Add few study

This commit is contained in:
Thomas Dehaeze 2020-01-20 16:29:48 +01:00
parent be78e8b801
commit ffe6b8ed4b
6 changed files with 533 additions and 2 deletions

244
control-study.org Normal file
View File

@ -0,0 +1,244 @@
#+TITLE: Stewart Platform - Control Study
:DRAWER:
#+HTML_LINK_HOME: ./index.html
#+HTML_LINK_UP: ./index.html
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
#+HTML_HEAD: <script src="./js/jquery.min.js"></script>
#+HTML_HEAD: <script src="./js/bootstrap.min.js"></script>
#+HTML_HEAD: <script src="./js/jquery.stickytableheaders.min.js"></script>
#+HTML_HEAD: <script src="./js/readtheorg.js"></script>
#+PROPERTY: header-args:matlab :session *MATLAB*
#+PROPERTY: header-args:matlab+ :comments org
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :results none
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :noweb yes
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:matlab+ :output-dir figs
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/}{config.tex}")
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
#+PROPERTY: header-args:latex+ :results file raw replace
#+PROPERTY: header-args:latex+ :buffer no
#+PROPERTY: header-args:latex+ :eval no-export
#+PROPERTY: header-args:latex+ :exports both
#+PROPERTY: header-args:latex+ :mkdirp yes
#+PROPERTY: header-args:latex+ :output-dir figs
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
:END:
* First Control Architecture
** Matlab Init :noexport:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
#+begin_src matlab
addpath('./src/')
#+end_src
** Control Schematic
#+begin_src latex :file control_measure_rotating_2dof.pdf
\begin{tikzpicture}
% Blocs
\node[block] (J) at (0, 0) {$J$};
\node[addb={+}{}{}{}{-}, right=1 of J] (subr) {};
\node[block, right=0.8 of subr] (K) {$K_{L}$};
\node[block, right=1 of K] (G) {$G_{L}$};
% Connections and labels
\draw[<-] (J.west)node[above left]{$\bm{r}_{n}$} -- ++(-1, 0);
\draw[->] (J.east) -- (subr.west) node[above left]{$\bm{r}_{L}$};
\draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{L}$};
\draw[->] (K.east) -- (G.west) node[above left]{$\bm{\tau}$};
\draw[->] (G.east) node[above right]{$\bm{L}$} -| ($(G.east)+(1, -1)$) -| (subr.south);
\end{tikzpicture}
#+end_src
#+RESULTS:
[[file:figs/control_measure_rotating_2dof.png]]
** Initialize the Stewart platform
#+begin_src matlab
stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3);
stewart = generateCubicConfiguration(stewart, 'Hc', 60e-3, 'FOc', 45e-3, 'FHa', 5e-3, 'MHb', 5e-3);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, 'Ki', 1e6*ones(6,1), 'Ci', 1e2*ones(6,1));
stewart = computeJacobian(stewart);
#+end_src
** Identification of the plant
Let's identify the transfer function from $\bm{\tau}}$ to $\bm{L}$.
#+begin_src matlab
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_control';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/tau'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/L'], 1, 'openoutput'); io_i = io_i + 1;
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'L1', 'L2', 'L3', 'L4', 'L5', 'L6'};
#+end_src
** Plant Analysis
Diagonal terms
#+begin_src matlab :exports none
freqs = logspace(1, 4, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:6
plot(freqs, abs(squeeze(freqresp(G(i, i), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, i), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
#+end_src
Compare to off-diagonal terms
#+begin_src matlab :exports none
freqs = logspace(1, 4, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:5
for j = i+1:6
plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:5
for j = i+1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
#+end_src
** Controller Design
One integrator should be present in the controller.
A lead is added around the crossover frequency which is set to be around 500Hz.
#+begin_src matlab
% wint = 2*pi*100; % Integrate until [rad]
% wlead = 2*pi*500; % Location of the lead [rad]
% hlead = 2; % Lead strengh
% Kl = 1e6 * ... % Gain
% (s + wint)/(s) * ... % Integrator until 100Hz
% (1 + s/(wlead/hlead)/(1 + s/(wlead*hlead))); % Lead
wc = 2*pi*100;
Kl = 1/abs(freqresp(G(1,1), wc)) * wc/s * 1/(1 + s/(3*wc));
Kl = Kl * eye(6);
#+end_src
#+begin_src matlab :exports none
freqs = logspace(1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(freqs, abs(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
#+end_src
#+begin_src matlab :exports none
freqs = logspace(1, 4, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:5
for j = i+1:6
plot(freqs, abs(squeeze(freqresp(Kl(i,i)*G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:5
for j = i+1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(i, i)*G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
#+end_src

285
dynamics-study.org Normal file
View File

@ -0,0 +1,285 @@
#+TITLE: Stewart Platform - Dynamics Study
:DRAWER:
#+HTML_LINK_HOME: ./index.html
#+HTML_LINK_UP: ./index.html
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
#+HTML_HEAD: <script src="./js/jquery.min.js"></script>
#+HTML_HEAD: <script src="./js/bootstrap.min.js"></script>
#+HTML_HEAD: <script src="./js/jquery.stickytableheaders.min.js"></script>
#+HTML_HEAD: <script src="./js/readtheorg.js"></script>
#+PROPERTY: header-args:matlab :session *MATLAB*
#+PROPERTY: header-args:matlab+ :comments org
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :results none
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :noweb yes
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:matlab+ :output-dir figs
:END:
* Some tests
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
#+begin_src matlab
addpath('./src/')
#+end_src
** Simscape Model
#+begin_src matlab
open('stewart_platform_dynamics.slx')
#+end_src
** test
#+begin_src matlab
stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3);
stewart = generateCubicConfiguration(stewart, 'Hc', 60e-3, 'FOc', 45e-3, 'FHa', 5e-3, 'MHb', 5e-3);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, 'Ki', 1e6*ones(6,1), 'Ci', 1e2*ones(6,1));
stewart = computeJacobian(stewart);
#+end_src
Estimation of the transfer function from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$:
#+begin_src matlab
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_dynamics';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1;
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
#+end_src
#+begin_src matlab
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_dynamics';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/J-T'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1;
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
#+end_src
#+begin_src matlab
G_cart = minreal(G*inv(stewart.J'));
G_cart.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};
#+end_src
#+begin_src matlab
figure; bode(G, G_cart)
#+end_src
#+begin_src matlab
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_dynamics';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Fext'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1;
%% Run the linearization
Gd = linearize(mdl, io, options);
Gd.InputName = {'Fex', 'Fey', 'Fez', 'Mex', 'Mey', 'Mez'};
Gd.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
#+end_src
#+begin_src matlab
freqs = logspace(0, 3, 1000);
figure;
bode(Gd, G)
#+end_src
** Compare external forces and forces applied by the actuators
Initialization of the Stewart platform.
#+begin_src matlab
stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3);
stewart = generateCubicConfiguration(stewart, 'Hc', 60e-3, 'FOc', 45e-3, 'FHa', 5e-3, 'MHb', 5e-3);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, 'Ki', 1e6*ones(6,1), 'Ci', 1e2*ones(6,1));
stewart = computeJacobian(stewart);
#+end_src
Estimation of the transfer function from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$:
#+begin_src matlab
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_dynamics';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1;
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
#+end_src
Estimation of the transfer function from $\mathcal{\bm{F}}_{d}$ to $\mathcal{\bm{X}}$:
#+begin_src matlab
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_dynamics';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Fext'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1;
%% Run the linearization
Gd = linearize(mdl, io, options);
Gd.InputName = {'Fex', 'Fey', 'Fez', 'Mex', 'Mey', 'Mez'};
Gd.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
#+end_src
Comparison of the two transfer function matrices.
#+begin_src matlab
freqs = logspace(0, 4, 1000);
figure;
bode(Gd, G, freqs)
#+end_src
#+begin_important
Seems quite similar.
#+end_important
** Comparison of the static transfer function and the Compliance matrix
Initialization of the Stewart platform.
#+begin_src matlab
stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3);
stewart = generateCubicConfiguration(stewart, 'Hc', 60e-3, 'FOc', 45e-3, 'FHa', 5e-3, 'MHb', 5e-3);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, 'Ki', 1e6*ones(6,1), 'Ci', 1e2*ones(6,1));
stewart = computeJacobian(stewart);
#+end_src
Estimation of the transfer function from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$:
#+begin_src matlab
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_dynamics';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1;
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
#+end_src
Let's first look at the low frequency transfer function matrix from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$.
#+begin_src matlab :exports results :results value table replace :tangle no
data2orgtable(real(freqresp(G, 0.1)), {}, {}, ' %.1e ');
#+end_src
#+RESULTS:
| 2.0e-06 | -9.1e-19 | -5.3e-12 | 7.3e-18 | 1.7e-05 | 1.3e-18 |
| -1.7e-18 | 2.0e-06 | 8.6e-19 | -1.7e-05 | -1.5e-17 | 6.7e-12 |
| 3.6e-13 | 3.2e-19 | 5.0e-07 | -2.5e-18 | 8.1e-12 | -1.5e-19 |
| 1.0e-17 | -1.7e-05 | -5.0e-18 | 1.9e-04 | 9.1e-17 | -3.5e-11 |
| 1.7e-05 | -6.9e-19 | -5.3e-11 | 6.9e-18 | 1.9e-04 | 4.8e-18 |
| -3.5e-18 | -4.5e-12 | 1.5e-18 | 7.1e-11 | -3.4e-17 | 4.6e-05 |
And now at the Compliance matrix.
#+begin_src matlab :exports results :results value table replace :tangle no
data2orgtable(stewart.C, {}, {}, ' %.1e ');
#+end_src
#+RESULTS:
| 2.0e-06 | 2.9e-22 | 2.8e-22 | -3.2e-21 | 1.7e-05 | 1.5e-37 |
| -2.1e-22 | 2.0e-06 | -1.8e-23 | -1.7e-05 | -2.3e-21 | 1.1e-22 |
| 3.1e-22 | -1.6e-23 | 5.0e-07 | 1.7e-22 | 2.2e-21 | -8.1e-39 |
| 2.1e-21 | -1.7e-05 | 2.0e-22 | 1.9e-04 | 2.3e-20 | -8.7e-21 |
| 1.7e-05 | 2.5e-21 | 2.0e-21 | -2.8e-20 | 1.9e-04 | 1.3e-36 |
| 3.7e-23 | 3.1e-22 | -6.0e-39 | -1.0e-20 | 3.1e-22 | 4.6e-05 |
#+begin_important
The low frequency transfer function matrix from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$ corresponds to the compliance matrix of the Stewart platform.
#+end_important
** Transfer function from forces applied in the legs to the displacement of the legs
Initialization of the Stewart platform.
#+begin_src matlab
stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3);
stewart = generateCubicConfiguration(stewart, 'Hc', 60e-3, 'FOc', 45e-3, 'FHa', 5e-3, 'MHb', 5e-3);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, 'Ki', 1e6*ones(6,1), 'Ci', 1e2*ones(6,1));
stewart = computeJacobian(stewart);
#+end_src
Estimation of the transfer function from $\bm{\tau}$ to $\bm{L}$:
#+begin_src matlab
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_dynamics';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/J-T'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/L'], 1, 'openoutput'); io_i = io_i + 1;
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'L1', 'L2', 'L3', 'L4', 'L5', 'L6'};
#+end_src
#+begin_src matlab
freqs = logspace(1, 3, 1000);
figure; bode(G, 2*pi*freqs)
#+end_src
#+begin_src matlab
bodeFig({G(1,1), G(1,2)}, freqs, struct('phase', true));
#+end_src

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 21 KiB

After

Width:  |  Height:  |  Size: 23 KiB

View File

@ -61,6 +61,7 @@ For Simscape, we need:
- The position of the frame $\{A\}$ with respect to the frame $\{F\}$: ${}^{F}\bm{O}_{A}$ - The position of the frame $\{A\}$ with respect to the frame $\{F\}$: ${}^{F}\bm{O}_{A}$
- The position of the frame $\{B\}$ with respect to the frame $\{M\}$: ${}^{M}\bm{O}_{B}$ - The position of the frame $\{B\}$ with respect to the frame $\{M\}$: ${}^{M}\bm{O}_{B}$
* Procedure * Procedure
The procedure to define the Stewart platform is the following: The procedure to define the Stewart platform is the following:
1. Define the initial position of frames {A}, {B}, {F} and {M}. 1. Define the initial position of frames {A}, {B}, {F} and {M}.
@ -285,6 +286,7 @@ This Matlab function is accessible [[file:src/computeJointsPose.m][here]].
#+end_src #+end_src
** Documentation ** Documentation
#+name: fig:stewart-struts #+name: fig:stewart-struts
#+caption: Position and orientation of the struts #+caption: Position and orientation of the struts
[[file:figs/stewart-struts.png]] [[file:figs/stewart-struts.png]]
@ -355,7 +357,7 @@ This Matlab function is accessible [[file:src/initializeStrutDynamics.m][here]].
arguments arguments
stewart stewart
args.Ki (6,1) double {mustBeNumeric, mustBePositive} = 1e6*ones(6,1) args.Ki (6,1) double {mustBeNumeric, mustBePositive} = 1e6*ones(6,1)
args.Ci (6,1) double {mustBeNumeric, mustBePositive} = 1e2*ones(6,1) args.Ci (6,1) double {mustBeNumeric, mustBePositive} = 1e3*ones(6,1)
end end
#+end_src #+end_src

View File

@ -16,7 +16,7 @@ function [stewart] = initializeStrutDynamics(stewart, args)
arguments arguments
stewart stewart
args.Ki (6,1) double {mustBeNumeric, mustBePositive} = 1e6*ones(6,1) args.Ki (6,1) double {mustBeNumeric, mustBePositive} = 1e6*ones(6,1)
args.Ci (6,1) double {mustBeNumeric, mustBePositive} = 1e2*ones(6,1) args.Ci (6,1) double {mustBeNumeric, mustBePositive} = 1e3*ones(6,1)
end end
stewart.Ki = args.Ki; stewart.Ki = args.Ki;