1912 lines
80 KiB
HTML
1912 lines
80 KiB
HTML
<?xml version="1.0" encoding="utf-8"?>
|
||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||
<head>
|
||
<!-- 2021-01-08 ven. 15:52 -->
|
||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||
<title>Cubic configuration for the Stewart Platform</title>
|
||
<meta name="generator" content="Org mode" />
|
||
<meta name="author" content="Dehaeze Thomas" />
|
||
<link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
|
||
<script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
|
||
<script>
|
||
MathJax = {
|
||
svg: {
|
||
scale: 1,
|
||
fontCache: "global"
|
||
},
|
||
tex: {
|
||
tags: "ams",
|
||
multlineWidth: "%MULTLINEWIDTH",
|
||
tagSide: "right",
|
||
macros: {bm: ["\\boldsymbol{#1}",1],},
|
||
tagIndent: ".8em"
|
||
}
|
||
};
|
||
</script>
|
||
<script id="MathJax-script" async
|
||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"></script>
|
||
</head>
|
||
<body>
|
||
<div id="org-div-home-and-up">
|
||
<a accesskey="h" href="./index.html"> UP </a>
|
||
|
|
||
<a accesskey="H" href="./index.html"> HOME </a>
|
||
</div><div id="content">
|
||
<h1 class="title">Cubic configuration for the Stewart Platform</h1>
|
||
<div id="table-of-contents">
|
||
<h2>Table of Contents</h2>
|
||
<div id="text-table-of-contents">
|
||
<ul>
|
||
<li><a href="#org017fb61">1. Stiffness Matrix for the Cubic configuration</a>
|
||
<ul>
|
||
<li><a href="#org469f9dc">1.1. Cubic Stewart platform centered with the cube center - Jacobian estimated at the cube center</a></li>
|
||
<li><a href="#org6359f2f">1.2. Cubic Stewart platform centered with the cube center - Jacobian not estimated at the cube center</a></li>
|
||
<li><a href="#org5c37be2">1.3. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the cube center</a></li>
|
||
<li><a href="#org32ac59a">1.4. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the Stewart platform center</a></li>
|
||
<li><a href="#orgeb8ae82">1.5. Conclusion</a></li>
|
||
</ul>
|
||
</li>
|
||
<li><a href="#org312b7d4">2. Configuration with the Cube’s center above the mobile platform</a>
|
||
<ul>
|
||
<li><a href="#org4983654">2.1. Having Cube’s center above the top platform</a></li>
|
||
<li><a href="#orge53b7f6">2.2. Size of the platforms</a></li>
|
||
<li><a href="#org52825e8">2.3. Conclusion</a></li>
|
||
</ul>
|
||
</li>
|
||
<li><a href="#org2387b96">3. Cubic size analysis</a>
|
||
<ul>
|
||
<li><a href="#org3647f9f">3.1. Analysis</a></li>
|
||
<li><a href="#org701701b">3.2. Conclusion</a></li>
|
||
</ul>
|
||
</li>
|
||
<li><a href="#org174af3a">4. Dynamic Coupling in the Cartesian Frame</a>
|
||
<ul>
|
||
<li><a href="#orgdb33aa6">4.1. Cube’s center at the Center of Mass of the mobile platform</a></li>
|
||
<li><a href="#org49b330b">4.2. Cube’s center not coincident with the Mass of the Mobile platform</a></li>
|
||
<li><a href="#orgf407e4d">4.3. Conclusion</a></li>
|
||
</ul>
|
||
</li>
|
||
<li><a href="#org7831cff">5. Dynamic Coupling between actuators and sensors of each strut</a>
|
||
<ul>
|
||
<li><a href="#org38e9e8f">5.1. Coupling between the actuators and sensors - Cubic Architecture</a></li>
|
||
<li><a href="#org21d40d3">5.2. Coupling between the actuators and sensors - Non-Cubic Architecture</a></li>
|
||
<li><a href="#org0348380">5.3. Conclusion</a></li>
|
||
</ul>
|
||
</li>
|
||
<li><a href="#org3ce1c89">6. Functions</a>
|
||
<ul>
|
||
<li><a href="#org9ad761f">6.1. <code>generateCubicConfiguration</code>: Generate a Cubic Configuration</a>
|
||
<ul>
|
||
<li><a href="#org2cafc68">Function description</a></li>
|
||
<li><a href="#org32005ba">Documentation</a></li>
|
||
<li><a href="#org4fd2c96">Optional Parameters</a></li>
|
||
<li><a href="#orgac26a8b">Check the <code>stewart</code> structure elements</a></li>
|
||
<li><a href="#orgc86b760">Position of the Cube</a></li>
|
||
<li><a href="#org1e9ccef">Compute the pose</a></li>
|
||
<li><a href="#org153763b">Populate the <code>stewart</code> structure</a></li>
|
||
</ul>
|
||
</li>
|
||
</ul>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
|
||
<p>
|
||
The Cubic configuration for the Stewart platform was first proposed in (<a href="#citeproc_bib_item_2">Geng and Haynes 1994</a>).
|
||
This configuration is quite specific in the sense that the active struts are arranged in a mutually orthogonal configuration connecting the corners of a cube.
|
||
This configuration is now widely used ((<a href="#citeproc_bib_item_5">Preumont et al. 2007</a>; <a href="#citeproc_bib_item_3">Jafari and McInroy 2003</a>)).
|
||
</p>
|
||
|
||
<p>
|
||
According to (<a href="#citeproc_bib_item_5">Preumont et al. 2007</a>), the cubic configuration offers the following advantages:
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
This topology provides a <b>uniform control capability</b> and a <b>uniform stiffness</b> in all directions, and it <b>minimizes the cross-coupling amongst actuators and sensors of different legs</b> (being orthogonal to each other).
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
In this document, the cubic architecture is analyzed:
|
||
</p>
|
||
<ul class="org-ul">
|
||
<li>In section <a href="#org6bc5f56">1</a>, we study the <b>uniform stiffness</b> of such configuration and we find the conditions to obtain a diagonal stiffness matrix</li>
|
||
<li>In section <a href="#org419cdb0">2</a>, we find cubic configurations where the cube’s center is located above the mobile platform</li>
|
||
<li>In section <a href="#org53ade24">3</a>, we study the effect of the cube’s size on the Stewart platform properties</li>
|
||
<li>In section <a href="#org3507b2b">4</a>, we study the dynamics of the cubic configuration in the cartesian frame</li>
|
||
<li>In section <a href="#org7b3ed31">5</a>, we study the dynamic <b>cross-coupling</b> of the cubic configuration from actuators to sensors of each strut</li>
|
||
<li>In section <a href="#orgef41b92">6</a>, function related to the cubic configuration are defined. To generate and study the Stewart platform with a Cubic configuration, the Matlab function <code>generateCubicConfiguration</code> is used (described <a href="#orgd9ae150">here</a>).</li>
|
||
</ul>
|
||
|
||
<div id="outline-container-org017fb61" class="outline-2">
|
||
<h2 id="org017fb61"><span class="section-number-2">1</span> Stiffness Matrix for the Cubic configuration</h2>
|
||
<div class="outline-text-2" id="text-1">
|
||
<p>
|
||
<a id="org6bc5f56"></a>
|
||
</p>
|
||
|
||
<div class="note" id="org783c5d6">
|
||
<p>
|
||
The Matlab script corresponding to this section is accessible <a href="../matlab/cubic_conf_stiffnessl.m">here</a>.
|
||
</p>
|
||
|
||
<p>
|
||
To run the script, open the Simulink Project, and type <code>run cubic_conf_stiffness.m</code>.
|
||
</p>
|
||
|
||
</div>
|
||
<p>
|
||
First, we have to understand what is the physical meaning of the Stiffness matrix \(\bm{K}\).
|
||
</p>
|
||
|
||
<p>
|
||
The Stiffness matrix links forces \(\bm{f}\) and torques \(\bm{n}\) applied on the mobile platform at \(\{B\}\) to the displacement \(\Delta\bm{\mathcal{X}}\) of the mobile platform represented by \(\{B\}\) with respect to \(\{A\}\):
|
||
\[ \bm{\mathcal{F}} = \bm{K} \Delta\bm{\mathcal{X}} \]
|
||
</p>
|
||
|
||
<p>
|
||
with:
|
||
</p>
|
||
<ul class="org-ul">
|
||
<li>\(\bm{\mathcal{F}} = [\bm{f}\ \bm{n}]^{T}\)</li>
|
||
<li>\(\Delta\bm{\mathcal{X}} = [\delta x, \delta y, \delta z, \delta \theta_{x}, \delta \theta_{y}, \delta \theta_{z}]^{T}\)</li>
|
||
</ul>
|
||
|
||
<p>
|
||
If the stiffness matrix is inversible, its inverse is the compliance matrix: \(\bm{C} = \bm{K}^{-1\) and:
|
||
\[ \Delta \bm{\mathcal{X}} = C \bm{\mathcal{F}} \]
|
||
</p>
|
||
|
||
<p>
|
||
Thus, if the stiffness matrix is diagonal, the compliance matrix is also diagonal and a force (resp. torque) \(\bm{\mathcal{F}}_i\) applied on the mobile platform at \(\{B\}\) will induce a pure translation (resp. rotation) of the mobile platform represented by \(\{B\}\) with respect to \(\{A\}\).
|
||
</p>
|
||
|
||
<p>
|
||
One has to note that this is only valid in a static way.
|
||
</p>
|
||
|
||
<p>
|
||
We here study what makes the Stiffness matrix diagonal when using a cubic configuration.
|
||
</p>
|
||
</div>
|
||
|
||
<div id="outline-container-org469f9dc" class="outline-3">
|
||
<h3 id="org469f9dc"><span class="section-number-3">1.1</span> Cubic Stewart platform centered with the cube center - Jacobian estimated at the cube center</h3>
|
||
<div class="outline-text-3" id="text-1-1">
|
||
<p>
|
||
We create a cubic Stewart platform (figure <a href="#orge8e0501">1</a>) in such a way that the center of the cube (black star) is located at the center of the Stewart platform (blue dot).
|
||
The Jacobian matrix is estimated at the location of the center of the cube.
|
||
</p>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">H = 100e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
|
||
MO_B = <span class="org-type">-</span>H<span class="org-type">/</span>2; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
|
||
Hc = H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
|
||
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
|
||
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 0, <span class="org-string">'MHb'</span>, 0);
|
||
stewart = computeJointsPose(stewart);
|
||
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, ones(6,1));
|
||
stewart = computeJacobian(stewart);
|
||
stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 175e<span class="org-type">-</span>3, <span class="org-string">'Mpr'</span>, 150e<span class="org-type">-</span>3);
|
||
</pre>
|
||
</div>
|
||
|
||
|
||
<div id="orge8e0501" class="figure">
|
||
<p><img src="figs/cubic_conf_centered_J_center.png" alt="cubic_conf_centered_J_center.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 1: </span>Cubic Stewart platform centered with the cube center - Jacobian estimated at the cube center (<a href="./figs/cubic_conf_centered_J_center.png">png</a>, <a href="./figs/cubic_conf_centered_J_center.pdf">pdf</a>)</p>
|
||
</div>
|
||
|
||
<table id="org64c21d6" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||
<caption class="t-above"><span class="table-number">Table 1:</span> Stiffness Matrix</caption>
|
||
|
||
<colgroup>
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
</colgroup>
|
||
<tbody>
|
||
<tr>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-2.5e-16</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">2.1e-17</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-7.8e-19</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">-2.5e-16</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">-2.4e-18</td>
|
||
<td class="org-right">-1.4e-17</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-7.8e-19</td>
|
||
<td class="org-right">-2.4e-18</td>
|
||
<td class="org-right">0.015</td>
|
||
<td class="org-right">-4.3e-19</td>
|
||
<td class="org-right">1.7e-18</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">1.8e-17</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-1.1e-17</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">0.015</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">6.6e-18</td>
|
||
<td class="org-right">-3.3e-18</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">1.7e-18</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">0.06</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org6359f2f" class="outline-3">
|
||
<h3 id="org6359f2f"><span class="section-number-3">1.2</span> Cubic Stewart platform centered with the cube center - Jacobian not estimated at the cube center</h3>
|
||
<div class="outline-text-3" id="text-1-2">
|
||
<p>
|
||
We create a cubic Stewart platform with center of the cube located at the center of the Stewart platform (figure <a href="#org58083e8">2</a>).
|
||
The Jacobian matrix is not estimated at the location of the center of the cube.
|
||
</p>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">H = 100e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
|
||
MO_B = 20e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
|
||
Hc = H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
|
||
FOc = H<span class="org-type">/</span>2; <span class="org-comment">% Center of the cube with respect to {F}</span>
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
|
||
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 0, <span class="org-string">'MHb'</span>, 0);
|
||
stewart = computeJointsPose(stewart);
|
||
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, ones(6,1));
|
||
stewart = computeJacobian(stewart);
|
||
stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 175e<span class="org-type">-</span>3, <span class="org-string">'Mpr'</span>, 150e<span class="org-type">-</span>3);
|
||
</pre>
|
||
</div>
|
||
|
||
|
||
<div id="org58083e8" class="figure">
|
||
<p><img src="figs/cubic_conf_centered_J_not_center.png" alt="cubic_conf_centered_J_not_center.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 2: </span>Cubic Stewart platform centered with the cube center - Jacobian not estimated at the cube center (<a href="./figs/cubic_conf_centered_J_not_center.png">png</a>, <a href="./figs/cubic_conf_centered_J_not_center.pdf">pdf</a>)</p>
|
||
</div>
|
||
|
||
<table id="org46d41a3" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||
<caption class="t-above"><span class="table-number">Table 2:</span> Stiffness Matrix</caption>
|
||
|
||
<colgroup>
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
</colgroup>
|
||
<tbody>
|
||
<tr>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-2.5e-16</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-0.14</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">0.14</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">-2.5e-16</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">-5.3e-19</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">0.14</td>
|
||
<td class="org-right">-5.3e-19</td>
|
||
<td class="org-right">0.025</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">8.7e-19</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">-0.14</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">2.6e-18</td>
|
||
<td class="org-right">1.6e-19</td>
|
||
<td class="org-right">0.025</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">6.6e-18</td>
|
||
<td class="org-right">-3.3e-18</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">8.9e-19</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">0.06</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org5c37be2" class="outline-3">
|
||
<h3 id="org5c37be2"><span class="section-number-3">1.3</span> Cubic Stewart platform not centered with the cube center - Jacobian estimated at the cube center</h3>
|
||
<div class="outline-text-3" id="text-1-3">
|
||
<p>
|
||
Here, the “center” of the Stewart platform is not at the cube center (figure <a href="#org45cc38d">3</a>).
|
||
The Jacobian is estimated at the cube center.
|
||
</p>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">H = 80e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
|
||
MO_B = <span class="org-type">-</span>30e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
|
||
Hc = 100e<span class="org-type">-</span>3; <span class="org-comment">% Size of the useful part of the cube [m]</span>
|
||
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
|
||
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 0, <span class="org-string">'MHb'</span>, 0);
|
||
stewart = computeJointsPose(stewart);
|
||
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, ones(6,1));
|
||
stewart = computeJacobian(stewart);
|
||
stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 175e<span class="org-type">-</span>3, <span class="org-string">'Mpr'</span>, 150e<span class="org-type">-</span>3);
|
||
</pre>
|
||
</div>
|
||
|
||
|
||
<div id="org45cc38d" class="figure">
|
||
<p><img src="figs/cubic_conf_not_centered_J_center.png" alt="cubic_conf_not_centered_J_center.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 3: </span>Cubic Stewart platform not centered with the cube center - Jacobian estimated at the cube center (<a href="./figs/cubic_conf_not_centered_J_center.png">png</a>, <a href="./figs/cubic_conf_not_centered_J_center.pdf">pdf</a>)</p>
|
||
</div>
|
||
|
||
<table id="orgb0fc90f" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||
<caption class="t-above"><span class="table-number">Table 3:</span> Stiffness Matrix</caption>
|
||
|
||
<colgroup>
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
</colgroup>
|
||
<tbody>
|
||
<tr>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-1.7e-16</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">4.9e-17</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-2.2e-17</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">2.8e-17</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">-1.7e-16</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">1.1e-18</td>
|
||
<td class="org-right">-1.4e-17</td>
|
||
<td class="org-right">1.4e-17</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-2.2e-17</td>
|
||
<td class="org-right">1.1e-18</td>
|
||
<td class="org-right">0.015</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">3.5e-18</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">4.4e-17</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-1.4e-17</td>
|
||
<td class="org-right">-5.7e-20</td>
|
||
<td class="org-right">0.015</td>
|
||
<td class="org-right">-8.7e-19</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">6.6e-18</td>
|
||
<td class="org-right">2.5e-17</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">3.5e-18</td>
|
||
<td class="org-right">-8.7e-19</td>
|
||
<td class="org-right">0.06</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
|
||
<p>
|
||
We obtain \(k_x = k_y = k_z\) and \(k_{\theta_x} = k_{\theta_y}\), but the Stiffness matrix is not diagonal.
|
||
</p>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org32ac59a" class="outline-3">
|
||
<h3 id="org32ac59a"><span class="section-number-3">1.4</span> Cubic Stewart platform not centered with the cube center - Jacobian estimated at the Stewart platform center</h3>
|
||
<div class="outline-text-3" id="text-1-4">
|
||
<p>
|
||
Here, the “center” of the Stewart platform is not at the cube center.
|
||
The Jacobian is estimated at the center of the Stewart platform.
|
||
</p>
|
||
|
||
<p>
|
||
The center of the cube is at \(z = 110\).
|
||
The Stewart platform is from \(z = H_0 = 75\) to \(z = H_0 + H_{tot} = 175\).
|
||
The center height of the Stewart platform is then at \(z = \frac{175-75}{2} = 50\).
|
||
The center of the cube from the top platform is at \(z = 110 - 175 = -65\).
|
||
</p>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">H = 100e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
|
||
MO_B = <span class="org-type">-</span>H<span class="org-type">/</span>2; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
|
||
Hc = 1.5<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
|
||
FOc = H<span class="org-type">/</span>2 <span class="org-type">+</span> 10e<span class="org-type">-</span>3; <span class="org-comment">% Center of the cube with respect to {F}</span>
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
|
||
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 0, <span class="org-string">'MHb'</span>, 0);
|
||
stewart = computeJointsPose(stewart);
|
||
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, ones(6,1));
|
||
stewart = computeJacobian(stewart);
|
||
stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 215e<span class="org-type">-</span>3, <span class="org-string">'Mpr'</span>, 195e<span class="org-type">-</span>3);
|
||
</pre>
|
||
</div>
|
||
|
||
|
||
<div id="org8c8f97b" class="figure">
|
||
<p><img src="figs/cubic_conf_not_centered_J_stewart_center.png" alt="cubic_conf_not_centered_J_stewart_center.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 4: </span>Cubic Stewart platform not centered with the cube center - Jacobian estimated at the Stewart platform center (<a href="./figs/cubic_conf_not_centered_J_stewart_center.png">png</a>, <a href="./figs/cubic_conf_not_centered_J_stewart_center.pdf">pdf</a>)</p>
|
||
</div>
|
||
|
||
<table id="orge20fac2" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||
<caption class="t-above"><span class="table-number">Table 4:</span> Stiffness Matrix</caption>
|
||
|
||
<colgroup>
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
</colgroup>
|
||
<tbody>
|
||
<tr>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">1.5e-16</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">0.02</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-0.02</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">1.5e-16</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">-3e-18</td>
|
||
<td class="org-right">-2.8e-17</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-0.02</td>
|
||
<td class="org-right">-3e-18</td>
|
||
<td class="org-right">0.034</td>
|
||
<td class="org-right">-8.7e-19</td>
|
||
<td class="org-right">5.2e-18</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">0.02</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-2.2e-17</td>
|
||
<td class="org-right">-4.4e-19</td>
|
||
<td class="org-right">0.034</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">5.9e-18</td>
|
||
<td class="org-right">-7.5e-18</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">3.5e-18</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">0.14</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orgeb8ae82" class="outline-3">
|
||
<h3 id="orgeb8ae82"><span class="section-number-3">1.5</span> Conclusion</h3>
|
||
<div class="outline-text-3" id="text-1-5">
|
||
<div class="important" id="orgb449c4a">
|
||
<p>
|
||
Here are the conclusion about the Stiffness matrix for the Cubic configuration:
|
||
</p>
|
||
<ul class="org-ul">
|
||
<li>The cubic configuration permits to have \(k_x = k_y = k_z\) and \(k_{\theta_x} = k_{\theta_y}\)</li>
|
||
<li>The stiffness matrix \(K\) is diagonal for the cubic configuration if the Jacobian is estimated at the cube center.</li>
|
||
</ul>
|
||
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org312b7d4" class="outline-2">
|
||
<h2 id="org312b7d4"><span class="section-number-2">2</span> Configuration with the Cube’s center above the mobile platform</h2>
|
||
<div class="outline-text-2" id="text-2">
|
||
<p>
|
||
<a id="org419cdb0"></a>
|
||
</p>
|
||
|
||
<div class="note" id="orge405fbc">
|
||
<p>
|
||
The Matlab script corresponding to this section is accessible <a href="../matlab/cubic_conf_above_platforml.m">here</a>.
|
||
</p>
|
||
|
||
<p>
|
||
To run the script, open the Simulink Project, and type <code>run cubic_conf_above_platform.m</code>.
|
||
</p>
|
||
|
||
</div>
|
||
<p>
|
||
We saw in section <a href="#org6bc5f56">1</a> that in order to have a diagonal stiffness matrix, we need the cube’s center to be located at frames \(\{A\}\) and \(\{B\}\).
|
||
Or, we usually want to have \(\{A\}\) and \(\{B\}\) located above the top platform where forces are applied and where displacements are expressed.
|
||
</p>
|
||
|
||
<p>
|
||
We here see if the cubic configuration can provide a diagonal stiffness matrix when \(\{A\}\) and \(\{B\}\) are above the mobile platform.
|
||
</p>
|
||
</div>
|
||
|
||
<div id="outline-container-org4983654" class="outline-3">
|
||
<h3 id="org4983654"><span class="section-number-3">2.1</span> Having Cube’s center above the top platform</h3>
|
||
<div class="outline-text-3" id="text-2-1">
|
||
<p>
|
||
Let’s say we want to have a diagonal stiffness matrix when \(\{A\}\) and \(\{B\}\) are located above the top platform.
|
||
Thus, we want the cube’s center to be located above the top center.
|
||
</p>
|
||
|
||
<p>
|
||
Let’s fix the Height of the Stewart platform and the position of frames \(\{A\}\) and \(\{B\}\):
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">H = 100e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
|
||
MO_B = 20e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
We find the several Cubic configuration for the Stewart platform where the center of the cube is located at frame \(\{A\}\).
|
||
The differences between the configuration are the cube’s size:
|
||
</p>
|
||
<ul class="org-ul">
|
||
<li>Small Cube Size in Figure <a href="#orgc21b175">5</a></li>
|
||
<li>Medium Cube Size in Figure <a href="#org1a57849">6</a></li>
|
||
<li>Large Cube Size in Figure <a href="#org5d21d07">7</a></li>
|
||
</ul>
|
||
|
||
<p>
|
||
For each of the configuration, the Stiffness matrix is diagonal with \(k_x = k_y = k_y = 2k\) with \(k\) is the stiffness of each strut.
|
||
However, the rotational stiffnesses are increasing with the cube’s size but the required size of the platform is also increasing, so there is a trade-off here.
|
||
</p>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">Hc = 0.4<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
|
||
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
|
||
</pre>
|
||
</div>
|
||
|
||
|
||
<div id="orgc21b175" class="figure">
|
||
<p><img src="figs/stewart_cubic_conf_type_1.png" alt="stewart_cubic_conf_type_1.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 5: </span>Cubic Configuration for the Stewart Platform - Small Cube Size (<a href="./figs/stewart_cubic_conf_type_1.png">png</a>, <a href="./figs/stewart_cubic_conf_type_1.pdf">pdf</a>)</p>
|
||
</div>
|
||
|
||
<table id="org4ed8369" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||
<caption class="t-above"><span class="table-number">Table 5:</span> Stiffness Matrix</caption>
|
||
|
||
<colgroup>
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
</colgroup>
|
||
<tbody>
|
||
<tr>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-2.8e-16</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">2.4e-17</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-2.3e-17</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">-2.8e-16</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">-2.1e-19</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-2.3e-17</td>
|
||
<td class="org-right">-2.1e-19</td>
|
||
<td class="org-right">0.0024</td>
|
||
<td class="org-right">-5.4e-20</td>
|
||
<td class="org-right">6.5e-19</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">2.4e-17</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">4.9e-19</td>
|
||
<td class="org-right">-2.3e-20</td>
|
||
<td class="org-right">0.0024</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">-1.2e-18</td>
|
||
<td class="org-right">1.1e-18</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">6.2e-19</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">0.0096</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">Hc = 1.5<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
|
||
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
|
||
</pre>
|
||
</div>
|
||
|
||
|
||
<div id="org1a57849" class="figure">
|
||
<p><img src="figs/stewart_cubic_conf_type_2.png" alt="stewart_cubic_conf_type_2.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 6: </span>Cubic Configuration for the Stewart Platform - Medium Cube Size (<a href="./figs/stewart_cubic_conf_type_2.png">png</a>, <a href="./figs/stewart_cubic_conf_type_2.pdf">pdf</a>)</p>
|
||
</div>
|
||
|
||
|
||
<table id="org325fd88" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||
<caption class="t-above"><span class="table-number">Table 6:</span> Stiffness Matrix</caption>
|
||
|
||
<colgroup>
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
</colgroup>
|
||
<tbody>
|
||
<tr>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-1.9e-16</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">5.6e-17</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-7.6e-17</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">-1.9e-16</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">2.5e-18</td>
|
||
<td class="org-right">2.8e-17</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-7.6e-17</td>
|
||
<td class="org-right">2.5e-18</td>
|
||
<td class="org-right">0.034</td>
|
||
<td class="org-right">8.7e-19</td>
|
||
<td class="org-right">8.7e-18</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">5.7e-17</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">3.2e-17</td>
|
||
<td class="org-right">2.9e-19</td>
|
||
<td class="org-right">0.034</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">-1e-18</td>
|
||
<td class="org-right">-1.3e-17</td>
|
||
<td class="org-right">5.6e-17</td>
|
||
<td class="org-right">8.4e-18</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">0.14</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">Hc = 2.5<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
|
||
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
|
||
</pre>
|
||
</div>
|
||
|
||
|
||
<div id="org5d21d07" class="figure">
|
||
<p><img src="figs/stewart_cubic_conf_type_3.png" alt="stewart_cubic_conf_type_3.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 7: </span>Cubic Configuration for the Stewart Platform - Large Cube Size (<a href="./figs/stewart_cubic_conf_type_3.png">png</a>, <a href="./figs/stewart_cubic_conf_type_3.pdf">pdf</a>)</p>
|
||
</div>
|
||
|
||
|
||
<table id="org416d72b" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||
<caption class="t-above"><span class="table-number">Table 7:</span> Stiffness Matrix</caption>
|
||
|
||
<colgroup>
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
|
||
<col class="org-right" />
|
||
</colgroup>
|
||
<tbody>
|
||
<tr>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-3e-16</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-8.3e-17</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-2.2e-17</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">5.6e-17</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">-3e-16</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">2</td>
|
||
<td class="org-right">-9.3e-19</td>
|
||
<td class="org-right">-2.8e-17</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-2.2e-17</td>
|
||
<td class="org-right">-9.3e-19</td>
|
||
<td class="org-right">0.094</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">2.1e-17</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">-8e-17</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">-3e-17</td>
|
||
<td class="org-right">-6.1e-19</td>
|
||
<td class="org-right">0.094</td>
|
||
<td class="org-right">0</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-right">-6.2e-18</td>
|
||
<td class="org-right">7.2e-17</td>
|
||
<td class="org-right">5.6e-17</td>
|
||
<td class="org-right">2.3e-17</td>
|
||
<td class="org-right">0</td>
|
||
<td class="org-right">0.37</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orge53b7f6" class="outline-3">
|
||
<h3 id="orge53b7f6"><span class="section-number-3">2.2</span> Size of the platforms</h3>
|
||
<div class="outline-text-3" id="text-2-2">
|
||
<p>
|
||
The minimum size of the platforms depends on the cube’s size and the height between the platform and the cube’s center.
|
||
</p>
|
||
|
||
<p>
|
||
Let’s denote:
|
||
</p>
|
||
<ul class="org-ul">
|
||
<li>\(H\) the height between the cube’s center and the considered platform</li>
|
||
<li>\(D\) the size of the cube’s edges</li>
|
||
</ul>
|
||
|
||
<p>
|
||
Let’s denote by \(a\) and \(b\) the points of both ends of one of the cube’s edge.
|
||
</p>
|
||
|
||
<p>
|
||
Initially, we have:
|
||
</p>
|
||
\begin{align}
|
||
a &= \frac{D}{2} \begin{bmatrix}-1 \\ -1 \\ 1\end{bmatrix} \\
|
||
b &= \frac{D}{2} \begin{bmatrix} 1 \\ -1 \\ 1\end{bmatrix}
|
||
\end{align}
|
||
|
||
<p>
|
||
We rotate the cube around its center (origin of the rotated frame) such that one of its diagonal is vertical.
|
||
\[ R = \begin{bmatrix}
|
||
\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\
|
||
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
|
||
\frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}}
|
||
\end{bmatrix} \]
|
||
</p>
|
||
|
||
<p>
|
||
After rotation, the points \(a\) and \(b\) become:
|
||
</p>
|
||
\begin{align}
|
||
a &= \frac{D}{2} \begin{bmatrix}-\frac{\sqrt{2}}{\sqrt{3}} \\ -\sqrt{2} \\ -\frac{1}{\sqrt{3}}\end{bmatrix} \\
|
||
b &= \frac{D}{2} \begin{bmatrix} \frac{\sqrt{2}}{\sqrt{3}} \\ -\sqrt{2} \\ \frac{1}{\sqrt{3}}\end{bmatrix}
|
||
\end{align}
|
||
|
||
<p>
|
||
Points \(a\) and \(b\) define a vector \(u = b - a\) that gives the orientation of one of the Stewart platform strut:
|
||
\[ u = \frac{D}{\sqrt{3}} \begin{bmatrix} -\sqrt{2} \\ 0 \\ -1\end{bmatrix} \]
|
||
</p>
|
||
|
||
<p>
|
||
Then we want to find the intersection between the line that defines the strut with the plane defined by the height \(H\) from the cube’s center.
|
||
To do so, we first find \(g\) such that:
|
||
\[ a_z + g u_z = -H \]
|
||
We obtain:
|
||
</p>
|
||
\begin{align}
|
||
g &= - \frac{H + a_z}{u_z} \\
|
||
&= \sqrt{3} \frac{H}{D} - \frac{1}{2}
|
||
\end{align}
|
||
|
||
<p>
|
||
Then, the intersection point \(P\) is given by:
|
||
</p>
|
||
\begin{align}
|
||
P &= a + g u \\
|
||
&= \begin{bmatrix}
|
||
H \sqrt{2} \\
|
||
D \frac{1}{\sqrt{2}} \\
|
||
H
|
||
\end{bmatrix}
|
||
\end{align}
|
||
|
||
<p>
|
||
Finally, the circle can contains the intersection point has a radius \(r\):
|
||
</p>
|
||
\begin{align}
|
||
r &= \sqrt{P_x^2 + P_y^2} \\
|
||
&= \sqrt{2 H^2 + \frac{1}{2}D^2}
|
||
\end{align}
|
||
|
||
<p>
|
||
By symmetry, we can show that all the other intersection points will also be on the circle with a radius \(r\).
|
||
</p>
|
||
|
||
<p>
|
||
For a small cube:
|
||
\[ r \approx \sqrt{2} H \]
|
||
</p>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org52825e8" class="outline-3">
|
||
<h3 id="org52825e8"><span class="section-number-3">2.3</span> Conclusion</h3>
|
||
<div class="outline-text-3" id="text-2-3">
|
||
<div class="important" id="orgc3fb4db">
|
||
<p>
|
||
We found that we can have a diagonal stiffness matrix using the cubic architecture when \(\{A\}\) and \(\{B\}\) are located above the top platform.
|
||
Depending on the cube’s size, we obtain 3 different configurations.
|
||
</p>
|
||
|
||
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||
|
||
|
||
<colgroup>
|
||
<col class="org-left" />
|
||
|
||
<col class="org-left" />
|
||
</colgroup>
|
||
<thead>
|
||
<tr>
|
||
<th scope="col" class="org-left">Cube’s Size</th>
|
||
<th scope="col" class="org-left">Paper with the corresponding cubic architecture</th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<td class="org-left">Small</td>
|
||
<td class="org-left">(<a href="#citeproc_bib_item_1">Furutani, Suzuki, and Kudoh 2004</a>)</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-left">Medium</td>
|
||
<td class="org-left">(<a href="#citeproc_bib_item_6">Yang et al. 2019</a>)</td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td class="org-left">Large</td>
|
||
<td class="org-left"> </td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org2387b96" class="outline-2">
|
||
<h2 id="org2387b96"><span class="section-number-2">3</span> Cubic size analysis</h2>
|
||
<div class="outline-text-2" id="text-3">
|
||
<p>
|
||
<a id="org53ade24"></a>
|
||
</p>
|
||
|
||
<div class="note" id="org6ff8a60">
|
||
<p>
|
||
The Matlab script corresponding to this section is accessible <a href="../matlab/cubic_conf_size_analysisl.m">here</a>.
|
||
</p>
|
||
|
||
<p>
|
||
To run the script, open the Simulink Project, and type <code>run cubic_conf_size_analysis.m</code>.
|
||
</p>
|
||
|
||
</div>
|
||
<p>
|
||
We here study the effect of the size of the cube used for the Stewart Cubic configuration.
|
||
</p>
|
||
|
||
<p>
|
||
We fix the height of the Stewart platform, the center of the cube is at the center of the Stewart platform and the frames \(\{A\}\) and \(\{B\}\) are also taken at the center of the cube.
|
||
</p>
|
||
|
||
<p>
|
||
We only vary the size of the cube.
|
||
</p>
|
||
</div>
|
||
|
||
<div id="outline-container-org3647f9f" class="outline-3">
|
||
<h3 id="org3647f9f"><span class="section-number-3">3.1</span> Analysis</h3>
|
||
<div class="outline-text-3" id="text-3-1">
|
||
<p>
|
||
We initialize the wanted cube’s size.
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">Hcs = 1e<span class="org-type">-</span>3<span class="org-type">*</span>[250<span class="org-type">:</span>20<span class="org-type">:</span>350]; <span class="org-comment">% Heights for the Cube [m]</span>
|
||
Ks = zeros(6, 6, length(Hcs));
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
The height of the Stewart platform is fixed:
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">H = 100e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
The frames \(\{A\}\) and \(\{B\}\) are positioned at the Stewart platform center as well as the cube’s center:
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">MO_B = <span class="org-type">-</span>50e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
|
||
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
We find that for all the cube’s size, \(k_x = k_y = k_z = k\) where \(k\) is the strut stiffness.
|
||
We also find that \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\) are varying with the cube’s size (figure <a href="#org51805e3">8</a>).
|
||
</p>
|
||
|
||
|
||
<div id="org51805e3" class="figure">
|
||
<p><img src="figs/stiffness_cube_size.png" alt="stiffness_cube_size.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 8: </span>\(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\) function of the size of the cube</p>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org701701b" class="outline-3">
|
||
<h3 id="org701701b"><span class="section-number-3">3.2</span> Conclusion</h3>
|
||
<div class="outline-text-3" id="text-3-2">
|
||
<p>
|
||
We observe that \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\) increase linearly with the cube size.
|
||
</p>
|
||
|
||
<div class="important" id="org93b8347">
|
||
<p>
|
||
In order to maximize the rotational stiffness of the Stewart platform, the size of the cube should be the highest possible.
|
||
</p>
|
||
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org174af3a" class="outline-2">
|
||
<h2 id="org174af3a"><span class="section-number-2">4</span> Dynamic Coupling in the Cartesian Frame</h2>
|
||
<div class="outline-text-2" id="text-4">
|
||
<p>
|
||
<a id="org3507b2b"></a>
|
||
</p>
|
||
|
||
<div class="note" id="org265afc7">
|
||
<p>
|
||
The Matlab script corresponding to this section is accessible <a href="../matlab/cubic_conf_coupling_cartesianl.m">here</a>.
|
||
</p>
|
||
|
||
<p>
|
||
To run the script, open the Simulink Project, and type <code>run cubic_conf_coupling_cartesian.m</code>.
|
||
</p>
|
||
|
||
</div>
|
||
<p>
|
||
In this section, we study the dynamics of the platform in the cartesian frame.
|
||
</p>
|
||
|
||
<p>
|
||
We here suppose that there is one relative motion sensor in each strut (\(\delta\bm{\mathcal{L}}\) is measured) and we would like to control the position of the top platform pose \(\delta \bm{\mathcal{X}}\).
|
||
</p>
|
||
|
||
<p>
|
||
Thanks to the Jacobian matrix, we can use the “architecture” shown in Figure <a href="#org2137f5a">9</a> to obtain the dynamics of the system from forces/torques applied by the actuators on the top platform to translations/rotations of the top platform.
|
||
</p>
|
||
|
||
|
||
<div id="org2137f5a" class="figure">
|
||
<p><img src="figs/local_to_cartesian_coordinates.png" alt="local_to_cartesian_coordinates.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 9: </span>From Strut coordinate to Cartesian coordinate using the Jacobian matrix</p>
|
||
</div>
|
||
|
||
<p>
|
||
We here study the dynamics from \(\bm{\mathcal{F}}\) to \(\delta\bm{\mathcal{X}}\).
|
||
</p>
|
||
|
||
<p>
|
||
One has to note that when considering the static behavior:
|
||
\[ \bm{G}(s = 0) = \begin{bmatrix}
|
||
1/k_1 & & 0 \\
|
||
& \ddots & 0 \\
|
||
0 & & 1/k_6
|
||
\end{bmatrix}\]
|
||
</p>
|
||
|
||
<p>
|
||
And thus:
|
||
\[ \frac{\delta\bm{\mathcal{X}}}{\bm{\mathcal{F}}}(s = 0) = \bm{J}^{-1} \bm{G}(s = 0) \bm{J}^{-T} = \bm{K}^{-1} = \bm{C} \]
|
||
</p>
|
||
|
||
<p>
|
||
We conclude that the <b>static</b> behavior of the platform depends on the stiffness matrix.
|
||
For the cubic configuration, we have a diagonal stiffness matrix is the frames \(\{A\}\) and \(\{B\}\) are coincident with the cube’s center.
|
||
</p>
|
||
</div>
|
||
|
||
<div id="outline-container-orgdb33aa6" class="outline-3">
|
||
<h3 id="orgdb33aa6"><span class="section-number-3">4.1</span> Cube’s center at the Center of Mass of the mobile platform</h3>
|
||
<div class="outline-text-3" id="text-4-1">
|
||
<p>
|
||
Let’s create a Cubic Stewart Platform where the <b>Center of Mass of the mobile platform is located at the center of the cube</b>.
|
||
</p>
|
||
|
||
<p>
|
||
We define the size of the Stewart platform and the position of frames \(\{A\}\) and \(\{B\}\).
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">H = 200e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
|
||
MO_B = <span class="org-type">-</span>10e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
Now, we set the cube’s parameters such that the center of the cube is coincident with \(\{A\}\) and \(\{B\}\).
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">Hc = 2.5<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
|
||
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
|
||
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 25e<span class="org-type">-</span>3, <span class="org-string">'MHb'</span>, 25e<span class="org-type">-</span>3);
|
||
stewart = computeJointsPose(stewart);
|
||
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, 1e6<span class="org-type">*</span>ones(6,1), <span class="org-string">'C'</span>, 1e1<span class="org-type">*</span>ones(6,1));
|
||
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
|
||
stewart = computeJacobian(stewart);
|
||
stewart = initializeStewartPose(stewart);
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
Now we set the geometry and mass of the mobile platform such that its center of mass is coincident with \(\{A\}\) and \(\{B\}\).
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_F.Fa)), ...
|
||
<span class="org-string">'Mpm'</span>, 10, ...
|
||
<span class="org-string">'Mph'</span>, 20e<span class="org-type">-</span>3, ...
|
||
<span class="org-string">'Mpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_M.Mb)));
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
And we set small mass for the struts.
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">stewart = initializeCylindricalStruts(stewart, <span class="org-string">'Fsm'</span>, 1e<span class="org-type">-</span>3, <span class="org-string">'Msm'</span>, 1e<span class="org-type">-</span>3);
|
||
stewart = initializeInertialSensor(stewart);
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
No flexibility below the Stewart platform and no payload.
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
The obtain geometry is shown in figure <a href="#orgb6b060a">10</a>.
|
||
</p>
|
||
|
||
|
||
<div id="orgb6b060a" class="figure">
|
||
<p><img src="figs/stewart_cubic_conf_decouple_dynamics.png" alt="stewart_cubic_conf_decouple_dynamics.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 10: </span>Geometry used for the simulations - The cube’s center, the frames \(\{A\}\) and \(\{B\}\) and the Center of mass of the mobile platform are coincident (<a href="./figs/stewart_cubic_conf_decouple_dynamics.png">png</a>, <a href="./figs/stewart_cubic_conf_decouple_dynamics.pdf">pdf</a>)</p>
|
||
</div>
|
||
|
||
<p>
|
||
We now identify the dynamics from forces applied in each strut \(\bm{\tau}\) to the displacement of each strut \(d \bm{\mathcal{L}}\).
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">open(<span class="org-string">'stewart_platform_model.slx'</span>)
|
||
|
||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
||
options = linearizeOptions;
|
||
options.SampleTime = 0;
|
||
|
||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||
|
||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||
clear io; io_i = 1;
|
||
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
|
||
io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'dLm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Relative Displacement Outputs [m]</span>
|
||
|
||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||
G = linearize(mdl, io, options);
|
||
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
||
G.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>};
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
Now, thanks to the Jacobian (Figure <a href="#org2137f5a">9</a>), we compute the transfer function from \(\bm{\mathcal{F}}\) to \(\bm{\mathcal{X}}\).
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">Gc = inv(stewart.kinematics.J)<span class="org-type">*</span>G<span class="org-type">*</span>inv(stewart.kinematics.J<span class="org-type">'</span>);
|
||
Gc = inv(stewart.kinematics.J)<span class="org-type">*</span>G<span class="org-type">*</span>stewart.kinematics.J;
|
||
Gc.InputName = {<span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>};
|
||
Gc.OutputName = {<span class="org-string">'Dx'</span>, <span class="org-string">'Dy'</span>, <span class="org-string">'Dz'</span>, <span class="org-string">'Rx'</span>, <span class="org-string">'Ry'</span>, <span class="org-string">'Rz'</span>};
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
The obtain dynamics \(\bm{G}_{c}(s) = \bm{J}^{-T} \bm{G}(s) \bm{J}^{-1}\) is shown in Figure <a href="#org12dc231">11</a>.
|
||
</p>
|
||
|
||
|
||
<div id="org12dc231" class="figure">
|
||
<p><img src="figs/stewart_cubic_decoupled_dynamics_cartesian.png" alt="stewart_cubic_decoupled_dynamics_cartesian.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 11: </span>Dynamics from \(\bm{\mathcal{F}}\) to \(\bm{\mathcal{X}}\) (<a href="./figs/stewart_cubic_decoupled_dynamics_cartesian.png">png</a>, <a href="./figs/stewart_cubic_decoupled_dynamics_cartesian.pdf">pdf</a>)</p>
|
||
</div>
|
||
|
||
<p>
|
||
It is interesting to note here that the system shown in Figure <a href="#org9d84f45">12</a> also yield a decoupled system (explained in section 1.3.3 in (<a href="#citeproc_bib_item_4">Li 2001</a>)).
|
||
</p>
|
||
|
||
|
||
<div id="org9d84f45" class="figure">
|
||
<p><img src="figs/local_to_cartesian_coordinates_bis.png" alt="local_to_cartesian_coordinates_bis.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 12: </span>Alternative way to decouple the system</p>
|
||
</div>
|
||
|
||
<div class="important" id="orgd31482e">
|
||
<p>
|
||
The dynamics is well decoupled at all frequencies.
|
||
</p>
|
||
|
||
<p>
|
||
We have the same dynamics for:
|
||
</p>
|
||
<ul class="org-ul">
|
||
<li>\(D_x/F_x\), \(D_y/F_y\) and \(D_z/F_z\)</li>
|
||
<li>\(R_x/M_x\) and \(D_y/F_y\)</li>
|
||
</ul>
|
||
|
||
<p>
|
||
The Dynamics from \(F_i\) to \(D_i\) is just a 1-dof mass-spring-damper system.
|
||
</p>
|
||
|
||
<p>
|
||
This is because the Mass, Damping and Stiffness matrices are all diagonal.
|
||
</p>
|
||
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org49b330b" class="outline-3">
|
||
<h3 id="org49b330b"><span class="section-number-3">4.2</span> Cube’s center not coincident with the Mass of the Mobile platform</h3>
|
||
<div class="outline-text-3" id="text-4-2">
|
||
<p>
|
||
Let’s create a Stewart platform with a cubic architecture where the cube’s center is at the center of the Stewart platform.
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">H = 200e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
|
||
MO_B = <span class="org-type">-</span>100e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
Now, we set the cube’s parameters such that the center of the cube is coincident with \(\{A\}\) and \(\{B\}\).
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">Hc = 2.5<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
|
||
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
|
||
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 25e<span class="org-type">-</span>3, <span class="org-string">'MHb'</span>, 25e<span class="org-type">-</span>3);
|
||
stewart = computeJointsPose(stewart);
|
||
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, 1e6<span class="org-type">*</span>ones(6,1), <span class="org-string">'C'</span>, 1e1<span class="org-type">*</span>ones(6,1));
|
||
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
|
||
stewart = computeJacobian(stewart);
|
||
stewart = initializeStewartPose(stewart);
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
However, the Center of Mass of the mobile platform is <b>not</b> located at the cube’s center.
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_F.Fa)), ...
|
||
<span class="org-string">'Mpm'</span>, 10, ...
|
||
<span class="org-string">'Mph'</span>, 20e<span class="org-type">-</span>3, ...
|
||
<span class="org-string">'Mpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_M.Mb)));
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
And we set small mass for the struts.
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">stewart = initializeCylindricalStruts(stewart, <span class="org-string">'Fsm'</span>, 1e<span class="org-type">-</span>3, <span class="org-string">'Msm'</span>, 1e<span class="org-type">-</span>3);
|
||
stewart = initializeInertialSensor(stewart);
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
No flexibility below the Stewart platform and no payload.
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
The obtain geometry is shown in figure <a href="#orgc57dcd2">13</a>.
|
||
</p>
|
||
|
||
<div id="orgc57dcd2" class="figure">
|
||
<p><img src="figs/stewart_cubic_conf_mass_above.png" alt="stewart_cubic_conf_mass_above.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 13: </span>Geometry used for the simulations - The cube’s center is coincident with the frames \(\{A\}\) and \(\{B\}\) but not with the Center of mass of the mobile platform (<a href="./figs/stewart_cubic_conf_mass_above.png">png</a>, <a href="./figs/stewart_cubic_conf_mass_above.pdf">pdf</a>)</p>
|
||
</div>
|
||
|
||
<p>
|
||
We now identify the dynamics from forces applied in each strut \(\bm{\tau}\) to the displacement of each strut \(d \bm{\mathcal{L}}\).
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">open(<span class="org-string">'stewart_platform_model.slx'</span>)
|
||
|
||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
||
options = linearizeOptions;
|
||
options.SampleTime = 0;
|
||
|
||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||
|
||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||
clear io; io_i = 1;
|
||
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
|
||
io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'dLm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Relative Displacement Outputs [m]</span>
|
||
|
||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||
G = linearize(mdl, io, options);
|
||
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
||
G.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>};
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
And we use the Jacobian to compute the transfer function from \(\bm{\mathcal{F}}\) to \(\bm{\mathcal{X}}\).
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">Gc = inv(stewart.kinematics.J)<span class="org-type">*</span>G<span class="org-type">*</span>inv(stewart.kinematics.J<span class="org-type">'</span>);
|
||
Gc.InputName = {<span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>};
|
||
Gc.OutputName = {<span class="org-string">'Dx'</span>, <span class="org-string">'Dy'</span>, <span class="org-string">'Dz'</span>, <span class="org-string">'Rx'</span>, <span class="org-string">'Ry'</span>, <span class="org-string">'Rz'</span>};
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
The obtain dynamics \(\bm{G}_{c}(s) = \bm{J}^{-T} \bm{G}(s) \bm{J}^{-1}\) is shown in Figure <a href="#org290b4b3">14</a>.
|
||
</p>
|
||
|
||
|
||
<div id="org290b4b3" class="figure">
|
||
<p><img src="figs/stewart_conf_coupling_mass_matrix.png" alt="stewart_conf_coupling_mass_matrix.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 14: </span>Obtained Dynamics from \(\bm{\mathcal{F}}\) to \(\bm{\mathcal{X}}\) (<a href="./figs/stewart_conf_coupling_mass_matrix.png">png</a>, <a href="./figs/stewart_conf_coupling_mass_matrix.pdf">pdf</a>)</p>
|
||
</div>
|
||
|
||
<div class="important" id="orgc60cb20">
|
||
<p>
|
||
The system is decoupled at low frequency (the Stiffness matrix being diagonal), but it is <b>not</b> decoupled at all frequencies.
|
||
</p>
|
||
|
||
<p>
|
||
This was expected as the mass matrix is not diagonal (the Center of Mass of the mobile platform not being coincident with the frame \(\{B\}\)).
|
||
</p>
|
||
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orgf407e4d" class="outline-3">
|
||
<h3 id="orgf407e4d"><span class="section-number-3">4.3</span> Conclusion</h3>
|
||
<div class="outline-text-3" id="text-4-3">
|
||
<div class="important" id="org982344b">
|
||
<p>
|
||
Some conclusions can be drawn from the above analysis:
|
||
</p>
|
||
<ul class="org-ul">
|
||
<li>Static Decoupling <=> Diagonal Stiffness matrix <=> {A} and {B} at the cube’s center</li>
|
||
<li>Dynamic Decoupling <=> Static Decoupling + CoM of mobile platform coincident with {A} and {B}.</li>
|
||
</ul>
|
||
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org7831cff" class="outline-2">
|
||
<h2 id="org7831cff"><span class="section-number-2">5</span> Dynamic Coupling between actuators and sensors of each strut</h2>
|
||
<div class="outline-text-2" id="text-5">
|
||
<p>
|
||
<a id="org7b3ed31"></a>
|
||
</p>
|
||
|
||
<div class="note" id="org96fba24">
|
||
<p>
|
||
The Matlab script corresponding to this section is accessible <a href="../matlab/cubic_conf_coupling_strutsl.m">here</a>.
|
||
</p>
|
||
|
||
<p>
|
||
To run the script, open the Simulink Project, and type <code>run cubic_conf_coupling_struts.m</code>.
|
||
</p>
|
||
|
||
</div>
|
||
<p>
|
||
From (<a href="#citeproc_bib_item_5">Preumont et al. 2007</a>), the cubic configuration “<i>minimizes the cross-coupling amongst actuators and sensors of different legs (being orthogonal to each other)</i>”.
|
||
</p>
|
||
|
||
<p>
|
||
In this section, we wish to study such properties of the cubic architecture.
|
||
</p>
|
||
|
||
<p>
|
||
We will compare the transfer function from sensors to actuators in each strut for a cubic architecture and for a non-cubic architecture (where the struts are not orthogonal with each other).
|
||
</p>
|
||
</div>
|
||
|
||
<div id="outline-container-org38e9e8f" class="outline-3">
|
||
<h3 id="org38e9e8f"><span class="section-number-3">5.1</span> Coupling between the actuators and sensors - Cubic Architecture</h3>
|
||
<div class="outline-text-3" id="text-5-1">
|
||
<p>
|
||
Let’s generate a Cubic architecture where the cube’s center and the frames \(\{A\}\) and \(\{B\}\) are coincident.
|
||
</p>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">H = 200e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
|
||
MO_B = <span class="org-type">-</span>10e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
|
||
Hc = 2.5<span class="org-type">*</span>H; <span class="org-comment">% Size of the useful part of the cube [m]</span>
|
||
FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Center of the cube with respect to {F}</span>
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
|
||
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, Hc, <span class="org-string">'FOc'</span>, FOc, <span class="org-string">'FHa'</span>, 25e<span class="org-type">-</span>3, <span class="org-string">'MHb'</span>, 25e<span class="org-type">-</span>3);
|
||
stewart = computeJointsPose(stewart);
|
||
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, 1e6<span class="org-type">*</span>ones(6,1), <span class="org-string">'C'</span>, 1e1<span class="org-type">*</span>ones(6,1));
|
||
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
|
||
stewart = computeJacobian(stewart);
|
||
stewart = initializeStewartPose(stewart);
|
||
stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_F.Fa)), ...
|
||
<span class="org-string">'Mpm'</span>, 10, ...
|
||
<span class="org-string">'Mph'</span>, 20e<span class="org-type">-</span>3, ...
|
||
<span class="org-string">'Mpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_M.Mb)));
|
||
stewart = initializeCylindricalStruts(stewart, <span class="org-string">'Fsm'</span>, 1e<span class="org-type">-</span>3, <span class="org-string">'Msm'</span>, 1e<span class="org-type">-</span>3);
|
||
stewart = initializeInertialSensor(stewart);
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
No flexibility below the Stewart platform and no payload.
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">disturbances = initializeDisturbances();
|
||
references = initializeReferences(stewart);
|
||
</pre>
|
||
</div>
|
||
|
||
|
||
<div id="org883dead" class="figure">
|
||
<p><img src="figs/stewart_architecture_coupling_struts_cubic.png" alt="stewart_architecture_coupling_struts_cubic.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 15: </span>Geometry of the generated Stewart platform (<a href="./figs/stewart_architecture_coupling_struts_cubic.png">png</a>, <a href="./figs/stewart_architecture_coupling_struts_cubic.pdf">pdf</a>)</p>
|
||
</div>
|
||
|
||
<p>
|
||
And we identify the dynamics from the actuator forces \(\tau_{i}\) to the relative motion sensors \(\delta \mathcal{L}_{i}\) (Figure <a href="#org8da23ed">16</a>) and to the force sensors \(\tau_{m,i}\) (Figure <a href="#orga2981a6">17</a>).
|
||
</p>
|
||
|
||
|
||
<div id="org8da23ed" class="figure">
|
||
<p><img src="figs/coupling_struts_relative_sensor_cubic.png" alt="coupling_struts_relative_sensor_cubic.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 16: </span>Dynamics from the force actuators to the relative motion sensors (<a href="./figs/coupling_struts_relative_sensor_cubic.png">png</a>, <a href="./figs/coupling_struts_relative_sensor_cubic.pdf">pdf</a>)</p>
|
||
</div>
|
||
|
||
|
||
<div id="orga2981a6" class="figure">
|
||
<p><img src="figs/coupling_struts_force_sensor_cubic.png" alt="coupling_struts_force_sensor_cubic.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 17: </span>Dynamics from the force actuators to the force sensors (<a href="./figs/coupling_struts_force_sensor_cubic.png">png</a>, <a href="./figs/coupling_struts_force_sensor_cubic.pdf">pdf</a>)</p>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org21d40d3" class="outline-3">
|
||
<h3 id="org21d40d3"><span class="section-number-3">5.2</span> Coupling between the actuators and sensors - Non-Cubic Architecture</h3>
|
||
<div class="outline-text-3" id="text-5-2">
|
||
<p>
|
||
Now we generate a Stewart platform which is not cubic but with approximately the same size as the previous cubic architecture.
|
||
</p>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">H = 200e<span class="org-type">-</span>3; <span class="org-comment">% height of the Stewart platform [m]</span>
|
||
MO_B = <span class="org-type">-</span>10e<span class="org-type">-</span>3; <span class="org-comment">% Position {B} with respect to {M} [m]</span>
|
||
</pre>
|
||
</div>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, H, <span class="org-string">'MO_B'</span>, MO_B);
|
||
stewart = generateGeneralConfiguration(stewart, <span class="org-string">'FR'</span>, 250e<span class="org-type">-</span>3, <span class="org-string">'MR'</span>, 150e<span class="org-type">-</span>3);
|
||
stewart = computeJointsPose(stewart);
|
||
stewart = initializeStrutDynamics(stewart, <span class="org-string">'K'</span>, 1e6<span class="org-type">*</span>ones(6,1), <span class="org-string">'C'</span>, 1e1<span class="org-type">*</span>ones(6,1));
|
||
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
|
||
stewart = computeJacobian(stewart);
|
||
stewart = initializeStewartPose(stewart);
|
||
stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_F.Fa)), ...
|
||
<span class="org-string">'Mpm'</span>, 10, ...
|
||
<span class="org-string">'Mph'</span>, 20e<span class="org-type">-</span>3, ...
|
||
<span class="org-string">'Mpr'</span>, 1.2<span class="org-type">*</span>max(vecnorm(stewart.platform_M.Mb)));
|
||
stewart = initializeCylindricalStruts(stewart, <span class="org-string">'Fsm'</span>, 1e<span class="org-type">-</span>3, <span class="org-string">'Msm'</span>, 1e<span class="org-type">-</span>3);
|
||
stewart = initializeInertialSensor(stewart);
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
No flexibility below the Stewart platform and no payload.
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||
</pre>
|
||
</div>
|
||
|
||
|
||
<div id="org11aaa58" class="figure">
|
||
<p><img src="figs/stewart_architecture_coupling_struts_non_cubic.png" alt="stewart_architecture_coupling_struts_non_cubic.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 18: </span>Geometry of the generated Stewart platform (<a href="./figs/stewart_architecture_coupling_struts_non_cubic.png">png</a>, <a href="./figs/stewart_architecture_coupling_struts_non_cubic.pdf">pdf</a>)</p>
|
||
</div>
|
||
|
||
<p>
|
||
And we identify the dynamics from the actuator forces \(\tau_{i}\) to the relative motion sensors \(\delta \mathcal{L}_{i}\) (Figure <a href="#orgf8a39d5">19</a>) and to the force sensors \(\tau_{m,i}\) (Figure <a href="#orgf05b7f3">20</a>).
|
||
</p>
|
||
|
||
|
||
<div id="orgf8a39d5" class="figure">
|
||
<p><img src="figs/coupling_struts_relative_sensor_non_cubic.png" alt="coupling_struts_relative_sensor_non_cubic.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 19: </span>Dynamics from the force actuators to the relative motion sensors (<a href="./figs/coupling_struts_relative_sensor_non_cubic.png">png</a>, <a href="./figs/coupling_struts_relative_sensor_non_cubic.pdf">pdf</a>)</p>
|
||
</div>
|
||
|
||
|
||
<div id="orgf05b7f3" class="figure">
|
||
<p><img src="figs/coupling_struts_force_sensor_non_cubic.png" alt="coupling_struts_force_sensor_non_cubic.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 20: </span>Dynamics from the force actuators to the force sensors (<a href="./figs/coupling_struts_force_sensor_non_cubic.png">png</a>, <a href="./figs/coupling_struts_force_sensor_non_cubic.pdf">pdf</a>)</p>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org0348380" class="outline-3">
|
||
<h3 id="org0348380"><span class="section-number-3">5.3</span> Conclusion</h3>
|
||
<div class="outline-text-3" id="text-5-3">
|
||
<div class="important" id="orgd92f0ac">
|
||
<p>
|
||
The Cubic architecture seems to not have any significant effect on the coupling between actuator and sensors of each strut and thus provides no advantages for decentralized control.
|
||
</p>
|
||
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org3ce1c89" class="outline-2">
|
||
<h2 id="org3ce1c89"><span class="section-number-2">6</span> Functions</h2>
|
||
<div class="outline-text-2" id="text-6">
|
||
<p>
|
||
<a id="orgef41b92"></a>
|
||
</p>
|
||
</div>
|
||
|
||
<div id="outline-container-org9ad761f" class="outline-3">
|
||
<h3 id="org9ad761f"><span class="section-number-3">6.1</span> <code>generateCubicConfiguration</code>: Generate a Cubic Configuration</h3>
|
||
<div class="outline-text-3" id="text-6-1">
|
||
<p>
|
||
<a id="orgd9ae150"></a>
|
||
</p>
|
||
|
||
<p>
|
||
This Matlab function is accessible <a href="../src/generateCubicConfiguration.m">here</a>.
|
||
</p>
|
||
</div>
|
||
|
||
<div id="outline-container-org2cafc68" class="outline-4">
|
||
<h4 id="org2cafc68">Function description</h4>
|
||
<div class="outline-text-4" id="text-org2cafc68">
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[stewart]</span> = <span class="org-function-name">generateCubicConfiguration</span>(<span class="org-variable-name">stewart</span>, <span class="org-variable-name">args</span>)
|
||
<span class="org-comment">% generateCubicConfiguration - Generate a Cubic Configuration</span>
|
||
<span class="org-comment">%</span>
|
||
<span class="org-comment">% Syntax: [stewart] = generateCubicConfiguration(stewart, args)</span>
|
||
<span class="org-comment">%</span>
|
||
<span class="org-comment">% Inputs:</span>
|
||
<span class="org-comment">% - stewart - A structure with the following fields</span>
|
||
<span class="org-comment">% - geometry.H [1x1] - Total height of the platform [m]</span>
|
||
<span class="org-comment">% - args - Can have the following fields:</span>
|
||
<span class="org-comment">% - Hc [1x1] - Height of the "useful" part of the cube [m]</span>
|
||
<span class="org-comment">% - FOc [1x1] - Height of the center of the cube with respect to {F} [m]</span>
|
||
<span class="org-comment">% - FHa [1x1] - Height of the plane joining the points ai with respect to the frame {F} [m]</span>
|
||
<span class="org-comment">% - MHb [1x1] - Height of the plane joining the points bi with respect to the frame {M} [m]</span>
|
||
<span class="org-comment">%</span>
|
||
<span class="org-comment">% Outputs:</span>
|
||
<span class="org-comment">% - stewart - updated Stewart structure with the added fields:</span>
|
||
<span class="org-comment">% - platform_F.Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}</span>
|
||
<span class="org-comment">% - platform_M.Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}</span>
|
||
</pre>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org32005ba" class="outline-4">
|
||
<h4 id="org32005ba">Documentation</h4>
|
||
<div class="outline-text-4" id="text-org32005ba">
|
||
|
||
<div id="orgbf3377c" class="figure">
|
||
<p><img src="figs/cubic-configuration-definition.png" alt="cubic-configuration-definition.png" />
|
||
</p>
|
||
<p><span class="figure-number">Figure 21: </span>Cubic Configuration</p>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org4fd2c96" class="outline-4">
|
||
<h4 id="org4fd2c96">Optional Parameters</h4>
|
||
<div class="outline-text-4" id="text-org4fd2c96">
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab"><span class="org-keyword">arguments</span>
|
||
<span class="org-variable-name">stewart</span>
|
||
<span class="org-variable-name">args</span>.Hc (1,1) double {mustBeNumeric, mustBePositive} = 60e<span class="org-type">-</span>3
|
||
<span class="org-variable-name">args</span>.FOc (1,1) double {mustBeNumeric} = 50e<span class="org-type">-</span>3
|
||
<span class="org-variable-name">args</span>.FHa (1,1) double {mustBeNumeric, mustBeNonnegative} = 15e<span class="org-type">-</span>3
|
||
<span class="org-variable-name">args</span>.MHb (1,1) double {mustBeNumeric, mustBeNonnegative} = 15e<span class="org-type">-</span>3
|
||
<span class="org-keyword">end</span>
|
||
</pre>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orgac26a8b" class="outline-4">
|
||
<h4 id="orgac26a8b">Check the <code>stewart</code> structure elements</h4>
|
||
<div class="outline-text-4" id="text-orgac26a8b">
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">assert(isfield(stewart.geometry, <span class="org-string">'H'</span>), <span class="org-string">'stewart.geometry should have attribute H'</span>)
|
||
H = stewart.geometry.H;
|
||
</pre>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orgc86b760" class="outline-4">
|
||
<h4 id="orgc86b760">Position of the Cube</h4>
|
||
<div class="outline-text-4" id="text-orgc86b760">
|
||
<p>
|
||
We define the useful points of the cube with respect to the Cube’s center.
|
||
\({}^{C}C\) are the 6 vertices of the cubes expressed in a frame {C} which is located at the center of the cube and aligned with {F} and {M}.
|
||
</p>
|
||
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">sx = [ 2; <span class="org-type">-</span>1; <span class="org-type">-</span>1];
|
||
sy = [ 0; 1; <span class="org-type">-</span>1];
|
||
sz = [ 1; 1; 1];
|
||
|
||
R = [sx, sy, sz]<span class="org-type">./</span>vecnorm([sx, sy, sz]);
|
||
|
||
L = args.Hc<span class="org-type">*</span>sqrt(3);
|
||
|
||
Cc = R<span class="org-type">'*</span>[[0;0;L],[L;0;L],[L;0;0],[L;L;0],[0;L;0],[0;L;L]] <span class="org-type">-</span> [0;0;1.5<span class="org-type">*</span>args.Hc];
|
||
|
||
CCf = [Cc(<span class="org-type">:</span>,1), Cc(<span class="org-type">:</span>,3), Cc(<span class="org-type">:</span>,3), Cc(<span class="org-type">:</span>,5), Cc(<span class="org-type">:</span>,5), Cc(<span class="org-type">:</span>,1)]; <span class="org-comment">% CCf(:,i) corresponds to the bottom cube's vertice corresponding to the i'th leg</span>
|
||
CCm = [Cc(<span class="org-type">:</span>,2), Cc(<span class="org-type">:</span>,2), Cc(<span class="org-type">:</span>,4), Cc(<span class="org-type">:</span>,4), Cc(<span class="org-type">:</span>,6), Cc(<span class="org-type">:</span>,6)]; <span class="org-comment">% CCm(:,i) corresponds to the top cube's vertice corresponding to the i'th leg</span>
|
||
</pre>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org1e9ccef" class="outline-4">
|
||
<h4 id="org1e9ccef">Compute the pose</h4>
|
||
<div class="outline-text-4" id="text-org1e9ccef">
|
||
<p>
|
||
We can compute the vector of each leg \({}^{C}\hat{\bm{s}}_{i}\) (unit vector from \({}^{C}C_{f}\) to \({}^{C}C_{m}\)).
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">CSi = (CCm <span class="org-type">-</span> CCf)<span class="org-type">./</span>vecnorm(CCm <span class="org-type">-</span> CCf);
|
||
</pre>
|
||
</div>
|
||
|
||
<p>
|
||
We now which to compute the position of the joints \(a_{i}\) and \(b_{i}\).
|
||
</p>
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">Fa = CCf <span class="org-type">+</span> [0; 0; args.FOc] <span class="org-type">+</span> ((args.FHa<span class="org-type">-</span>(args.FOc<span class="org-type">-</span>args.Hc<span class="org-type">/</span>2))<span class="org-type">./</span>CSi(3,<span class="org-type">:</span>))<span class="org-type">.*</span>CSi;
|
||
Mb = CCf <span class="org-type">+</span> [0; 0; args.FOc<span class="org-type">-</span>H] <span class="org-type">+</span> ((H<span class="org-type">-</span>args.MHb<span class="org-type">-</span>(args.FOc<span class="org-type">-</span>args.Hc<span class="org-type">/</span>2))<span class="org-type">./</span>CSi(3,<span class="org-type">:</span>))<span class="org-type">.*</span>CSi;
|
||
</pre>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org153763b" class="outline-4">
|
||
<h4 id="org153763b">Populate the <code>stewart</code> structure</h4>
|
||
<div class="outline-text-4" id="text-org153763b">
|
||
<div class="org-src-container">
|
||
<pre class="src src-matlab">stewart.platform_F.Fa = Fa;
|
||
stewart.platform_M.Mb = Mb;
|
||
</pre>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<p>
|
||
|
||
</p>
|
||
|
||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><h2 class='citeproc-org-bib-h2'>Bibliography</h2>
|
||
<div class="csl-bib-body">
|
||
<div class="csl-entry"><a name="citeproc_bib_item_1"></a>Furutani, Katsushi, Michio Suzuki, and Ryusei Kudoh. 2004. “Nanometre-Cutting Machine Using a Stewart-Platform Parallel Mechanism.” <i>Measurement Science and Technology</i> 15 (2):467–74. <a href="https://doi.org/10.1088/0957-0233/15/2/022">https://doi.org/10.1088/0957-0233/15/2/022</a>.</div>
|
||
<div class="csl-entry"><a name="citeproc_bib_item_2"></a>Geng, Z.J., and L.S. Haynes. 1994. “Six Degree-of-Freedom Active Vibration Control Using the Stewart Platforms.” <i>IEEE Transactions on Control Systems Technology</i> 2 (1):45–53. <a href="https://doi.org/10.1109/87.273110">https://doi.org/10.1109/87.273110</a>.</div>
|
||
<div class="csl-entry"><a name="citeproc_bib_item_3"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” <i>IEEE Transactions on Robotics and Automation</i> 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595–603. <a href="https://doi.org/10.1109/tra.2003.814506">https://doi.org/10.1109/tra.2003.814506</a>.</div>
|
||
<div class="csl-entry"><a name="citeproc_bib_item_4"></a>Li, Xiaochun. 2001. “Simultaneous, Fault-Tolerant Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” University of Wyoming.</div>
|
||
<div class="csl-entry"><a name="citeproc_bib_item_5"></a>Preumont, A., M. Horodinca, I. Romanescu, B. de Marneffe, M. Avraam, A. Deraemaeker, F. Bossens, and A. Abu Hanieh. 2007. “A Six-Axis Single-Stage Active Vibration Isolator Based on Stewart Platform.” <i>Journal of Sound and Vibration</i> 300 (3-5):644–61. <a href="https://doi.org/10.1016/j.jsv.2006.07.050">https://doi.org/10.1016/j.jsv.2006.07.050</a>.</div>
|
||
<div class="csl-entry"><a name="citeproc_bib_item_6"></a>Yang, XiaoLong, HongTao Wu, Bai Chen, ShengZheng Kang, and ShiLi Cheng. 2019. “Dynamic Modeling and Decoupled Control of a Flexible Stewart Platform for Vibration Isolation.” <i>Journal of Sound and Vibration</i> 439 (January). Elsevier BV:398–412. <a href="https://doi.org/10.1016/j.jsv.2018.10.007">https://doi.org/10.1016/j.jsv.2018.10.007</a>.</div>
|
||
</div>
|
||
</div>
|
||
<div id="postamble" class="status">
|
||
<p class="author">Author: Dehaeze Thomas</p>
|
||
<p class="date">Created: 2021-01-08 ven. 15:52</p>
|
||
</div>
|
||
</body>
|
||
</html>
|