1371 lines
		
	
	
		
			91 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			1371 lines
		
	
	
		
			91 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<?xml version="1.0" encoding="utf-8"?>
 | 
						|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 | 
						|
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 | 
						|
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 | 
						|
<head>
 | 
						|
<!-- 2019-12-12 jeu. 20:10 -->
 | 
						|
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
 | 
						|
<meta name="viewport" content="width=device-width, initial-scale=1" />
 | 
						|
<title>Cubic configuration for the Stewart Platform</title>
 | 
						|
<meta name="generator" content="Org mode" />
 | 
						|
<meta name="author" content="Thomas Dehaeze" />
 | 
						|
<style type="text/css">
 | 
						|
 <!--/*--><![CDATA[/*><!--*/
 | 
						|
  .title  { text-align: center;
 | 
						|
             margin-bottom: .2em; }
 | 
						|
  .subtitle { text-align: center;
 | 
						|
              font-size: medium;
 | 
						|
              font-weight: bold;
 | 
						|
              margin-top:0; }
 | 
						|
  .todo   { font-family: monospace; color: red; }
 | 
						|
  .done   { font-family: monospace; color: green; }
 | 
						|
  .priority { font-family: monospace; color: orange; }
 | 
						|
  .tag    { background-color: #eee; font-family: monospace;
 | 
						|
            padding: 2px; font-size: 80%; font-weight: normal; }
 | 
						|
  .timestamp { color: #bebebe; }
 | 
						|
  .timestamp-kwd { color: #5f9ea0; }
 | 
						|
  .org-right  { margin-left: auto; margin-right: 0px;  text-align: right; }
 | 
						|
  .org-left   { margin-left: 0px;  margin-right: auto; text-align: left; }
 | 
						|
  .org-center { margin-left: auto; margin-right: auto; text-align: center; }
 | 
						|
  .underline { text-decoration: underline; }
 | 
						|
  #postamble p, #preamble p { font-size: 90%; margin: .2em; }
 | 
						|
  p.verse { margin-left: 3%; }
 | 
						|
  pre {
 | 
						|
    border: 1px solid #ccc;
 | 
						|
    box-shadow: 3px 3px 3px #eee;
 | 
						|
    padding: 8pt;
 | 
						|
    font-family: monospace;
 | 
						|
    overflow: auto;
 | 
						|
    margin: 1.2em;
 | 
						|
  }
 | 
						|
  pre.src {
 | 
						|
    position: relative;
 | 
						|
    overflow: visible;
 | 
						|
    padding-top: 1.2em;
 | 
						|
  }
 | 
						|
  pre.src:before {
 | 
						|
    display: none;
 | 
						|
    position: absolute;
 | 
						|
    background-color: white;
 | 
						|
    top: -10px;
 | 
						|
    right: 10px;
 | 
						|
    padding: 3px;
 | 
						|
    border: 1px solid black;
 | 
						|
  }
 | 
						|
  pre.src:hover:before { display: inline;}
 | 
						|
  /* Languages per Org manual */
 | 
						|
  pre.src-asymptote:before { content: 'Asymptote'; }
 | 
						|
  pre.src-awk:before { content: 'Awk'; }
 | 
						|
  pre.src-C:before { content: 'C'; }
 | 
						|
  /* pre.src-C++ doesn't work in CSS */
 | 
						|
  pre.src-clojure:before { content: 'Clojure'; }
 | 
						|
  pre.src-css:before { content: 'CSS'; }
 | 
						|
  pre.src-D:before { content: 'D'; }
 | 
						|
  pre.src-ditaa:before { content: 'ditaa'; }
 | 
						|
  pre.src-dot:before { content: 'Graphviz'; }
 | 
						|
  pre.src-calc:before { content: 'Emacs Calc'; }
 | 
						|
  pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
 | 
						|
  pre.src-fortran:before { content: 'Fortran'; }
 | 
						|
  pre.src-gnuplot:before { content: 'gnuplot'; }
 | 
						|
  pre.src-haskell:before { content: 'Haskell'; }
 | 
						|
  pre.src-hledger:before { content: 'hledger'; }
 | 
						|
  pre.src-java:before { content: 'Java'; }
 | 
						|
  pre.src-js:before { content: 'Javascript'; }
 | 
						|
  pre.src-latex:before { content: 'LaTeX'; }
 | 
						|
  pre.src-ledger:before { content: 'Ledger'; }
 | 
						|
  pre.src-lisp:before { content: 'Lisp'; }
 | 
						|
  pre.src-lilypond:before { content: 'Lilypond'; }
 | 
						|
  pre.src-lua:before { content: 'Lua'; }
 | 
						|
  pre.src-matlab:before { content: 'MATLAB'; }
 | 
						|
  pre.src-mscgen:before { content: 'Mscgen'; }
 | 
						|
  pre.src-ocaml:before { content: 'Objective Caml'; }
 | 
						|
  pre.src-octave:before { content: 'Octave'; }
 | 
						|
  pre.src-org:before { content: 'Org mode'; }
 | 
						|
  pre.src-oz:before { content: 'OZ'; }
 | 
						|
  pre.src-plantuml:before { content: 'Plantuml'; }
 | 
						|
  pre.src-processing:before { content: 'Processing.js'; }
 | 
						|
  pre.src-python:before { content: 'Python'; }
 | 
						|
  pre.src-R:before { content: 'R'; }
 | 
						|
  pre.src-ruby:before { content: 'Ruby'; }
 | 
						|
  pre.src-sass:before { content: 'Sass'; }
 | 
						|
  pre.src-scheme:before { content: 'Scheme'; }
 | 
						|
  pre.src-screen:before { content: 'Gnu Screen'; }
 | 
						|
  pre.src-sed:before { content: 'Sed'; }
 | 
						|
  pre.src-sh:before { content: 'shell'; }
 | 
						|
  pre.src-sql:before { content: 'SQL'; }
 | 
						|
  pre.src-sqlite:before { content: 'SQLite'; }
 | 
						|
  /* additional languages in org.el's org-babel-load-languages alist */
 | 
						|
  pre.src-forth:before { content: 'Forth'; }
 | 
						|
  pre.src-io:before { content: 'IO'; }
 | 
						|
  pre.src-J:before { content: 'J'; }
 | 
						|
  pre.src-makefile:before { content: 'Makefile'; }
 | 
						|
  pre.src-maxima:before { content: 'Maxima'; }
 | 
						|
  pre.src-perl:before { content: 'Perl'; }
 | 
						|
  pre.src-picolisp:before { content: 'Pico Lisp'; }
 | 
						|
  pre.src-scala:before { content: 'Scala'; }
 | 
						|
  pre.src-shell:before { content: 'Shell Script'; }
 | 
						|
  pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
 | 
						|
  /* additional language identifiers per "defun org-babel-execute"
 | 
						|
       in ob-*.el */
 | 
						|
  pre.src-cpp:before  { content: 'C++'; }
 | 
						|
  pre.src-abc:before  { content: 'ABC'; }
 | 
						|
  pre.src-coq:before  { content: 'Coq'; }
 | 
						|
  pre.src-groovy:before  { content: 'Groovy'; }
 | 
						|
  /* additional language identifiers from org-babel-shell-names in
 | 
						|
     ob-shell.el: ob-shell is the only babel language using a lambda to put
 | 
						|
     the execution function name together. */
 | 
						|
  pre.src-bash:before  { content: 'bash'; }
 | 
						|
  pre.src-csh:before  { content: 'csh'; }
 | 
						|
  pre.src-ash:before  { content: 'ash'; }
 | 
						|
  pre.src-dash:before  { content: 'dash'; }
 | 
						|
  pre.src-ksh:before  { content: 'ksh'; }
 | 
						|
  pre.src-mksh:before  { content: 'mksh'; }
 | 
						|
  pre.src-posh:before  { content: 'posh'; }
 | 
						|
  /* Additional Emacs modes also supported by the LaTeX listings package */
 | 
						|
  pre.src-ada:before { content: 'Ada'; }
 | 
						|
  pre.src-asm:before { content: 'Assembler'; }
 | 
						|
  pre.src-caml:before { content: 'Caml'; }
 | 
						|
  pre.src-delphi:before { content: 'Delphi'; }
 | 
						|
  pre.src-html:before { content: 'HTML'; }
 | 
						|
  pre.src-idl:before { content: 'IDL'; }
 | 
						|
  pre.src-mercury:before { content: 'Mercury'; }
 | 
						|
  pre.src-metapost:before { content: 'MetaPost'; }
 | 
						|
  pre.src-modula-2:before { content: 'Modula-2'; }
 | 
						|
  pre.src-pascal:before { content: 'Pascal'; }
 | 
						|
  pre.src-ps:before { content: 'PostScript'; }
 | 
						|
  pre.src-prolog:before { content: 'Prolog'; }
 | 
						|
  pre.src-simula:before { content: 'Simula'; }
 | 
						|
  pre.src-tcl:before { content: 'tcl'; }
 | 
						|
  pre.src-tex:before { content: 'TeX'; }
 | 
						|
  pre.src-plain-tex:before { content: 'Plain TeX'; }
 | 
						|
  pre.src-verilog:before { content: 'Verilog'; }
 | 
						|
  pre.src-vhdl:before { content: 'VHDL'; }
 | 
						|
  pre.src-xml:before { content: 'XML'; }
 | 
						|
  pre.src-nxml:before { content: 'XML'; }
 | 
						|
  /* add a generic configuration mode; LaTeX export needs an additional
 | 
						|
     (add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
 | 
						|
  pre.src-conf:before { content: 'Configuration File'; }
 | 
						|
 | 
						|
  table { border-collapse:collapse; }
 | 
						|
  caption.t-above { caption-side: top; }
 | 
						|
  caption.t-bottom { caption-side: bottom; }
 | 
						|
  td, th { vertical-align:top;  }
 | 
						|
  th.org-right  { text-align: center;  }
 | 
						|
  th.org-left   { text-align: center;   }
 | 
						|
  th.org-center { text-align: center; }
 | 
						|
  td.org-right  { text-align: right;  }
 | 
						|
  td.org-left   { text-align: left;   }
 | 
						|
  td.org-center { text-align: center; }
 | 
						|
  dt { font-weight: bold; }
 | 
						|
  .footpara { display: inline; }
 | 
						|
  .footdef  { margin-bottom: 1em; }
 | 
						|
  .figure { padding: 1em; }
 | 
						|
  .figure p { text-align: center; }
 | 
						|
  .equation-container {
 | 
						|
    display: table;
 | 
						|
    text-align: center;
 | 
						|
    width: 100%;
 | 
						|
  }
 | 
						|
  .equation {
 | 
						|
    vertical-align: middle;
 | 
						|
  }
 | 
						|
  .equation-label {
 | 
						|
    display: table-cell;
 | 
						|
    text-align: right;
 | 
						|
    vertical-align: middle;
 | 
						|
  }
 | 
						|
  .inlinetask {
 | 
						|
    padding: 10px;
 | 
						|
    border: 2px solid gray;
 | 
						|
    margin: 10px;
 | 
						|
    background: #ffffcc;
 | 
						|
  }
 | 
						|
  #org-div-home-and-up
 | 
						|
   { text-align: right; font-size: 70%; white-space: nowrap; }
 | 
						|
  textarea { overflow-x: auto; }
 | 
						|
  .linenr { font-size: smaller }
 | 
						|
  .code-highlighted { background-color: #ffff00; }
 | 
						|
  .org-info-js_info-navigation { border-style: none; }
 | 
						|
  #org-info-js_console-label
 | 
						|
    { font-size: 10px; font-weight: bold; white-space: nowrap; }
 | 
						|
  .org-info-js_search-highlight
 | 
						|
    { background-color: #ffff00; color: #000000; font-weight: bold; }
 | 
						|
  .org-svg { width: 90%; }
 | 
						|
  /*]]>*/-->
 | 
						|
</style>
 | 
						|
<link rel="stylesheet" type="text/css" href="https://gongzhitaao.org/orgcss/org.css"/>
 | 
						|
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
 | 
						|
<script type="text/javascript">
 | 
						|
/*
 | 
						|
@licstart  The following is the entire license notice for the
 | 
						|
JavaScript code in this tag.
 | 
						|
 | 
						|
Copyright (C) 2012-2019 Free Software Foundation, Inc.
 | 
						|
 | 
						|
The JavaScript code in this tag is free software: you can
 | 
						|
redistribute it and/or modify it under the terms of the GNU
 | 
						|
General Public License (GNU GPL) as published by the Free Software
 | 
						|
Foundation, either version 3 of the License, or (at your option)
 | 
						|
any later version.  The code is distributed WITHOUT ANY WARRANTY;
 | 
						|
without even the implied warranty of MERCHANTABILITY or FITNESS
 | 
						|
FOR A PARTICULAR PURPOSE.  See the GNU GPL for more details.
 | 
						|
 | 
						|
As additional permission under GNU GPL version 3 section 7, you
 | 
						|
may distribute non-source (e.g., minimized or compacted) forms of
 | 
						|
that code without the copy of the GNU GPL normally required by
 | 
						|
section 4, provided you include this license notice and a URL
 | 
						|
through which recipients can access the Corresponding Source.
 | 
						|
 | 
						|
 | 
						|
@licend  The above is the entire license notice
 | 
						|
for the JavaScript code in this tag.
 | 
						|
*/
 | 
						|
<!--/*--><![CDATA[/*><!--*/
 | 
						|
 function CodeHighlightOn(elem, id)
 | 
						|
 {
 | 
						|
   var target = document.getElementById(id);
 | 
						|
   if(null != target) {
 | 
						|
     elem.cacheClassElem = elem.className;
 | 
						|
     elem.cacheClassTarget = target.className;
 | 
						|
     target.className = "code-highlighted";
 | 
						|
     elem.className   = "code-highlighted";
 | 
						|
   }
 | 
						|
 }
 | 
						|
 function CodeHighlightOff(elem, id)
 | 
						|
 {
 | 
						|
   var target = document.getElementById(id);
 | 
						|
   if(elem.cacheClassElem)
 | 
						|
     elem.className = elem.cacheClassElem;
 | 
						|
   if(elem.cacheClassTarget)
 | 
						|
     target.className = elem.cacheClassTarget;
 | 
						|
 }
 | 
						|
/*]]>*///-->
 | 
						|
</script>
 | 
						|
<script type="text/x-mathjax-config">
 | 
						|
    MathJax.Hub.Config({
 | 
						|
        displayAlign: "center",
 | 
						|
        displayIndent: "0em",
 | 
						|
 | 
						|
        "HTML-CSS": { scale: 100,
 | 
						|
                        linebreaks: { automatic: "false" },
 | 
						|
                        webFont: "TeX"
 | 
						|
                       },
 | 
						|
        SVG: {scale: 100,
 | 
						|
              linebreaks: { automatic: "false" },
 | 
						|
              font: "TeX"},
 | 
						|
        NativeMML: {scale: 100},
 | 
						|
        TeX: { equationNumbers: {autoNumber: "AMS"},
 | 
						|
               MultLineWidth: "85%",
 | 
						|
               TagSide: "right",
 | 
						|
               TagIndent: ".8em",
 | 
						|
               Macros: {
 | 
						|
                 bm: ["{\\boldsymbol #1}",1],
 | 
						|
               }
 | 
						|
             }
 | 
						|
});
 | 
						|
</script>
 | 
						|
<script type="text/javascript"
 | 
						|
        src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_HTML"></script>
 | 
						|
</head>
 | 
						|
<body>
 | 
						|
<div id="org-div-home-and-up">
 | 
						|
 <a accesskey="h" href="./index.html"> UP </a>
 | 
						|
 |
 | 
						|
 <a accesskey="H" href="./index.html"> HOME </a>
 | 
						|
</div><div id="content">
 | 
						|
<h1 class="title">Cubic configuration for the Stewart Platform</h1>
 | 
						|
<div id="table-of-contents">
 | 
						|
<h2>Table of Contents</h2>
 | 
						|
<div id="text-table-of-contents">
 | 
						|
<ul>
 | 
						|
<li><a href="#org4a16be2">1. Questions we wish to answer with this analysis</a></li>
 | 
						|
<li><a href="#org289931f">2. Configuration Analysis - Stiffness Matrix</a>
 | 
						|
<ul>
 | 
						|
<li><a href="#orgc378f8a">2.1. Cubic Stewart platform centered with the cube center - Jacobian estimated at the cube center</a></li>
 | 
						|
<li><a href="#org608174e">2.2. Cubic Stewart platform centered with the cube center - Jacobian not estimated at the cube center</a></li>
 | 
						|
<li><a href="#orgbd736ef">2.3. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the cube center</a></li>
 | 
						|
<li><a href="#org6fbeda1">2.4. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the Stewart platform center</a></li>
 | 
						|
<li><a href="#org18633d3">2.5. Conclusion</a></li>
 | 
						|
</ul>
 | 
						|
</li>
 | 
						|
<li><a href="#orgf0ba2d0">3. Cubic size analysis</a></li>
 | 
						|
<li><a href="#org97dffbc">4. initializeCubicConfiguration</a>
 | 
						|
<ul>
 | 
						|
<li><a href="#org4eb8b23">4.1. Function description</a></li>
 | 
						|
<li><a href="#orga42cb17">4.2. Optional Parameters</a></li>
 | 
						|
<li><a href="#orgc281f60">4.3. Cube Creation</a></li>
 | 
						|
<li><a href="#orgfed01f0">4.4. Vectors of each leg</a></li>
 | 
						|
<li><a href="#org21db1ef">4.5. Verification of Height of the Stewart Platform</a></li>
 | 
						|
<li><a href="#org9578c3c">4.6. Determinate the location of the joints</a></li>
 | 
						|
<li><a href="#org71c9d4e">4.7. Returns Stewart Structure</a></li>
 | 
						|
</ul>
 | 
						|
</li>
 | 
						|
<li><a href="#orgb2d1742">5. Tests</a>
 | 
						|
<ul>
 | 
						|
<li><a href="#org6e933c9">5.1. First attempt to parametrisation</a></li>
 | 
						|
<li><a href="#org60486ce">5.2. Second attempt</a></li>
 | 
						|
<li><a href="#orge571873">5.3. Generate the Stewart platform for a Cubic configuration</a></li>
 | 
						|
</ul>
 | 
						|
</li>
 | 
						|
</ul>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
The discovery of the Cubic configuration is done in <a class='org-ref-reference' href="#geng94_six_degree_of_freed_activ">geng94_six_degree_of_freed_activ</a>.
 | 
						|
Further analysis is conducted in <a class='org-ref-reference' href="#jafari03_orthog_gough_stewar_platf_microm">jafari03_orthog_gough_stewar_platf_microm</a>.
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
People using orthogonal/cubic configuration: <a class='org-ref-reference' href="#preumont07_six_axis_singl_stage_activ">preumont07_six_axis_singl_stage_activ</a>.
 | 
						|
</p>
 | 
						|
 | 
						|
 | 
						|
<p>
 | 
						|
The specificity of the Cubic configuration is that each actuator is orthogonal with the others.
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
To generate and study the Cubic configuration, <code>initializeCubicConfiguration</code> is used (description in section <a href="#org38614bc">4</a>).
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
According to <a class='org-ref-reference' href="#preumont07_six_axis_singl_stage_activ">preumont07_six_axis_singl_stage_activ</a>, the cubic configuration provides a uniform stiffness in all directions and <b>minimizes the crosscoupling</b> from actuator to sensor of different legs (being orthogonal to each other).
 | 
						|
</p>
 | 
						|
 | 
						|
<div id="outline-container-org4a16be2" class="outline-2">
 | 
						|
<h2 id="org4a16be2"><span class="section-number-2">1</span> Questions we wish to answer with this analysis</h2>
 | 
						|
<div class="outline-text-2" id="text-1">
 | 
						|
<p>
 | 
						|
The goal is to study the benefits of using a cubic configuration:
 | 
						|
</p>
 | 
						|
<ul class="org-ul">
 | 
						|
<li>Equal stiffness in all the degrees of freedom?</li>
 | 
						|
<li>No coupling between the actuators?</li>
 | 
						|
<li>Is the center of the cube an important point?</li>
 | 
						|
</ul>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org289931f" class="outline-2">
 | 
						|
<h2 id="org289931f"><span class="section-number-2">2</span> Configuration Analysis - Stiffness Matrix</h2>
 | 
						|
<div class="outline-text-2" id="text-2">
 | 
						|
</div>
 | 
						|
<div id="outline-container-orgc378f8a" class="outline-3">
 | 
						|
<h3 id="orgc378f8a"><span class="section-number-3">2.1</span> Cubic Stewart platform centered with the cube center - Jacobian estimated at the cube center</h3>
 | 
						|
<div class="outline-text-3" id="text-2-1">
 | 
						|
<p>
 | 
						|
We create a cubic Stewart platform (figure <a href="#org8e23773">1</a>) in such a way that the center of the cube (black dot) is located at the center of the Stewart platform (blue dot).
 | 
						|
The Jacobian matrix is estimated at the location of the center of the cube.
 | 
						|
</p>
 | 
						|
 | 
						|
 | 
						|
<div id="org8e23773" class="figure">
 | 
						|
<p><img src="./figs/3d-cubic-stewart-aligned.png" alt="3d-cubic-stewart-aligned.png" />
 | 
						|
</p>
 | 
						|
<p><span class="figure-number">Figure 1: </span>Centered cubic configuration</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">opts = struct<span class="org-rainbow-delimiters-depth-1">(</span>...
 | 
						|
    <span class="org-string">'H_tot'</span>, <span class="org-highlight-numbers-number">100</span>, ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
 | 
						|
    <span class="org-string">'L'</span>,     <span class="org-highlight-numbers-number">200</span><span class="org-type">/</span>sqrt<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span>, ...<span class="org-comment"> % Size of the Cube [mm]</span>
 | 
						|
    <span class="org-string">'H'</span>,     <span class="org-highlight-numbers-number">60</span>, ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
 | 
						|
    <span class="org-string">'H0'</span>,    <span class="org-highlight-numbers-number">200</span><span class="org-type">/</span><span class="org-highlight-numbers-number">2</span><span class="org-type">-</span><span class="org-highlight-numbers-number">60</span><span class="org-type">/</span><span class="org-highlight-numbers-number">2</span> ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
 | 
						|
    <span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
stewart = initializeCubicConfiguration<span class="org-rainbow-delimiters-depth-1">(</span>opts<span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
opts = struct<span class="org-rainbow-delimiters-depth-1">(</span>...
 | 
						|
    <span class="org-string">'Jd_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-type">-</span><span class="org-highlight-numbers-number">50</span><span class="org-rainbow-delimiters-depth-2">]</span>, ...<span class="org-comment"> % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
 | 
						|
    <span class="org-string">'Jf_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-type">-</span><span class="org-highlight-numbers-number">50</span><span class="org-rainbow-delimiters-depth-2">]</span>  ...<span class="org-comment"> % Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
 | 
						|
    <span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
stewart = computeGeometricalProperties<span class="org-rainbow-delimiters-depth-1">(</span>stewart, opts<span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
 | 
						|
save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/stewart.mat'</span>, <span class="org-string">'stewart'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">K = stewart.Jf<span class="org-type">'*</span>stewart.Jf;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
 | 
						|
 | 
						|
 | 
						|
<colgroup>
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
</colgroup>
 | 
						|
<tbody>
 | 
						|
<tr>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">1.9e-18</td>
 | 
						|
<td class="org-right">-2.3e-17</td>
 | 
						|
<td class="org-right">1.8e-18</td>
 | 
						|
<td class="org-right">5.5e-17</td>
 | 
						|
<td class="org-right">-1.5e-17</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">1.9e-18</td>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">6.8e-18</td>
 | 
						|
<td class="org-right">-6.1e-17</td>
 | 
						|
<td class="org-right">-1.6e-18</td>
 | 
						|
<td class="org-right">4.8e-18</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">-2.3e-17</td>
 | 
						|
<td class="org-right">6.8e-18</td>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">-6.7e-18</td>
 | 
						|
<td class="org-right">4.9e-18</td>
 | 
						|
<td class="org-right">5.3e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">1.8e-18</td>
 | 
						|
<td class="org-right">-6.1e-17</td>
 | 
						|
<td class="org-right">-6.7e-18</td>
 | 
						|
<td class="org-right">0.0067</td>
 | 
						|
<td class="org-right">-2.3e-20</td>
 | 
						|
<td class="org-right">-6.1e-20</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">5.5e-17</td>
 | 
						|
<td class="org-right">-1.6e-18</td>
 | 
						|
<td class="org-right">4.9e-18</td>
 | 
						|
<td class="org-right">-2.3e-20</td>
 | 
						|
<td class="org-right">0.0067</td>
 | 
						|
<td class="org-right">1e-18</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">-1.5e-17</td>
 | 
						|
<td class="org-right">4.8e-18</td>
 | 
						|
<td class="org-right">5.3e-19</td>
 | 
						|
<td class="org-right">-6.1e-20</td>
 | 
						|
<td class="org-right">1e-18</td>
 | 
						|
<td class="org-right">0.027</td>
 | 
						|
</tr>
 | 
						|
</tbody>
 | 
						|
</table>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org608174e" class="outline-3">
 | 
						|
<h3 id="org608174e"><span class="section-number-3">2.2</span> Cubic Stewart platform centered with the cube center - Jacobian not estimated at the cube center</h3>
 | 
						|
<div class="outline-text-3" id="text-2-2">
 | 
						|
<p>
 | 
						|
We create a cubic Stewart platform with center of the cube located at the center of the Stewart platform (figure <a href="#org8e23773">1</a>).
 | 
						|
The Jacobian matrix is not estimated at the location of the center of the cube.
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">opts = struct<span class="org-rainbow-delimiters-depth-1">(</span>...
 | 
						|
    <span class="org-string">'H_tot'</span>, <span class="org-highlight-numbers-number">100</span>, ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
 | 
						|
    <span class="org-string">'L'</span>,     <span class="org-highlight-numbers-number">200</span><span class="org-type">/</span>sqrt<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span>, ...<span class="org-comment"> % Size of the Cube [mm]</span>
 | 
						|
    <span class="org-string">'H'</span>,     <span class="org-highlight-numbers-number">60</span>, ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
 | 
						|
    <span class="org-string">'H0'</span>,    <span class="org-highlight-numbers-number">200</span><span class="org-type">/</span><span class="org-highlight-numbers-number">2</span><span class="org-type">-</span><span class="org-highlight-numbers-number">60</span><span class="org-type">/</span><span class="org-highlight-numbers-number">2</span> ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
 | 
						|
    <span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
stewart = initializeCubicConfiguration<span class="org-rainbow-delimiters-depth-1">(</span>opts<span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
opts = struct<span class="org-rainbow-delimiters-depth-1">(</span>...
 | 
						|
    <span class="org-string">'Jd_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-2">]</span>, ...<span class="org-comment"> % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
 | 
						|
    <span class="org-string">'Jf_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-2">]</span>  ...<span class="org-comment"> % Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
 | 
						|
    <span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
stewart = computeGeometricalProperties<span class="org-rainbow-delimiters-depth-1">(</span>stewart, opts<span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">K = stewart.Jf<span class="org-type">'*</span>stewart.Jf;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
 | 
						|
 | 
						|
 | 
						|
<colgroup>
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
</colgroup>
 | 
						|
<tbody>
 | 
						|
<tr>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">1.9e-18</td>
 | 
						|
<td class="org-right">-2.3e-17</td>
 | 
						|
<td class="org-right">1.5e-18</td>
 | 
						|
<td class="org-right">-0.1</td>
 | 
						|
<td class="org-right">-1.5e-17</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">1.9e-18</td>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">6.8e-18</td>
 | 
						|
<td class="org-right">0.1</td>
 | 
						|
<td class="org-right">-1.6e-18</td>
 | 
						|
<td class="org-right">4.8e-18</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">-2.3e-17</td>
 | 
						|
<td class="org-right">6.8e-18</td>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">-5.1e-19</td>
 | 
						|
<td class="org-right">-5.5e-18</td>
 | 
						|
<td class="org-right">5.3e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">1.5e-18</td>
 | 
						|
<td class="org-right">0.1</td>
 | 
						|
<td class="org-right">-5.1e-19</td>
 | 
						|
<td class="org-right">0.012</td>
 | 
						|
<td class="org-right">-3e-19</td>
 | 
						|
<td class="org-right">3.1e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">-0.1</td>
 | 
						|
<td class="org-right">-1.6e-18</td>
 | 
						|
<td class="org-right">-5.5e-18</td>
 | 
						|
<td class="org-right">-3e-19</td>
 | 
						|
<td class="org-right">0.012</td>
 | 
						|
<td class="org-right">1.9e-18</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">-1.5e-17</td>
 | 
						|
<td class="org-right">4.8e-18</td>
 | 
						|
<td class="org-right">5.3e-19</td>
 | 
						|
<td class="org-right">3.1e-19</td>
 | 
						|
<td class="org-right">1.9e-18</td>
 | 
						|
<td class="org-right">0.027</td>
 | 
						|
</tr>
 | 
						|
</tbody>
 | 
						|
</table>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orgbd736ef" class="outline-3">
 | 
						|
<h3 id="orgbd736ef"><span class="section-number-3">2.3</span> Cubic Stewart platform not centered with the cube center - Jacobian estimated at the cube center</h3>
 | 
						|
<div class="outline-text-3" id="text-2-3">
 | 
						|
<p>
 | 
						|
Here, the "center" of the Stewart platform is not at the cube center (figure <a href="#org3982eac">2</a>).
 | 
						|
The Jacobian is estimated at the cube center.
 | 
						|
</p>
 | 
						|
 | 
						|
 | 
						|
<div id="org3982eac" class="figure">
 | 
						|
<p><img src="./figs/3d-cubic-stewart-misaligned.png" alt="3d-cubic-stewart-misaligned.png" />
 | 
						|
</p>
 | 
						|
<p><span class="figure-number">Figure 2: </span>Not centered cubic configuration</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
The center of the cube is at \(z = 110\).
 | 
						|
The Stewart platform is from \(z = H_0 = 75\) to \(z = H_0 + H_{tot} = 175\).
 | 
						|
The center height of the Stewart platform is then at \(z = \frac{175-75}{2} = 50\).
 | 
						|
The center of the cube from the top platform is at \(z = 110 - 175 = -65\).
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">opts = struct<span class="org-rainbow-delimiters-depth-1">(</span>...
 | 
						|
    <span class="org-string">'H_tot'</span>, <span class="org-highlight-numbers-number">100</span>,         ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
 | 
						|
    <span class="org-string">'L'</span>,     <span class="org-highlight-numbers-number">220</span><span class="org-type">/</span>sqrt<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span>, ...<span class="org-comment"> % Size of the Cube [mm]</span>
 | 
						|
    <span class="org-string">'H'</span>,     <span class="org-highlight-numbers-number">60</span>,          ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
 | 
						|
    <span class="org-string">'H0'</span>,    <span class="org-highlight-numbers-number">75</span>           ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
 | 
						|
    <span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
stewart = initializeCubicConfiguration<span class="org-rainbow-delimiters-depth-1">(</span>opts<span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
opts = struct<span class="org-rainbow-delimiters-depth-1">(</span>...
 | 
						|
    <span class="org-string">'Jd_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-type">-</span><span class="org-highlight-numbers-number">65</span><span class="org-rainbow-delimiters-depth-2">]</span>, ...<span class="org-comment"> % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
 | 
						|
    <span class="org-string">'Jf_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-type">-</span><span class="org-highlight-numbers-number">65</span><span class="org-rainbow-delimiters-depth-2">]</span>  ...<span class="org-comment"> % Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
 | 
						|
    <span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
stewart = computeGeometricalProperties<span class="org-rainbow-delimiters-depth-1">(</span>stewart, opts<span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">K = stewart.Jf<span class="org-type">'*</span>stewart.Jf;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
 | 
						|
 | 
						|
 | 
						|
<colgroup>
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
</colgroup>
 | 
						|
<tbody>
 | 
						|
<tr>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">-1.8e-17</td>
 | 
						|
<td class="org-right">2.6e-17</td>
 | 
						|
<td class="org-right">3.3e-18</td>
 | 
						|
<td class="org-right">0.04</td>
 | 
						|
<td class="org-right">1.7e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">-1.8e-17</td>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">1.9e-16</td>
 | 
						|
<td class="org-right">-0.04</td>
 | 
						|
<td class="org-right">2.2e-19</td>
 | 
						|
<td class="org-right">-5.3e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">2.6e-17</td>
 | 
						|
<td class="org-right">1.9e-16</td>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">-8.9e-18</td>
 | 
						|
<td class="org-right">6.5e-19</td>
 | 
						|
<td class="org-right">-5.8e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">3.3e-18</td>
 | 
						|
<td class="org-right">-0.04</td>
 | 
						|
<td class="org-right">-8.9e-18</td>
 | 
						|
<td class="org-right">0.0089</td>
 | 
						|
<td class="org-right">-9.3e-20</td>
 | 
						|
<td class="org-right">9.8e-20</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">0.04</td>
 | 
						|
<td class="org-right">2.2e-19</td>
 | 
						|
<td class="org-right">6.5e-19</td>
 | 
						|
<td class="org-right">-9.3e-20</td>
 | 
						|
<td class="org-right">0.0089</td>
 | 
						|
<td class="org-right">-2.4e-18</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">1.7e-19</td>
 | 
						|
<td class="org-right">-5.3e-19</td>
 | 
						|
<td class="org-right">-5.8e-19</td>
 | 
						|
<td class="org-right">9.8e-20</td>
 | 
						|
<td class="org-right">-2.4e-18</td>
 | 
						|
<td class="org-right">0.032</td>
 | 
						|
</tr>
 | 
						|
</tbody>
 | 
						|
</table>
 | 
						|
 | 
						|
<p>
 | 
						|
We obtain \(k_x = k_y = k_z\) and \(k_{\theta_x} = k_{\theta_y}\), but the Stiffness matrix is not diagonal.
 | 
						|
</p>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org6fbeda1" class="outline-3">
 | 
						|
<h3 id="org6fbeda1"><span class="section-number-3">2.4</span> Cubic Stewart platform not centered with the cube center - Jacobian estimated at the Stewart platform center</h3>
 | 
						|
<div class="outline-text-3" id="text-2-4">
 | 
						|
<p>
 | 
						|
Here, the "center" of the Stewart platform is not at the cube center.
 | 
						|
The Jacobian is estimated at the center of the Stewart platform.
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
The center of the cube is at \(z = 110\).
 | 
						|
The Stewart platform is from \(z = H_0 = 75\) to \(z = H_0 + H_{tot} = 175\).
 | 
						|
The center height of the Stewart platform is then at \(z = \frac{175-75}{2} = 50\).
 | 
						|
The center of the cube from the top platform is at \(z = 110 - 175 = -65\).
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">opts = struct<span class="org-rainbow-delimiters-depth-1">(</span>...
 | 
						|
    <span class="org-string">'H_tot'</span>, <span class="org-highlight-numbers-number">100</span>, ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
 | 
						|
    <span class="org-string">'L'</span>,     <span class="org-highlight-numbers-number">220</span><span class="org-type">/</span>sqrt<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span>, ...<span class="org-comment"> % Size of the Cube [mm]</span>
 | 
						|
    <span class="org-string">'H'</span>,     <span class="org-highlight-numbers-number">60</span>, ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
 | 
						|
    <span class="org-string">'H0'</span>,    <span class="org-highlight-numbers-number">75</span> ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
 | 
						|
    <span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
stewart = initializeCubicConfiguration<span class="org-rainbow-delimiters-depth-1">(</span>opts<span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
opts = struct<span class="org-rainbow-delimiters-depth-1">(</span>...
 | 
						|
    <span class="org-string">'Jd_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-type">-</span><span class="org-highlight-numbers-number">60</span><span class="org-rainbow-delimiters-depth-2">]</span>, ...<span class="org-comment"> % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
 | 
						|
    <span class="org-string">'Jf_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-type">-</span><span class="org-highlight-numbers-number">60</span><span class="org-rainbow-delimiters-depth-2">]</span>  ...<span class="org-comment"> % Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
 | 
						|
    <span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
stewart = computeGeometricalProperties<span class="org-rainbow-delimiters-depth-1">(</span>stewart, opts<span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">K = stewart.Jf<span class="org-type">'*</span>stewart.Jf;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
 | 
						|
 | 
						|
 | 
						|
<colgroup>
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
</colgroup>
 | 
						|
<tbody>
 | 
						|
<tr>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">-1.8e-17</td>
 | 
						|
<td class="org-right">2.6e-17</td>
 | 
						|
<td class="org-right">-5.7e-19</td>
 | 
						|
<td class="org-right">0.03</td>
 | 
						|
<td class="org-right">1.7e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">-1.8e-17</td>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">1.9e-16</td>
 | 
						|
<td class="org-right">-0.03</td>
 | 
						|
<td class="org-right">2.2e-19</td>
 | 
						|
<td class="org-right">-5.3e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">2.6e-17</td>
 | 
						|
<td class="org-right">1.9e-16</td>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">-1.5e-17</td>
 | 
						|
<td class="org-right">6.5e-19</td>
 | 
						|
<td class="org-right">-5.8e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">-5.7e-19</td>
 | 
						|
<td class="org-right">-0.03</td>
 | 
						|
<td class="org-right">-1.5e-17</td>
 | 
						|
<td class="org-right">0.0085</td>
 | 
						|
<td class="org-right">4.9e-20</td>
 | 
						|
<td class="org-right">1.7e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">0.03</td>
 | 
						|
<td class="org-right">2.2e-19</td>
 | 
						|
<td class="org-right">6.5e-19</td>
 | 
						|
<td class="org-right">4.9e-20</td>
 | 
						|
<td class="org-right">0.0085</td>
 | 
						|
<td class="org-right">-1.1e-18</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">1.7e-19</td>
 | 
						|
<td class="org-right">-5.3e-19</td>
 | 
						|
<td class="org-right">-5.8e-19</td>
 | 
						|
<td class="org-right">1.7e-19</td>
 | 
						|
<td class="org-right">-1.1e-18</td>
 | 
						|
<td class="org-right">0.032</td>
 | 
						|
</tr>
 | 
						|
</tbody>
 | 
						|
</table>
 | 
						|
 | 
						|
<p>
 | 
						|
We obtain \(k_x = k_y = k_z\) and \(k_{\theta_x} = k_{\theta_y}\), but the Stiffness matrix is not diagonal.
 | 
						|
</p>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org18633d3" class="outline-3">
 | 
						|
<h3 id="org18633d3"><span class="section-number-3">2.5</span> Conclusion</h3>
 | 
						|
<div class="outline-text-3" id="text-2-5">
 | 
						|
<div class="important">
 | 
						|
<ul class="org-ul">
 | 
						|
<li>The cubic configuration permits to have \(k_x = k_y = k_z\) and \(k_{\theta\x} = k_{\theta_y}\)</li>
 | 
						|
<li>The stiffness matrix \(K\) is diagonal for the cubic configuration if the Stewart platform and the cube are centered <b>and</b> the Jacobian is estimated at the cube center</li>
 | 
						|
</ul>
 | 
						|
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orgf0ba2d0" class="outline-2">
 | 
						|
<h2 id="orgf0ba2d0"><span class="section-number-2">3</span> Cubic size analysis</h2>
 | 
						|
<div class="outline-text-2" id="text-3">
 | 
						|
<p>
 | 
						|
We here study the effect of the size of the cube used for the Stewart configuration.
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
We fix the height of the Stewart platform, the center of the cube is at the center of the Stewart platform.
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
We only vary the size of the cube.
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">H_cubes = <span class="org-highlight-numbers-number">250</span><span class="org-type">:</span><span class="org-highlight-numbers-number">20</span><span class="org-type">:</span><span class="org-highlight-numbers-number">350</span>;
 | 
						|
stewarts = <span class="org-rainbow-delimiters-depth-1">{</span>zeros<span class="org-rainbow-delimiters-depth-2">(</span>length<span class="org-rainbow-delimiters-depth-3">(</span>H_cubes<span class="org-rainbow-delimiters-depth-3">)</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">}</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:length</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-constant">H_cubes</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">)</span></span>
 | 
						|
  H_cube = H_cubes<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
  H_tot = <span class="org-highlight-numbers-number">100</span>;
 | 
						|
  H = <span class="org-highlight-numbers-number">80</span>;
 | 
						|
 | 
						|
  opts = struct<span class="org-rainbow-delimiters-depth-1">(</span>...
 | 
						|
      <span class="org-string">'H_tot'</span>, H_tot, ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
 | 
						|
      <span class="org-string">'L'</span>,     H_cube<span class="org-type">/</span>sqrt<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span>, ...<span class="org-comment"> % Size of the Cube [mm]</span>
 | 
						|
      <span class="org-string">'H'</span>,     H, ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
 | 
						|
      <span class="org-string">'H0'</span>,    H_cube<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span><span class="org-type">-</span>H<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span> ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
 | 
						|
      <span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
  stewart = initializeCubicConfiguration<span class="org-rainbow-delimiters-depth-1">(</span>opts<span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
 | 
						|
  opts = struct<span class="org-rainbow-delimiters-depth-1">(</span>...
 | 
						|
      <span class="org-string">'Jd_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, H_cube<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span><span class="org-type">-</span>opts.H0<span class="org-type">-</span>opts.H_tot<span class="org-rainbow-delimiters-depth-2">]</span>, ...<span class="org-comment"> % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
 | 
						|
      <span class="org-string">'Jf_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, H_cube<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span><span class="org-type">-</span>opts.H0<span class="org-type">-</span>opts.H_tot<span class="org-rainbow-delimiters-depth-2">]</span>  ...<span class="org-comment"> % Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
 | 
						|
      <span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
  stewart = computeGeometricalProperties<span class="org-rainbow-delimiters-depth-1">(</span>stewart, opts<span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
  stewarts<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">)</span> = <span class="org-rainbow-delimiters-depth-1">{</span>stewart<span class="org-rainbow-delimiters-depth-1">}</span>;
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
 | 
						|
<p>
 | 
						|
The Stiffness matrix is computed for all generated Stewart platforms.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Ks = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">6</span>, length<span class="org-rainbow-delimiters-depth-2">(</span>H_cube<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:length</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-constant">H_cubes</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">)</span></span>
 | 
						|
  Ks<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>, <span class="org-type">:</span>, <span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">)</span> = stewarts<span class="org-rainbow-delimiters-depth-1">{</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">}</span>.Jd<span class="org-type">'*</span>stewarts<span class="org-rainbow-delimiters-depth-1">{</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">}</span>.Jd;
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
The only elements of \(K\) that vary are \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\).
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
Finally, we plot \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\)
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-type">figure</span>;
 | 
						|
hold on;
 | 
						|
plot<span class="org-rainbow-delimiters-depth-1">(</span>H_cubes, squeeze<span class="org-rainbow-delimiters-depth-2">(</span>Ks<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">4</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-string">'DisplayName'</span>, <span class="org-string">'$k_</span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">{</span></span><span class="org-string">\theta_x</span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">}</span></span><span class="org-string">$'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
plot<span class="org-rainbow-delimiters-depth-1">(</span>H_cubes, squeeze<span class="org-rainbow-delimiters-depth-2">(</span>Ks<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">6</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-string">'DisplayName'</span>, <span class="org-string">'$k_</span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">{</span></span><span class="org-string">\theta_z</span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">}</span></span><span class="org-string">$'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
hold off;
 | 
						|
legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'location'</span>, <span class="org-string">'northwest'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
xlabel<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'Cube Size </span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">[</span></span><span class="org-string">mm</span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">]</span></span><span class="org-string">'</span><span class="org-rainbow-delimiters-depth-1">)</span>; ylabel<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'Rotational stiffnes </span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">[</span></span><span class="org-string">normalized</span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">]</span></span><span class="org-string">'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
 | 
						|
<div id="org7d4f005" class="figure">
 | 
						|
<p><img src="figs/stiffness_cube_size.png" alt="stiffness_cube_size.png" />
 | 
						|
</p>
 | 
						|
<p><span class="figure-number">Figure 3: </span>\(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\) function of the size of the cube</p>
 | 
						|
</div>
 | 
						|
 | 
						|
 | 
						|
<p>
 | 
						|
We observe that \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\) increase linearly with the cube size.
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="important">
 | 
						|
<p>
 | 
						|
In order to maximize the rotational stiffness of the Stewart platform, the size of the cube should be the highest possible.
 | 
						|
In that case, the legs will the further separated. Size of the cube is then limited by allowed space.
 | 
						|
</p>
 | 
						|
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org97dffbc" class="outline-2">
 | 
						|
<h2 id="org97dffbc"><span class="section-number-2">4</span> initializeCubicConfiguration</h2>
 | 
						|
<div class="outline-text-2" id="text-4">
 | 
						|
<p>
 | 
						|
<a id="org38614bc"></a>
 | 
						|
</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org4eb8b23" class="outline-3">
 | 
						|
<h3 id="org4eb8b23"><span class="section-number-3">4.1</span> Function description</h3>
 | 
						|
<div class="outline-text-3" id="text-4-1">
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name"><span class="org-rainbow-delimiters-depth-1">[</span></span><span class="org-variable-name">stewart</span><span class="org-variable-name"><span class="org-rainbow-delimiters-depth-1">]</span></span> = <span class="org-function-name">initializeCubicConfiguration</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-variable-name">opts_param</span><span class="org-rainbow-delimiters-depth-1">)</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orga42cb17" class="outline-3">
 | 
						|
<h3 id="orga42cb17"><span class="section-number-3">4.2</span> Optional Parameters</h3>
 | 
						|
<div class="outline-text-3" id="text-4-2">
 | 
						|
<p>
 | 
						|
Default values for opts.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">opts = struct<span class="org-rainbow-delimiters-depth-1">(</span>...
 | 
						|
    <span class="org-string">'H_tot'</span>, <span class="org-highlight-numbers-number">90</span>,  ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
 | 
						|
    <span class="org-string">'L'</span>,     <span class="org-highlight-numbers-number">110</span>, ...<span class="org-comment"> % Size of the Cube [mm]</span>
 | 
						|
    <span class="org-string">'H'</span>,     <span class="org-highlight-numbers-number">40</span>,  ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
 | 
						|
    <span class="org-string">'H0'</span>,    <span class="org-highlight-numbers-number">75</span>   ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
 | 
						|
    <span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
Populate opts with input parameters
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-keyword">if</span> exist<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'opts_param'</span>,<span class="org-string">'var'</span><span class="org-rainbow-delimiters-depth-1">)</span>
 | 
						|
    <span class="org-keyword">for</span> <span class="org-variable-name">opt</span> = <span class="org-constant">fieldnames</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-constant">opts_param</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">)</span></span><span class="org-constant">'</span>
 | 
						|
        opts.<span class="org-rainbow-delimiters-depth-1">(</span>opt<span class="org-rainbow-delimiters-depth-2">{</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">}</span><span class="org-rainbow-delimiters-depth-1">)</span> = opts_param.<span class="org-rainbow-delimiters-depth-1">(</span>opt<span class="org-rainbow-delimiters-depth-2">{</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">}</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
    <span class="org-keyword">end</span>
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orgc281f60" class="outline-3">
 | 
						|
<h3 id="orgc281f60"><span class="section-number-3">4.3</span> Cube Creation</h3>
 | 
						|
<div class="outline-text-3" id="text-4-3">
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">points = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>; ...
 | 
						|
          <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span>; ...
 | 
						|
          <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">0</span>; ...
 | 
						|
          <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>; ...
 | 
						|
          <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>; ...
 | 
						|
          <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span>; ...
 | 
						|
          <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">0</span>; ...
 | 
						|
          <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span>;
 | 
						|
points = opts.L<span class="org-type">*</span>points;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
We create the rotation matrix to rotate the cube
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">sx = cross<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
sx = sx<span class="org-type">/</span>norm<span class="org-rainbow-delimiters-depth-1">(</span>sx<span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
 | 
						|
sy = <span class="org-type">-</span>cross<span class="org-rainbow-delimiters-depth-1">(</span>sx, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
sy = sy<span class="org-type">/</span>norm<span class="org-rainbow-delimiters-depth-1">(</span>sy<span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
 | 
						|
sz = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span>;
 | 
						|
sz = sz<span class="org-type">/</span>norm<span class="org-rainbow-delimiters-depth-1">(</span>sz<span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
 | 
						|
R = <span class="org-rainbow-delimiters-depth-1">[</span>sx<span class="org-type">'</span>, sy<span class="org-type">'</span>, sz<span class="org-type">'</span><span class="org-rainbow-delimiters-depth-1">]</span><span class="org-type">'</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
We use to rotation matrix to rotate the cube
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">cube = zeros<span class="org-rainbow-delimiters-depth-1">(</span>size<span class="org-rainbow-delimiters-depth-2">(</span>points<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:size</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-constant">points, </span><span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">)</span></span>
 | 
						|
  cube<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = R <span class="org-type">*</span> points<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">'</span>;
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orgfed01f0" class="outline-3">
 | 
						|
<h3 id="orgfed01f0"><span class="section-number-3">4.4</span> Vectors of each leg</h3>
 | 
						|
<div class="outline-text-3" id="text-4-4">
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">leg_indices = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">3</span>, <span class="org-highlight-numbers-number">4</span>; ...
 | 
						|
               <span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">4</span>; ...
 | 
						|
               <span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">6</span>; ...
 | 
						|
               <span class="org-highlight-numbers-number">5</span>, <span class="org-highlight-numbers-number">6</span>; ...
 | 
						|
               <span class="org-highlight-numbers-number">5</span>, <span class="org-highlight-numbers-number">7</span>; ...
 | 
						|
               <span class="org-highlight-numbers-number">3</span>, <span class="org-highlight-numbers-number">7</span><span class="org-rainbow-delimiters-depth-1">]</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
Vectors are:
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">legs = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
legs_start = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span>
 | 
						|
  legs<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = cube<span class="org-rainbow-delimiters-depth-1">(</span>leg_indices<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-type">-</span> cube<span class="org-rainbow-delimiters-depth-1">(</span>leg_indices<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
  legs_start<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = cube<span class="org-rainbow-delimiters-depth-1">(</span>leg_indices<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org21db1ef" class="outline-3">
 | 
						|
<h3 id="org21db1ef"><span class="section-number-3">4.5</span> Verification of Height of the Stewart Platform</h3>
 | 
						|
<div class="outline-text-3" id="text-4-5">
 | 
						|
<p>
 | 
						|
If the Stewart platform is not contained in the cube, throw an error.
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Hmax = cube<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-type">-</span> cube<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
<span class="org-keyword">if</span> opts.H0 <span class="org-type"><</span> cube<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>
 | 
						|
  error<span class="org-rainbow-delimiters-depth-1">(</span>sprintf<span class="org-rainbow-delimiters-depth-2">(</span>'H0 is not high enought. Minimum H0 = %.<span class="org-highlight-numbers-number">1f</span><span class="org-type">'</span>, cube(<span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">3</span>)));
 | 
						|
<span class="org-keyword">else</span> <span class="org-keyword">if</span> opts.H0 <span class="org-type">+</span> opts.H <span class="org-type">></span> cube<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-3">)</span>
 | 
						|
  error<span class="org-rainbow-delimiters-depth-3">(</span>sprintf<span class="org-rainbow-delimiters-depth-4">(</span>'H0<span class="org-type">+</span>H is too high. Maximum H0<span class="org-type">+</span>H = %.<span class="org-highlight-numbers-number">1f</span><span class="org-type">'</span>, cube(<span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">3</span>)));
 | 
						|
  error<span class="org-rainbow-delimiters-depth-5">(</span><span class="org-string">'H0+H is too high'</span><span class="org-rainbow-delimiters-depth-5">)</span>;
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org9578c3c" class="outline-3">
 | 
						|
<h3 id="org9578c3c"><span class="section-number-3">4.6</span> Determinate the location of the joints</h3>
 | 
						|
<div class="outline-text-3" id="text-4-6">
 | 
						|
<p>
 | 
						|
We now determine the location of the joints on the fixed platform w.r.t the fixed frame \(\{A\}\).
 | 
						|
\(\{A\}\) is fixed to the bottom of the base.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Aa = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span>
 | 
						|
  t = <span class="org-rainbow-delimiters-depth-1">(</span>opts.H0<span class="org-type">-</span>legs_start<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">/</span><span class="org-rainbow-delimiters-depth-1">(</span>legs<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
  Aa<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = legs_start<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-type">+</span> t<span class="org-type">*</span>legs<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
And the location of the joints on the mobile platform with respect to \(\{A\}\).
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Ab = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span>
 | 
						|
  t = <span class="org-rainbow-delimiters-depth-1">(</span>opts.H0<span class="org-type">+</span>opts.H<span class="org-type">-</span>legs_start<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">/</span><span class="org-rainbow-delimiters-depth-1">(</span>legs<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
  Ab<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = legs_start<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-type">+</span> t<span class="org-type">*</span>legs<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
And the location of the joints on the mobile platform with respect to \(\{B\}\).
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Bb = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
Bb = Ab <span class="org-type">-</span> <span class="org-rainbow-delimiters-depth-1">(</span>opts.H0 <span class="org-type">+</span> opts.H_tot<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span> <span class="org-type">+</span> opts.H<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">h = opts.H0 <span class="org-type">+</span> opts.H<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span> <span class="org-type">-</span> opts.H_tot<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span>;
 | 
						|
Aa = Aa <span class="org-type">-</span> h<span class="org-type">*</span><span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span>;
 | 
						|
Ab = Ab <span class="org-type">-</span> h<span class="org-type">*</span><span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org71c9d4e" class="outline-3">
 | 
						|
<h3 id="org71c9d4e"><span class="section-number-3">4.7</span> Returns Stewart Structure</h3>
 | 
						|
<div class="outline-text-3" id="text-4-7">
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">  stewart = struct<span class="org-rainbow-delimiters-depth-1">()</span>;
 | 
						|
  stewart.Aa = Aa;
 | 
						|
  stewart.Ab = Ab;
 | 
						|
  stewart.Bb = Bb;
 | 
						|
  stewart.H_tot = opts.H_tot;
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orgb2d1742" class="outline-2">
 | 
						|
<h2 id="orgb2d1742"><span class="section-number-2">5</span> Tests</h2>
 | 
						|
<div class="outline-text-2" id="text-5">
 | 
						|
</div>
 | 
						|
<div id="outline-container-org6e933c9" class="outline-3">
 | 
						|
<h3 id="org6e933c9"><span class="section-number-3">5.1</span> First attempt to parametrisation</h3>
 | 
						|
<div class="outline-text-3" id="text-5-1">
 | 
						|
 | 
						|
<div id="org94bcd9c" class="figure">
 | 
						|
<p><img src="./figs/stewart_bottom_plate.png" alt="stewart_bottom_plate.png" />
 | 
						|
</p>
 | 
						|
<p><span class="figure-number">Figure 4: </span>Schematic of the bottom plates with all the parameters</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
The goal is to choose \(\alpha\), \(\beta\), \(R_\text{leg, t}\) and \(R_\text{leg, b}\) in such a way that the configuration is cubic.
 | 
						|
</p>
 | 
						|
 | 
						|
 | 
						|
<p>
 | 
						|
The configuration is cubic if:
 | 
						|
\[ \overrightarrow{a_i b_i} \cdot \overrightarrow{a_j b_j} = 0, \ \forall i, j = [1, \hdots, 6], i \ne j \]
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
Lets express \(a_i\), \(b_i\) and \(a_j\):
 | 
						|
</p>
 | 
						|
\begin{equation*}
 | 
						|
  a_1 = \begin{bmatrix}R_{\text{leg,b}} \cos(120 - \alpha) \\  R_{\text{leg,b}} \cos(120 - \alpha) \\ 0\end{bmatrix} ; \quad
 | 
						|
  a_2 = \begin{bmatrix}R_{\text{leg,b}} \cos(120 + \alpha) \\  R_{\text{leg,b}} \cos(120 + \alpha) \\ 0\end{bmatrix} ; \quad
 | 
						|
\end{equation*}
 | 
						|
 | 
						|
\begin{equation*}
 | 
						|
  b_1 = \begin{bmatrix}R_{\text{leg,t}} \cos(120 - \beta) \\  R_{\text{leg,t}} \cos(120 - \beta\\ H\end{bmatrix} ; \quad
 | 
						|
  b_2 = \begin{bmatrix}R_{\text{leg,t}} \cos(120 + \beta) \\  R_{\text{leg,t}} \cos(120 + \beta\\ H\end{bmatrix} ; \quad
 | 
						|
\end{equation*}
 | 
						|
 | 
						|
<p>
 | 
						|
\[ \overrightarrow{a_1 b_1} = b_1 - a_1 = \begin{bmatrix}R_{\text{leg}} \cos(120 - \alpha) \\  R_{\text{leg}} \cos(120 - \alpha) \\ 0\end{bmatrix}\]
 | 
						|
</p>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org60486ce" class="outline-3">
 | 
						|
<h3 id="org60486ce"><span class="section-number-3">5.2</span> Second attempt</h3>
 | 
						|
<div class="outline-text-3" id="text-5-2">
 | 
						|
<p>
 | 
						|
We start with the point of a cube in space:
 | 
						|
</p>
 | 
						|
\begin{align*}
 | 
						|
  [0, 0, 0] ; \ [0, 0, 1]; \ ...
 | 
						|
\end{align*}
 | 
						|
 | 
						|
<p>
 | 
						|
We also want the cube to point upward:
 | 
						|
\[ [1, 1, 1] \Rightarrow [0, 0, 1] \]
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
Then we have the direction of all the vectors expressed in the frame of the hexapod.
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">points = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>; ...
 | 
						|
          <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span>; ...
 | 
						|
          <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">0</span>; ...
 | 
						|
          <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>; ...
 | 
						|
          <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>; ...
 | 
						|
          <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span>; ...
 | 
						|
          <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">0</span>; ...
 | 
						|
          <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-type">figure</span>;
 | 
						|
plot3<span class="org-rainbow-delimiters-depth-1">(</span>points<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>,<span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span>, points<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>,<span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span>, points<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>,<span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-string">'ko'</span><span class="org-rainbow-delimiters-depth-1">)</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">sx = cross<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
sx = sx<span class="org-type">/</span>norm<span class="org-rainbow-delimiters-depth-1">(</span>sx<span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
 | 
						|
sy = <span class="org-type">-</span>cross<span class="org-rainbow-delimiters-depth-1">(</span>sx, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
sy = sy<span class="org-type">/</span>norm<span class="org-rainbow-delimiters-depth-1">(</span>sy<span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
 | 
						|
sz = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span>;
 | 
						|
sz = sz<span class="org-type">/</span>norm<span class="org-rainbow-delimiters-depth-1">(</span>sz<span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
 | 
						|
R = <span class="org-rainbow-delimiters-depth-1">[</span>sx<span class="org-type">'</span>, sy<span class="org-type">'</span>, sz<span class="org-type">'</span><span class="org-rainbow-delimiters-depth-1">]</span><span class="org-type">'</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">cube = zeros<span class="org-rainbow-delimiters-depth-1">(</span>size<span class="org-rainbow-delimiters-depth-2">(</span>points<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:size</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-constant">points, </span><span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">)</span></span>
 | 
						|
  cube<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = R <span class="org-type">*</span> points<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">'</span>;
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-type">figure</span>;
 | 
						|
hold on;
 | 
						|
plot3<span class="org-rainbow-delimiters-depth-1">(</span>points<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>,<span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span>, points<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>,<span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span>, points<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>,<span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-string">'ko'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
plot3<span class="org-rainbow-delimiters-depth-1">(</span>cube<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>,<span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span>, cube<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>,<span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span>, cube<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>,<span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-string">'ro'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
hold off;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
Now we plot the legs of the hexapod.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">leg_indices = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">3</span>, <span class="org-highlight-numbers-number">4</span>; ...
 | 
						|
               <span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">4</span>; ...
 | 
						|
               <span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">6</span>; ...
 | 
						|
               <span class="org-highlight-numbers-number">5</span>, <span class="org-highlight-numbers-number">6</span>; ...
 | 
						|
               <span class="org-highlight-numbers-number">5</span>, <span class="org-highlight-numbers-number">7</span>; ...
 | 
						|
               <span class="org-highlight-numbers-number">3</span>, <span class="org-highlight-numbers-number">7</span><span class="org-rainbow-delimiters-depth-1">]</span>
 | 
						|
 | 
						|
<span class="org-type">figure</span>;
 | 
						|
hold on;
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span>
 | 
						|
  plot3<span class="org-rainbow-delimiters-depth-1">(</span>cube<span class="org-rainbow-delimiters-depth-2">(</span>leg_indices<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-3">)</span>,<span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span>, cube<span class="org-rainbow-delimiters-depth-2">(</span>leg_indices<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-3">)</span>,<span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span>, cube<span class="org-rainbow-delimiters-depth-2">(</span>leg_indices<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-3">)</span>,<span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-string">'-'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
hold off;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
Vectors are:
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">legs = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
legs_start = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span>
 | 
						|
  legs<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = cube<span class="org-rainbow-delimiters-depth-1">(</span>leg_indices<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-type">-</span> cube<span class="org-rainbow-delimiters-depth-1">(</span>leg_indices<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
  legs_start<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = cube<span class="org-rainbow-delimiters-depth-1">(</span>leg_indices<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
We now have the orientation of each leg.
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
We here want to see if the position of the "slice" changes something.
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
Let's first estimate the maximum height of the Stewart platform.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Hmax = cube<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-type">-</span> cube<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
Let's then estimate the middle position of the platform
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Hmid = cube<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">8</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">/</span><span class="org-highlight-numbers-number">2</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orge571873" class="outline-3">
 | 
						|
<h3 id="orge571873"><span class="section-number-3">5.3</span> Generate the Stewart platform for a Cubic configuration</h3>
 | 
						|
<div class="outline-text-3" id="text-5-3">
 | 
						|
<p>
 | 
						|
First we defined the height of the Hexapod.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">H = Hmax<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Zs = <span class="org-highlight-numbers-number">1</span>.<span class="org-highlight-numbers-number">2</span><span class="org-type">*</span>cube<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Height of the fixed platform</span>
 | 
						|
Ze = Zs <span class="org-type">+</span> H; <span class="org-comment">% Height of the mobile platform</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
We now determine the location of the joints on the fixed platform.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Aa = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span>
 | 
						|
  t = <span class="org-rainbow-delimiters-depth-1">(</span>Zs<span class="org-type">-</span>legs_start<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">/</span><span class="org-rainbow-delimiters-depth-1">(</span>legs<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
  Aa<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = legs_start<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-type">+</span> t<span class="org-type">*</span>legs<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
And the location of the joints on the mobile platform
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Ab = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span>
 | 
						|
  t = <span class="org-rainbow-delimiters-depth-1">(</span>Ze<span class="org-type">-</span>legs_start<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">/</span><span class="org-rainbow-delimiters-depth-1">(</span>legs<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
  Ab<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = legs_start<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-type">+</span> t<span class="org-type">*</span>legs<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
And we plot the legs.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-type">figure</span>;
 | 
						|
hold on;
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span>
 | 
						|
  plot3<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>Ab<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-3">)</span>,Aa<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-rainbow-delimiters-depth-2">[</span>Ab<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-3">)</span>,Aa<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-rainbow-delimiters-depth-2">[</span>Ab<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-3">)</span>,Aa<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-string">'k-'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
hold off;
 | 
						|
xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span><span class="org-type">-</span><span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
ylim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span><span class="org-type">-</span><span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
zlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
 | 
						|
<h1 class='org-ref-bib-h1'>Bibliography</h1>
 | 
						|
<ul class='org-ref-bib'><li><a id="geng94_six_degree_of_freed_activ">[geng94_six_degree_of_freed_activ]</a> <a name="geng94_six_degree_of_freed_activ"></a>Geng & Haynes, Six Degree-Of-Freedom Active Vibration Control Using the  Stewart Platforms, <i>IEEE Transactions on Control Systems Technology</i>, <b>2(1)</b>, 45-53 (1994). <a href="https://doi.org/10.1109/87.273110">link</a>. <a href="http://dx.doi.org/10.1109/87.273110">doi</a>.</li>
 | 
						|
<li><a id="jafari03_orthog_gough_stewar_platf_microm">[jafari03_orthog_gough_stewar_platf_microm]</a> <a name="jafari03_orthog_gough_stewar_platf_microm"></a>Jafari & McInroy, Orthogonal Gough-Stewart Platforms for Micromanipulation, <i>IEEE Transactions on Robotics and Automation</i>, <b>19(4)</b>, 595-603 (2003). <a href="https://doi.org/10.1109/tra.2003.814506">link</a>. <a href="http://dx.doi.org/10.1109/tra.2003.814506">doi</a>.</li>
 | 
						|
<li><a id="preumont07_six_axis_singl_stage_activ">[preumont07_six_axis_singl_stage_activ]</a> <a name="preumont07_six_axis_singl_stage_activ"></a>Preumont, Horodinca, Romanescu, de, Marneffe, Avraam, Deraemaeker, Bossens, & Abu Hanieh, A Six-Axis Single-Stage Active Vibration Isolator Based on  Stewart Platform, <i>Journal of Sound and Vibration</i>, <b>300(3-5)</b>, 644-661 (2007). <a href="https://doi.org/10.1016/j.jsv.2006.07.050">link</a>. <a href="http://dx.doi.org/10.1016/j.jsv.2006.07.050">doi</a>.</li>
 | 
						|
</ul>
 | 
						|
</p>
 | 
						|
</div>
 | 
						|
<div id="postamble" class="status">
 | 
						|
<p class="author">Author: Thomas Dehaeze</p>
 | 
						|
<p class="date">Created: 2019-12-12 jeu. 20:10</p>
 | 
						|
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
 | 
						|
</div>
 | 
						|
</body>
 | 
						|
</html>
 |