Change all indentation

This commit is contained in:
2021-01-08 15:54:58 +01:00
parent f5922ca970
commit ed0c18829b
29 changed files with 8682 additions and 8683 deletions

View File

@@ -3,7 +3,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2021-01-08 ven. 15:30 -->
<!-- 2021-01-08 ven. 15:52 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Cubic configuration for the Stewart Platform</title>
<meta name="generator" content="Org mode" />
@@ -45,34 +45,34 @@
<li><a href="#org6359f2f">1.2. Cubic Stewart platform centered with the cube center - Jacobian not estimated at the cube center</a></li>
<li><a href="#org5c37be2">1.3. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the cube center</a></li>
<li><a href="#org32ac59a">1.4. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the Stewart platform center</a></li>
<li><a href="#org4e88cdb">1.5. Conclusion</a></li>
<li><a href="#orgeb8ae82">1.5. Conclusion</a></li>
</ul>
</li>
<li><a href="#org312b7d4">2. Configuration with the Cube&rsquo;s center above the mobile platform</a>
<ul>
<li><a href="#org4983654">2.1. Having Cube&rsquo;s center above the top platform</a></li>
<li><a href="#orge53b7f6">2.2. Size of the platforms</a></li>
<li><a href="#org561a2bc">2.3. Conclusion</a></li>
<li><a href="#org52825e8">2.3. Conclusion</a></li>
</ul>
</li>
<li><a href="#org2387b96">3. Cubic size analysis</a>
<ul>
<li><a href="#org3647f9f">3.1. Analysis</a></li>
<li><a href="#org948a425">3.2. Conclusion</a></li>
<li><a href="#org701701b">3.2. Conclusion</a></li>
</ul>
</li>
<li><a href="#org174af3a">4. Dynamic Coupling in the Cartesian Frame</a>
<ul>
<li><a href="#orgdb33aa6">4.1. Cube&rsquo;s center at the Center of Mass of the mobile platform</a></li>
<li><a href="#org49b330b">4.2. Cube&rsquo;s center not coincident with the Mass of the Mobile platform</a></li>
<li><a href="#org7d50eae">4.3. Conclusion</a></li>
<li><a href="#orgf407e4d">4.3. Conclusion</a></li>
</ul>
</li>
<li><a href="#org7831cff">5. Dynamic Coupling between actuators and sensors of each strut</a>
<ul>
<li><a href="#org38e9e8f">5.1. Coupling between the actuators and sensors - Cubic Architecture</a></li>
<li><a href="#org21d40d3">5.2. Coupling between the actuators and sensors - Non-Cubic Architecture</a></li>
<li><a href="#orgeb8ae82">5.3. Conclusion</a></li>
<li><a href="#org0348380">5.3. Conclusion</a></li>
</ul>
</li>
<li><a href="#org3ce1c89">6. Functions</a>
@@ -128,7 +128,7 @@ In this document, the cubic architecture is analyzed:
<a id="org6bc5f56"></a>
</p>
<div class="note" id="org6a03293">
<div class="note" id="org783c5d6">
<p>
The Matlab script corresponding to this section is accessible <a href="../matlab/cubic_conf_stiffnessl.m">here</a>.
</p>
@@ -182,21 +182,21 @@ The Jacobian matrix is estimated at the location of the center of the cube.
</p>
<div class="org-src-container">
<pre class="src src-matlab"> H = 100e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
MO_B = <span class="org-type">-</span>H<span class="org-type">/</span>2; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
Hc = H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
<pre class="src src-matlab">H = 100e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
MO_B = <span class="org-type">-</span>H<span class="org-type">/</span>2; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
Hc = H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"> stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 0, <span class="org-string">'MHb'</span>, 0);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, ones(6,1));
stewart = computeJacobian(stewart);
stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 175e<span class="org-type">-</span>3, <span class="org-string">'Mpr'</span>, 150e<span class="org-type">-</span>3);
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 0, <span class="org-string">'MHb'</span>, 0);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, ones(6,1));
stewart = computeJacobian(stewart);
stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 175e<span class="org-type">-</span>3, <span class="org-string">'Mpr'</span>, 150e<span class="org-type">-</span>3);
</pre>
</div>
@@ -291,21 +291,21 @@ The Jacobian matrix is not estimated at the location of the center of the cube.
</p>
<div class="org-src-container">
<pre class="src src-matlab"> H = 100e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
MO_B = 20e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
Hc = H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H<span class="org-type">/</span>2; <span class="org-comment">% Center of the cube with respect to {F}</span>
<pre class="src src-matlab">H = 100e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
MO_B = 20e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
Hc = H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H<span class="org-type">/</span>2; <span class="org-comment">% Center of the cube with respect to {F}</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"> stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 0, <span class="org-string">'MHb'</span>, 0);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, ones(6,1));
stewart = computeJacobian(stewart);
stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 175e<span class="org-type">-</span>3, <span class="org-string">'Mpr'</span>, 150e<span class="org-type">-</span>3);
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 0, <span class="org-string">'MHb'</span>, 0);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, ones(6,1));
stewart = computeJacobian(stewart);
stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 175e<span class="org-type">-</span>3, <span class="org-string">'Mpr'</span>, 150e<span class="org-type">-</span>3);
</pre>
</div>
@@ -400,21 +400,21 @@ The Jacobian is estimated at the cube center.
</p>
<div class="org-src-container">
<pre class="src src-matlab"> H = 80e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
MO_B = <span class="org-type">-</span>30e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
Hc = 100e<span class="org-type">-</span>3; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
<pre class="src src-matlab">H = 80e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
MO_B = <span class="org-type">-</span>30e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
Hc = 100e<span class="org-type">-</span>3; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"> stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 0, <span class="org-string">'MHb'</span>, 0);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, ones(6,1));
stewart = computeJacobian(stewart);
stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 175e<span class="org-type">-</span>3, <span class="org-string">'Mpr'</span>, 150e<span class="org-type">-</span>3);
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 0, <span class="org-string">'MHb'</span>, 0);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, ones(6,1));
stewart = computeJacobian(stewart);
stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 175e<span class="org-type">-</span>3, <span class="org-string">'Mpr'</span>, 150e<span class="org-type">-</span>3);
</pre>
</div>
@@ -520,21 +520,21 @@ The center of the cube from the top platform is at \(z = 110 - 175 = -65\).
</p>
<div class="org-src-container">
<pre class="src src-matlab"> H = 100e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
MO_B = <span class="org-type">-</span>H<span class="org-type">/</span>2; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
Hc = 1.5<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H<span class="org-type">/</span>2 <span class="org-type">+</span> 10e<span class="org-type">-</span>3; <span class="org-comment">% Center of the cube with respect to {F}</span>
<pre class="src src-matlab">H = 100e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
MO_B = <span class="org-type">-</span>H<span class="org-type">/</span>2; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
Hc = 1.5<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H<span class="org-type">/</span>2 <span class="org-type">+</span> 10e<span class="org-type">-</span>3; <span class="org-comment">% Center of the cube with respect to {F}</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"> stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 0, <span class="org-string">'MHb'</span>, 0);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, ones(6,1));
stewart = computeJacobian(stewart);
stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 215e<span class="org-type">-</span>3, <span class="org-string">'Mpr'</span>, 195e<span class="org-type">-</span>3);
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 0, <span class="org-string">'MHb'</span>, 0);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, ones(6,1));
stewart = computeJacobian(stewart);
stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 215e<span class="org-type">-</span>3, <span class="org-string">'Mpr'</span>, 195e<span class="org-type">-</span>3);
</pre>
</div>
@@ -620,10 +620,10 @@ The center of the cube from the top platform is at \(z = 110 - 175 = -65\).
</div>
</div>
<div id="outline-container-org4e88cdb" class="outline-3">
<h3 id="org4e88cdb"><span class="section-number-3">1.5</span> Conclusion</h3>
<div id="outline-container-orgeb8ae82" class="outline-3">
<h3 id="orgeb8ae82"><span class="section-number-3">1.5</span> Conclusion</h3>
<div class="outline-text-3" id="text-1-5">
<div class="important" id="org2fc62c4">
<div class="important" id="orgb449c4a">
<p>
Here are the conclusion about the Stiffness matrix for the Cubic configuration:
</p>
@@ -644,7 +644,7 @@ Here are the conclusion about the Stiffness matrix for the Cubic configuration:
<a id="org419cdb0"></a>
</p>
<div class="note" id="orgd5c0d4d">
<div class="note" id="orge405fbc">
<p>
The Matlab script corresponding to this section is accessible <a href="../matlab/cubic_conf_above_platforml.m">here</a>.
</p>
@@ -676,8 +676,8 @@ Thus, we want the cube&rsquo;s center to be located above the top center.
Let&rsquo;s fix the Height of the Stewart platform and the position of frames \(\{A\}\) and \(\{B\}\):
</p>
<div class="org-src-container">
<pre class="src src-matlab"> H = 100e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
MO_B = 20e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
<pre class="src src-matlab">H = 100e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
MO_B = 20e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
</pre>
</div>
@@ -697,8 +697,8 @@ However, the rotational stiffnesses are increasing with the cube&rsquo;s size bu
</p>
<div class="org-src-container">
<pre class="src src-matlab"> Hc = 0.4<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
<pre class="src src-matlab">Hc = 0.4<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
</pre>
</div>
@@ -783,8 +783,8 @@ However, the rotational stiffnesses are increasing with the cube&rsquo;s size bu
</table>
<div class="org-src-container">
<pre class="src src-matlab"> Hc = 1.5<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
<pre class="src src-matlab">Hc = 1.5<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
</pre>
</div>
@@ -870,8 +870,8 @@ However, the rotational stiffnesses are increasing with the cube&rsquo;s size bu
</table>
<div class="org-src-container">
<pre class="src src-matlab"> Hc = 2.5<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
<pre class="src src-matlab">Hc = 2.5<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
</pre>
</div>
@@ -1049,10 +1049,10 @@ For a small cube:
</div>
</div>
<div id="outline-container-org561a2bc" class="outline-3">
<h3 id="org561a2bc"><span class="section-number-3">2.3</span> Conclusion</h3>
<div id="outline-container-org52825e8" class="outline-3">
<h3 id="org52825e8"><span class="section-number-3">2.3</span> Conclusion</h3>
<div class="outline-text-3" id="text-2-3">
<div class="important" id="orga24e443">
<div class="important" id="orgc3fb4db">
<p>
We found that we can have a diagonal stiffness matrix using the cubic architecture when \(\{A\}\) and \(\{B\}\) are located above the top platform.
Depending on the cube&rsquo;s size, we obtain 3 different configurations.
@@ -1102,7 +1102,7 @@ Depending on the cube&rsquo;s size, we obtain 3 different configurations.
<a id="org53ade24"></a>
</p>
<div class="note" id="orgfd32e5a">
<div class="note" id="org6ff8a60">
<p>
The Matlab script corresponding to this section is accessible <a href="../matlab/cubic_conf_size_analysisl.m">here</a>.
</p>
@@ -1132,8 +1132,8 @@ We only vary the size of the cube.
We initialize the wanted cube&rsquo;s size.
</p>
<div class="org-src-container">
<pre class="src src-matlab"> Hcs = 1e<span class="org-type">-</span>3<span class="org-type">*</span>[250<span class="org-type">:</span>20<span class="org-type">:</span>350]; <span class="org-comment">% Heights for the Cube [m]</span>
Ks = zeros(6, 6, length(Hcs));
<pre class="src src-matlab">Hcs = 1e<span class="org-type">-</span>3<span class="org-type">*</span>[250<span class="org-type">:</span>20<span class="org-type">:</span>350]; <span class="org-comment">% Heights for the Cube [m]</span>
Ks = zeros(6, 6, length(Hcs));
</pre>
</div>
@@ -1141,7 +1141,7 @@ We initialize the wanted cube&rsquo;s size.
The height of the Stewart platform is fixed:
</p>
<div class="org-src-container">
<pre class="src src-matlab"> H = 100e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
<pre class="src src-matlab">H = 100e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
</pre>
</div>
@@ -1149,8 +1149,8 @@ The height of the Stewart platform is fixed:
The frames \(\{A\}\) and \(\{B\}\) are positioned at the Stewart platform center as well as the cube&rsquo;s center:
</p>
<div class="org-src-container">
<pre class="src src-matlab"> MO_B = <span class="org-type">-</span>50e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
<pre class="src src-matlab">MO_B = <span class="org-type">-</span>50e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
</pre>
</div>
@@ -1168,14 +1168,14 @@ We also find that \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\) are varyi
</div>
</div>
<div id="outline-container-org948a425" class="outline-3">
<h3 id="org948a425"><span class="section-number-3">3.2</span> Conclusion</h3>
<div id="outline-container-org701701b" class="outline-3">
<h3 id="org701701b"><span class="section-number-3">3.2</span> Conclusion</h3>
<div class="outline-text-3" id="text-3-2">
<p>
We observe that \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\) increase linearly with the cube size.
</p>
<div class="important" id="org60cc507">
<div class="important" id="org93b8347">
<p>
In order to maximize the rotational stiffness of the Stewart platform, the size of the cube should be the highest possible.
</p>
@@ -1192,7 +1192,7 @@ In order to maximize the rotational stiffness of the Stewart platform, the size
<a id="org3507b2b"></a>
</p>
<div class="note" id="org5934a9c">
<div class="note" id="org265afc7">
<p>
The Matlab script corresponding to this section is accessible <a href="../matlab/cubic_conf_coupling_cartesianl.m">here</a>.
</p>
@@ -1256,8 +1256,8 @@ Let&rsquo;s create a Cubic Stewart Platform where the <b>Center of Mass of the m
We define the size of the Stewart platform and the position of frames \(\{A\}\) and \(\{B\}\).
</p>
<div class="org-src-container">
<pre class="src src-matlab"> H = 200e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
MO_B = <span class="org-type">-</span>10e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
<pre class="src src-matlab">H = 200e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
MO_B = <span class="org-type">-</span>10e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
</pre>
</div>
@@ -1265,20 +1265,20 @@ We define the size of the Stewart platform and the position of frames \(\{A\}\)
Now, we set the cube&rsquo;s parameters such that the center of the cube is coincident with \(\{A\}\) and \(\{B\}\).
</p>
<div class="org-src-container">
<pre class="src src-matlab"> Hc = 2.5<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
<pre class="src src-matlab">Hc = 2.5<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"> stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 25e<span class="org-type">-</span>3, <span class="org-string">'MHb'</span>, 25e<span class="org-type">-</span>3);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, 1e6<span class="org-type">*</span>ones(6,1), <span class="org-string">'C'</span>, 1e1<span class="org-type">*</span>ones(6,1));
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 25e<span class="org-type">-</span>3, <span class="org-string">'MHb'</span>, 25e<span class="org-type">-</span>3);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, 1e6<span class="org-type">*</span>ones(6,1), <span class="org-string">'C'</span>, 1e1<span class="org-type">*</span>ones(6,1));
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
</pre>
</div>
@@ -1286,10 +1286,10 @@ Now, we set the cube&rsquo;s parameters such that the center of the cube is coin
Now we set the geometry and mass of the mobile platform such that its center of mass is coincident with \(\{A\}\) and \(\{B\}\).
</p>
<div class="org-src-container">
<pre class="src src-matlab"> stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_F.Fa)), ...
<span class="org-string">'Mpm'</span>, 10, ...
<span class="org-string">'Mph'</span>, 20e<span class="org-type">-</span>3, ...
<span class="org-string">'Mpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_M.Mb)));
<pre class="src src-matlab">stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_F.Fa)), ...
<span class="org-string">'Mpm'</span>, 10, ...
<span class="org-string">'Mph'</span>, 20e<span class="org-type">-</span>3, ...
<span class="org-string">'Mpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_M.Mb)));
</pre>
</div>
@@ -1297,8 +1297,8 @@ Now we set the geometry and mass of the mobile platform such that its center of
And we set small mass for the struts.
</p>
<div class="org-src-container">
<pre class="src src-matlab"> stewart = initializeCylindricalStruts(stewart, <span class="org-string">'Fsm'</span>, 1e<span class="org-type">-</span>3, <span class="org-string">'Msm'</span>, 1e<span class="org-type">-</span>3);
stewart = initializeInertialSensor(stewart);
<pre class="src src-matlab">stewart = initializeCylindricalStruts(stewart, <span class="org-string">'Fsm'</span>, 1e<span class="org-type">-</span>3, <span class="org-string">'Msm'</span>, 1e<span class="org-type">-</span>3);
stewart = initializeInertialSensor(stewart);
</pre>
</div>
@@ -1306,9 +1306,9 @@ And we set small mass for the struts.
No flexibility below the Stewart platform and no payload.
</p>
<div class="org-src-container">
<pre class="src src-matlab"> ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
</pre>
</div>
@@ -1327,24 +1327,24 @@ The obtain geometry is shown in figure <a href="#orgb6b060a">10</a>.
We now identify the dynamics from forces applied in each strut \(\bm{\tau}\) to the displacement of each strut \(d \bm{\mathcal{L}}\).
</p>
<div class="org-src-container">
<pre class="src src-matlab"> open(<span class="org-string">'stewart_platform_model.slx'</span>)
<pre class="src src-matlab">open(<span class="org-string">'stewart_platform_model.slx'</span>)
<span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'stewart_platform_model'</span>;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'stewart_platform_model'</span>;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'dLm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Relative Displacement Outputs [m]</span>
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'dLm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Relative Displacement Outputs [m]</span>
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G = linearize(mdl, io, options);
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>};
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G = linearize(mdl, io, options);
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>};
</pre>
</div>
@@ -1352,10 +1352,10 @@ We now identify the dynamics from forces applied in each strut \(\bm{\tau}\) to
Now, thanks to the Jacobian (Figure <a href="#org2137f5a">9</a>), we compute the transfer function from \(\bm{\mathcal{F}}\) to \(\bm{\mathcal{X}}\).
</p>
<div class="org-src-container">
<pre class="src src-matlab"> Gc = inv(stewart.kinematics.J)<span class="org-type">*</span>G<span class="org-type">*</span>inv(stewart.kinematics.J<span class="org-type">'</span>);
Gc = inv(stewart.kinematics.J)<span class="org-type">*</span>G<span class="org-type">*</span>stewart.kinematics.J;
Gc.InputName = {<span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>};
Gc.OutputName = {<span class="org-string">'Dx'</span>, <span class="org-string">'Dy'</span>, <span class="org-string">'Dz'</span>, <span class="org-string">'Rx'</span>, <span class="org-string">'Ry'</span>, <span class="org-string">'Rz'</span>};
<pre class="src src-matlab">Gc = inv(stewart.kinematics.J)<span class="org-type">*</span>G<span class="org-type">*</span>inv(stewart.kinematics.J<span class="org-type">'</span>);
Gc = inv(stewart.kinematics.J)<span class="org-type">*</span>G<span class="org-type">*</span>stewart.kinematics.J;
Gc.InputName = {<span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>};
Gc.OutputName = {<span class="org-string">'Dx'</span>, <span class="org-string">'Dy'</span>, <span class="org-string">'Dz'</span>, <span class="org-string">'Rx'</span>, <span class="org-string">'Ry'</span>, <span class="org-string">'Rz'</span>};
</pre>
</div>
@@ -1381,7 +1381,7 @@ It is interesting to note here that the system shown in Figure <a href="#org9d84
<p><span class="figure-number">Figure 12: </span>Alternative way to decouple the system</p>
</div>
<div class="important" id="org489ed3b">
<div class="important" id="orgd31482e">
<p>
The dynamics is well decoupled at all frequencies.
</p>
@@ -1413,8 +1413,8 @@ This is because the Mass, Damping and Stiffness matrices are all diagonal.
Let&rsquo;s create a Stewart platform with a cubic architecture where the cube&rsquo;s center is at the center of the Stewart platform.
</p>
<div class="org-src-container">
<pre class="src src-matlab"> H = 200e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
MO_B = <span class="org-type">-</span>100e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
<pre class="src src-matlab">H = 200e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
MO_B = <span class="org-type">-</span>100e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
</pre>
</div>
@@ -1422,20 +1422,20 @@ Let&rsquo;s create a Stewart platform with a cubic architecture where the cube&r
Now, we set the cube&rsquo;s parameters such that the center of the cube is coincident with \(\{A\}\) and \(\{B\}\).
</p>
<div class="org-src-container">
<pre class="src src-matlab"> Hc = 2.5<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
<pre class="src src-matlab">Hc = 2.5<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"> stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 25e<span class="org-type">-</span>3, <span class="org-string">'MHb'</span>, 25e<span class="org-type">-</span>3);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, 1e6<span class="org-type">*</span>ones(6,1), <span class="org-string">'C'</span>, 1e1<span class="org-type">*</span>ones(6,1));
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 25e<span class="org-type">-</span>3, <span class="org-string">'MHb'</span>, 25e<span class="org-type">-</span>3);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, 1e6<span class="org-type">*</span>ones(6,1), <span class="org-string">'C'</span>, 1e1<span class="org-type">*</span>ones(6,1));
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
</pre>
</div>
@@ -1443,10 +1443,10 @@ Now, we set the cube&rsquo;s parameters such that the center of the cube is coin
However, the Center of Mass of the mobile platform is <b>not</b> located at the cube&rsquo;s center.
</p>
<div class="org-src-container">
<pre class="src src-matlab"> stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_F.Fa)), ...
<span class="org-string">'Mpm'</span>, 10, ...
<span class="org-string">'Mph'</span>, 20e<span class="org-type">-</span>3, ...
<span class="org-string">'Mpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_M.Mb)));
<pre class="src src-matlab">stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_F.Fa)), ...
<span class="org-string">'Mpm'</span>, 10, ...
<span class="org-string">'Mph'</span>, 20e<span class="org-type">-</span>3, ...
<span class="org-string">'Mpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_M.Mb)));
</pre>
</div>
@@ -1454,8 +1454,8 @@ However, the Center of Mass of the mobile platform is <b>not</b> located at the
And we set small mass for the struts.
</p>
<div class="org-src-container">
<pre class="src src-matlab"> stewart = initializeCylindricalStruts(stewart, <span class="org-string">'Fsm'</span>, 1e<span class="org-type">-</span>3, <span class="org-string">'Msm'</span>, 1e<span class="org-type">-</span>3);
stewart = initializeInertialSensor(stewart);
<pre class="src src-matlab">stewart = initializeCylindricalStruts(stewart, <span class="org-string">'Fsm'</span>, 1e<span class="org-type">-</span>3, <span class="org-string">'Msm'</span>, 1e<span class="org-type">-</span>3);
stewart = initializeInertialSensor(stewart);
</pre>
</div>
@@ -1463,9 +1463,9 @@ And we set small mass for the struts.
No flexibility below the Stewart platform and no payload.
</p>
<div class="org-src-container">
<pre class="src src-matlab"> ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
</pre>
</div>
@@ -1483,24 +1483,24 @@ The obtain geometry is shown in figure <a href="#orgc57dcd2">13</a>.
We now identify the dynamics from forces applied in each strut \(\bm{\tau}\) to the displacement of each strut \(d \bm{\mathcal{L}}\).
</p>
<div class="org-src-container">
<pre class="src src-matlab"> open(<span class="org-string">'stewart_platform_model.slx'</span>)
<pre class="src src-matlab">open(<span class="org-string">'stewart_platform_model.slx'</span>)
<span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'stewart_platform_model'</span>;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'stewart_platform_model'</span>;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'dLm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Relative Displacement Outputs [m]</span>
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'dLm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Relative Displacement Outputs [m]</span>
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G = linearize(mdl, io, options);
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>};
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G = linearize(mdl, io, options);
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>};
</pre>
</div>
@@ -1508,9 +1508,9 @@ We now identify the dynamics from forces applied in each strut \(\bm{\tau}\) to
And we use the Jacobian to compute the transfer function from \(\bm{\mathcal{F}}\) to \(\bm{\mathcal{X}}\).
</p>
<div class="org-src-container">
<pre class="src src-matlab"> Gc = inv(stewart.kinematics.J)<span class="org-type">*</span>G<span class="org-type">*</span>inv(stewart.kinematics.J<span class="org-type">'</span>);
Gc.InputName = {<span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>};
Gc.OutputName = {<span class="org-string">'Dx'</span>, <span class="org-string">'Dy'</span>, <span class="org-string">'Dz'</span>, <span class="org-string">'Rx'</span>, <span class="org-string">'Ry'</span>, <span class="org-string">'Rz'</span>};
<pre class="src src-matlab">Gc = inv(stewart.kinematics.J)<span class="org-type">*</span>G<span class="org-type">*</span>inv(stewart.kinematics.J<span class="org-type">'</span>);
Gc.InputName = {<span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>};
Gc.OutputName = {<span class="org-string">'Dx'</span>, <span class="org-string">'Dy'</span>, <span class="org-string">'Dz'</span>, <span class="org-string">'Rx'</span>, <span class="org-string">'Ry'</span>, <span class="org-string">'Rz'</span>};
</pre>
</div>
@@ -1525,7 +1525,7 @@ The obtain dynamics \(\bm{G}_{c}(s) = \bm{J}^{-T} \bm{G}(s) \bm{J}^{-1}\) is sho
<p><span class="figure-number">Figure 14: </span>Obtained Dynamics from \(\bm{\mathcal{F}}\) to \(\bm{\mathcal{X}}\) (<a href="./figs/stewart_conf_coupling_mass_matrix.png">png</a>, <a href="./figs/stewart_conf_coupling_mass_matrix.pdf">pdf</a>)</p>
</div>
<div class="important" id="org798e5c6">
<div class="important" id="orgc60cb20">
<p>
The system is decoupled at low frequency (the Stiffness matrix being diagonal), but it is <b>not</b> decoupled at all frequencies.
</p>
@@ -1538,10 +1538,10 @@ This was expected as the mass matrix is not diagonal (the Center of Mass of the
</div>
</div>
<div id="outline-container-org7d50eae" class="outline-3">
<h3 id="org7d50eae"><span class="section-number-3">4.3</span> Conclusion</h3>
<div id="outline-container-orgf407e4d" class="outline-3">
<h3 id="orgf407e4d"><span class="section-number-3">4.3</span> Conclusion</h3>
<div class="outline-text-3" id="text-4-3">
<div class="important" id="org9b1be89">
<div class="important" id="org982344b">
<p>
Some conclusions can be drawn from the above analysis:
</p>
@@ -1562,7 +1562,7 @@ Some conclusions can be drawn from the above analysis:
<a id="org7b3ed31"></a>
</p>
<div class="note" id="org7a9b096">
<div class="note" id="org96fba24">
<p>
The Matlab script corresponding to this section is accessible <a href="../matlab/cubic_conf_coupling_strutsl.m">here</a>.
</p>
@@ -1593,28 +1593,28 @@ Let&rsquo;s generate a Cubic architecture where the cube&rsquo;s center and the
</p>
<div class="org-src-container">
<pre class="src src-matlab"> H = 200e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
MO_B = <span class="org-type">-</span>10e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
Hc = 2.5<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
<pre class="src src-matlab">H = 200e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
MO_B = <span class="org-type">-</span>10e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
Hc = 2.5<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"> stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 25e<span class="org-type">-</span>3, <span class="org-string">'MHb'</span>, 25e<span class="org-type">-</span>3);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, 1e6<span class="org-type">*</span>ones(6,1), <span class="org-string">'C'</span>, 1e1<span class="org-type">*</span>ones(6,1));
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_F.Fa)), ...
<span class="org-string">'Mpm'</span>, 10, ...
<span class="org-string">'Mph'</span>, 20e<span class="org-type">-</span>3, ...
<span class="org-string">'Mpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_M.Mb)));
stewart = initializeCylindricalStruts(stewart, <span class="org-string">'Fsm'</span>, 1e<span class="org-type">-</span>3, <span class="org-string">'Msm'</span>, 1e<span class="org-type">-</span>3);
stewart = initializeInertialSensor(stewart);
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 25e<span class="org-type">-</span>3, <span class="org-string">'MHb'</span>, 25e<span class="org-type">-</span>3);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, 1e6<span class="org-type">*</span>ones(6,1), <span class="org-string">'C'</span>, 1e1<span class="org-type">*</span>ones(6,1));
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_F.Fa)), ...
<span class="org-string">'Mpm'</span>, 10, ...
<span class="org-string">'Mph'</span>, 20e<span class="org-type">-</span>3, ...
<span class="org-string">'Mpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_M.Mb)));
stewart = initializeCylindricalStruts(stewart, <span class="org-string">'Fsm'</span>, 1e<span class="org-type">-</span>3, <span class="org-string">'Msm'</span>, 1e<span class="org-type">-</span>3);
stewart = initializeInertialSensor(stewart);
</pre>
</div>
@@ -1622,15 +1622,15 @@ Let&rsquo;s generate a Cubic architecture where the cube&rsquo;s center and the
No flexibility below the Stewart platform and no payload.
</p>
<div class="org-src-container">
<pre class="src src-matlab"> ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"> disturbances = initializeDisturbances();
references = initializeReferences(stewart);
<pre class="src src-matlab">disturbances = initializeDisturbances();
references = initializeReferences(stewart);
</pre>
</div>
@@ -1669,26 +1669,26 @@ Now we generate a Stewart platform which is not cubic but with approximately the
</p>
<div class="org-src-container">
<pre class="src src-matlab"> H = 200e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
MO_B = <span class="org-type">-</span>10e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
<pre class="src src-matlab">H = 200e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
MO_B = <span class="org-type">-</span>10e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"> stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
stewart = generateGeneralConfiguration(stewart, <span class="org-string">'FR'</span>, 250e<span class="org-type">-</span>3, <span class="org-string">'MR'</span>, 150e<span class="org-type">-</span>3);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, 1e6<span class="org-type">*</span>ones(6,1), <span class="org-string">'C'</span>, 1e1<span class="org-type">*</span>ones(6,1));
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_F.Fa)), ...
<span class="org-string">'Mpm'</span>, 10, ...
<span class="org-string">'Mph'</span>, 20e<span class="org-type">-</span>3, ...
<span class="org-string">'Mpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_M.Mb)));
stewart = initializeCylindricalStruts(stewart, <span class="org-string">'Fsm'</span>, 1e<span class="org-type">-</span>3, <span class="org-string">'Msm'</span>, 1e<span class="org-type">-</span>3);
stewart = initializeInertialSensor(stewart);
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
stewart = generateGeneralConfiguration(stewart, <span class="org-string">'FR'</span>, 250e<span class="org-type">-</span>3, <span class="org-string">'MR'</span>, 150e<span class="org-type">-</span>3);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, 1e6<span class="org-type">*</span>ones(6,1), <span class="org-string">'C'</span>, 1e1<span class="org-type">*</span>ones(6,1));
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_F.Fa)), ...
<span class="org-string">'Mpm'</span>, 10, ...
<span class="org-string">'Mph'</span>, 20e<span class="org-type">-</span>3, ...
<span class="org-string">'Mpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_M.Mb)));
stewart = initializeCylindricalStruts(stewart, <span class="org-string">'Fsm'</span>, 1e<span class="org-type">-</span>3, <span class="org-string">'Msm'</span>, 1e<span class="org-type">-</span>3);
stewart = initializeInertialSensor(stewart);
</pre>
</div>
@@ -1696,9 +1696,9 @@ Now we generate a Stewart platform which is not cubic but with approximately the
No flexibility below the Stewart platform and no payload.
</p>
<div class="org-src-container">
<pre class="src src-matlab"> ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
</pre>
</div>
@@ -1729,10 +1729,10 @@ And we identify the dynamics from the actuator forces \(\tau_{i}\) to the relati
</div>
</div>
<div id="outline-container-orgeb8ae82" class="outline-3">
<h3 id="orgeb8ae82"><span class="section-number-3">5.3</span> Conclusion</h3>
<div id="outline-container-org0348380" class="outline-3">
<h3 id="org0348380"><span class="section-number-3">5.3</span> Conclusion</h3>
<div class="outline-text-3" id="text-5-3">
<div class="important" id="org74729c6">
<div class="important" id="orgd92f0ac">
<p>
The Cubic architecture seems to not have any significant effect on the coupling between actuator and sensors of each strut and thus provides no advantages for decentralized control.
</p>
@@ -1766,24 +1766,24 @@ This Matlab function is accessible <a href="../src/generateCubicConfiguration.m"
<h4 id="org2cafc68">Function description</h4>
<div class="outline-text-4" id="text-org2cafc68">
<div class="org-src-container">
<pre class="src src-matlab"> <span class="org-keyword">function</span> <span class="org-variable-name">[stewart]</span> = <span class="org-function-name">generateCubicConfiguration</span>(<span class="org-variable-name">stewart</span>, <span class="org-variable-name">args</span>)
<span class="org-comment">% generateCubicConfiguration - Generate a Cubic Configuration</span>
<span class="org-comment">%</span>
<span class="org-comment">% Syntax: [stewart] = generateCubicConfiguration(stewart, args)</span>
<span class="org-comment">%</span>
<span class="org-comment">% Inputs:</span>
<span class="org-comment">% - stewart - A structure with the following fields</span>
<span class="org-comment">% - geometry.H [1x1] - Total height of the platform [m]</span>
<span class="org-comment">% - args - Can have the following fields:</span>
<span class="org-comment">% - Hc [1x1] - Height of the "useful" part of the cube [m]</span>
<span class="org-comment">% - FOc [1x1] - Height of the center of the cube with respect to {F} [m]</span>
<span class="org-comment">% - FHa [1x1] - Height of the plane joining the points ai with respect to the frame {F} [m]</span>
<span class="org-comment">% - MHb [1x1] - Height of the plane joining the points bi with respect to the frame {M} [m]</span>
<span class="org-comment">%</span>
<span class="org-comment">% Outputs:</span>
<span class="org-comment">% - stewart - updated Stewart structure with the added fields:</span>
<span class="org-comment">% - platform_F.Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}</span>
<span class="org-comment">% - platform_M.Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}</span>
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[stewart]</span> = <span class="org-function-name">generateCubicConfiguration</span>(<span class="org-variable-name">stewart</span>, <span class="org-variable-name">args</span>)
<span class="org-comment">% generateCubicConfiguration - Generate a Cubic Configuration</span>
<span class="org-comment">%</span>
<span class="org-comment">% Syntax: [stewart] = generateCubicConfiguration(stewart, args)</span>
<span class="org-comment">%</span>
<span class="org-comment">% Inputs:</span>
<span class="org-comment">% - stewart - A structure with the following fields</span>
<span class="org-comment">% - geometry.H [1x1] - Total height of the platform [m]</span>
<span class="org-comment">% - args - Can have the following fields:</span>
<span class="org-comment">% - Hc [1x1] - Height of the "useful" part of the cube [m]</span>
<span class="org-comment">% - FOc [1x1] - Height of the center of the cube with respect to {F} [m]</span>
<span class="org-comment">% - FHa [1x1] - Height of the plane joining the points ai with respect to the frame {F} [m]</span>
<span class="org-comment">% - MHb [1x1] - Height of the plane joining the points bi with respect to the frame {M} [m]</span>
<span class="org-comment">%</span>
<span class="org-comment">% Outputs:</span>
<span class="org-comment">% - stewart - updated Stewart structure with the added fields:</span>
<span class="org-comment">% - platform_F.Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}</span>
<span class="org-comment">% - platform_M.Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}</span>
</pre>
</div>
</div>
@@ -1805,13 +1805,13 @@ This Matlab function is accessible <a href="../src/generateCubicConfiguration.m"
<h4 id="org4fd2c96">Optional Parameters</h4>
<div class="outline-text-4" id="text-org4fd2c96">
<div class="org-src-container">
<pre class="src src-matlab"> <span class="org-keyword">arguments</span>
<span class="org-variable-name">stewart</span>
<span class="org-variable-name">args</span>.Hc (1,1) double {mustBeNumeric, mustBePositive} = 60e<span class="org-type">-</span>3
<span class="org-variable-name">args</span>.FOc (1,1) double {mustBeNumeric} = 50e<span class="org-type">-</span>3
<span class="org-variable-name">args</span>.FHa (1,1) double {mustBeNumeric, mustBeNonnegative} = 15e<span class="org-type">-</span>3
<span class="org-variable-name">args</span>.MHb (1,1) double {mustBeNumeric, mustBeNonnegative} = 15e<span class="org-type">-</span>3
<span class="org-keyword">end</span>
<pre class="src src-matlab"><span class="org-keyword">arguments</span>
<span class="org-variable-name">stewart</span>
<span class="org-variable-name">args</span>.Hc (1,1) double {mustBeNumeric, mustBePositive} = 60e<span class="org-type">-</span>3
<span class="org-variable-name">args</span>.FOc (1,1) double {mustBeNumeric} = 50e<span class="org-type">-</span>3
<span class="org-variable-name">args</span>.FHa (1,1) double {mustBeNumeric, mustBeNonnegative} = 15e<span class="org-type">-</span>3
<span class="org-variable-name">args</span>.MHb (1,1) double {mustBeNumeric, mustBeNonnegative} = 15e<span class="org-type">-</span>3
<span class="org-keyword">end</span>
</pre>
</div>
</div>
@@ -1821,8 +1821,8 @@ This Matlab function is accessible <a href="../src/generateCubicConfiguration.m"
<h4 id="orgac26a8b">Check the <code>stewart</code> structure elements</h4>
<div class="outline-text-4" id="text-orgac26a8b">
<div class="org-src-container">
<pre class="src src-matlab"> assert(isfield(stewart.geometry, <span class="org-string">'H'</span>), <span class="org-string">'stewart.geometry should have attribute H'</span>)
H = stewart.geometry.H;
<pre class="src src-matlab">assert(isfield(stewart.geometry, <span class="org-string">'H'</span>), <span class="org-string">'stewart.geometry should have attribute H'</span>)
H = stewart.geometry.H;
</pre>
</div>
</div>
@@ -1837,18 +1837,18 @@ We define the useful points of the cube with respect to the Cube&rsquo;s center.
</p>
<div class="org-src-container">
<pre class="src src-matlab"> sx = [ 2; <span class="org-type">-</span>1; <span class="org-type">-</span>1];
sy = [ 0; 1; <span class="org-type">-</span>1];
sz = [ 1; 1; 1];
<pre class="src src-matlab">sx = [ 2; <span class="org-type">-</span>1; <span class="org-type">-</span>1];
sy = [ 0; 1; <span class="org-type">-</span>1];
sz = [ 1; 1; 1];
R = [sx, sy, sz]<span class="org-type">./</span>vecnorm([sx, sy, sz]);
R = [sx, sy, sz]<span class="org-type">./</span>vecnorm([sx, sy, sz]);
L = args.Hc<span class="org-type">*</span>sqrt(3);
L = args.Hc<span class="org-type">*</span>sqrt(3);
Cc = R<span class="org-type">'*</span>[[0;0;L],[L;0;L],[L;0;0],[L;L;0],[0;L;0],[0;L;L]] <span class="org-type">-</span> [0;0;1.5<span class="org-type">*</span>args.Hc];
Cc = R<span class="org-type">'*</span>[[0;0;L],[L;0;L],[L;0;0],[L;L;0],[0;L;0],[0;L;L]] <span class="org-type">-</span> [0;0;1.5<span class="org-type">*</span>args.Hc];
CCf = [Cc(<span class="org-type">:</span>,1), Cc(<span class="org-type">:</span>,3), Cc(<span class="org-type">:</span>,3), Cc(<span class="org-type">:</span>,5), Cc(<span class="org-type">:</span>,5), Cc(<span class="org-type">:</span>,1)]; <span class="org-comment">% CCf(:,i) corresponds to the bottom cube's vertice corresponding to the i'th leg</span>
CCm = [Cc(<span class="org-type">:</span>,2), Cc(<span class="org-type">:</span>,2), Cc(<span class="org-type">:</span>,4), Cc(<span class="org-type">:</span>,4), Cc(<span class="org-type">:</span>,6), Cc(<span class="org-type">:</span>,6)]; <span class="org-comment">% CCm(:,i) corresponds to the top cube's vertice corresponding to the i'th leg</span>
CCf = [Cc(<span class="org-type">:</span>,1), Cc(<span class="org-type">:</span>,3), Cc(<span class="org-type">:</span>,3), Cc(<span class="org-type">:</span>,5), Cc(<span class="org-type">:</span>,5), Cc(<span class="org-type">:</span>,1)]; <span class="org-comment">% CCf(:,i) corresponds to the bottom cube's vertice corresponding to the i'th leg</span>
CCm = [Cc(<span class="org-type">:</span>,2), Cc(<span class="org-type">:</span>,2), Cc(<span class="org-type">:</span>,4), Cc(<span class="org-type">:</span>,4), Cc(<span class="org-type">:</span>,6), Cc(<span class="org-type">:</span>,6)]; <span class="org-comment">% CCm(:,i) corresponds to the top cube's vertice corresponding to the i'th leg</span>
</pre>
</div>
</div>
@@ -1861,7 +1861,7 @@ We define the useful points of the cube with respect to the Cube&rsquo;s center.
We can compute the vector of each leg \({}^{C}\hat{\bm{s}}_{i}\) (unit vector from \({}^{C}C_{f}\) to \({}^{C}C_{m}\)).
</p>
<div class="org-src-container">
<pre class="src src-matlab"> CSi = (CCm <span class="org-type">-</span> CCf)<span class="org-type">./</span>vecnorm(CCm <span class="org-type">-</span> CCf);
<pre class="src src-matlab">CSi = (CCm <span class="org-type">-</span> CCf)<span class="org-type">./</span>vecnorm(CCm <span class="org-type">-</span> CCf);
</pre>
</div>
@@ -1869,8 +1869,8 @@ We can compute the vector of each leg \({}^{C}\hat{\bm{s}}_{i}\) (unit vector fr
We now which to compute the position of the joints \(a_{i}\) and \(b_{i}\).
</p>
<div class="org-src-container">
<pre class="src src-matlab"> Fa = CCf <span class="org-type">+</span> [0; 0; args.FOc] <span class="org-type">+</span> ((args.FHa<span class="org-type">-</span>(args.FOc<span class="org-type">-</span>args.Hc<span class="org-type">/</span>2))<span class="org-type">./</span>CSi(3,<span class="org-type">:</span>))<span class="org-type">.*</span>CSi;
Mb = CCf <span class="org-type">+</span> [0; 0; args.FOc<span class="org-type">-</span>H] <span class="org-type">+</span> ((H<span class="org-type">-</span>args.MHb<span class="org-type">-</span>(args.FOc<span class="org-type">-</span>args.Hc<span class="org-type">/</span>2))<span class="org-type">./</span>CSi(3,<span class="org-type">:</span>))<span class="org-type">.*</span>CSi;
<pre class="src src-matlab">Fa = CCf <span class="org-type">+</span> [0; 0; args.FOc] <span class="org-type">+</span> ((args.FHa<span class="org-type">-</span>(args.FOc<span class="org-type">-</span>args.Hc<span class="org-type">/</span>2))<span class="org-type">./</span>CSi(3,<span class="org-type">:</span>))<span class="org-type">.*</span>CSi;
Mb = CCf <span class="org-type">+</span> [0; 0; args.FOc<span class="org-type">-</span>H] <span class="org-type">+</span> ((H<span class="org-type">-</span>args.MHb<span class="org-type">-</span>(args.FOc<span class="org-type">-</span>args.Hc<span class="org-type">/</span>2))<span class="org-type">./</span>CSi(3,<span class="org-type">:</span>))<span class="org-type">.*</span>CSi;
</pre>
</div>
</div>
@@ -1880,8 +1880,8 @@ We now which to compute the position of the joints \(a_{i}\) and \(b_{i}\).
<h4 id="org153763b">Populate the <code>stewart</code> structure</h4>
<div class="outline-text-4" id="text-org153763b">
<div class="org-src-container">
<pre class="src src-matlab"> stewart.platform_F.Fa = Fa;
stewart.platform_M.Mb = Mb;
<pre class="src src-matlab">stewart.platform_F.Fa = Fa;
stewart.platform_M.Mb = Mb;
</pre>
</div>
</div>
@@ -1905,7 +1905,7 @@ We now which to compute the position of the joints \(a_{i}\) and \(b_{i}\).
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2021-01-08 ven. 15:30</p>
<p class="date">Created: 2021-01-08 ven. 15:52</p>
</div>
</body>
</html>