diff --git a/control-study.org b/control-study.org
new file mode 100644
index 0000000..26082da
--- /dev/null
+++ b/control-study.org
@@ -0,0 +1,244 @@
+#+TITLE: Stewart Platform - Control Study
+:DRAWER:
+#+HTML_LINK_HOME: ./index.html
+#+HTML_LINK_UP: ./index.html
+
+#+HTML_HEAD:
+#+HTML_HEAD:
+#+HTML_HEAD:
+#+HTML_HEAD:
+#+HTML_HEAD:
+#+HTML_HEAD:
+
+#+PROPERTY: header-args:matlab :session *MATLAB*
+#+PROPERTY: header-args:matlab+ :comments org
+#+PROPERTY: header-args:matlab+ :exports both
+#+PROPERTY: header-args:matlab+ :results none
+#+PROPERTY: header-args:matlab+ :eval no-export
+#+PROPERTY: header-args:matlab+ :noweb yes
+#+PROPERTY: header-args:matlab+ :mkdirp yes
+#+PROPERTY: header-args:matlab+ :output-dir figs
+
+#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/}{config.tex}")
+#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
+#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
+#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
+#+PROPERTY: header-args:latex+ :results file raw replace
+#+PROPERTY: header-args:latex+ :buffer no
+#+PROPERTY: header-args:latex+ :eval no-export
+#+PROPERTY: header-args:latex+ :exports both
+#+PROPERTY: header-args:latex+ :mkdirp yes
+#+PROPERTY: header-args:latex+ :output-dir figs
+#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
+:END:
+
+* First Control Architecture
+** Matlab Init :noexport:
+#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
+ <>
+#+end_src
+
+#+begin_src matlab :exports none :results silent :noweb yes
+ <>
+#+end_src
+
+#+begin_src matlab
+ addpath('./src/')
+#+end_src
+
+** Control Schematic
+#+begin_src latex :file control_measure_rotating_2dof.pdf
+ \begin{tikzpicture}
+ % Blocs
+ \node[block] (J) at (0, 0) {$J$};
+ \node[addb={+}{}{}{}{-}, right=1 of J] (subr) {};
+ \node[block, right=0.8 of subr] (K) {$K_{L}$};
+ \node[block, right=1 of K] (G) {$G_{L}$};
+
+ % Connections and labels
+ \draw[<-] (J.west)node[above left]{$\bm{r}_{n}$} -- ++(-1, 0);
+ \draw[->] (J.east) -- (subr.west) node[above left]{$\bm{r}_{L}$};
+ \draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{L}$};
+ \draw[->] (K.east) -- (G.west) node[above left]{$\bm{\tau}$};
+ \draw[->] (G.east) node[above right]{$\bm{L}$} -| ($(G.east)+(1, -1)$) -| (subr.south);
+ \end{tikzpicture}
+#+end_src
+
+#+RESULTS:
+[[file:figs/control_measure_rotating_2dof.png]]
+
+** Initialize the Stewart platform
+#+begin_src matlab
+ stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3);
+ stewart = generateCubicConfiguration(stewart, 'Hc', 60e-3, 'FOc', 45e-3, 'FHa', 5e-3, 'MHb', 5e-3);
+ stewart = computeJointsPose(stewart);
+ stewart = initializeStrutDynamics(stewart, 'Ki', 1e6*ones(6,1), 'Ci', 1e2*ones(6,1));
+ stewart = computeJacobian(stewart);
+#+end_src
+
+** Identification of the plant
+Let's identify the transfer function from $\bm{\tau}}$ to $\bm{L}$.
+#+begin_src matlab
+ %% Options for Linearized
+ options = linearizeOptions;
+ options.SampleTime = 0;
+
+ %% Name of the Simulink File
+ mdl = 'stewart_platform_control';
+
+ %% Input/Output definition
+ clear io; io_i = 1;
+ io(io_i) = linio([mdl, '/tau'], 1, 'openinput'); io_i = io_i + 1;
+ io(io_i) = linio([mdl, '/L'], 1, 'openoutput'); io_i = io_i + 1;
+
+ %% Run the linearization
+ G = linearize(mdl, io, options);
+ G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
+ G.OutputName = {'L1', 'L2', 'L3', 'L4', 'L5', 'L6'};
+#+end_src
+
+** Plant Analysis
+Diagonal terms
+#+begin_src matlab :exports none
+ freqs = logspace(1, 4, 1000);
+
+ figure;
+
+ ax1 = subplot(2, 1, 1);
+ hold on;
+ for i = 1:6
+ plot(freqs, abs(squeeze(freqresp(G(i, i), freqs, 'Hz'))));
+ end
+ hold off;
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
+
+ ax2 = subplot(2, 1, 2);
+ hold on;
+ for i = 1:6
+ plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, i), freqs, 'Hz'))));
+ end
+ hold off;
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
+ ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
+ ylim([-180, 180]);
+ yticks([-180, -90, 0, 90, 180]);
+
+ linkaxes([ax1,ax2],'x');
+#+end_src
+
+Compare to off-diagonal terms
+#+begin_src matlab :exports none
+ freqs = logspace(1, 4, 1000);
+
+ figure;
+
+ ax1 = subplot(2, 1, 1);
+ hold on;
+ for i = 1:5
+ for j = i+1:6
+ plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
+ end
+ end
+ set(gca,'ColorOrderIndex',1);
+ plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
+ hold off;
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
+
+ ax2 = subplot(2, 1, 2);
+ hold on;
+ for i = 1:5
+ for j = i+1:6
+ plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
+ end
+ end
+ set(gca,'ColorOrderIndex',1);
+ plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
+ hold off;
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
+ ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
+ ylim([-180, 180]);
+ yticks([-180, -90, 0, 90, 180]);
+
+ linkaxes([ax1,ax2],'x');
+#+end_src
+
+** Controller Design
+One integrator should be present in the controller.
+
+A lead is added around the crossover frequency which is set to be around 500Hz.
+
+#+begin_src matlab
+ % wint = 2*pi*100; % Integrate until [rad]
+ % wlead = 2*pi*500; % Location of the lead [rad]
+ % hlead = 2; % Lead strengh
+
+ % Kl = 1e6 * ... % Gain
+ % (s + wint)/(s) * ... % Integrator until 100Hz
+ % (1 + s/(wlead/hlead)/(1 + s/(wlead*hlead))); % Lead
+
+ wc = 2*pi*100;
+ Kl = 1/abs(freqresp(G(1,1), wc)) * wc/s * 1/(1 + s/(3*wc));
+ Kl = Kl * eye(6);
+#+end_src
+
+#+begin_src matlab :exports none
+ freqs = logspace(1, 3, 1000);
+
+ figure;
+
+ ax1 = subplot(2, 1, 1);
+ hold on;
+ plot(freqs, abs(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
+ hold off;
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
+
+ ax2 = subplot(2, 1, 2);
+ hold on;
+ plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
+ hold off;
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
+ ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
+ ylim([-180, 180]);
+ yticks([-180, -90, 0, 90, 180]);
+
+ linkaxes([ax1,ax2],'x');
+#+end_src
+
+#+begin_src matlab :exports none
+ freqs = logspace(1, 4, 1000);
+
+ figure;
+
+ ax1 = subplot(2, 1, 1);
+ hold on;
+ for i = 1:5
+ for j = i+1:6
+ plot(freqs, abs(squeeze(freqresp(Kl(i,i)*G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
+ end
+ end
+ set(gca,'ColorOrderIndex',1);
+ plot(freqs, abs(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
+ hold off;
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
+
+ ax2 = subplot(2, 1, 2);
+ hold on;
+ for i = 1:5
+ for j = i+1:6
+ plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(i, i)*G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
+ end
+ end
+ set(gca,'ColorOrderIndex',1);
+ plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
+ hold off;
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
+ ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
+ ylim([-180, 180]);
+ yticks([-180, -90, 0, 90, 180]);
+
+ linkaxes([ax1,ax2],'x');
+#+end_src
diff --git a/dynamics-study.org b/dynamics-study.org
new file mode 100644
index 0000000..7870dcd
--- /dev/null
+++ b/dynamics-study.org
@@ -0,0 +1,285 @@
+#+TITLE: Stewart Platform - Dynamics Study
+:DRAWER:
+#+HTML_LINK_HOME: ./index.html
+#+HTML_LINK_UP: ./index.html
+
+#+HTML_HEAD:
+#+HTML_HEAD:
+#+HTML_HEAD:
+#+HTML_HEAD:
+#+HTML_HEAD:
+#+HTML_HEAD:
+
+#+PROPERTY: header-args:matlab :session *MATLAB*
+#+PROPERTY: header-args:matlab+ :comments org
+#+PROPERTY: header-args:matlab+ :exports both
+#+PROPERTY: header-args:matlab+ :results none
+#+PROPERTY: header-args:matlab+ :eval no-export
+#+PROPERTY: header-args:matlab+ :noweb yes
+#+PROPERTY: header-args:matlab+ :mkdirp yes
+#+PROPERTY: header-args:matlab+ :output-dir figs
+:END:
+
+* Some tests
+** Matlab Init :noexport:ignore:
+#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
+ <>
+#+end_src
+
+#+begin_src matlab :exports none :results silent :noweb yes
+ <>
+#+end_src
+
+#+begin_src matlab
+ addpath('./src/')
+#+end_src
+
+** Simscape Model
+#+begin_src matlab
+ open('stewart_platform_dynamics.slx')
+#+end_src
+
+** test
+#+begin_src matlab
+ stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3);
+ stewart = generateCubicConfiguration(stewart, 'Hc', 60e-3, 'FOc', 45e-3, 'FHa', 5e-3, 'MHb', 5e-3);
+ stewart = computeJointsPose(stewart);
+ stewart = initializeStrutDynamics(stewart, 'Ki', 1e6*ones(6,1), 'Ci', 1e2*ones(6,1));
+ stewart = computeJacobian(stewart);
+#+end_src
+
+Estimation of the transfer function from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$:
+#+begin_src matlab
+ %% Options for Linearized
+ options = linearizeOptions;
+ options.SampleTime = 0;
+
+ %% Name of the Simulink File
+ mdl = 'stewart_platform_dynamics';
+
+ %% Input/Output definition
+ clear io; io_i = 1;
+ io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1;
+ io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1;
+
+ %% Run the linearization
+ G = linearize(mdl, io, options);
+ G.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
+ G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
+#+end_src
+
+
+#+begin_src matlab
+ %% Options for Linearized
+ options = linearizeOptions;
+ options.SampleTime = 0;
+
+ %% Name of the Simulink File
+ mdl = 'stewart_platform_dynamics';
+
+ %% Input/Output definition
+ clear io; io_i = 1;
+ io(io_i) = linio([mdl, '/J-T'], 1, 'openinput'); io_i = io_i + 1;
+ io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1;
+
+ %% Run the linearization
+ G = linearize(mdl, io, options);
+ G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
+ G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
+#+end_src
+
+#+begin_src matlab
+ G_cart = minreal(G*inv(stewart.J'));
+ G_cart.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};
+#+end_src
+
+#+begin_src matlab
+ figure; bode(G, G_cart)
+#+end_src
+
+#+begin_src matlab
+ %% Options for Linearized
+ options = linearizeOptions;
+ options.SampleTime = 0;
+
+ %% Name of the Simulink File
+ mdl = 'stewart_platform_dynamics';
+
+ %% Input/Output definition
+ clear io; io_i = 1;
+ io(io_i) = linio([mdl, '/Fext'], 1, 'openinput'); io_i = io_i + 1;
+ io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1;
+
+ %% Run the linearization
+ Gd = linearize(mdl, io, options);
+ Gd.InputName = {'Fex', 'Fey', 'Fez', 'Mex', 'Mey', 'Mez'};
+ Gd.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
+#+end_src
+
+#+begin_src matlab
+ freqs = logspace(0, 3, 1000);
+
+ figure;
+ bode(Gd, G)
+#+end_src
+
+** Compare external forces and forces applied by the actuators
+Initialization of the Stewart platform.
+#+begin_src matlab
+ stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3);
+ stewart = generateCubicConfiguration(stewart, 'Hc', 60e-3, 'FOc', 45e-3, 'FHa', 5e-3, 'MHb', 5e-3);
+ stewart = computeJointsPose(stewart);
+ stewart = initializeStrutDynamics(stewart, 'Ki', 1e6*ones(6,1), 'Ci', 1e2*ones(6,1));
+ stewart = computeJacobian(stewart);
+#+end_src
+
+Estimation of the transfer function from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$:
+#+begin_src matlab
+ %% Options for Linearized
+ options = linearizeOptions;
+ options.SampleTime = 0;
+
+ %% Name of the Simulink File
+ mdl = 'stewart_platform_dynamics';
+
+ %% Input/Output definition
+ clear io; io_i = 1;
+ io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1;
+ io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1;
+
+ %% Run the linearization
+ G = linearize(mdl, io, options);
+ G.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
+ G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
+#+end_src
+
+Estimation of the transfer function from $\mathcal{\bm{F}}_{d}$ to $\mathcal{\bm{X}}$:
+#+begin_src matlab
+ %% Options for Linearized
+ options = linearizeOptions;
+ options.SampleTime = 0;
+
+ %% Name of the Simulink File
+ mdl = 'stewart_platform_dynamics';
+
+ %% Input/Output definition
+ clear io; io_i = 1;
+ io(io_i) = linio([mdl, '/Fext'], 1, 'openinput'); io_i = io_i + 1;
+ io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1;
+
+ %% Run the linearization
+ Gd = linearize(mdl, io, options);
+ Gd.InputName = {'Fex', 'Fey', 'Fez', 'Mex', 'Mey', 'Mez'};
+ Gd.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
+#+end_src
+
+Comparison of the two transfer function matrices.
+#+begin_src matlab
+ freqs = logspace(0, 4, 1000);
+
+ figure;
+ bode(Gd, G, freqs)
+#+end_src
+
+#+begin_important
+Seems quite similar.
+#+end_important
+
+** Comparison of the static transfer function and the Compliance matrix
+Initialization of the Stewart platform.
+#+begin_src matlab
+ stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3);
+ stewart = generateCubicConfiguration(stewart, 'Hc', 60e-3, 'FOc', 45e-3, 'FHa', 5e-3, 'MHb', 5e-3);
+ stewart = computeJointsPose(stewart);
+ stewart = initializeStrutDynamics(stewart, 'Ki', 1e6*ones(6,1), 'Ci', 1e2*ones(6,1));
+ stewart = computeJacobian(stewart);
+#+end_src
+
+Estimation of the transfer function from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$:
+#+begin_src matlab
+ %% Options for Linearized
+ options = linearizeOptions;
+ options.SampleTime = 0;
+
+ %% Name of the Simulink File
+ mdl = 'stewart_platform_dynamics';
+
+ %% Input/Output definition
+ clear io; io_i = 1;
+ io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1;
+ io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1;
+
+ %% Run the linearization
+ G = linearize(mdl, io, options);
+ G.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
+ G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
+#+end_src
+
+Let's first look at the low frequency transfer function matrix from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$.
+#+begin_src matlab :exports results :results value table replace :tangle no
+data2orgtable(real(freqresp(G, 0.1)), {}, {}, ' %.1e ');
+#+end_src
+
+#+RESULTS:
+| 2.0e-06 | -9.1e-19 | -5.3e-12 | 7.3e-18 | 1.7e-05 | 1.3e-18 |
+| -1.7e-18 | 2.0e-06 | 8.6e-19 | -1.7e-05 | -1.5e-17 | 6.7e-12 |
+| 3.6e-13 | 3.2e-19 | 5.0e-07 | -2.5e-18 | 8.1e-12 | -1.5e-19 |
+| 1.0e-17 | -1.7e-05 | -5.0e-18 | 1.9e-04 | 9.1e-17 | -3.5e-11 |
+| 1.7e-05 | -6.9e-19 | -5.3e-11 | 6.9e-18 | 1.9e-04 | 4.8e-18 |
+| -3.5e-18 | -4.5e-12 | 1.5e-18 | 7.1e-11 | -3.4e-17 | 4.6e-05 |
+
+And now at the Compliance matrix.
+#+begin_src matlab :exports results :results value table replace :tangle no
+data2orgtable(stewart.C, {}, {}, ' %.1e ');
+#+end_src
+
+#+RESULTS:
+| 2.0e-06 | 2.9e-22 | 2.8e-22 | -3.2e-21 | 1.7e-05 | 1.5e-37 |
+| -2.1e-22 | 2.0e-06 | -1.8e-23 | -1.7e-05 | -2.3e-21 | 1.1e-22 |
+| 3.1e-22 | -1.6e-23 | 5.0e-07 | 1.7e-22 | 2.2e-21 | -8.1e-39 |
+| 2.1e-21 | -1.7e-05 | 2.0e-22 | 1.9e-04 | 2.3e-20 | -8.7e-21 |
+| 1.7e-05 | 2.5e-21 | 2.0e-21 | -2.8e-20 | 1.9e-04 | 1.3e-36 |
+| 3.7e-23 | 3.1e-22 | -6.0e-39 | -1.0e-20 | 3.1e-22 | 4.6e-05 |
+
+#+begin_important
+The low frequency transfer function matrix from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$ corresponds to the compliance matrix of the Stewart platform.
+#+end_important
+
+** Transfer function from forces applied in the legs to the displacement of the legs
+Initialization of the Stewart platform.
+#+begin_src matlab
+ stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3);
+ stewart = generateCubicConfiguration(stewart, 'Hc', 60e-3, 'FOc', 45e-3, 'FHa', 5e-3, 'MHb', 5e-3);
+ stewart = computeJointsPose(stewart);
+ stewart = initializeStrutDynamics(stewart, 'Ki', 1e6*ones(6,1), 'Ci', 1e2*ones(6,1));
+ stewart = computeJacobian(stewart);
+#+end_src
+
+Estimation of the transfer function from $\bm{\tau}$ to $\bm{L}$:
+#+begin_src matlab
+ %% Options for Linearized
+ options = linearizeOptions;
+ options.SampleTime = 0;
+
+ %% Name of the Simulink File
+ mdl = 'stewart_platform_dynamics';
+
+ %% Input/Output definition
+ clear io; io_i = 1;
+ io(io_i) = linio([mdl, '/J-T'], 1, 'openinput'); io_i = io_i + 1;
+ io(io_i) = linio([mdl, '/L'], 1, 'openoutput'); io_i = io_i + 1;
+
+ %% Run the linearization
+ G = linearize(mdl, io, options);
+ G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
+ G.OutputName = {'L1', 'L2', 'L3', 'L4', 'L5', 'L6'};
+#+end_src
+
+#+begin_src matlab
+ freqs = logspace(1, 3, 1000);
+ figure; bode(G, 2*pi*freqs)
+#+end_src
+
+#+begin_src matlab
+ bodeFig({G(1,1), G(1,2)}, freqs, struct('phase', true));
+#+end_src
diff --git a/figs/control_measure_rotating_2dof.png b/figs/control_measure_rotating_2dof.png
new file mode 100644
index 0000000..fe6a5b5
Binary files /dev/null and b/figs/control_measure_rotating_2dof.png differ
diff --git a/figs/cubic-configuration-definition.png b/figs/cubic-configuration-definition.png
index 0e32db8..506c5b5 100644
Binary files a/figs/cubic-configuration-definition.png and b/figs/cubic-configuration-definition.png differ
diff --git a/simscape-model.org b/simscape-model.org
index 9f6e22b..1d64079 100644
--- a/simscape-model.org
+++ b/simscape-model.org
@@ -61,6 +61,7 @@ For Simscape, we need:
- The position of the frame $\{A\}$ with respect to the frame $\{F\}$: ${}^{F}\bm{O}_{A}$
- The position of the frame $\{B\}$ with respect to the frame $\{M\}$: ${}^{M}\bm{O}_{B}$
+
* Procedure
The procedure to define the Stewart platform is the following:
1. Define the initial position of frames {A}, {B}, {F} and {M}.
@@ -285,6 +286,7 @@ This Matlab function is accessible [[file:src/computeJointsPose.m][here]].
#+end_src
** Documentation
+
#+name: fig:stewart-struts
#+caption: Position and orientation of the struts
[[file:figs/stewart-struts.png]]
@@ -355,7 +357,7 @@ This Matlab function is accessible [[file:src/initializeStrutDynamics.m][here]].
arguments
stewart
args.Ki (6,1) double {mustBeNumeric, mustBePositive} = 1e6*ones(6,1)
- args.Ci (6,1) double {mustBeNumeric, mustBePositive} = 1e2*ones(6,1)
+ args.Ci (6,1) double {mustBeNumeric, mustBePositive} = 1e3*ones(6,1)
end
#+end_src
diff --git a/src/initializeStrutDynamics.m b/src/initializeStrutDynamics.m
index e98fed7..e4ba57f 100644
--- a/src/initializeStrutDynamics.m
+++ b/src/initializeStrutDynamics.m
@@ -16,7 +16,7 @@ function [stewart] = initializeStrutDynamics(stewart, args)
arguments
stewart
args.Ki (6,1) double {mustBeNumeric, mustBePositive} = 1e6*ones(6,1)
- args.Ci (6,1) double {mustBeNumeric, mustBePositive} = 1e2*ones(6,1)
+ args.Ci (6,1) double {mustBeNumeric, mustBePositive} = 1e3*ones(6,1)
end
stewart.Ki = args.Ki;