Update doc
This commit is contained in:
@@ -1,239 +1,27 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2020-03-02 lun. 17:57 -->
|
||||
<!-- 2020-08-05 mer. 13:27 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
<title>Stewart Platform - Dynamics Study</title>
|
||||
<meta name="generator" content="Org mode" />
|
||||
<meta name="author" content="Dehaeze Thomas" />
|
||||
<style type="text/css">
|
||||
<!--/*--><![CDATA[/*><!--*/
|
||||
.title { text-align: center;
|
||||
margin-bottom: .2em; }
|
||||
.subtitle { text-align: center;
|
||||
font-size: medium;
|
||||
font-weight: bold;
|
||||
margin-top:0; }
|
||||
.todo { font-family: monospace; color: red; }
|
||||
.done { font-family: monospace; color: green; }
|
||||
.priority { font-family: monospace; color: orange; }
|
||||
.tag { background-color: #eee; font-family: monospace;
|
||||
padding: 2px; font-size: 80%; font-weight: normal; }
|
||||
.timestamp { color: #bebebe; }
|
||||
.timestamp-kwd { color: #5f9ea0; }
|
||||
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
|
||||
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
|
||||
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
|
||||
.underline { text-decoration: underline; }
|
||||
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
|
||||
p.verse { margin-left: 3%; }
|
||||
pre {
|
||||
border: 1px solid #ccc;
|
||||
box-shadow: 3px 3px 3px #eee;
|
||||
padding: 8pt;
|
||||
font-family: monospace;
|
||||
overflow: auto;
|
||||
margin: 1.2em;
|
||||
}
|
||||
pre.src {
|
||||
position: relative;
|
||||
overflow: visible;
|
||||
padding-top: 1.2em;
|
||||
}
|
||||
pre.src:before {
|
||||
display: none;
|
||||
position: absolute;
|
||||
background-color: white;
|
||||
top: -10px;
|
||||
right: 10px;
|
||||
padding: 3px;
|
||||
border: 1px solid black;
|
||||
}
|
||||
pre.src:hover:before { display: inline;}
|
||||
/* Languages per Org manual */
|
||||
pre.src-asymptote:before { content: 'Asymptote'; }
|
||||
pre.src-awk:before { content: 'Awk'; }
|
||||
pre.src-C:before { content: 'C'; }
|
||||
/* pre.src-C++ doesn't work in CSS */
|
||||
pre.src-clojure:before { content: 'Clojure'; }
|
||||
pre.src-css:before { content: 'CSS'; }
|
||||
pre.src-D:before { content: 'D'; }
|
||||
pre.src-ditaa:before { content: 'ditaa'; }
|
||||
pre.src-dot:before { content: 'Graphviz'; }
|
||||
pre.src-calc:before { content: 'Emacs Calc'; }
|
||||
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
|
||||
pre.src-fortran:before { content: 'Fortran'; }
|
||||
pre.src-gnuplot:before { content: 'gnuplot'; }
|
||||
pre.src-haskell:before { content: 'Haskell'; }
|
||||
pre.src-hledger:before { content: 'hledger'; }
|
||||
pre.src-java:before { content: 'Java'; }
|
||||
pre.src-js:before { content: 'Javascript'; }
|
||||
pre.src-latex:before { content: 'LaTeX'; }
|
||||
pre.src-ledger:before { content: 'Ledger'; }
|
||||
pre.src-lisp:before { content: 'Lisp'; }
|
||||
pre.src-lilypond:before { content: 'Lilypond'; }
|
||||
pre.src-lua:before { content: 'Lua'; }
|
||||
pre.src-matlab:before { content: 'MATLAB'; }
|
||||
pre.src-mscgen:before { content: 'Mscgen'; }
|
||||
pre.src-ocaml:before { content: 'Objective Caml'; }
|
||||
pre.src-octave:before { content: 'Octave'; }
|
||||
pre.src-org:before { content: 'Org mode'; }
|
||||
pre.src-oz:before { content: 'OZ'; }
|
||||
pre.src-plantuml:before { content: 'Plantuml'; }
|
||||
pre.src-processing:before { content: 'Processing.js'; }
|
||||
pre.src-python:before { content: 'Python'; }
|
||||
pre.src-R:before { content: 'R'; }
|
||||
pre.src-ruby:before { content: 'Ruby'; }
|
||||
pre.src-sass:before { content: 'Sass'; }
|
||||
pre.src-scheme:before { content: 'Scheme'; }
|
||||
pre.src-screen:before { content: 'Gnu Screen'; }
|
||||
pre.src-sed:before { content: 'Sed'; }
|
||||
pre.src-sh:before { content: 'shell'; }
|
||||
pre.src-sql:before { content: 'SQL'; }
|
||||
pre.src-sqlite:before { content: 'SQLite'; }
|
||||
/* additional languages in org.el's org-babel-load-languages alist */
|
||||
pre.src-forth:before { content: 'Forth'; }
|
||||
pre.src-io:before { content: 'IO'; }
|
||||
pre.src-J:before { content: 'J'; }
|
||||
pre.src-makefile:before { content: 'Makefile'; }
|
||||
pre.src-maxima:before { content: 'Maxima'; }
|
||||
pre.src-perl:before { content: 'Perl'; }
|
||||
pre.src-picolisp:before { content: 'Pico Lisp'; }
|
||||
pre.src-scala:before { content: 'Scala'; }
|
||||
pre.src-shell:before { content: 'Shell Script'; }
|
||||
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
|
||||
/* additional language identifiers per "defun org-babel-execute"
|
||||
in ob-*.el */
|
||||
pre.src-cpp:before { content: 'C++'; }
|
||||
pre.src-abc:before { content: 'ABC'; }
|
||||
pre.src-coq:before { content: 'Coq'; }
|
||||
pre.src-groovy:before { content: 'Groovy'; }
|
||||
/* additional language identifiers from org-babel-shell-names in
|
||||
ob-shell.el: ob-shell is the only babel language using a lambda to put
|
||||
the execution function name together. */
|
||||
pre.src-bash:before { content: 'bash'; }
|
||||
pre.src-csh:before { content: 'csh'; }
|
||||
pre.src-ash:before { content: 'ash'; }
|
||||
pre.src-dash:before { content: 'dash'; }
|
||||
pre.src-ksh:before { content: 'ksh'; }
|
||||
pre.src-mksh:before { content: 'mksh'; }
|
||||
pre.src-posh:before { content: 'posh'; }
|
||||
/* Additional Emacs modes also supported by the LaTeX listings package */
|
||||
pre.src-ada:before { content: 'Ada'; }
|
||||
pre.src-asm:before { content: 'Assembler'; }
|
||||
pre.src-caml:before { content: 'Caml'; }
|
||||
pre.src-delphi:before { content: 'Delphi'; }
|
||||
pre.src-html:before { content: 'HTML'; }
|
||||
pre.src-idl:before { content: 'IDL'; }
|
||||
pre.src-mercury:before { content: 'Mercury'; }
|
||||
pre.src-metapost:before { content: 'MetaPost'; }
|
||||
pre.src-modula-2:before { content: 'Modula-2'; }
|
||||
pre.src-pascal:before { content: 'Pascal'; }
|
||||
pre.src-ps:before { content: 'PostScript'; }
|
||||
pre.src-prolog:before { content: 'Prolog'; }
|
||||
pre.src-simula:before { content: 'Simula'; }
|
||||
pre.src-tcl:before { content: 'tcl'; }
|
||||
pre.src-tex:before { content: 'TeX'; }
|
||||
pre.src-plain-tex:before { content: 'Plain TeX'; }
|
||||
pre.src-verilog:before { content: 'Verilog'; }
|
||||
pre.src-vhdl:before { content: 'VHDL'; }
|
||||
pre.src-xml:before { content: 'XML'; }
|
||||
pre.src-nxml:before { content: 'XML'; }
|
||||
/* add a generic configuration mode; LaTeX export needs an additional
|
||||
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
|
||||
pre.src-conf:before { content: 'Configuration File'; }
|
||||
|
||||
table { border-collapse:collapse; }
|
||||
caption.t-above { caption-side: top; }
|
||||
caption.t-bottom { caption-side: bottom; }
|
||||
td, th { vertical-align:top; }
|
||||
th.org-right { text-align: center; }
|
||||
th.org-left { text-align: center; }
|
||||
th.org-center { text-align: center; }
|
||||
td.org-right { text-align: right; }
|
||||
td.org-left { text-align: left; }
|
||||
td.org-center { text-align: center; }
|
||||
dt { font-weight: bold; }
|
||||
.footpara { display: inline; }
|
||||
.footdef { margin-bottom: 1em; }
|
||||
.figure { padding: 1em; }
|
||||
.figure p { text-align: center; }
|
||||
.equation-container {
|
||||
display: table;
|
||||
text-align: center;
|
||||
width: 100%;
|
||||
}
|
||||
.equation {
|
||||
vertical-align: middle;
|
||||
}
|
||||
.equation-label {
|
||||
display: table-cell;
|
||||
text-align: right;
|
||||
vertical-align: middle;
|
||||
}
|
||||
.inlinetask {
|
||||
padding: 10px;
|
||||
border: 2px solid gray;
|
||||
margin: 10px;
|
||||
background: #ffffcc;
|
||||
}
|
||||
#org-div-home-and-up
|
||||
{ text-align: right; font-size: 70%; white-space: nowrap; }
|
||||
textarea { overflow-x: auto; }
|
||||
.linenr { font-size: smaller }
|
||||
.code-highlighted { background-color: #ffff00; }
|
||||
.org-info-js_info-navigation { border-style: none; }
|
||||
#org-info-js_console-label
|
||||
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
|
||||
.org-info-js_search-highlight
|
||||
{ background-color: #ffff00; color: #000000; font-weight: bold; }
|
||||
.org-svg { width: 90%; }
|
||||
/*]]>*/-->
|
||||
</style>
|
||||
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
||||
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
||||
<script src="./js/jquery.min.js"></script>
|
||||
<script src="./js/bootstrap.min.js"></script>
|
||||
<script src="./js/jquery.stickytableheaders.min.js"></script>
|
||||
<script src="./js/readtheorg.js"></script>
|
||||
<script type="text/javascript">
|
||||
// @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later
|
||||
<!--/*--><![CDATA[/*><!--*/
|
||||
function CodeHighlightOn(elem, id)
|
||||
{
|
||||
var target = document.getElementById(id);
|
||||
if(null != target) {
|
||||
elem.cacheClassElem = elem.className;
|
||||
elem.cacheClassTarget = target.className;
|
||||
target.className = "code-highlighted";
|
||||
elem.className = "code-highlighted";
|
||||
}
|
||||
}
|
||||
function CodeHighlightOff(elem, id)
|
||||
{
|
||||
var target = document.getElementById(id);
|
||||
if(elem.cacheClassElem)
|
||||
elem.className = elem.cacheClassElem;
|
||||
if(elem.cacheClassTarget)
|
||||
target.className = elem.cacheClassTarget;
|
||||
}
|
||||
/*]]>*///-->
|
||||
// @license-end
|
||||
</script>
|
||||
<script>
|
||||
MathJax = {
|
||||
tex: { macros: {
|
||||
bm: ["\\boldsymbol{#1}",1],
|
||||
}
|
||||
}
|
||||
<script>MathJax = {
|
||||
tex: {
|
||||
tags: 'ams',
|
||||
macros: {bm: ["\\boldsymbol{#1}",1],}
|
||||
}
|
||||
};
|
||||
</script>
|
||||
<script type="text/javascript"
|
||||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
||||
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
||||
</head>
|
||||
<body>
|
||||
<div id="org-div-home-and-up">
|
||||
@@ -250,13 +38,13 @@
|
||||
<ul>
|
||||
<li><a href="#org4509b7d">1.1. Comparison with fixed support</a></li>
|
||||
<li><a href="#org8662186">1.2. Comparison with a flexible support</a></li>
|
||||
<li><a href="#orgbb930ae">1.3. Conclusion</a></li>
|
||||
<li><a href="#org55e0dad">1.3. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org81ab204">2. Comparison of the static transfer function and the Compliance matrix</a>
|
||||
<ul>
|
||||
<li><a href="#orge7e7242">2.1. Analysis</a></li>
|
||||
<li><a href="#org5acc4c0">2.2. Conclusion</a></li>
|
||||
<li><a href="#org9ee3939">2.2. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
@@ -279,16 +67,16 @@ Let’s generate a Stewart platform.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||||
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
|
||||
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
||||
stewart = generateGeneralConfiguration(stewart);
|
||||
stewart = computeJointsPose(stewart);
|
||||
stewart = initializeStrutDynamics(stewart);
|
||||
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
|
||||
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
|
||||
stewart = initializeCylindricalPlatforms(stewart);
|
||||
stewart = initializeCylindricalStruts(stewart);
|
||||
stewart = computeJacobian(stewart);
|
||||
stewart = initializeStewartPose(stewart);
|
||||
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
stewart = initializeInertialSensor(stewart, 'type', 'none');
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -297,9 +85,9 @@ We don’t put any flexibility below the Stewart platform such that <b>its b
|
||||
We also don’t put any payload on top of the Stewart platform.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
<pre class="src src-matlab">ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -307,22 +95,22 @@ controller = initializeController(<span class="org-string">'type'</span>, <span
|
||||
The transfer function from actuator forces \(\bm{\tau}\) to the relative displacement of the mobile platform \(\mathcal{\bm{X}}\) is extracted.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
||||
<pre class="src src-matlab">%% Options for Linearized
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||||
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||||
%% Name of the Simulink File
|
||||
mdl = 'stewart_platform_model';
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span>
|
||||
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
||||
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io, options);
|
||||
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
||||
G.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
||||
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -330,8 +118,8 @@ G.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">
|
||||
Using the Jacobian matrix, we compute the transfer function from force/torques applied by the actuators on the frame \(\{B\}\) fixed to the mobile platform:
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Gc = minreal(G<span class="org-type">*</span>inv(stewart.kinematics.J<span class="org-type">'</span>));
|
||||
Gc.InputName = {<span class="org-string">'Fnx'</span>, <span class="org-string">'Fny'</span>, <span class="org-string">'Fnz'</span>, <span class="org-string">'Mnx'</span>, <span class="org-string">'Mny'</span>, <span class="org-string">'Mnz'</span>};
|
||||
<pre class="src src-matlab">Gc = minreal(G*inv(stewart.kinematics.J'));
|
||||
Gc.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -339,15 +127,15 @@ Gc.InputName = {<span class="org-string">'Fnx'</span>, <span class="org-string">
|
||||
We also extract the transfer function from external forces \(\bm{\mathcal{F}}_{\text{ext}}\) on the frame \(\{B\}\) fixed to the mobile platform to the relative displacement \(\mathcal{\bm{X}}\) of \(\{B\}\) with respect to frame \(\{A\}\):
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
<pre class="src src-matlab">%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances'</span>], 1, <span class="org-string">'openinput'</span>, [], <span class="org-string">'F_ext'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% External forces/torques applied on {B}</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span>
|
||||
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'F_ext'); io_i = io_i + 1; % External forces/torques applied on {B}
|
||||
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
%% Run the linearization
|
||||
Gd = linearize(mdl, io, options);
|
||||
Gd.InputName = {<span class="org-string">'Fex'</span>, <span class="org-string">'Fey'</span>, <span class="org-string">'Fez'</span>, <span class="org-string">'Mex'</span>, <span class="org-string">'Mey'</span>, <span class="org-string">'Mez'</span>};
|
||||
Gd.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
||||
Gd.InputName = {'Fex', 'Fey', 'Fez', 'Mex', 'Mey', 'Mez'};
|
||||
Gd.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -382,7 +170,7 @@ This can be understood from figure <a href="#org8bd3e63">2</a> where \(\mathcal{
|
||||
We now add a flexible support under the Stewart platform.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'flexible'</span>);
|
||||
<pre class="src src-matlab">ground = initializeGround('type', 'flexible');
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -390,28 +178,28 @@ We now add a flexible support under the Stewart platform.
|
||||
And we perform again the identification.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
<pre class="src src-matlab">%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span>
|
||||
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
||||
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io, options);
|
||||
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
||||
G.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
||||
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
|
||||
|
||||
Gc = minreal(G<span class="org-type">*</span>inv(stewart.kinematics.J<span class="org-type">'</span>));
|
||||
Gc.InputName = {<span class="org-string">'Fnx'</span>, <span class="org-string">'Fny'</span>, <span class="org-string">'Fnz'</span>, <span class="org-string">'Mnx'</span>, <span class="org-string">'Mny'</span>, <span class="org-string">'Mnz'</span>};
|
||||
Gc = minreal(G*inv(stewart.kinematics.J'));
|
||||
Gc.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances'</span>], 1, <span class="org-string">'openinput'</span>, [], <span class="org-string">'F_ext'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% External forces/torques applied on {B}</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span>
|
||||
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'F_ext'); io_i = io_i + 1; % External forces/torques applied on {B}
|
||||
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
%% Run the linearization
|
||||
Gd = linearize(mdl, io, options);
|
||||
Gd.InputName = {<span class="org-string">'Fex'</span>, <span class="org-string">'Fey'</span>, <span class="org-string">'Fez'</span>, <span class="org-string">'Mex'</span>, <span class="org-string">'Mey'</span>, <span class="org-string">'Mez'</span>};
|
||||
Gd.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
||||
Gd.InputName = {'Fex', 'Fey', 'Fez', 'Mex', 'Mey', 'Mez'};
|
||||
Gd.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -442,8 +230,8 @@ And thus \(\mathcal{F}_{x}\) and \(\mathcal{F}_{x,\text{ext}}\) have clearly <b>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="outline-container-orgbb930ae" class="outline-3">
|
||||
<h3 id="orgbb930ae"><span class="section-number-3">1.3</span> Conclusion</h3>
|
||||
<div id="outline-container-org55e0dad" class="outline-3">
|
||||
<h3 id="org55e0dad"><span class="section-number-3">1.3</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-1-3">
|
||||
<div class="important">
|
||||
<p>
|
||||
@@ -471,16 +259,16 @@ Initialization of the Stewart platform.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||||
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
|
||||
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
||||
stewart = generateGeneralConfiguration(stewart);
|
||||
stewart = computeJointsPose(stewart);
|
||||
stewart = initializeStrutDynamics(stewart);
|
||||
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
|
||||
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
|
||||
stewart = initializeCylindricalPlatforms(stewart);
|
||||
stewart = initializeCylindricalStruts(stewart);
|
||||
stewart = computeJacobian(stewart);
|
||||
stewart = initializeStewartPose(stewart);
|
||||
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
stewart = initializeInertialSensor(stewart, 'type', 'none');
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -488,9 +276,9 @@ stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</spa
|
||||
No flexibility below the Stewart platform and no payload.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
<pre class="src src-matlab">ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -498,28 +286,28 @@ controller = initializeController(<span class="org-string">'type'</span>, <span
|
||||
Estimation of the transfer function from \(\mathcal{\bm{F}}\) to \(\mathcal{\bm{X}}\):
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
||||
<pre class="src src-matlab">%% Options for Linearized
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||||
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||||
%% Name of the Simulink File
|
||||
mdl = 'stewart_platform_model';
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span>
|
||||
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
||||
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io, options);
|
||||
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
||||
G.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
||||
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Gc = minreal(G<span class="org-type">*</span>inv(stewart.kinematics.J<span class="org-type">'</span>));
|
||||
Gc.InputName = {<span class="org-string">'Fnx'</span>, <span class="org-string">'Fny'</span>, <span class="org-string">'Fnz'</span>, <span class="org-string">'Mnx'</span>, <span class="org-string">'Mny'</span>, <span class="org-string">'Mnz'</span>};
|
||||
<pre class="src src-matlab">Gc = minreal(G*inv(stewart.kinematics.J'));
|
||||
Gc.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -677,8 +465,8 @@ And now at the Compliance matrix.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org5acc4c0" class="outline-3">
|
||||
<h3 id="org5acc4c0"><span class="section-number-3">2.2</span> Conclusion</h3>
|
||||
<div id="outline-container-org9ee3939" class="outline-3">
|
||||
<h3 id="org9ee3939"><span class="section-number-3">2.2</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-2-2">
|
||||
<div class="important">
|
||||
<p>
|
||||
@@ -692,7 +480,7 @@ The low frequency transfer function matrix from \(\mathcal{\bm{F}}\) to \(\mathc
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2020-03-02 lun. 17:57</p>
|
||||
<p class="date">Created: 2020-08-05 mer. 13:27</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
Reference in New Issue
Block a user