Update doc
This commit is contained in:
@@ -1,240 +1,27 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2020-03-13 ven. 10:34 -->
|
||||
<!-- 2020-08-05 mer. 13:27 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
<title>Stewart Platform - Decentralized Active Damping</title>
|
||||
<meta name="generator" content="Org mode" />
|
||||
<meta name="author" content="Dehaeze Thomas" />
|
||||
<style type="text/css">
|
||||
<!--/*--><![CDATA[/*><!--*/
|
||||
.title { text-align: center;
|
||||
margin-bottom: .2em; }
|
||||
.subtitle { text-align: center;
|
||||
font-size: medium;
|
||||
font-weight: bold;
|
||||
margin-top:0; }
|
||||
.todo { font-family: monospace; color: red; }
|
||||
.done { font-family: monospace; color: green; }
|
||||
.priority { font-family: monospace; color: orange; }
|
||||
.tag { background-color: #eee; font-family: monospace;
|
||||
padding: 2px; font-size: 80%; font-weight: normal; }
|
||||
.timestamp { color: #bebebe; }
|
||||
.timestamp-kwd { color: #5f9ea0; }
|
||||
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
|
||||
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
|
||||
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
|
||||
.underline { text-decoration: underline; }
|
||||
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
|
||||
p.verse { margin-left: 3%; }
|
||||
pre {
|
||||
border: 1px solid #ccc;
|
||||
box-shadow: 3px 3px 3px #eee;
|
||||
padding: 8pt;
|
||||
font-family: monospace;
|
||||
overflow: auto;
|
||||
margin: 1.2em;
|
||||
}
|
||||
pre.src {
|
||||
position: relative;
|
||||
overflow: visible;
|
||||
padding-top: 1.2em;
|
||||
}
|
||||
pre.src:before {
|
||||
display: none;
|
||||
position: absolute;
|
||||
background-color: white;
|
||||
top: -10px;
|
||||
right: 10px;
|
||||
padding: 3px;
|
||||
border: 1px solid black;
|
||||
}
|
||||
pre.src:hover:before { display: inline;}
|
||||
/* Languages per Org manual */
|
||||
pre.src-asymptote:before { content: 'Asymptote'; }
|
||||
pre.src-awk:before { content: 'Awk'; }
|
||||
pre.src-C:before { content: 'C'; }
|
||||
/* pre.src-C++ doesn't work in CSS */
|
||||
pre.src-clojure:before { content: 'Clojure'; }
|
||||
pre.src-css:before { content: 'CSS'; }
|
||||
pre.src-D:before { content: 'D'; }
|
||||
pre.src-ditaa:before { content: 'ditaa'; }
|
||||
pre.src-dot:before { content: 'Graphviz'; }
|
||||
pre.src-calc:before { content: 'Emacs Calc'; }
|
||||
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
|
||||
pre.src-fortran:before { content: 'Fortran'; }
|
||||
pre.src-gnuplot:before { content: 'gnuplot'; }
|
||||
pre.src-haskell:before { content: 'Haskell'; }
|
||||
pre.src-hledger:before { content: 'hledger'; }
|
||||
pre.src-java:before { content: 'Java'; }
|
||||
pre.src-js:before { content: 'Javascript'; }
|
||||
pre.src-latex:before { content: 'LaTeX'; }
|
||||
pre.src-ledger:before { content: 'Ledger'; }
|
||||
pre.src-lisp:before { content: 'Lisp'; }
|
||||
pre.src-lilypond:before { content: 'Lilypond'; }
|
||||
pre.src-lua:before { content: 'Lua'; }
|
||||
pre.src-matlab:before { content: 'MATLAB'; }
|
||||
pre.src-mscgen:before { content: 'Mscgen'; }
|
||||
pre.src-ocaml:before { content: 'Objective Caml'; }
|
||||
pre.src-octave:before { content: 'Octave'; }
|
||||
pre.src-org:before { content: 'Org mode'; }
|
||||
pre.src-oz:before { content: 'OZ'; }
|
||||
pre.src-plantuml:before { content: 'Plantuml'; }
|
||||
pre.src-processing:before { content: 'Processing.js'; }
|
||||
pre.src-python:before { content: 'Python'; }
|
||||
pre.src-R:before { content: 'R'; }
|
||||
pre.src-ruby:before { content: 'Ruby'; }
|
||||
pre.src-sass:before { content: 'Sass'; }
|
||||
pre.src-scheme:before { content: 'Scheme'; }
|
||||
pre.src-screen:before { content: 'Gnu Screen'; }
|
||||
pre.src-sed:before { content: 'Sed'; }
|
||||
pre.src-sh:before { content: 'shell'; }
|
||||
pre.src-sql:before { content: 'SQL'; }
|
||||
pre.src-sqlite:before { content: 'SQLite'; }
|
||||
/* additional languages in org.el's org-babel-load-languages alist */
|
||||
pre.src-forth:before { content: 'Forth'; }
|
||||
pre.src-io:before { content: 'IO'; }
|
||||
pre.src-J:before { content: 'J'; }
|
||||
pre.src-makefile:before { content: 'Makefile'; }
|
||||
pre.src-maxima:before { content: 'Maxima'; }
|
||||
pre.src-perl:before { content: 'Perl'; }
|
||||
pre.src-picolisp:before { content: 'Pico Lisp'; }
|
||||
pre.src-scala:before { content: 'Scala'; }
|
||||
pre.src-shell:before { content: 'Shell Script'; }
|
||||
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
|
||||
/* additional language identifiers per "defun org-babel-execute"
|
||||
in ob-*.el */
|
||||
pre.src-cpp:before { content: 'C++'; }
|
||||
pre.src-abc:before { content: 'ABC'; }
|
||||
pre.src-coq:before { content: 'Coq'; }
|
||||
pre.src-groovy:before { content: 'Groovy'; }
|
||||
/* additional language identifiers from org-babel-shell-names in
|
||||
ob-shell.el: ob-shell is the only babel language using a lambda to put
|
||||
the execution function name together. */
|
||||
pre.src-bash:before { content: 'bash'; }
|
||||
pre.src-csh:before { content: 'csh'; }
|
||||
pre.src-ash:before { content: 'ash'; }
|
||||
pre.src-dash:before { content: 'dash'; }
|
||||
pre.src-ksh:before { content: 'ksh'; }
|
||||
pre.src-mksh:before { content: 'mksh'; }
|
||||
pre.src-posh:before { content: 'posh'; }
|
||||
/* Additional Emacs modes also supported by the LaTeX listings package */
|
||||
pre.src-ada:before { content: 'Ada'; }
|
||||
pre.src-asm:before { content: 'Assembler'; }
|
||||
pre.src-caml:before { content: 'Caml'; }
|
||||
pre.src-delphi:before { content: 'Delphi'; }
|
||||
pre.src-html:before { content: 'HTML'; }
|
||||
pre.src-idl:before { content: 'IDL'; }
|
||||
pre.src-mercury:before { content: 'Mercury'; }
|
||||
pre.src-metapost:before { content: 'MetaPost'; }
|
||||
pre.src-modula-2:before { content: 'Modula-2'; }
|
||||
pre.src-pascal:before { content: 'Pascal'; }
|
||||
pre.src-ps:before { content: 'PostScript'; }
|
||||
pre.src-prolog:before { content: 'Prolog'; }
|
||||
pre.src-simula:before { content: 'Simula'; }
|
||||
pre.src-tcl:before { content: 'tcl'; }
|
||||
pre.src-tex:before { content: 'TeX'; }
|
||||
pre.src-plain-tex:before { content: 'Plain TeX'; }
|
||||
pre.src-verilog:before { content: 'Verilog'; }
|
||||
pre.src-vhdl:before { content: 'VHDL'; }
|
||||
pre.src-xml:before { content: 'XML'; }
|
||||
pre.src-nxml:before { content: 'XML'; }
|
||||
/* add a generic configuration mode; LaTeX export needs an additional
|
||||
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
|
||||
pre.src-conf:before { content: 'Configuration File'; }
|
||||
|
||||
table { border-collapse:collapse; }
|
||||
caption.t-above { caption-side: top; }
|
||||
caption.t-bottom { caption-side: bottom; }
|
||||
td, th { vertical-align:top; }
|
||||
th.org-right { text-align: center; }
|
||||
th.org-left { text-align: center; }
|
||||
th.org-center { text-align: center; }
|
||||
td.org-right { text-align: right; }
|
||||
td.org-left { text-align: left; }
|
||||
td.org-center { text-align: center; }
|
||||
dt { font-weight: bold; }
|
||||
.footpara { display: inline; }
|
||||
.footdef { margin-bottom: 1em; }
|
||||
.figure { padding: 1em; }
|
||||
.figure p { text-align: center; }
|
||||
.equation-container {
|
||||
display: table;
|
||||
text-align: center;
|
||||
width: 100%;
|
||||
}
|
||||
.equation {
|
||||
vertical-align: middle;
|
||||
}
|
||||
.equation-label {
|
||||
display: table-cell;
|
||||
text-align: right;
|
||||
vertical-align: middle;
|
||||
}
|
||||
.inlinetask {
|
||||
padding: 10px;
|
||||
border: 2px solid gray;
|
||||
margin: 10px;
|
||||
background: #ffffcc;
|
||||
}
|
||||
#org-div-home-and-up
|
||||
{ text-align: right; font-size: 70%; white-space: nowrap; }
|
||||
textarea { overflow-x: auto; }
|
||||
.linenr { font-size: smaller }
|
||||
.code-highlighted { background-color: #ffff00; }
|
||||
.org-info-js_info-navigation { border-style: none; }
|
||||
#org-info-js_console-label
|
||||
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
|
||||
.org-info-js_search-highlight
|
||||
{ background-color: #ffff00; color: #000000; font-weight: bold; }
|
||||
.org-svg { width: 90%; }
|
||||
/*]]>*/-->
|
||||
</style>
|
||||
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
||||
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
||||
<script src="./js/jquery.min.js"></script>
|
||||
<script src="./js/bootstrap.min.js"></script>
|
||||
<script src="./js/jquery.stickytableheaders.min.js"></script>
|
||||
<script src="./js/readtheorg.js"></script>
|
||||
<script type="text/javascript">
|
||||
// @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later
|
||||
<!--/*--><![CDATA[/*><!--*/
|
||||
function CodeHighlightOn(elem, id)
|
||||
{
|
||||
var target = document.getElementById(id);
|
||||
if(null != target) {
|
||||
elem.cacheClassElem = elem.className;
|
||||
elem.cacheClassTarget = target.className;
|
||||
target.className = "code-highlighted";
|
||||
elem.className = "code-highlighted";
|
||||
}
|
||||
}
|
||||
function CodeHighlightOff(elem, id)
|
||||
{
|
||||
var target = document.getElementById(id);
|
||||
if(elem.cacheClassElem)
|
||||
elem.className = elem.cacheClassElem;
|
||||
if(elem.cacheClassTarget)
|
||||
target.className = elem.cacheClassTarget;
|
||||
}
|
||||
/*]]>*///-->
|
||||
// @license-end
|
||||
</script>
|
||||
<script>
|
||||
MathJax = {
|
||||
tex: { macros: {
|
||||
bm: ["\\boldsymbol{#1}",1],
|
||||
}
|
||||
}
|
||||
<script>MathJax = {
|
||||
tex: {
|
||||
tags: 'ams',
|
||||
macros: {bm: ["\\boldsymbol{#1}",1],}
|
||||
}
|
||||
};
|
||||
</script>
|
||||
<script type="text/javascript"
|
||||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
||||
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
||||
</head>
|
||||
<body>
|
||||
<div id="org-div-home-and-up">
|
||||
@@ -250,25 +37,25 @@
|
||||
<li><a href="#orgc22d5d6">1. Inertial Control</a>
|
||||
<ul>
|
||||
<li><a href="#org1671c0b">1.1. Identification of the Dynamics</a></li>
|
||||
<li><a href="#org89b6ab8">1.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
|
||||
<li><a href="#orgf4665ef">1.3. Obtained Damping</a></li>
|
||||
<li><a href="#orgf2dd409">1.4. Conclusion</a></li>
|
||||
<li><a href="#orgdae44ba">1.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
|
||||
<li><a href="#org89e2002">1.3. Obtained Damping</a></li>
|
||||
<li><a href="#org3904320">1.4. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org89e426a">2. Integral Force Feedback</a>
|
||||
<ul>
|
||||
<li><a href="#orgbcaaa33">2.1. Identification of the Dynamics with perfect Joints</a></li>
|
||||
<li><a href="#org422d0e7">2.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
|
||||
<li><a href="#orgbf1f2d6">2.3. Obtained Damping</a></li>
|
||||
<li><a href="#orgb9ae491">2.4. Conclusion</a></li>
|
||||
<li><a href="#orgcb85703">2.1. Identification of the Dynamics with perfect Joints</a></li>
|
||||
<li><a href="#org4ca24f7">2.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
|
||||
<li><a href="#org11e5ee2">2.3. Obtained Damping</a></li>
|
||||
<li><a href="#orgca67baa">2.4. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org47a29be">3. Direct Velocity Feedback</a>
|
||||
<ul>
|
||||
<li><a href="#orge88ed78">3.1. Identification of the Dynamics with perfect Joints</a></li>
|
||||
<li><a href="#org8ebebbc">3.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
|
||||
<li><a href="#org9dac8fd">3.3. Obtained Damping</a></li>
|
||||
<li><a href="#org8c078af">3.4. Conclusion</a></li>
|
||||
<li><a href="#orgc82a6a7">3.1. Identification of the Dynamics with perfect Joints</a></li>
|
||||
<li><a href="#org92d6cb1">3.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
|
||||
<li><a href="#org7497409">3.3. Obtained Damping</a></li>
|
||||
<li><a href="#org61c422b">3.4. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgc84bb75">4. Compliance and Transmissibility Comparison</a>
|
||||
@@ -315,43 +102,43 @@ To run the script, open the Simulink Project, and type <code>run active_damping_
|
||||
<div class="outline-text-3" id="text-1-1">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||||
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
|
||||
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
||||
stewart = generateGeneralConfiguration(stewart);
|
||||
stewart = computeJointsPose(stewart);
|
||||
stewart = initializeStrutDynamics(stewart);
|
||||
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
|
||||
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
|
||||
stewart = initializeCylindricalPlatforms(stewart);
|
||||
stewart = initializeCylindricalStruts(stewart);
|
||||
stewart = computeJacobian(stewart);
|
||||
stewart = initializeStewartPose(stewart);
|
||||
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'accelerometer'</span>, <span class="org-string">'freq'</span>, 5e3);
|
||||
stewart = initializeInertialSensor(stewart, 'type', 'accelerometer', 'freq', 5e3);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
<pre class="src src-matlab">ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
||||
<pre class="src src-matlab">%% Options for Linearized
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||||
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||||
%% Name of the Simulink File
|
||||
mdl = 'stewart_platform_model';
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'Vm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute velocity of each leg [m/s]</span>
|
||||
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
||||
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Vm'); io_i = io_i + 1; % Absolute velocity of each leg [m/s]
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io, options);
|
||||
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
||||
G.OutputName = {<span class="org-string">'Vm1'</span>, <span class="org-string">'Vm2'</span>, <span class="org-string">'Vm3'</span>, <span class="org-string">'Vm4'</span>, <span class="org-string">'Vm5'</span>, <span class="org-string">'Vm6'</span>};
|
||||
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
G.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -367,17 +154,17 @@ The transfer function from actuator forces to force sensors is shown in Figure <
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org89b6ab8" class="outline-3">
|
||||
<h3 id="org89b6ab8"><span class="section-number-3">1.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
|
||||
<div id="outline-container-orgdae44ba" class="outline-3">
|
||||
<h3 id="orgdae44ba"><span class="section-number-3">1.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
|
||||
<div class="outline-text-3" id="text-1-2">
|
||||
<p>
|
||||
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
|
||||
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
|
||||
Gf = linearize(mdl, io, options);
|
||||
Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
||||
Gf.OutputName = {<span class="org-string">'Vm1'</span>, <span class="org-string">'Vm2'</span>, <span class="org-string">'Vm3'</span>, <span class="org-string">'Vm4'</span>, <span class="org-string">'Vm5'</span>, <span class="org-string">'Vm6'</span>};
|
||||
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
Gf.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -387,8 +174,8 @@ We now use the amplified actuators and re-identify the dynamics
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">stewart = initializeAmplifiedStrutDynamics(stewart);
|
||||
Ga = linearize(mdl, io, options);
|
||||
Ga.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
||||
Ga.OutputName = {<span class="org-string">'Vm1'</span>, <span class="org-string">'Vm2'</span>, <span class="org-string">'Vm3'</span>, <span class="org-string">'Vm4'</span>, <span class="org-string">'Vm5'</span>, <span class="org-string">'Vm6'</span>};
|
||||
Ga.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
Ga.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -404,8 +191,8 @@ The new dynamics from force actuator to force sensor is shown in Figure <a href=
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgf4665ef" class="outline-3">
|
||||
<h3 id="orgf4665ef"><span class="section-number-3">1.3</span> Obtained Damping</h3>
|
||||
<div id="outline-container-org89e2002" class="outline-3">
|
||||
<h3 id="org89e2002"><span class="section-number-3">1.3</span> Obtained Damping</h3>
|
||||
<div class="outline-text-3" id="text-1-3">
|
||||
<p>
|
||||
The control is a performed in a decentralized manner.
|
||||
@@ -430,8 +217,8 @@ The root locus is shown in figure <a href="#org9cabaee">3</a>.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgf2dd409" class="outline-3">
|
||||
<h3 id="orgf2dd409"><span class="section-number-3">1.4</span> Conclusion</h3>
|
||||
<div id="outline-container-org3904320" class="outline-3">
|
||||
<h3 id="org3904320"><span class="section-number-3">1.4</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-1-4">
|
||||
<div class="important">
|
||||
<p>
|
||||
@@ -462,31 +249,31 @@ To run the script, open the Simulink Project, and type <code>run active_damping_
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgbcaaa33" class="outline-3">
|
||||
<h3 id="orgbcaaa33"><span class="section-number-3">2.1</span> Identification of the Dynamics with perfect Joints</h3>
|
||||
<div id="outline-container-orgcb85703" class="outline-3">
|
||||
<h3 id="orgcb85703"><span class="section-number-3">2.1</span> Identification of the Dynamics with perfect Joints</h3>
|
||||
<div class="outline-text-3" id="text-2-1">
|
||||
<p>
|
||||
We first initialize the Stewart platform without joint stiffness.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||||
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
|
||||
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
||||
stewart = generateGeneralConfiguration(stewart);
|
||||
stewart = computeJointsPose(stewart);
|
||||
stewart = initializeStrutDynamics(stewart);
|
||||
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
|
||||
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
|
||||
stewart = initializeCylindricalPlatforms(stewart);
|
||||
stewart = initializeCylindricalStruts(stewart);
|
||||
stewart = computeJacobian(stewart);
|
||||
stewart = initializeStewartPose(stewart);
|
||||
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
stewart = initializeInertialSensor(stewart, 'type', 'none');
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
<pre class="src src-matlab">ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -494,18 +281,18 @@ controller = initializeController(<span class="org-string">'type'</span>, <span
|
||||
And we identify the dynamics from force actuators to force sensors.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||||
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||||
<pre class="src src-matlab">%% Name of the Simulink File
|
||||
mdl = 'stewart_platform_model';
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'Taum'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Force Sensor Outputs [N]</span>
|
||||
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
||||
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Taum'); io_i = io_i + 1; % Force Sensor Outputs [N]
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io);
|
||||
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
||||
G.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>};
|
||||
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
G.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -521,17 +308,17 @@ The transfer function from actuator forces to force sensors is shown in Figure <
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org422d0e7" class="outline-3">
|
||||
<h3 id="org422d0e7"><span class="section-number-3">2.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
|
||||
<div id="outline-container-org4ca24f7" class="outline-3">
|
||||
<h3 id="org4ca24f7"><span class="section-number-3">2.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
|
||||
<div class="outline-text-3" id="text-2-2">
|
||||
<p>
|
||||
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
|
||||
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
|
||||
Gf = linearize(mdl, io);
|
||||
Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
||||
Gf.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>};
|
||||
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
Gf.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -541,8 +328,8 @@ We now use the amplified actuators and re-identify the dynamics
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">stewart = initializeAmplifiedStrutDynamics(stewart);
|
||||
Ga = linearize(mdl, io);
|
||||
Ga.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
||||
Ga.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>};
|
||||
Ga.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
Ga.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -558,8 +345,8 @@ The new dynamics from force actuator to force sensor is shown in Figure <a href=
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgbf1f2d6" class="outline-3">
|
||||
<h3 id="orgbf1f2d6"><span class="section-number-3">2.3</span> Obtained Damping</h3>
|
||||
<div id="outline-container-org11e5ee2" class="outline-3">
|
||||
<h3 id="org11e5ee2"><span class="section-number-3">2.3</span> Obtained Damping</h3>
|
||||
<div class="outline-text-3" id="text-2-3">
|
||||
<p>
|
||||
The control is a performed in a decentralized manner.
|
||||
@@ -591,8 +378,8 @@ The root locus is shown in figure <a href="#orgc8981ba">6</a> and the obtained p
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgb9ae491" class="outline-3">
|
||||
<h3 id="orgb9ae491"><span class="section-number-3">2.4</span> Conclusion</h3>
|
||||
<div id="outline-container-orgca67baa" class="outline-3">
|
||||
<h3 id="orgca67baa"><span class="section-number-3">2.4</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-2-4">
|
||||
<div class="important">
|
||||
<p>
|
||||
@@ -624,31 +411,31 @@ To run the script, open the Simulink Project, and type <code>run active_damping_
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orge88ed78" class="outline-3">
|
||||
<h3 id="orge88ed78"><span class="section-number-3">3.1</span> Identification of the Dynamics with perfect Joints</h3>
|
||||
<div id="outline-container-orgc82a6a7" class="outline-3">
|
||||
<h3 id="orgc82a6a7"><span class="section-number-3">3.1</span> Identification of the Dynamics with perfect Joints</h3>
|
||||
<div class="outline-text-3" id="text-3-1">
|
||||
<p>
|
||||
We first initialize the Stewart platform without joint stiffness.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||||
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
|
||||
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
||||
stewart = generateGeneralConfiguration(stewart);
|
||||
stewart = computeJointsPose(stewart);
|
||||
stewart = initializeStrutDynamics(stewart);
|
||||
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
|
||||
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
|
||||
stewart = initializeCylindricalPlatforms(stewart);
|
||||
stewart = initializeCylindricalStruts(stewart);
|
||||
stewart = computeJacobian(stewart);
|
||||
stewart = initializeStewartPose(stewart);
|
||||
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
stewart = initializeInertialSensor(stewart, 'type', 'none');
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
<pre class="src src-matlab">ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -656,22 +443,22 @@ controller = initializeController(<span class="org-string">'type'</span>, <span
|
||||
And we identify the dynamics from force actuators to force sensors.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
||||
<pre class="src src-matlab">%% Options for Linearized
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||||
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||||
%% Name of the Simulink File
|
||||
mdl = 'stewart_platform_model';
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'dLm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Relative Displacement Outputs [m]</span>
|
||||
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
||||
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m]
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io, options);
|
||||
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
||||
G.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>};
|
||||
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
G.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -688,17 +475,17 @@ The transfer function from actuator forces to relative motion sensors is shown i
|
||||
</div>
|
||||
|
||||
|
||||
<div id="outline-container-org8ebebbc" class="outline-3">
|
||||
<h3 id="org8ebebbc"><span class="section-number-3">3.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
|
||||
<div id="outline-container-org92d6cb1" class="outline-3">
|
||||
<h3 id="org92d6cb1"><span class="section-number-3">3.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
|
||||
<div class="outline-text-3" id="text-3-2">
|
||||
<p>
|
||||
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
|
||||
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
|
||||
Gf = linearize(mdl, io, options);
|
||||
Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
||||
Gf.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>};
|
||||
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
Gf.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -708,8 +495,8 @@ We now use the amplified actuators and re-identify the dynamics
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">stewart = initializeAmplifiedStrutDynamics(stewart);
|
||||
Ga = linearize(mdl, io, options);
|
||||
Ga.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
||||
Ga.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>};
|
||||
Ga.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
Ga.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -725,8 +512,8 @@ The new dynamics from force actuator to relative motion sensor is shown in Figur
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org9dac8fd" class="outline-3">
|
||||
<h3 id="org9dac8fd"><span class="section-number-3">3.3</span> Obtained Damping</h3>
|
||||
<div id="outline-container-org7497409" class="outline-3">
|
||||
<h3 id="org7497409"><span class="section-number-3">3.3</span> Obtained Damping</h3>
|
||||
<div class="outline-text-3" id="text-3-3">
|
||||
<p>
|
||||
The control is a performed in a decentralized manner.
|
||||
@@ -751,8 +538,8 @@ The root locus is shown in figure <a href="#org5e168d0">10</a>.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org8c078af" class="outline-3">
|
||||
<h3 id="org8c078af"><span class="section-number-3">3.4</span> Conclusion</h3>
|
||||
<div id="outline-container-org61c422b" class="outline-3">
|
||||
<h3 id="org61c422b"><span class="section-number-3">3.4</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-3-4">
|
||||
<div class="important">
|
||||
<p>
|
||||
@@ -776,16 +563,16 @@ We first initialize the Stewart platform without joint stiffness.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||||
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
|
||||
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
||||
stewart = generateGeneralConfiguration(stewart);
|
||||
stewart = computeJointsPose(stewart);
|
||||
stewart = initializeStrutDynamics(stewart);
|
||||
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
|
||||
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
|
||||
stewart = initializeCylindricalPlatforms(stewart);
|
||||
stewart = initializeCylindricalStruts(stewart);
|
||||
stewart = computeJacobian(stewart);
|
||||
stewart = initializeStewartPose(stewart);
|
||||
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
stewart = initializeInertialSensor(stewart, 'type', 'none');
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -793,9 +580,9 @@ stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</spa
|
||||
The rotation point of the ground is located at the origin of frame \(\{A\}\).
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
<pre class="src src-matlab">ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
@@ -808,7 +595,7 @@ controller = initializeController(<span class="org-string">'type'</span>, <span
|
||||
Let’s first identify the transmissibility and compliance in the open-loop case.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
<pre class="src src-matlab">controller = initializeController('type', 'open-loop');
|
||||
[T_ol, T_norm_ol, freqs] = computeTransmissibility();
|
||||
[C_ol, C_norm_ol, freqs] = computeCompliance();
|
||||
</pre>
|
||||
@@ -818,11 +605,11 @@ Let’s first identify the transmissibility and compliance in the open-loop
|
||||
Now, let’s identify the transmissibility and compliance for the Integral Force Feedback architecture.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'iff'</span>);
|
||||
K_iff = (1e4<span class="org-type">/</span>s)<span class="org-type">*</span>eye(6);
|
||||
<pre class="src src-matlab">controller = initializeController('type', 'iff');
|
||||
K_iff = (1e4/s)*eye(6);
|
||||
|
||||
[T_iff, T_norm_iff, <span class="org-type">~</span>] = computeTransmissibility();
|
||||
[C_iff, C_norm_iff, <span class="org-type">~</span>] = computeCompliance();
|
||||
[T_iff, T_norm_iff, ~] = computeTransmissibility();
|
||||
[C_iff, C_norm_iff, ~] = computeCompliance();
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -830,11 +617,11 @@ K_iff = (1e4<span class="org-type">/</span>s)<span class="org-type">*</span>eye(
|
||||
And for the Direct Velocity Feedback.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'dvf'</span>);
|
||||
K_dvf = 1e4<span class="org-type">*</span>s<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>5000)<span class="org-type">*</span>eye(6);
|
||||
<pre class="src src-matlab">controller = initializeController('type', 'dvf');
|
||||
K_dvf = 1e4*s/(1+s/2/pi/5000)*eye(6);
|
||||
|
||||
[T_dvf, T_norm_dvf, <span class="org-type">~</span>] = computeTransmissibility();
|
||||
[C_dvf, C_norm_dvf, <span class="org-type">~</span>] = computeCompliance();
|
||||
[T_dvf, T_norm_dvf, ~] = computeTransmissibility();
|
||||
[C_dvf, C_norm_dvf, ~] = computeCompliance();
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
@@ -869,7 +656,7 @@ K_dvf = 1e4<span class="org-type">*</span>s<span class="org-type">/</span>(1<spa
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2020-03-13 ven. 10:34</p>
|
||||
<p class="date">Created: 2020-08-05 mer. 13:27</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
Reference in New Issue
Block a user