="org-comment">%</span>
<span class="org-comment">% Outputs:</span>
<span class="org-comment">% - Li [6x1] - The 6 needed length of the struts in [m] to have the wanted pose of {B} w.r.t. {A}</span>
<span class="org-comment">% - dLi [6x1] - The 6 needed displacement of the struts from the initial position in [m] to have the wanted pose of {B} w.r.t. {A}</span>
<pre class="src src-matlab">function [Li, dLi] = inverseKinematics(stewart, args)
% inverseKinematics - Compute the needed length of each strut to have the wanted position and orientation of {B} with respect to {A}
%
% Syntax: [stewart] = inverseKinematics(stewart)
%
% Inputs:
% - stewart - A structure with the following fields
% - geometry.Aa [3x6] - The positions ai expressed in {A}
% - geometry.Bb [3x6] - The positions bi expressed in {B}
% - geometry.l [6x1] - Length of each strut
% - args - Can have the following fields:
% - AP [3x1] - The wanted position of {B} with respect to {A}
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
%
% Outputs:
% - Li [6x1] - The 6 needed length of the struts in [m] to have the wanted pose of {B} w.r.t. {A}
% - dLi [6x1] - The 6 needed displacement of the struts from the initial position in [m] to have the wanted pose of {B} w.r.t. {A}
</pre>
</div>
</div>
</div>
<div id="outline-container-org867b3a0" class="outline-4">
<h4 id="org867b3a0">Optional Parameters</h4>
<div class="outline-text-4" id="text-org867b3a0">
<div id="outline-container-org0aeb7ad" class="outline-4">
<h4 id="org0aeb7ad">Optional Parameters</h4>
<div class="outline-text-4" id="text-org0aeb7ad">
<div class="org-src-container">
<pre class="src src-matlab">arguments
stewart
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
args.ARB (3,3) double {mustBeNumeric} = eye(3)
<span class="org-keyword">end</span>
end
</pre>
</div>
</div>
</div>
<div id="outline-container-org318eb5f" class="outline-4">
<h4 id="org318eb5f">Check the <code>stewart</code> structure elements</h4>
<div class="outline-text-4" id="text-org318eb5f">
<div id="outline-container-orga54645b" class="outline-4">
<h4 id="orga54645b">Check the <code>stewart</code> structure elements</h4>
<div class="outline-text-4" id="text-orga54645b">
<div class="org-src-container">
<pre class="src src-matlab">assert(isfield(stewart.geometry, <span class="org-string">'Aa'</span>), <span class="org-string">'stewart.geometry should have attribute Aa'</span>)
<pre class="src src-matlab">assert(isfield(stewart.geometry, 'Aa'), 'stewart.geometry should have attribute Aa')
Aa = stewart.geometry.Aa;
assert(isfield(stewart.geometry, <span class="org-string">'Bb'</span>), <span class="org-string">'stewart.geometry should have attribute Bb'</span>)
assert(isfield(stewart.geometry, 'Bb'), 'stewart.geometry should have attribute Bb')
Bb = stewart.geometry.Bb;
assert(isfield(stewart.geometry, <span class="org-string">'l'</span>), <span class="org-string">'stewart.geometry should have attribute l'</span>)
assert(isfield(stewart.geometry, 'l'), 'stewart.geometry should have attribute l')
l = stewart.geometry.l;
</pre>
</div>
@ -1507,12 +1362,12 @@ l = stewart.geometry.l;
<h4 id="org0d64c23">Compute</h4>
<div class="outline-text-4" id="text-org0d64c23">
<div class="org-src-container">
<pre class="src src-matlab">Li = sqrt(args.AP<span class="org-type">'*</span>args.AP <span class="org-type">+</span> diag(Bb<span class="org-type">'*</span>Bb) <span class="org-type">+</span> diag(Aa<span class="org-type">'*</span>Aa) <span class="org-type">-</span> (2<span class="org-type">*</span>args.AP<span class="org-type">'*</span>Aa)<span class="org-type">'</span> <span class="org-type">+</span> (2<span class="org-type">*</span>args.AP<span class="org-type">'*</span>(args.ARB<span class="org-type">*</span>Bb))<span class="org-type">'</span> <span class="org-type">-</span> diag(2<span class="org-type">*</span>(args.ARB<span class="org-type">*</span>Bb)<span class="org-type">'*</span>Aa));
<pre class="src src-matlab">Li = sqrt(args.AP'*args.AP + diag(Bb'*Bb) + diag(Aa'*Aa) - (2*args.AP'*Aa)' + (2*args.AP'*(args.ARB*Bb))' - diag(2*(args.ARB*Bb)'*Aa));
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">dLi = Li<span class="org-type">-</span>l;
<pre class="src src-matlab">dLi = Li-l;
</pre>
</div>
</div>
@ -1520,8 +1375,8 @@ l = stewart.geometry.l;
</div>
<div id="outline-container-orgf5d8f0b" class="outline-3">
<h3 id="orgf5d8f0b"><span class="section-number-3">7.3</span> <code>forwardKinematicsApprox</code>: Compute the Approximate Forward Kinematics</h3>
<div class="outline-text-3" id="text-7-3">
<h3 id="orgf5d8f0b"><span class="section-number-3">8.3</span> <code>forwardKinematicsApprox</code>: Compute the Approximate Forward Kinematics</h3>
<div class="outline-text-3" id="text-8-3">
<p>
<a id="orgdb31434"></a>
</p>
@ -1531,48 +1386,48 @@ This Matlab function is accessible <a href="../src/forwardKinematicsApprox.m">he
</p>
</div>
<div id="outline-container-orgba3bc64" class="outline-4">
<h4 id="orgba3bc64">Function description</h4>
<div class="outline-text-4" id="text-orgba3bc64">
<div id="outline-container-orgc074bc3" class="outline-4">
<h4 id="orgc074bc3">Function description</h4>
<div class="outline-text-4" id="text-orgc074bc3">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[P, R]</span> = <span class="org-function-name">forwardKinematicsApprox</span>(<span class="org-variable-name">stewart</span>, <span class="org-variable-name">args</span>)
<span class="org-comment">% forwardKinematicsApprox - Computed the approximate pose of {B} with respect to {A} from the length of each strut and using</span>
<span class="org-comment">% the Jacobian Matrix</span>
<span class="org-comment">%</span>
<span class="org-comment">% Syntax: [P, R] = forwardKinematicsApprox(stewart, args)</span>
<span class="org-comment">%</span>
<span class="org-comment">% Inputs:</span>
<span class="org-comment">% - stewart - A structure with the following fields</span>
<span class="org-comment">% - kinematics.J [6x6] - The Jacobian Matrix</span>
<span class="org-comment">% - args - Can have the following fields:</span>
<span class="org-comment">% - dL [6x1] - Displacement of each strut [m]</span>
<span class="org-comment">%</span>
<span class="org-comment">% Outputs:</span>
<span class="org-comment">% - P [3x1] - The estimated position of {B} with respect to {A}</span>
<span class="org-comment">% - R [3x3] - The estimated rotation matrix that gives the orientation of {B} with respect to {A}</span>
<pre class="src src-matlab">function [P, R] = forwardKinematicsApprox(stewart, args)
% forwardKinematicsApprox - Computed the approximate pose of {B} with respect to {A} from the length of each strut and using
% the Jacobian Matrix
%
% Syntax: [P, R] = forwardKinematicsApprox(stewart, args)
%
% Inputs:
% - stewart - A structure with the following fields
% - kinematics.J [6x6] - The Jacobian Matrix
% - args - Can have the following fields:
% - dL [6x1] - Displacement of each strut [m]
%
% Outputs:
% - P [3x1] - The estimated position of {B} with respect to {A}
% - R [3x3] - The estimated rotation matrix that gives the orientation of {B} with respect to {A}
</pre>
</div>
</div>
</div>
<div id="outline-container-org7af7974" class="outline-4">
<h4 id="org7af7974">Optional Parameters</h4>
<div class="outline-text-4" id="text-org7af7974">
<div id="outline-container-org9a855b1" class="outline-4">
<h4 id="org9a855b1">Optional Parameters</h4>
<div class="outline-text-4" id="text-org9a855b1">
<div class="org-src-container">
<pre class="src src-matlab">arguments
stewart
args.dL (6,1) double {mustBeNumeric} = zeros(6,1)
<span class="org-keyword">end</span>
end
</pre>
</div>
</div>
</div>
<div id="outline-container-org2ba5e64" class="outline-4">
<h4 id="org2ba5e64">Check the <code>stewart</code> structure elements</h4>
<div class="outline-text-4" id="text-org2ba5e64">
<div id="outline-container-orgdc0187a" class="outline-4">
<h4 id="orgdc0187a">Check the <code>stewart</code> structure elements</h4>
<div class="outline-text-4" id="text-orgdc0187a">
<div class="org-src-container">
<pre class="src src-matlab">assert(isfield(stewart.kinematics, <span class="org-string">'J'</span>), <span class="org-string">'stewart.kinematics should have attribute J'</span>)
<pre class="src src-matlab">assert(isfield(stewart.kinematics, 'J'), 'stewart.kinematics should have attribute J')
J = stewart.kinematics.J;
</pre>
</div>
@ -1588,7 +1443,7 @@ position and orientation of {B} with respect to {A} using the following formula:
\[ d \bm{\mathcal{X}} = \bm{J}^{-1} d\bm{\mathcal{L}} \]
</p>
<div class="org-src-container">
<pre class="src src-matlab">X = J<span class="org-type">\</span>args.dL;
<pre class="src src-matlab">X = J\args.dL;
</pre>
</div>
@ -1596,7 +1451,7 @@ position and orientation of {B} with respect to {A} using the following formula:
The position vector corresponds to the first 3 elements.
</p>
<div class="org-src-container">
<pre class="src src-matlab">P = X(1<span class="org-type">:</span>3);
<pre class="src src-matlab">P = X(1:3);
</pre>
</div>
@ -1605,8 +1460,8 @@ The next 3 elements are the orientation of {B} with respect to {A} expressed
using the screw axis.
</p>
<div class="org-src-container">
<pre class="src src-matlab">theta = norm(X(4<span class="org-type">:</span>6));
s = X(4<span class="org-type">:</span>6)<span class="org-type">/</span>theta;
<pre class="src src-matlab">theta = norm(X(4:6));
s = X(4:6)/theta;
</pre>
</div>
@ -1614,9 +1469,9 @@ s = X(4<span class="org-type">:</span>6)<span class="org-type">/</span>theta;
We then compute the corresponding rotation matrix.
</p>
<div class="org-src-container">
<pre class="src src-matlab">R = [s(1)<span class="org-type">^</span>2<span class="org-type">*</span>(1<span class="org-type">-</span>cos(theta)) <span class="org-type">+</span> cos(theta) , s(1)<span class="org-type">*</span>s(2)<span class="org-type">*</span>(1<span class="org-type">-</span>cos(theta)) <span class="org-type">-</span> s(3)<span class="org-type">*</span>sin(theta), s(1)<span class="org-type">*</span>s(3)<span class="org-type">*</span>(1<span class="org-type">-</span>cos(theta)) <span class="org-type">+</span> s(2)<span class="org-type">*</span>sin(theta);
s<span class="org-type">(2)*s(1)*(1-cos(theta)) + s(3)*sin(theta), s(2)^2*(1-cos(theta)) + cos(theta), s(2)*s(3)*(1-cos(theta)) - s(1)*sin(theta);</span>
s<span class="org-type">(3)*s(1)*(1-cos(theta)) - s(2)*sin(theta), s(3)*s(2)*(1-cos(theta)) + s(1)*sin(theta), s(3)^2*(1-cos(theta)) + cos(theta)];</span>
<pre class="src src-matlab">R = [s(1)^2*(1-cos(theta)) + cos(theta) , s(1)*s(2)*(1-cos(theta)) - s(3)*sin(theta), s(1)*s(3)*(1-cos(theta)) + s(2)*sin(theta);
s(2)*s(1)*(1-cos(theta)) + s(3)*sin(theta), s(2)^2*(1-cos(theta)) + cos(theta), s(2)*s(3)*(1-cos(theta)) - s(1)*sin(theta);
s(3)*s(1)*(1-cos(theta)) - s(2)*sin(theta), s(3)*s(2)*(1-cos(theta)) + s(1)*sin(theta), s(3)^2*(1-cos(theta)) + cos(theta)];
</pre>
</div>
</div>
@ -1626,14 +1481,16 @@ We then compute the corresponding rotation matrix.
<p>
<h1 class='org-ref-bib-h1'>Bibliography</h1>
<ul class='org-ref-bib'><li><a id="taghirad13_paral">[taghirad13_paral]</a> <a name="taghirad13_paral"></a>Taghirad, Parallel robots : mechanics and control, CRC Press (2013).</li>
</ul>
</p>
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><h2 class='citeproc-org-bib-h2'>Bibliography</h2>
<div class="csl-bib-body">
<div class="csl-entry"><a name="citeproc_bib_item_1"></a>Taghirad, Hamid. 2013. <i>Parallel Robots : Mechanics and Control</i>. Boca Raton, FL: CRC Press.</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-03-02 lun. 17:57</p>
<p class="date">Created: 2020-08-05 mer. 13:27</p>
</div>
</body>
</html>

View File

@ -1,239 +1,27 @@
<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-03-11 mer. 18:59 -->
<!-- 2020-08-05 mer. 13:27 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Stewart Platform - Simscape Model</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<style type="text/css">
<!--/*--><![CDATA[/*><!--*/
.title { text-align: center;
margin-bottom: .2em; }
.subtitle { text-align: center;
font-size: medium;
font-weight: bold;
margin-top:0; }
.todo { font-family: monospace; color: red; }
.done { font-family: monospace; color: green; }
.priority { font-family: monospace; color: orange; }
.tag { background-color: #eee; font-family: monospace;
padding: 2px; font-size: 80%; font-weight: normal; }
.timestamp { color: #bebebe; }
.timestamp-kwd { color: #5f9ea0; }
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
.underline { text-decoration: underline; }
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
p.verse { margin-left: 3%; }
pre {
border: 1px solid #ccc;
box-shadow: 3px 3px 3px #eee;
padding: 8pt;
font-family: monospace;
overflow: auto;
margin: 1.2em;
}
pre.src {
position: relative;
overflow: visible;
padding-top: 1.2em;
}
pre.src:before {
display: none;
position: absolute;
background-color: white;
top: -10px;
right: 10px;
padding: 3px;
border: 1px solid black;
}
pre.src:hover:before { display: inline;}
/* Languages per Org manual */
pre.src-asymptote:before { content: 'Asymptote'; }
pre.src-awk:before { content: 'Awk'; }
pre.src-C:before { content: 'C'; }
/* pre.src-C++ doesn't work in CSS */
pre.src-clojure:before { content: 'Clojure'; }
pre.src-css:before { content: 'CSS'; }
pre.src-D:before { content: 'D'; }
pre.src-ditaa:before { content: 'ditaa'; }
pre.src-dot:before { content: 'Graphviz'; }
pre.src-calc:before { content: 'Emacs Calc'; }
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
pre.src-fortran:before { content: 'Fortran'; }
pre.src-gnuplot:before { content: 'gnuplot'; }
pre.src-haskell:before { content: 'Haskell'; }
pre.src-hledger:before { content: 'hledger'; }
pre.src-java:before { content: 'Java'; }
pre.src-js:before { content: 'Javascript'; }
pre.src-latex:before { content: 'LaTeX'; }
pre.src-ledger:before { content: 'Ledger'; }
pre.src-lisp:before { content: 'Lisp'; }
pre.src-lilypond:before { content: 'Lilypond'; }
pre.src-lua:before { content: 'Lua'; }
pre.src-matlab:before { content: 'MATLAB'; }
pre.src-mscgen:before { content: 'Mscgen'; }
pre.src-ocaml:before { content: 'Objective Caml'; }
pre.src-octave:before { content: 'Octave'; }
pre.src-org:before { content: 'Org mode'; }
pre.src-oz:before { content: 'OZ'; }
pre.src-plantuml:before { content: 'Plantuml'; }
pre.src-processing:before { content: 'Processing.js'; }
pre.src-python:before { content: 'Python'; }
pre.src-R:before { content: 'R'; }
pre.src-ruby:before { content: 'Ruby'; }
pre.src-sass:before { content: 'Sass'; }
pre.src-scheme:before { content: 'Scheme'; }
pre.src-screen:before { content: 'Gnu Screen'; }
pre.src-sed:before { content: 'Sed'; }
pre.src-sh:before { content: 'shell'; }
pre.src-sql:before { content: 'SQL'; }
pre.src-sqlite:before { content: 'SQLite'; }
/* additional languages in org.el's org-babel-load-languages alist */
pre.src-forth:before { content: 'Forth'; }
pre.src-io:before { content: 'IO'; }
pre.src-J:before { content: 'J'; }
pre.src-makefile:before { content: 'Makefile'; }
pre.src-maxima:before { content: 'Maxima'; }
pre.src-perl:before { content: 'Perl'; }
pre.src-picolisp:before { content: 'Pico Lisp'; }
pre.src-scala:before { content: 'Scala'; }
pre.src-shell:before { content: 'Shell Script'; }
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
/* additional language identifiers per "defun org-babel-execute"
in ob-*.el */
pre.src-cpp:before { content: 'C++'; }
pre.src-abc:before { content: 'ABC'; }
pre.src-coq:before { content: 'Coq'; }
pre.src-groovy:before { content: 'Groovy'; }
/* additional language identifiers from org-babel-shell-names in
ob-shell.el: ob-shell is the only babel language using a lambda to put
the execution function name together. */
pre.src-bash:before { content: 'bash'; }
pre.src-csh:before { content: 'csh'; }
pre.src-ash:before { content: 'ash'; }
pre.src-dash:before { content: 'dash'; }
pre.src-ksh:before { content: 'ksh'; }
pre.src-mksh:before { content: 'mksh'; }
pre.src-posh:before { content: 'posh'; }
/* Additional Emacs modes also supported by the LaTeX listings package */
pre.src-ada:before { content: 'Ada'; }
pre.src-asm:before { content: 'Assembler'; }
pre.src-caml:before { content: 'Caml'; }
pre.src-delphi:before { content: 'Delphi'; }
pre.src-html:before { content: 'HTML'; }
pre.src-idl:before { content: 'IDL'; }
pre.src-mercury:before { content: 'Mercury'; }
pre.src-metapost:before { content: 'MetaPost'; }
pre.src-modula-2:before { content: 'Modula-2'; }
pre.src-pascal:before { content: 'Pascal'; }
pre.src-ps:before { content: 'PostScript'; }
pre.src-prolog:before { content: 'Prolog'; }
pre.src-simula:before { content: 'Simula'; }
pre.src-tcl:before { content: 'tcl'; }
pre.src-tex:before { content: 'TeX'; }
pre.src-plain-tex:before { content: 'Plain TeX'; }
pre.src-verilog:before { content: 'Verilog'; }
pre.src-vhdl:before { content: 'VHDL'; }
pre.src-xml:before { content: 'XML'; }
pre.src-nxml:before { content: 'XML'; }
/* add a generic configuration mode; LaTeX export needs an additional
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
pre.src-conf:before { content: 'Configuration File'; }
table { border-collapse:collapse; }
caption.t-above { caption-side: top; }
caption.t-bottom { caption-side: bottom; }
td, th { vertical-align:top; }
th.org-right { text-align: center; }
th.org-left { text-align: center; }
th.org-center { text-align: center; }
td.org-right { text-align: right; }
td.org-left { text-align: left; }
td.org-center { text-align: center; }
dt { font-weight: bold; }
.footpara { display: inline; }
.footdef { margin-bottom: 1em; }
.figure { padding: 1em; }
.figure p { text-align: center; }
.equation-container {
display: table;
text-align: center;
width: 100%;
}
.equation {
vertical-align: middle;
}
.equation-label {
display: table-cell;
text-align: right;
vertical-align: middle;
}
.inlinetask {
padding: 10px;
border: 2px solid gray;
margin: 10px;
background: #ffffcc;
}
#org-div-home-and-up
{ text-align: right; font-size: 70%; white-space: nowrap; }
textarea { overflow-x: auto; }
.linenr { font-size: smaller }
.code-highlighted { background-color: #ffff00; }
.org-info-js_info-navigation { border-style: none; }
#org-info-js_console-label
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
.org-info-js_search-highlight
{ background-color: #ffff00; color: #000000; font-weight: bold; }
.org-svg { width: 90%; }
/*]]>*/-->
</style>
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
<script src="./js/jquery.min.js"></script>
<script src="./js/bootstrap.min.js"></script>
<script src="./js/jquery.stickytableheaders.min.js"></script>
<script src="./js/readtheorg.js"></script>
<script type="text/javascript">
// @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later
<!--/*--><![CDATA[/*><!--*/
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
// @license-end
</script>
<script>
MathJax = {
tex: { macros: {
bm: ["\\boldsymbol{#1}",1],
}
}
<script>MathJax = {
tex: {
tags: 'ams',
macros: {bm: ["\\boldsymbol{#1}",1],}
}
};
</script>
<script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
@ -255,16 +43,16 @@
<ul>
<li><a href="#org3535b6d">6.1. Payload</a>
<ul>
<li><a href="#org1211163">Function description</a></li>
<li><a href="#org0d8dc7e">Optional Parameters</a></li>
<li><a href="#orgd38089d">Function description</a></li>
<li><a href="#org5518a84">Optional Parameters</a></li>
<li><a href="#orgeeb8d35">Add Payload Type</a></li>
<li><a href="#org6d52ffc">Add Stiffness, Damping and Mass properties of the Payload</a></li>
</ul>
</li>
<li><a href="#orgaaed406">6.2. Ground</a>
<ul>
<li><a href="#org0bee981">Function description</a></li>
<li><a href="#orgeaeb9aa">Optional Parameters</a></li>
<li><a href="#org7732939">Function description</a></li>
<li><a href="#org480f36e">Optional Parameters</a></li>
<li><a href="#orgef7035d">Add Ground Type</a></li>
<li><a href="#org95633e8">Add Stiffness and Damping properties of the Ground</a></li>
<li><a href="#org14ff2fc">Rotation Point</a></li>
@ -274,8 +62,8 @@
</li>
<li><a href="#orgae6907a">7. Initialize Disturbances</a>
<ul>
<li><a href="#org0eae33e">Function Declaration and Documentation</a></li>
<li><a href="#orge03b19d">Optional Parameters</a></li>
<li><a href="#orge2fa859">Function Declaration and Documentation</a></li>
<li><a href="#org6adb628">Optional Parameters</a></li>
<li><a href="#org30dc07c">Structure initialization</a></li>
<li><a href="#org0755155">Ground Motion</a></li>
<li><a href="#org7617a55">Direct Forces</a></li>
@ -283,8 +71,8 @@
</li>
<li><a href="#orgd45a07f">8. Initialize References</a>
<ul>
<li><a href="#org7f187c4">Function Declaration and Documentation</a></li>
<li><a href="#org28b782e">Optional Parameters</a></li>
<li><a href="#orge5deaa1">Function Declaration and Documentation</a></li>
<li><a href="#orgeebb364">Optional Parameters</a></li>
<li><a href="#orgc274320">8.1. Compute the corresponding strut length</a></li>
<li><a href="#org36ac3fa">References</a></li>
</ul>
@ -351,7 +139,7 @@ Basically, the configuration is stored in a mat file <code>conf_simscape.mat</co
It is automatically loaded when the Simulink project is open. It can be loaded manually with the command:
</p>
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'mat/conf_simscape.mat'</span>);
<pre class="src src-matlab">load('mat/conf_simscape.mat');
</pre>
</div>
@ -359,7 +147,7 @@ It is automatically loaded when the Simulink project is open. It can be loaded m
It is however possible to modify specific parameters just for one simulation using the <code>set_param</code> command:
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simscape</span>, <span class="org-string">'StopTime'</span>, 1);
<pre class="src src-matlab">set_param(conf_simscape, 'StopTime', 1);
</pre>
</div>
</div>
@ -510,50 +298,50 @@ This Matlab function is accessible <a href="../src/initializePayload.m">here</a>
</p>
</div>
<div id="outline-container-org1211163" class="outline-4">
<h4 id="org1211163">Function description</h4>
<div class="outline-text-4" id="text-org1211163">
<div id="outline-container-orgd38089d" class="outline-4">
<h4 id="orgd38089d">Function description</h4>
<div class="outline-text-4" id="text-orgd38089d">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[payload]</span> = <span class="org-function-name">initializePayload</span>(<span class="org-variable-name">args</span>)
<span class="org-comment">% initializePayload - Initialize the Payload that can then be used for simulations and analysis</span>
<span class="org-comment">%</span>
<span class="org-comment">% Syntax: [payload] = initializePayload(args)</span>
<span class="org-comment">%</span>
<span class="org-comment">% Inputs:</span>
<span class="org-comment">% - args - Structure with the following fields:</span>
<span class="org-comment">% - type - 'none', 'rigid', 'flexible', 'cartesian'</span>
<span class="org-comment">% - h [1x1] - Height of the CoM of the payload w.r.t {M} [m]</span>
<span class="org-comment">% This also the position where K and C are defined</span>
<span class="org-comment">% - K [6x1] - Stiffness of the Payload [N/m, N/rad]</span>
<span class="org-comment">% - C [6x1] - Damping of the Payload [N/(m/s), N/(rad/s)]</span>
<span class="org-comment">% - m [1x1] - Mass of the Payload [kg]</span>
<span class="org-comment">% - I [3x3] - Inertia matrix for the Payload [kg*m2]</span>
<span class="org-comment">%</span>
<span class="org-comment">% Outputs:</span>
<span class="org-comment">% - payload - Struture with the following properties:</span>
<span class="org-comment">% - type - 1 (none), 2 (rigid), 3 (flexible)</span>
<span class="org-comment">% - h [1x1] - Height of the CoM of the payload w.r.t {M} [m]</span>
<span class="org-comment">% - K [6x1] - Stiffness of the Payload [N/m, N/rad]</span>
<span class="org-comment">% - C [6x1] - Stiffness of the Payload [N/(m/s), N/(rad/s)]</span>
<span class="org-comment">% - m [1x1] - Mass of the Payload [kg]</span>
<span class="org-comment">% - I [3x3] - Inertia matrix for the Payload [kg*m2]</span>
<pre class="src src-matlab">function [payload] = initializePayload(args)
% initializePayload - Initialize the Payload that can then be used for simulations and analysis
%
% Syntax: [payload] = initializePayload(args)
%
% Inputs:
% - args - Structure with the following fields:
% - type - 'none', 'rigid', 'flexible', 'cartesian'
% - h [1x1] - Height of the CoM of the payload w.r.t {M} [m]
% This also the position where K and C are defined
% - K [6x1] - Stiffness of the Payload [N/m, N/rad]
% - C [6x1] - Damping of the Payload [N/(m/s), N/(rad/s)]
% - m [1x1] - Mass of the Payload [kg]
% - I [3x3] - Inertia matrix for the Payload [kg*m2]
%
% Outputs:
% - payload - Struture with the following properties:
% - type - 1 (none), 2 (rigid), 3 (flexible)
% - h [1x1] - Height of the CoM of the payload w.r.t {M} [m]
% - K [6x1] - Stiffness of the Payload [N/m, N/rad]
% - C [6x1] - Stiffness of the Payload [N/(m/s), N/(rad/s)]
% - m [1x1] - Mass of the Payload [kg]
% - I [3x3] - Inertia matrix for the Payload [kg*m2]
</pre>
</div>
</div>
</div>
<div id="outline-container-org0d8dc7e" class="outline-4">
<h4 id="org0d8dc7e">Optional Parameters</h4>
<div class="outline-text-4" id="text-org0d8dc7e">
<div id="outline-container-org5518a84" class="outline-4">
<h4 id="org5518a84">Optional Parameters</h4>
<div class="outline-text-4" id="text-org5518a84">
<div class="org-src-container">
<pre class="src src-matlab">arguments
args.type char {mustBeMember(args.type,{<span class="org-string">'none'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'flexible'</span>, <span class="org-string">'cartesian'</span>})} = <span class="org-string">'none'</span>
args.K (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e8<span class="org-type">*</span>ones(6,1)
args.C (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e1<span class="org-type">*</span>ones(6,1)
args.h (1,1) double {mustBeNumeric, mustBeNonnegative} = 100e<span class="org-type">-</span>3
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible', 'cartesian'})} = 'none'
args.K (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e8*ones(6,1)
args.C (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(6,1)
args.h (1,1) double {mustBeNumeric, mustBeNonnegative} = 100e-3
args.m (1,1) double {mustBeNumeric, mustBeNonnegative} = 10
args.I (3,3) double {mustBeNumeric, mustBeNonnegative} = 1<span class="org-type">*</span>eye(3)
<span class="org-keyword">end</span>
args.I (3,3) double {mustBeNumeric, mustBeNonnegative} = 1*eye(3)
end
</pre>
</div>
</div>
@ -563,16 +351,16 @@ This Matlab function is accessible <a href="../src/initializePayload.m">here</a>
<h4 id="orgeeb8d35">Add Payload Type</h4>
<div class="outline-text-4" id="text-orgeeb8d35">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">switch</span> <span class="org-constant">args.type</span>
<span class="org-keyword">case</span> <span class="org-string">'none'</span>
<pre class="src src-matlab">switch args.type
case 'none'
payload.type = 1;
<span class="org-keyword">case</span> <span class="org-string">'rigid'</span>
case 'rigid'
payload.type = 2;
<span class="org-keyword">case</span> <span class="org-string">'flexible'</span>
case 'flexible'
payload.type = 3;
<span class="org-keyword">case</span> <span class="org-string">'cartesian'</span>
case 'cartesian'
payload.type = 4;
<span class="org-keyword">end</span>
end
</pre>
</div>
</div>
@ -606,42 +394,42 @@ This Matlab function is accessible <a href="../src/initializeGround.m">here</a>.
</p>
</div>
<div id="outline-container-org0bee981" class="outline-4">
<h4 id="org0bee981">Function description</h4>
<div class="outline-text-4" id="text-org0bee981">
<div id="outline-container-org7732939" class="outline-4">
<h4 id="org7732939">Function description</h4>
<div class="outline-text-4" id="text-org7732939">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[ground]</span> = <span class="org-function-name">initializeGround</span>(<span class="org-variable-name">args</span>)
<span class="org-comment">% initializeGround - Initialize the Ground that can then be used for simulations and analysis</span>
<span class="org-comment">%</span>
<span class="org-comment">% Syntax: [ground] = initializeGround(args)</span>
<span class="org-comment">%</span>
<span class="org-comment">% Inputs:</span>
<span class="org-comment">% - args - Structure with the following fields:</span>
<span class="org-comment">% - type - 'none', 'solid', 'flexible'</span>
<span class="org-comment">% - rot_point [3x1] - Rotation point for the ground motion [m]</span>
<span class="org-comment">% - K [3x1] - Translation Stiffness of the Ground [N/m]</span>
<span class="org-comment">% - C [3x1] - Translation Damping of the Ground [N/(m/s)]</span>
<span class="org-comment">%</span>
<span class="org-comment">% Outputs:</span>
<span class="org-comment">% - ground - Struture with the following properties:</span>
<span class="org-comment">% - type - 1 (none), 2 (rigid), 3 (flexible)</span>
<span class="org-comment">% - K [3x1] - Translation Stiffness of the Ground [N/m]</span>
<span class="org-comment">% - C [3x1] - Translation Damping of the Ground [N/(m/s)]</span>
<pre class="src src-matlab">function [ground] = initializeGround(args)
% initializeGround - Initialize the Ground that can then be used for simulations and analysis
%
% Syntax: [ground] = initializeGround(args)
%
% Inputs:
% - args - Structure with the following fields:
% - type - 'none', 'solid', 'flexible'
% - rot_point [3x1] - Rotation point for the ground motion [m]
% - K [3x1] - Translation Stiffness of the Ground [N/m]
% - C [3x1] - Translation Damping of the Ground [N/(m/s)]
%
% Outputs:
% - ground - Struture with the following properties:
% - type - 1 (none), 2 (rigid), 3 (flexible)
% - K [3x1] - Translation Stiffness of the Ground [N/m]
% - C [3x1] - Translation Damping of the Ground [N/(m/s)]
</pre>
</div>
</div>
</div>
<div id="outline-container-orgeaeb9aa" class="outline-4">
<h4 id="orgeaeb9aa">Optional Parameters</h4>
<div class="outline-text-4" id="text-orgeaeb9aa">
<div id="outline-container-org480f36e" class="outline-4">
<h4 id="org480f36e">Optional Parameters</h4>
<div class="outline-text-4" id="text-org480f36e">
<div class="org-src-container">
<pre class="src src-matlab">arguments
args.type char {mustBeMember(args.type,{<span class="org-string">'none'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'flexible'</span>})} = <span class="org-string">'none'</span>
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'none'
args.rot_point (3,1) double {mustBeNumeric} = zeros(3,1)
args.K (3,1) double {mustBeNumeric, mustBeNonnegative} = 1e8<span class="org-type">*</span>ones(3,1)
args.C (3,1) double {mustBeNumeric, mustBeNonnegative} = 1e1<span class="org-type">*</span>ones(3,1)
<span class="org-keyword">end</span>
args.K (3,1) double {mustBeNumeric, mustBeNonnegative} = 1e8*ones(3,1)
args.C (3,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(3,1)
end
</pre>
</div>
</div>
@ -651,14 +439,14 @@ This Matlab function is accessible <a href="../src/initializeGround.m">here</a>.
<h4 id="orgef7035d">Add Ground Type</h4>
<div class="outline-text-4" id="text-orgef7035d">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">switch</span> <span class="org-constant">args.type</span>
<span class="org-keyword">case</span> <span class="org-string">'none'</span>
<pre class="src src-matlab">switch args.type
case 'none'
ground.type = 1;
<span class="org-keyword">case</span> <span class="org-string">'rigid'</span>
case 'rigid'
ground.type = 2;
<span class="org-keyword">case</span> <span class="org-string">'flexible'</span>
case 'flexible'
ground.type = 3;
<span class="org-keyword">end</span>
end
</pre>
</div>
</div>
@ -694,33 +482,33 @@ ground.C = args.C;
</p>
</div>
<div id="outline-container-org0eae33e" class="outline-3">
<h3 id="org0eae33e">Function Declaration and Documentation</h3>
<div class="outline-text-3" id="text-org0eae33e">
<div id="outline-container-orge2fa859" class="outline-3">
<h3 id="orge2fa859">Function Declaration and Documentation</h3>
<div class="outline-text-3" id="text-orge2fa859">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[disturbances]</span> = <span class="org-function-name">initializeDisturbances</span>(<span class="org-variable-name">args</span>)
<span class="org-comment">% initializeDisturbances - Initialize the disturbances</span>
<span class="org-comment">%</span>
<span class="org-comment">% Syntax: [disturbances] = initializeDisturbances(args)</span>
<span class="org-comment">%</span>
<span class="org-comment">% Inputs:</span>
<span class="org-comment">% - args -</span>
<pre class="src src-matlab">function [disturbances] = initializeDisturbances(args)
% initializeDisturbances - Initialize the disturbances
%
% Syntax: [disturbances] = initializeDisturbances(args)
%
% Inputs:
% - args -
</pre>
</div>
</div>
</div>
<div id="outline-container-orge03b19d" class="outline-3">
<h3 id="orge03b19d">Optional Parameters</h3>
<div class="outline-text-3" id="text-orge03b19d">
<div id="outline-container-org6adb628" class="outline-3">
<h3 id="org6adb628">Optional Parameters</h3>
<div class="outline-text-3" id="text-org6adb628">
<div class="org-src-container">
<pre class="src src-matlab">arguments
args.Fd double {mustBeNumeric, mustBeReal} = zeros(6,1)
args.Fd_t double {mustBeNumeric, mustBeReal} = 0
args.Dw double {mustBeNumeric, mustBeReal} = zeros(6,1)
args.Dw_t double {mustBeNumeric, mustBeReal} = 0
<span class="org-keyword">end</span>
end
</pre>
</div>
</div>
@ -766,32 +554,32 @@ ground.C = args.C;
</p>
</div>
<div id="outline-container-org7f187c4" class="outline-3">
<h3 id="org7f187c4">Function Declaration and Documentation</h3>
<div class="outline-text-3" id="text-org7f187c4">
<div id="outline-container-orge5deaa1" class="outline-3">
<h3 id="orge5deaa1">Function Declaration and Documentation</h3>
<div class="outline-text-3" id="text-orge5deaa1">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[references]</span> = <span class="org-function-name">initializeReferences</span>(<span class="org-variable-name">stewart</span>, <span class="org-variable-name">args</span>)
<span class="org-comment">% initializeReferences - Initialize the references</span>
<span class="org-comment">%</span>
<span class="org-comment">% Syntax: [references] = initializeReferences(args)</span>
<span class="org-comment">%</span>
<span class="org-comment">% Inputs:</span>
<span class="org-comment">% - args -</span>
<pre class="src src-matlab">function [references] = initializeReferences(stewart, args)
% initializeReferences - Initialize the references
%
% Syntax: [references] = initializeReferences(args)
%
% Inputs:
% - args -
</pre>
</div>
</div>
</div>
<div id="outline-container-org28b782e" class="outline-3">
<h3 id="org28b782e">Optional Parameters</h3>
<div class="outline-text-3" id="text-org28b782e">
<div id="outline-container-orgeebb364" class="outline-3">
<h3 id="orgeebb364">Optional Parameters</h3>
<div class="outline-text-3" id="text-orgeebb364">
<div class="org-src-container">
<pre class="src src-matlab">arguments
stewart
args.t double {mustBeNumeric, mustBeReal} = 0
args.r double {mustBeNumeric, mustBeReal} = zeros(6, 1)
<span class="org-keyword">end</span>
end
</pre>
</div>
</div>
@ -803,20 +591,20 @@ ground.C = args.C;
<div class="org-src-container">
<pre class="src src-matlab">rL = zeros(6, length(args.t));
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(args.t)</span>
R = [cos(args.r(6,<span class="org-constant">i</span>)) <span class="org-type">-</span>sin(args.r(6,<span class="org-constant">i</span>)) 0;
sin(args.r(6,<span class="org-constant">i</span>)) cos(args.r(6,<span class="org-constant">i</span>)) 0;
0 0 1] <span class="org-type">*</span> ...
[cos(args.r(5,<span class="org-constant">i</span>)) 0 sin(args.r(5,<span class="org-constant">i</span>));
for i = 1:length(args.t)
R = [cos(args.r(6,i)) -sin(args.r(6,i)) 0;
sin(args.r(6,i)) cos(args.r(6,i)) 0;
0 0 1] * ...
[cos(args.r(5,i)) 0 sin(args.r(5,i));
0 1 0;
<span class="org-type">-</span>sin(args.r(5,<span class="org-constant">i</span>)) 0 cos(args.r(5,<span class="org-constant">i</span>))] <span class="org-type">*</span> ...
-sin(args.r(5,i)) 0 cos(args.r(5,i))] * ...
[1 0 0;
0 cos(args.r(4,<span class="org-constant">i</span>)) <span class="org-type">-</span>sin(args.r(4,<span class="org-constant">i</span>));
0 sin(args.r(4,<span class="org-constant">i</span>)) cos(args.r(4,<span class="org-constant">i</span>))];
0 cos(args.r(4,i)) -sin(args.r(4,i));
0 sin(args.r(4,i)) cos(args.r(4,i))];
[Li, dLi] = inverseKinematics(stewart, <span class="org-string">'AP'</span>, [args.r(1,<span class="org-constant">i</span>); args.r(2,<span class="org-constant">i</span>); args.r(3,<span class="org-constant">i</span>)], <span class="org-string">'ARB'</span>, R);
rL(<span class="org-type">:</span>, <span class="org-constant">i</span>) = dLi;
<span class="org-keyword">end</span>
[Li, dLi] = inverseKinematics(stewart, 'AP', [args.r(1,i); args.r(2,i); args.r(3,i)], 'ARB', R);
rL(:, i) = dLi;
end
</pre>
</div>
</div>
@ -836,7 +624,7 @@ references.rL = timeseries(rL, args.t);
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-03-11 mer. 18:59</p>
<p class="date">Created: 2020-08-05 mer. 13:27</p>
</div>
</body>
</html>

View File

@ -1,229 +1,19 @@
<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-03-02 lun. 17:57 -->
<!-- 2020-08-05 mer. 13:27 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Simulink Project for the Stewart Simscape folder</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<style type="text/css">
<!--/*--><![CDATA[/*><!--*/
.title { text-align: center;
margin-bottom: .2em; }
.subtitle { text-align: center;
font-size: medium;
font-weight: bold;
margin-top:0; }
.todo { font-family: monospace; color: red; }
.done { font-family: monospace; color: green; }
.priority { font-family: monospace; color: orange; }
.tag { background-color: #eee; font-family: monospace;
padding: 2px; font-size: 80%; font-weight: normal; }
.timestamp { color: #bebebe; }
.timestamp-kwd { color: #5f9ea0; }
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
.underline { text-decoration: underline; }
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
p.verse { margin-left: 3%; }
pre {
border: 1px solid #ccc;
box-shadow: 3px 3px 3px #eee;
padding: 8pt;
font-family: monospace;
overflow: auto;
margin: 1.2em;
}
pre.src {
position: relative;
overflow: visible;
padding-top: 1.2em;
}
pre.src:before {
display: none;
position: absolute;
background-color: white;
top: -10px;
right: 10px;
padding: 3px;
border: 1px solid black;
}
pre.src:hover:before { display: inline;}
/* Languages per Org manual */
pre.src-asymptote:before { content: 'Asymptote'; }
pre.src-awk:before { content: 'Awk'; }
pre.src-C:before { content: 'C'; }
/* pre.src-C++ doesn't work in CSS */
pre.src-clojure:before { content: 'Clojure'; }
pre.src-css:before { content: 'CSS'; }
pre.src-D:before { content: 'D'; }
pre.src-ditaa:before { content: 'ditaa'; }
pre.src-dot:before { content: 'Graphviz'; }
pre.src-calc:before { content: 'Emacs Calc'; }
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
pre.src-fortran:before { content: 'Fortran'; }
pre.src-gnuplot:before { content: 'gnuplot'; }
pre.src-haskell:before { content: 'Haskell'; }
pre.src-hledger:before { content: 'hledger'; }
pre.src-java:before { content: 'Java'; }
pre.src-js:before { content: 'Javascript'; }
pre.src-latex:before { content: 'LaTeX'; }
pre.src-ledger:before { content: 'Ledger'; }
pre.src-lisp:before { content: 'Lisp'; }
pre.src-lilypond:before { content: 'Lilypond'; }
pre.src-lua:before { content: 'Lua'; }
pre.src-matlab:before { content: 'MATLAB'; }
pre.src-mscgen:before { content: 'Mscgen'; }
pre.src-ocaml:before { content: 'Objective Caml'; }
pre.src-octave:before { content: 'Octave'; }
pre.src-org:before { content: 'Org mode'; }
pre.src-oz:before { content: 'OZ'; }
pre.src-plantuml:before { content: 'Plantuml'; }
pre.src-processing:before { content: 'Processing.js'; }
pre.src-python:before { content: 'Python'; }
pre.src-R:before { content: 'R'; }
pre.src-ruby:before { content: 'Ruby'; }
pre.src-sass:before { content: 'Sass'; }
pre.src-scheme:before { content: 'Scheme'; }
pre.src-screen:before { content: 'Gnu Screen'; }
pre.src-sed:before { content: 'Sed'; }
pre.src-sh:before { content: 'shell'; }
pre.src-sql:before { content: 'SQL'; }
pre.src-sqlite:before { content: 'SQLite'; }
/* additional languages in org.el's org-babel-load-languages alist */
pre.src-forth:before { content: 'Forth'; }
pre.src-io:before { content: 'IO'; }
pre.src-J:before { content: 'J'; }
pre.src-makefile:before { content: 'Makefile'; }
pre.src-maxima:before { content: 'Maxima'; }
pre.src-perl:before { content: 'Perl'; }
pre.src-picolisp:before { content: 'Pico Lisp'; }
pre.src-scala:before { content: 'Scala'; }
pre.src-shell:before { content: 'Shell Script'; }
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
/* additional language identifiers per "defun org-babel-execute"
in ob-*.el */
pre.src-cpp:before { content: 'C++'; }
pre.src-abc:before { content: 'ABC'; }
pre.src-coq:before { content: 'Coq'; }
pre.src-groovy:before { content: 'Groovy'; }
/* additional language identifiers from org-babel-shell-names in
ob-shell.el: ob-shell is the only babel language using a lambda to put
the execution function name together. */
pre.src-bash:before { content: 'bash'; }
pre.src-csh:before { content: 'csh'; }
pre.src-ash:before { content: 'ash'; }
pre.src-dash:before { content: 'dash'; }
pre.src-ksh:before { content: 'ksh'; }
pre.src-mksh:before { content: 'mksh'; }
pre.src-posh:before { content: 'posh'; }
/* Additional Emacs modes also supported by the LaTeX listings package */
pre.src-ada:before { content: 'Ada'; }
pre.src-asm:before { content: 'Assembler'; }
pre.src-caml:before { content: 'Caml'; }
pre.src-delphi:before { content: 'Delphi'; }
pre.src-html:before { content: 'HTML'; }
pre.src-idl:before { content: 'IDL'; }
pre.src-mercury:before { content: 'Mercury'; }
pre.src-metapost:before { content: 'MetaPost'; }
pre.src-modula-2:before { content: 'Modula-2'; }
pre.src-pascal:before { content: 'Pascal'; }
pre.src-ps:before { content: 'PostScript'; }
pre.src-prolog:before { content: 'Prolog'; }
pre.src-simula:before { content: 'Simula'; }
pre.src-tcl:before { content: 'tcl'; }
pre.src-tex:before { content: 'TeX'; }
pre.src-plain-tex:before { content: 'Plain TeX'; }
pre.src-verilog:before { content: 'Verilog'; }
pre.src-vhdl:before { content: 'VHDL'; }
pre.src-xml:before { content: 'XML'; }
pre.src-nxml:before { content: 'XML'; }
/* add a generic configuration mode; LaTeX export needs an additional
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
pre.src-conf:before { content: 'Configuration File'; }
table { border-collapse:collapse; }
caption.t-above { caption-side: top; }
caption.t-bottom { caption-side: bottom; }
td, th { vertical-align:top; }
th.org-right { text-align: center; }
th.org-left { text-align: center; }
th.org-center { text-align: center; }
td.org-right { text-align: right; }
td.org-left { text-align: left; }
td.org-center { text-align: center; }
dt { font-weight: bold; }
.footpara { display: inline; }
.footdef { margin-bottom: 1em; }
.figure { padding: 1em; }
.figure p { text-align: center; }
.equation-container {
display: table;
text-align: center;
width: 100%;
}
.equation {
vertical-align: middle;
}
.equation-label {
display: table-cell;
text-align: right;
vertical-align: middle;
}
.inlinetask {
padding: 10px;
border: 2px solid gray;
margin: 10px;
background: #ffffcc;
}
#org-div-home-and-up
{ text-align: right; font-size: 70%; white-space: nowrap; }
textarea { overflow-x: auto; }
.linenr { font-size: smaller }
.code-highlighted { background-color: #ffff00; }
.org-info-js_info-navigation { border-style: none; }
#org-info-js_console-label
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
.org-info-js_search-highlight
{ background-color: #ffff00; color: #000000; font-weight: bold; }
.org-svg { width: 90%; }
/*]]>*/-->
</style>
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
<script src="./js/jquery.min.js"></script>
<script src="./js/bootstrap.min.js"></script>
<script src="./js/jquery.stickytableheaders.min.js"></script>
<script src="./js/readtheorg.js"></script>
<script type="text/javascript">
// @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later
<!--/*--><![CDATA[/*><!--*/
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
// @license-end
</script>
</head>
<body>
<div id="org-div-home-and-up">
@ -232,7 +22,6 @@
<a accesskey="H" href="./index.html"> HOME </a>
</div><div id="content">
<h1 class="title">Simulink Project for the Stewart Simscape folder</h1>
<p>
A Simulink Project is used for the study of Stewart platforms using Simscape.
</p>
@ -260,7 +49,7 @@ The project can be opened using the <code>simulinkproject</code> function:
</p>
<div class="org-src-container">
<pre class="src src-matlab">simulinkproject(<span class="org-string">'../'</span>);
<pre class="src src-matlab">simulinkproject('../');
</pre>
</div>
@ -272,16 +61,16 @@ The startup script is defined below and is exported to the <code>project_startup
<pre class="src src-matlab">project = simulinkproject;
projectRoot = project.RootFolder;
myCacheFolder = fullfile(projectRoot, <span class="org-string">'.SimulinkCache'</span>);
myCodeFolder = fullfile(projectRoot, <span class="org-string">'.SimulinkCode'</span>);
myCacheFolder = fullfile(projectRoot, '.SimulinkCache');
myCodeFolder = fullfile(projectRoot, '.SimulinkCode');
Simulink.fileGenControl(<span class="org-string">'set'</span>,...
<span class="org-string">'CacheFolder'</span>, myCacheFolder,...
<span class="org-string">'CodeGenFolder'</span>, myCodeFolder,...
<span class="org-string">'createDir'</span>, <span class="org-constant">true</span>);
Simulink.fileGenControl('set',...
'CacheFolder', myCacheFolder,...
'CodeGenFolder', myCodeFolder,...
'createDir', true);
<span class="org-matlab-cellbreak"><span class="org-comment">%% Load the Simscape Configuration</span></span>
load(<span class="org-string">'mat/conf_simscape.mat'</span>);
%% Load the Simscape Configuration
load('mat/conf_simscape.mat');
</pre>
</div>
@ -289,7 +78,7 @@ load(<span class="org-string">'mat/conf_simscape.mat'</span>);
When the project closes, it runs the <code>project_shutdown.m</code> script defined below.
</p>
<div class="org-src-container">
<pre class="src src-matlab">Simulink.fileGenControl(<span class="org-string">'reset'</span>);
<pre class="src src-matlab">Simulink.fileGenControl('reset');
</pre>
</div>
@ -299,7 +88,7 @@ The project also permits to automatically add defined folder to the path when th
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-03-02 lun. 17:57</p>
<p class="date">Created: 2020-08-05 mer. 13:27</p>
</div>
</body>
</html>

View File

@ -1,239 +1,27 @@
<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-03-02 lun. 17:57 -->
<!-- 2020-08-05 mer. 13:27 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Stewart Platform - Static Analysis</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<style type="text/css">
<!--/*--><![CDATA[/*><!--*/
.title { text-align: center;
margin-bottom: .2em; }
.subtitle { text-align: center;
font-size: medium;
font-weight: bold;
margin-top:0; }
.todo { font-family: monospace; color: red; }
.done { font-family: monospace; color: green; }
.priority { font-family: monospace; color: orange; }
.tag { background-color: #eee; font-family: monospace;
padding: 2px; font-size: 80%; font-weight: normal; }
.timestamp { color: #bebebe; }
.timestamp-kwd { color: #5f9ea0; }
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
.underline { text-decoration: underline; }
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
p.verse { margin-left: 3%; }
pre {
border: 1px solid #ccc;
box-shadow: 3px 3px 3px #eee;
padding: 8pt;
font-family: monospace;
overflow: auto;
margin: 1.2em;
}
pre.src {
position: relative;
overflow: visible;
padding-top: 1.2em;
}
pre.src:before {
display: none;
position: absolute;
background-color: white;
top: -10px;
right: 10px;
padding: 3px;
border: 1px solid black;
}
pre.src:hover:before { display: inline;}
/* Languages per Org manual */
pre.src-asymptote:before { content: 'Asymptote'; }
pre.src-awk:before { content: 'Awk'; }
pre.src-C:before { content: 'C'; }
/* pre.src-C++ doesn't work in CSS */
pre.src-clojure:before { content: 'Clojure'; }
pre.src-css:before { content: 'CSS'; }
pre.src-D:before { content: 'D'; }
pre.src-ditaa:before { content: 'ditaa'; }
pre.src-dot:before { content: 'Graphviz'; }
pre.src-calc:before { content: 'Emacs Calc'; }
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
pre.src-fortran:before { content: 'Fortran'; }
pre.src-gnuplot:before { content: 'gnuplot'; }
pre.src-haskell:before { content: 'Haskell'; }
pre.src-hledger:before { content: 'hledger'; }
pre.src-java:before { content: 'Java'; }
pre.src-js:before { content: 'Javascript'; }
pre.src-latex:before { content: 'LaTeX'; }
pre.src-ledger:before { content: 'Ledger'; }
pre.src-lisp:before { content: 'Lisp'; }
pre.src-lilypond:before { content: 'Lilypond'; }
pre.src-lua:before { content: 'Lua'; }
pre.src-matlab:before { content: 'MATLAB'; }
pre.src-mscgen:before { content: 'Mscgen'; }
pre.src-ocaml:before { content: 'Objective Caml'; }
pre.src-octave:before { content: 'Octave'; }
pre.src-org:before { content: 'Org mode'; }
pre.src-oz:before { content: 'OZ'; }
pre.src-plantuml:before { content: 'Plantuml'; }
pre.src-processing:before { content: 'Processing.js'; }
pre.src-python:before { content: 'Python'; }
pre.src-R:before { content: 'R'; }
pre.src-ruby:before { content: 'Ruby'; }
pre.src-sass:before { content: 'Sass'; }
pre.src-scheme:before { content: 'Scheme'; }
pre.src-screen:before { content: 'Gnu Screen'; }
pre.src-sed:before { content: 'Sed'; }
pre.src-sh:before { content: 'shell'; }
pre.src-sql:before { content: 'SQL'; }
pre.src-sqlite:before { content: 'SQLite'; }
/* additional languages in org.el's org-babel-load-languages alist */
pre.src-forth:before { content: 'Forth'; }
pre.src-io:before { content: 'IO'; }
pre.src-J:before { content: 'J'; }
pre.src-makefile:before { content: 'Makefile'; }
pre.src-maxima:before { content: 'Maxima'; }
pre.src-perl:before { content: 'Perl'; }
pre.src-picolisp:before { content: 'Pico Lisp'; }
pre.src-scala:before { content: 'Scala'; }
pre.src-shell:before { content: 'Shell Script'; }
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
/* additional language identifiers per "defun org-babel-execute"
in ob-*.el */
pre.src-cpp:before { content: 'C++'; }
pre.src-abc:before { content: 'ABC'; }
pre.src-coq:before { content: 'Coq'; }
pre.src-groovy:before { content: 'Groovy'; }
/* additional language identifiers from org-babel-shell-names in
ob-shell.el: ob-shell is the only babel language using a lambda to put
the execution function name together. */
pre.src-bash:before { content: 'bash'; }
pre.src-csh:before { content: 'csh'; }
pre.src-ash:before { content: 'ash'; }
pre.src-dash:before { content: 'dash'; }
pre.src-ksh:before { content: 'ksh'; }
pre.src-mksh:before { content: 'mksh'; }
pre.src-posh:before { content: 'posh'; }
/* Additional Emacs modes also supported by the LaTeX listings package */
pre.src-ada:before { content: 'Ada'; }
pre.src-asm:before { content: 'Assembler'; }
pre.src-caml:before { content: 'Caml'; }
pre.src-delphi:before { content: 'Delphi'; }
pre.src-html:before { content: 'HTML'; }
pre.src-idl:before { content: 'IDL'; }
pre.src-mercury:before { content: 'Mercury'; }
pre.src-metapost:before { content: 'MetaPost'; }
pre.src-modula-2:before { content: 'Modula-2'; }
pre.src-pascal:before { content: 'Pascal'; }
pre.src-ps:before { content: 'PostScript'; }
pre.src-prolog:before { content: 'Prolog'; }
pre.src-simula:before { content: 'Simula'; }
pre.src-tcl:before { content: 'tcl'; }
pre.src-tex:before { content: 'TeX'; }
pre.src-plain-tex:before { content: 'Plain TeX'; }
pre.src-verilog:before { content: 'Verilog'; }
pre.src-vhdl:before { content: 'VHDL'; }
pre.src-xml:before { content: 'XML'; }
pre.src-nxml:before { content: 'XML'; }
/* add a generic configuration mode; LaTeX export needs an additional
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
pre.src-conf:before { content: 'Configuration File'; }
table { border-collapse:collapse; }
caption.t-above { caption-side: top; }
caption.t-bottom { caption-side: bottom; }
td, th { vertical-align:top; }
th.org-right { text-align: center; }
th.org-left { text-align: center; }
th.org-center { text-align: center; }
td.org-right { text-align: right; }
td.org-left { text-align: left; }
td.org-center { text-align: center; }
dt { font-weight: bold; }
.footpara { display: inline; }
.footdef { margin-bottom: 1em; }
.figure { padding: 1em; }
.figure p { text-align: center; }
.equation-container {
display: table;
text-align: center;
width: 100%;
}
.equation {
vertical-align: middle;
}
.equation-label {
display: table-cell;
text-align: right;
vertical-align: middle;
}
.inlinetask {
padding: 10px;
border: 2px solid gray;
margin: 10px;
background: #ffffcc;
}
#org-div-home-and-up
{ text-align: right; font-size: 70%; white-space: nowrap; }
textarea { overflow-x: auto; }
.linenr { font-size: smaller }
.code-highlighted { background-color: #ffff00; }
.org-info-js_info-navigation { border-style: none; }
#org-info-js_console-label
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
.org-info-js_search-highlight
{ background-color: #ffff00; color: #000000; font-weight: bold; }
.org-svg { width: 90%; }
/*]]>*/-->
</style>
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
<script src="./js/jquery.min.js"></script>
<script src="./js/bootstrap.min.js"></script>
<script src="./js/jquery.stickytableheaders.min.js"></script>
<script src="./js/readtheorg.js"></script>
<script type="text/javascript">
// @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later
<!--/*--><![CDATA[/*><!--*/
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
// @license-end
</script>
<script>
MathJax = {
tex: { macros: {
bm: ["\\boldsymbol{#1}",1],
}
}
<script>MathJax = {
tex: {
tags: 'ams',
macros: {bm: ["\\boldsymbol{#1}",1],}
}
};
</script>
<script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
@ -281,7 +69,7 @@ Thus, the system is uncoupled if \(G\) and \(K\) are diagonal.
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-03-02 lun. 17:57</p>
<p class="date">Created: 2020-08-05 mer. 13:27</p>
</div>
</body>
</html>

File diff suppressed because it is too large Load Diff