Update all the initialization of hexapod and simscape of hexapod

This commit is contained in:
Thomas Dehaeze 2019-03-22 10:36:32 +01:00
parent 54109bf1d7
commit ca64e189b8
4 changed files with 555 additions and 379 deletions

565
index.org
View File

@ -30,17 +30,19 @@
#+end_src #+end_src
#+begin_src matlab :results none #+begin_src matlab :results none
open stewart_identification open stewart
#+end_src #+end_src
#+begin_src matlab :results output #+begin_src matlab
initializeSample(struct('mass', 50)); hexapod = initializeHexapod();
initializeHexapod(struct('actuator', 'piezo'));
#+end_src #+end_src
#+RESULTS: #+RESULTS:
: initializeSample(struct('mass', 50)); : org_babel_eoe
: initializeHexapod(struct('actuator', 'piezo'));
#+begin_src matlab
initializeSample();
#+end_src
#+begin_src matlab #+begin_src matlab
G = identifyPlant(); G = identifyPlant();
@ -170,239 +172,450 @@
:PROPERTIES: :PROPERTIES:
:HEADER-ARGS:matlab+: :tangle src/initializeHexapod.m :HEADER-ARGS:matlab+: :tangle src/initializeHexapod.m
:END: :END:
*** Function description and arguments
The =initializeHexapod= function takes one structure that contains configurations for the hexapod and returns one structure representing the hexapod. The =initializeHexapod= function takes one structure that contains configurations for the hexapod and returns one structure representing the hexapod.
#+begin_src matlab #+begin_src matlab
function [stewart] = initializeHexapod(opts_param) function [stewart] = initializeHexapod(opts_param)
#+end_src #+end_src
Default values for opts Default values for opts.
#+begin_src matlab #+begin_src matlab
opts = struct(... opts = struct(...
'height', 90, ... % Height of the platform [mm] 'height', 90, ... % Height of the platform [mm]
'jacobian', 150, ... % Jacobian offset [mm] 'density', 8000, ... % Density of the material used for the hexapod [kg/m3]
'density', 8000, ... % Density of hexapod [mm] 'k_ax', 1e8, ... % Stiffness of each actuator [N/m]
'name', 'stewart' ... % Name of the file 'c_ax', 100, ... % Damping of each actuator [N/(m/s)]
'stroke', 50e-6, ... % Maximum stroke of each actuator [m]
'name', 'stewart' ... % Name of the file
); );
#+end_src #+end_src
Populate opts with input parameters Populate opts with input parameters
#+begin_src matlab #+begin_src matlab
if exist('opts_param','var') if exist('opts_param','var')
for opt = fieldnames(opts_param)' for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1}); opts.(opt{1}) = opts_param.(opt{1});
end
end end
end
#+end_src #+end_src
Stewart Object *** Initialization of the stewart structure
We initialize the Stewart structure
#+begin_src matlab #+begin_src matlab
stewart = struct(); stewart = struct();
stewart.h = opts.height; % Total height of the platform [mm]
stewart.jacobian = opts.jacobian; % Distance from the center of the top platform
% where the jacobian is computed [mm]
#+end_src #+end_src
Bottom Plate And we defined its total height.
#+begin_src matlab
stewart.H = opts.height; % [mm]
#+end_src
*** Bottom Plate
#+name: fig:stewart_bottom_plate
#+caption: Schematic of the bottom plates with all the parameters
[[file:./figs/stewart_bottom_plate.png]]
The bottom plate structure is initialized.
#+begin_src matlab #+begin_src matlab
BP = struct(); BP = struct();
BP.rad.int = 0; % Internal Radius [mm]
BP.rad.ext = 150; % External Radius [mm]
BP.thickness = 10; % Thickness [mm]
BP.leg.rad = 100; % Radius where the legs articulations are positionned [mm]
BP.leg.ang = 45; % Angle Offset [deg]
BP.density = opts.density; % Density of the material [kg/m3]
BP.color = [0.7 0.7 0.7]; % Color [rgb]
BP.shape = [BP.rad.int BP.thickness; BP.rad.int 0; BP.rad.ext 0; BP.rad.ext BP.thickness];
#+end_src #+end_src
Top Plate We defined its internal radius (if there is a hole in the bottom plate) and its outer radius.
#+begin_src matlab
BP.Rint = 0; % Internal Radius [mm]
BP.Rext = 150; % External Radius [mm]
#+end_src
We define its thickness.
#+begin_src matlab
BP.H = 10; % Thickness of the Bottom Plate [mm]
#+end_src
At which radius legs will be fixed and with that angle offset.
#+begin_src matlab
BP.Rleg = 100; % Radius where the legs articulations are positionned [mm]
BP.alpha = 10; % Angle Offset [deg]
#+end_src
We defined the density of the material of the bottom plate.
#+begin_src matlab
BP.density = opts.density; % Density of the material [kg/m3]
#+end_src
And its color.
#+begin_src matlab
BP.color = [0.7 0.7 0.7]; % Color [RGB]
#+end_src
Then the profile of the bottom plate is computed and will be used by Simscape
#+begin_src matlab
BP.shape = [BP.Rint BP.H; BP.Rint 0; BP.Rext 0; BP.Rext BP.H]; % [mm]
#+end_src
The structure is added to the stewart structure
#+begin_src matlab
stewart.BP = BP;
#+end_src
*** Top Plate
The top plate structure is initialized.
#+begin_src matlab #+begin_src matlab
TP = struct(); TP = struct();
TP.rad.int = 0; % Internal Radius [mm]
TP.rad.ext = 100; % Internal Radius [mm]
TP.thickness = 10; % Thickness [mm]
TP.leg.rad = 90; % Radius where the legs articulations are positionned [mm]
TP.leg.ang = 45; % Angle Offset [deg]
TP.density = opts.density; % Density of the material [kg/m3]
TP.color = [0.7 0.7 0.7]; % Color [rgb]
TP.shape = [TP.rad.int TP.thickness; TP.rad.int 0; TP.rad.ext 0; TP.rad.ext TP.thickness];
#+end_src #+end_src
Leg We defined the internal and external radius of the top plate.
#+begin_src matlab
TP.Rint = 0; % [mm]
TP.Rext = 100; % [mm]
#+end_src
The thickness of the top plate.
#+begin_src matlab
TP.H = 10; % [mm]
#+end_src
At which radius and angle are fixed the legs.
#+begin_src matlab
TP.Rleg = 100; % Radius where the legs articulations are positionned [mm]
TP.alpha = 20; % Angle [deg]
TP.dalpha = 0; % Angle Offset from 0 position [deg]
#+end_src
The density of its material.
#+begin_src matlab
TP.density = opts.density; % Density of the material [kg/m3]
#+end_src
Its color.
#+begin_src matlab
TP.color = [0.7 0.7 0.7]; % Color [RGB]
#+end_src
Then the shape of the top plate is computed
#+begin_src matlab
TP.shape = [TP.Rint TP.H; TP.Rint 0; TP.Rext 0; TP.Rext TP.H];
#+end_src
The structure is added to the stewart structure
#+begin_src matlab
stewart.TP = TP;
#+end_src
*** Legs
#+name: fig:stewart_legs
#+caption: Schematic for the legs of the Stewart platform
[[file:./figs/stewart_legs.png]]
The leg structure is initialized.
#+begin_src matlab #+begin_src matlab
Leg = struct(); Leg = struct();
Leg.stroke = 80e-6; % Maximum Stroke of each leg [m]
if strcmp(opts.actuator, 'piezo')
Leg.k.ax = 1e7; % Stiffness of each leg [N/m]
Leg.c.ax = 500; % [N/(m/s)]
elseif strcmp(opts.actuator, 'lorentz')
Leg.k.ax = 1e4; % Stiffness of each leg [N/m]
Leg.c.ax = 200; % [N/(m/s)]
elseif isnumeric(opts.actuator)
Leg.k.ax = opts.actuator; % Stiffness of each leg [N/m]
Leg.c.ax = 100; % [N/(m/s)]
else
error('opts.actuator should be piezo or lorentz or numeric value');
end
Leg.rad.bottom = 12; % Radius of the cylinder of the bottom part [mm]
Leg.rad.top = 10; % Radius of the cylinder of the top part [mm]
Leg.density = opts.density; % Density of the material [kg/m3]
Leg.color.bottom = [0.5 0.5 0.5]; % Color [rgb]
Leg.color.top = [0.5 0.5 0.5]; % Color [rgb]
Leg.sphere.bottom = Leg.rad.bottom; % Size of the sphere at the end of the leg [mm]
Leg.sphere.top = Leg.rad.top; % Size of the sphere at the end of the leg [mm]
#+end_src #+end_src
Sphere The maximum Stroke of each leg is defined.
#+begin_src matlab
Leg.stroke = opts.stroke; % [m]
#+end_src
The stiffness and damping of each leg are defined
#+begin_src matlab
Leg.k_ax = opts.k_ax; % Stiffness of each leg [N/m]
Leg.c_ax = opts.c_ax; % Damping of each leg [N/(m/s)]
#+end_src
The radius of the legs are defined
#+begin_src matlab
Leg.Rtop = 10; % Radius of the cylinder of the top part of the leg[mm]
Leg.Rbot = 12; % Radius of the cylinder of the bottom part of the leg [mm]
#+end_src
The density of its material.
#+begin_src matlab
Leg.density = opts.density; % Density of the material used for the legs [kg/m3]
#+end_src
Its color.
#+begin_src matlab
Leg.color = [0.5 0.5 0.5]; % Color of the top part of the leg [RGB]
#+end_src
The radius of spheres representing the ball joints are defined.
#+begin_src matlab
Leg.R = 1.3*Leg.Rbot; % Size of the sphere at the extremity of the leg [mm]
#+end_src
The structure is added to the stewart structure
#+begin_src matlab
stewart.Leg = Leg;
#+end_src
*** Ball Joints
#+name: fig:stewart_ball_joints
#+caption: Schematic of the support for the ball joints
[[file:./figs/stewart_ball_joints.png]]
=SP= is the structure representing the support for the ball joints at the extremity of each leg.
The =SP= structure is initialized.
#+begin_src matlab #+begin_src matlab
SP = struct(); SP = struct();
#+end_src
SP.height.bottom = 15; % [mm] We can define its rotational stiffness and damping. For now, we use perfect joints.
SP.height.top = 15; % [mm] #+begin_src matlab
SP.density.bottom = opts.density; % [kg/m^3] SP.k = 0; % [N*m/deg]
SP.density.top = opts.density; % [kg/m^3] SP.c = 0; % [N*m/deg]
SP.color.bottom = [0.7 0.7 0.7]; % [rgb] #+end_src
SP.color.top = [0.7 0.7 0.7]; % [rgb]
SP.k.ax = 0; % [N*m/deg]
SP.c.ax = 0; % [N*m/deg]
SP.thickness.bottom = SP.height.bottom-Leg.sphere.bottom; % [mm] Its height is defined
SP.thickness.top = SP.height.top-Leg.sphere.top; % [mm] #+begin_src matlab
SP.rad.bottom = Leg.sphere.bottom; % [mm] SP.H = 15; % [mm]
SP.rad.top = Leg.sphere.top; % [mm] #+end_src
Its radius is based on the radius on the sphere at the end of the legs.
#+begin_src matlab
SP.R = Leg.R; % [mm]
#+end_src
%% #+begin_src matlab
Leg.support.bottom = [0 SP.thickness.bottom; SP.section = [0 SP.H-SP.R;
0 0; 0 0;
SP.rad.bottom 0; SP.R 0;
SP.rad.bottom SP.height.bottom]; SP.R SP.H];
Leg.support.top = [0 SP.thickness.top; #+end_src
0 0;
SP.rad.top 0;
SP.rad.top SP.height.top];
%% The density of its material is defined.
stewart.BP = BP; #+begin_src matlab
stewart.TP = TP; SP.density = opts.density; % [kg/m^3]
stewart.Leg = Leg; #+end_src
stewart.SP = SP;
%% Its color is defined.
#+begin_src matlab
SP.color = [0.7 0.7 0.7]; % [RGB]
#+end_src
The structure is added to the Hexapod structure
#+begin_src matlab
stewart.SP = SP;
#+end_src
*** More parameters are initialized
#+begin_src matlab
stewart = initializeParameters(stewart); stewart = initializeParameters(stewart);
#+end_src
%% *** Save the Stewart Structure
#+begin_src matlab
save('./mat/stewart.mat', 'stewart') save('./mat/stewart.mat', 'stewart')
#+end_src #+end_src
Additional Functions *** initializeParameters Function
:PROPERTIES:
:HEADER-ARGS:matlab+: :tangle no
:END:
#+begin_src matlab #+begin_src matlab
%% Initialize Parameters function [stewart] = initializeParameters(stewart)
function [stewart] = initializeParameters(stewart) #+end_src
%% Connection points on base and top plate w.r.t. World frame at the center of the base plate
stewart.pos_base = zeros(6, 3);
stewart.pos_top = zeros(6, 3);
alpha_b = stewart.BP.leg.ang*pi/180; % angle de décalage par rapport à 120 deg (pour positionner les supports bases) Computation of the position of the connection points on the base and moving platform
alpha_t = stewart.TP.leg.ang*pi/180; % +- offset angle from 120 degree spacing on top We first initialize =pos_base= corresponding to $[a_1, a_2, a_3, a_4, a_5, a_6]^T$ and =pos_top= corresponding to $[b_1, b_2, b_3, b_4, b_5, b_6]^T$.
#+begin_src matlab
stewart.pos_base = zeros(6, 3);
stewart.pos_top = zeros(6, 3);
#+end_src
% Height [m] TODO We estimate the height between the ball joints of the bottom platform and of the top platform.
height = (stewart.h-stewart.BP.thickness-stewart.TP.thickness-stewart.Leg.sphere.bottom-stewart.Leg.sphere.top-stewart.SP.thickness.bottom-stewart.SP.thickness.top)*0.001; #+begin_src matlab
height = stewart.H - stewart.BP.H - stewart.TP.H - 2*stewart.SP.H; % [mm]
#+end_src
radius_b = stewart.BP.leg.rad*0.001; % rayon emplacement support base #+begin_src matlab
radius_t = stewart.TP.leg.rad*0.001; % top radius in meters for i = 1:3
% base points
angle_m_b = 120*(i-1) - stewart.BP.alpha;
angle_p_b = 120*(i-1) + stewart.BP.alpha;
for i = 1:3 stewart.pos_base(2*i-1,:) = [stewart.BP.Rleg*cos(angle_m_b), stewart.BP.Rleg*sin(angle_m_b), 0.0];
% base points stewart.pos_base(2*i,:) = [stewart.BP.Rleg*cos(angle_p_b), stewart.BP.Rleg*sin(angle_p_b), 0.0];
angle_m_b = (2*pi/3)* (i-1) - alpha_b;
angle_p_b = (2*pi/3)* (i-1) + alpha_b;
stewart.pos_base(2*i-1,:) = [radius_b*cos(angle_m_b), radius_b*sin(angle_m_b), 0.0];
stewart.pos_base(2*i,:) = [radius_b*cos(angle_p_b), radius_b*sin(angle_p_b), 0.0];
% top points % top points
% Top points are 60 degrees offset angle_m_t = 120*(i-1) - stewart.TP.alpha + stewart.TP.dalpha;
angle_m_t = (2*pi/3)* (i-1) - alpha_t + 2*pi/6; angle_p_t = 120*(i-1) + stewart.TP.alpha + stewart.TP.dalpha;
angle_p_t = (2*pi/3)* (i-1) + alpha_t + 2*pi/6;
stewart.pos_top(2*i-1,:) = [radius_t*cos(angle_m_t), radius_t*sin(angle_m_t), height];
stewart.pos_top(2*i,:) = [radius_t*cos(angle_p_t), radius_t*sin(angle_p_t), height];
end
% permute pos_top points so that legs are end points of base and top points stewart.pos_top(2*i-1,:) = [stewart.TP.Rleg*cos(angle_m_t), stewart.TP.Rleg*sin(angle_m_t), height];
stewart.pos_top = [stewart.pos_top(6,:); stewart.pos_top(1:5,:)]; %6th point on top connects to 1st on bottom stewart.pos_top(2*i,:) = [stewart.TP.Rleg*cos(angle_p_t), stewart.TP.Rleg*sin(angle_p_t), height];
stewart.pos_top_tranform = stewart.pos_top - height*[zeros(6, 2),ones(6, 1)]; end
%% leg vectors % permute pos_top points so that legs are end points of base and top points
legs = stewart.pos_top - stewart.pos_base; stewart.pos_top = [stewart.pos_top(6,:); stewart.pos_top(1:5,:)]; %6th point on top connects to 1st on bottom
leg_length = zeros(6, 1); stewart.pos_top_tranform = stewart.pos_top - height*[zeros(6, 2),ones(6, 1)];
leg_vectors = zeros(6, 3); #+end_src
for i = 1:6
leg_length(i) = norm(legs(i,:));
leg_vectors(i,:) = legs(i,:) / leg_length(i);
end
stewart.Leg.lenght = 1000*leg_length(1)/1.5; leg vectors
stewart.Leg.shape.bot = [0 0; ... #+begin_src matlab
stewart.Leg.rad.bottom 0; ... legs = stewart.pos_top - stewart.pos_base;
stewart.Leg.rad.bottom stewart.Leg.lenght; ... leg_length = zeros(6, 1);
stewart.Leg.rad.top stewart.Leg.lenght; ... leg_vectors = zeros(6, 3);
stewart.Leg.rad.top 0.2*stewart.Leg.lenght; ... for i = 1:6
0 0.2*stewart.Leg.lenght]; leg_length(i) = norm(legs(i,:));
leg_vectors(i,:) = legs(i,:) / leg_length(i);
end
%% Calculate revolute and cylindrical axes stewart.Leg.lenght = 1000*leg_length(1)/1.5;
rev1 = zeros(6, 3); stewart.Leg.shape.bot = [0 0; ...
rev2 = zeros(6, 3); stewart.Leg.rad.bottom 0; ...
cyl1 = zeros(6, 3); stewart.Leg.rad.bottom stewart.Leg.lenght; ...
for i = 1:6 stewart.Leg.rad.top stewart.Leg.lenght; ...
rev1(i,:) = cross(leg_vectors(i,:), [0 0 1]); stewart.Leg.rad.top 0.2*stewart.Leg.lenght; ...
rev1(i,:) = rev1(i,:) / norm(rev1(i,:)); 0 0.2*stewart.Leg.lenght];
#+end_src
rev2(i,:) = - cross(rev1(i,:), leg_vectors(i,:)); Calculate revolute and cylindrical axes
rev2(i,:) = rev2(i,:) / norm(rev2(i,:)); #+begin_src matlab
rev1 = zeros(6, 3);
rev2 = zeros(6, 3);
cyl1 = zeros(6, 3);
for i = 1:6
rev1(i,:) = cross(leg_vectors(i,:), [0 0 1]);
rev1(i,:) = rev1(i,:) / norm(rev1(i,:));
cyl1(i,:) = leg_vectors(i,:); rev2(i,:) = - cross(rev1(i,:), leg_vectors(i,:));
end rev2(i,:) = rev2(i,:) / norm(rev2(i,:));
cyl1(i,:) = leg_vectors(i,:);
%% Coordinate systems
stewart.lower_leg = struct('rotation', eye(3));
stewart.upper_leg = struct('rotation', eye(3));
for i = 1:6
stewart.lower_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
stewart.upper_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
end
%% Position Matrix
% TODO
stewart.M_pos_base = stewart.pos_base + (height+(stewart.TP.thickness+stewart.Leg.sphere.top+stewart.SP.thickness.top+stewart.jacobian)*1e-3)*[zeros(6, 2),ones(6, 1)];
%% Compute Jacobian Matrix
% TODO
% aa = stewart.pos_top_tranform + (stewart.jacobian - stewart.TP.thickness - stewart.SP.height.top)*1e-3*[zeros(6, 2),ones(6, 1)];
bb = stewart.pos_top_tranform - (stewart.TP.thickness + stewart.SP.height.top)*1e-3*[zeros(6, 2),ones(6, 1)];
bb = bb - stewart.jacobian*1e-3*[zeros(6, 2),ones(6, 1)];
stewart.J = getJacobianMatrix(leg_vectors', bb');
stewart.K = stewart.Leg.k.ax*stewart.J'*stewart.J;
end end
#+end_src #+end_src
Compute the Jacobian Matrix Coordinate systems
#+begin_src matlab #+begin_src matlab
function J = getJacobianMatrix(RM, M_pos_base) stewart.lower_leg = struct('rotation', eye(3));
% RM - [3x6] unit vector of each leg in the fixed frame stewart.upper_leg = struct('rotation', eye(3));
% M_pos_base - [3x6] vector of the leg connection at the top platform location in the fixed frame
J = zeros(6);
J(:, 1:3) = RM'; for i = 1:6
J(:, 4:6) = cross(M_pos_base, RM)'; stewart.lower_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
stewart.upper_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
end end
#+end_src
Position Matrix
#+begin_src matlab
stewart.M_pos_base = stewart.pos_base + (height+(stewart.TP.h+stewart.Leg.sphere.top+stewart.SP.h.top+stewart.jacobian)*1e-3)*[zeros(6, 2),ones(6, 1)];
#+end_src
Compute Jacobian Matrix
#+begin_src matlab
% aa = stewart.pos_top_tranform + (stewart.jacobian - stewart.TP.h - stewart.SP.height.top)*1e-3*[zeros(6, 2),ones(6, 1)];
bb = stewart.pos_top_tranform - (stewart.TP.h + stewart.SP.height.top)*1e-3*[zeros(6, 2),ones(6, 1)];
bb = bb - stewart.jacobian*1e-3*[zeros(6, 2),ones(6, 1)];
stewart.J = getJacobianMatrix(leg_vectors', bb');
stewart.K = stewart.Leg.k.ax*stewart.J'*stewart.J;
end
#+end_src
*** initializeParameters Function - BIS
#+begin_src matlab
function [stewart] = initializeParameters(stewart)
#+end_src
We first compute $[a_1, a_2, a_3, a_4, a_5, a_6]^T$ and $[b_1, b_2, b_3, b_4, b_5, b_6]^T$.
#+begin_src matlab
stewart.Aa = zeros(6, 3); % [mm]
stewart.Ab = zeros(6, 3); % [mm]
#+end_src
#+begin_src matlab
for i = 1:3
stewart.Aa(2*i-1,:) = [stewart.BP.Rleg*cos( pi/180*(120*(i-1) - stewart.BP.alpha) ), ...
stewart.BP.Rleg*sin( pi/180*(120*(i-1) - stewart.BP.alpha) ), ...
stewart.BP.H+stewart.SP.H];
stewart.Aa(2*i,:) = [stewart.BP.Rleg*cos( pi/180*(120*(i-1) + stewart.BP.alpha) ), ...
stewart.BP.Rleg*sin( pi/180*(120*(i-1) + stewart.BP.alpha) ), ...
stewart.BP.H+stewart.SP.H];
stewart.Ab(2*i-1,:) = [stewart.TP.Rleg*cos( pi/180*(120*(i-1) + stewart.TP.dalpha - stewart.TP.alpha) ), ...
stewart.TP.Rleg*sin( pi/180*(120*(i-1) + stewart.TP.dalpha - stewart.TP.alpha) ), ...
stewart.H - stewart.TP.H - stewart.SP.H];
stewart.Ab(2*i,:) = [stewart.TP.Rleg*cos( pi/180*(120*(i-1) + stewart.TP.dalpha + stewart.TP.alpha) ), ...
stewart.TP.Rleg*sin( pi/180*(120*(i-1) + stewart.TP.dalpha + stewart.TP.alpha) ), ...
stewart.H - stewart.TP.H - stewart.SP.H];
end
#+end_src
Now, we compute the leg vectors $\hat{s}_i$ and leg position $l_i$:
\[ b_i - a_i = l_i \hat{s}_i \]
We initialize $l_i$ and $\hat{s}_i$
#+begin_src matlab
leg_length = zeros(6, 1); % [mm]
leg_vectors = zeros(6, 3);
#+end_src
We compute $b_i - a_i$, and then:
\begin{align*}
l_i &= \left|b_i - a_i\right| \\
\hat{s}_i &= \frac{b_i - a_i}{l_i}
\end{align*}
#+begin_src matlab
legs = stewart.Ab - stewart.Aa;
for i = 1:6
leg_length(i) = norm(legs(i,:));
leg_vectors(i,:) = legs(i,:) / leg_length(i);
end
#+end_src
Then the shape of the bottom leg is estimated
#+begin_src matlab
stewart.Leg.lenght = leg_length(1)/1.5;
stewart.Leg.shape.bot = ...
[0 0; ...
stewart.Leg.Rbot 0; ...
stewart.Leg.Rbot stewart.Leg.lenght; ...
stewart.Leg.Rtop stewart.Leg.lenght; ...
stewart.Leg.Rtop 0.2*stewart.Leg.lenght; ...
0 0.2*stewart.Leg.lenght];
#+end_src
We compute rotation matrices to have the orientation of the legs.
The rotation matrix transforms the $z$ axis to the axis of the leg. The other axis are not important here.
#+begin_src matlab
stewart.Rm = struct('R', eye(3));
for i = 1:6
sx = cross(leg_vectors(i,:), [1 0 0]);
sx = sx/norm(sx);
sy = -cross(sx, leg_vectors(i,:));
sy = sy/norm(sy);
sz = leg_vectors(i,:);
sz = sz/norm(sz);
stewart.Rm(i).R = [sx', sy', sz'];
end
#+end_src
Compute Jacobian Matrix
#+begin_src matlab
J = zeros(6);
for i = 1:6
J(i, 1:3) = leg_vectors(i, :);
J(i, 4:6) = cross(0.001*(stewart.Ab - stewart.H*[0,0,1]), leg_vectors(i, :));
end
stewart.J = J;
#+end_src
#+begin_src matlab
stewart.K = stewart.Leg.k_ax*stewart.J'*stewart.J;
#+end_src
#+begin_src matlab
end
end end
#+end_src #+end_src

View File

@ -1,208 +1,171 @@
function [stewart] = initializeHexapod(opts_param) function [stewart] = initializeHexapod(opts_param)
%% Default values for opts
opts = struct(...
'height', 90, ... % Height of the platform [mm]
'jacobian', 150, ... % Jacobian offset [mm]
'density', 8000, ... % Density of hexapod [mm]
'name', 'stewart' ... % Name of the file
);
%% Populate opts with input parameters opts = struct(...
if exist('opts_param','var') 'height', 90, ... % Height of the platform [mm]
for opt = fieldnames(opts_param)' 'density', 8000, ... % Density of the material used for the hexapod [kg/m3]
opts.(opt{1}) = opts_param.(opt{1}); 'k_ax', 1e8, ... % Stiffness of each actuator [N/m]
end 'c_ax', 100, ... % Damping of each actuator [N/(m/s)]
end 'stroke', 50e-6, ... % Maximum stroke of each actuator [m]
'name', 'stewart' ... % Name of the file
);
%% Stewart Object if exist('opts_param','var')
stewart = struct(); for opt = fieldnames(opts_param)'
stewart.h = opts.height; % Total height of the platform [mm] opts.(opt{1}) = opts_param.(opt{1});
stewart.jacobian = opts.jacobian; % distance from the center of the top platform
% where the jacobian is computed [mm]
%% Bottom Plate
BP = struct();
BP.rad.int = 0; % Internal Radius [mm]
BP.rad.ext = 150; % External Radius [mm]
BP.thickness = 10; % Thickness [mm]
BP.leg.rad = 100; % Radius where the legs articulations are positionned [mm]
BP.leg.ang = 5; % Angle Offset [deg]
BP.density = opts.density; % Density of the material [kg/m3]
BP.color = [0.7 0.7 0.7]; % Color [rgb]
BP.shape = [BP.rad.int BP.thickness; BP.rad.int 0; BP.rad.ext 0; BP.rad.ext BP.thickness];
%% Top Plate
TP = struct();
TP.rad.int = 0; % Internal Radius [mm]
TP.rad.ext = 100; % Internal Radius [mm]
TP.thickness = 10; % Thickness [mm]
TP.leg.rad = 90; % Radius where the legs articulations are positionned [mm]
TP.leg.ang = 5; % Angle Offset [deg]
TP.density = opts.density; % Density of the material [kg/m3]
TP.color = [0.7 0.7 0.7]; % Color [rgb]
TP.shape = [TP.rad.int TP.thickness; TP.rad.int 0; TP.rad.ext 0; TP.rad.ext TP.thickness];
%% Leg
Leg = struct();
Leg.stroke = 80e-6; % Maximum Stroke of each leg [m]
if strcmp(opts.actuator, 'piezo')
Leg.k.ax = 1e7; % Stiffness of each leg [N/m]
Leg.c.ax = 500; % [N/(m/s)]
elseif strcmp(opts.actuator, 'lorentz')
Leg.k.ax = 1e4; % Stiffness of each leg [N/m]
Leg.c.ax = 200; % [N/(m/s)]
elseif isnumeric(opts.actuator)
Leg.k.ax = opts.actuator; % Stiffness of each leg [N/m]
Leg.c.ax = 100; % [N/(m/s)]
else
error('opts.actuator should be piezo or lorentz or numeric value');
end
Leg.rad.bottom = 12; % Radius of the cylinder of the bottom part [mm]
Leg.rad.top = 10; % Radius of the cylinder of the top part [mm]
Leg.density = opts.density; % Density of the material [kg/m3]
Leg.color.bottom = [0.5 0.5 0.5]; % Color [rgb]
Leg.color.top = [0.5 0.5 0.5]; % Color [rgb]
Leg.sphere.bottom = Leg.rad.bottom; % Size of the sphere at the end of the leg [mm]
Leg.sphere.top = Leg.rad.top; % Size of the sphere at the end of the leg [mm]
%% Sphere
SP = struct();
SP.height.bottom = 15; % [mm]
SP.height.top = 15; % [mm]
SP.density.bottom = opts.density; % [kg/m^3]
SP.density.top = opts.density; % [kg/m^3]
SP.color.bottom = [0.7 0.7 0.7]; % [rgb]
SP.color.top = [0.7 0.7 0.7]; % [rgb]
SP.k.ax = 0; % [N*m/deg]
SP.c.ax = 0; % [N*m/deg]
SP.thickness.bottom = SP.height.bottom-Leg.sphere.bottom; % [mm]
SP.thickness.top = SP.height.top-Leg.sphere.top; % [mm]
SP.rad.bottom = Leg.sphere.bottom; % [mm]
SP.rad.top = Leg.sphere.top; % [mm]
%%
Leg.support.bottom = [0 SP.thickness.bottom; 0 0; SP.rad.bottom 0; SP.rad.bottom SP.height.bottom];
Leg.support.top = [0 SP.thickness.top; 0 0; SP.rad.top 0; SP.rad.top SP.height.top];
%%
stewart.BP = BP;
stewart.TP = TP;
stewart.Leg = Leg;
stewart.SP = SP;
%%
stewart = initializeParameters(stewart);
%%
save('./mat/stewart.mat', 'stewart')
%% ==============================================================
% Additional Functions
% ===============================================================
%% Initialize Parameters
function [stewart] = initializeParameters(stewart)
%% Connection points on base and top plate w.r.t. World frame at the center of the base plate
stewart.pos_base = zeros(6, 3);
stewart.pos_top = zeros(6, 3);
alpha_b = stewart.BP.leg.ang*pi/180; % angle de décalage par rapport à 120 deg (pour positionner les supports bases)
alpha_t = stewart.TP.leg.ang*pi/180; % +- offset angle from 120 degree spacing on top
% Height [m] TODO
height = (stewart.h-stewart.BP.thickness-stewart.TP.thickness-stewart.Leg.sphere.bottom-stewart.Leg.sphere.top-stewart.SP.thickness.bottom-stewart.SP.thickness.top)*0.001;
radius_b = stewart.BP.leg.rad*0.001; % rayon emplacement support base
radius_t = stewart.TP.leg.rad*0.001; % top radius in meters
for i = 1:3
% base points
angle_m_b = (2*pi/3)* (i-1) - alpha_b;
angle_p_b = (2*pi/3)* (i-1) + alpha_b;
stewart.pos_base(2*i-1,:) = [radius_b*cos(angle_m_b), radius_b*sin(angle_m_b), 0.0];
stewart.pos_base(2*i,:) = [radius_b*cos(angle_p_b), radius_b*sin(angle_p_b), 0.0];
% top points
% Top points are 60 degrees offset
angle_m_t = (2*pi/3)* (i-1) - alpha_t + 2*pi/6;
angle_p_t = (2*pi/3)* (i-1) + alpha_t + 2*pi/6;
stewart.pos_top(2*i-1,:) = [radius_t*cos(angle_m_t), radius_t*sin(angle_m_t), height];
stewart.pos_top(2*i,:) = [radius_t*cos(angle_p_t), radius_t*sin(angle_p_t), height];
end
% permute pos_top points so that legs are end points of base and top points
stewart.pos_top = [stewart.pos_top(6,:); stewart.pos_top(1:5,:)]; %6th point on top connects to 1st on bottom
stewart.pos_top_tranform = stewart.pos_top - height*[zeros(6, 2),ones(6, 1)];
%% leg vectors
legs = stewart.pos_top - stewart.pos_base;
leg_length = zeros(6, 1);
leg_vectors = zeros(6, 3);
for i = 1:6
leg_length(i) = norm(legs(i,:));
leg_vectors(i,:) = legs(i,:) / leg_length(i);
end
stewart.Leg.lenght = 1000*leg_length(1)/1.5;
stewart.Leg.shape.bot = [0 0; ...
stewart.Leg.rad.bottom 0; ...
stewart.Leg.rad.bottom stewart.Leg.lenght; ...
stewart.Leg.rad.top stewart.Leg.lenght; ...
stewart.Leg.rad.top 0.2*stewart.Leg.lenght; ...
0 0.2*stewart.Leg.lenght];
%% Calculate revolute and cylindrical axes
rev1 = zeros(6, 3);
rev2 = zeros(6, 3);
cyl1 = zeros(6, 3);
for i = 1:6
rev1(i,:) = cross(leg_vectors(i,:), [0 0 1]);
rev1(i,:) = rev1(i,:) / norm(rev1(i,:));
rev2(i,:) = - cross(rev1(i,:), leg_vectors(i,:));
rev2(i,:) = rev2(i,:) / norm(rev2(i,:));
cyl1(i,:) = leg_vectors(i,:);
end
%% Coordinate systems
stewart.lower_leg = struct('rotation', eye(3));
stewart.upper_leg = struct('rotation', eye(3));
for i = 1:6
stewart.lower_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
stewart.upper_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
end
%% Position Matrix
% TODO
stewart.M_pos_base = stewart.pos_base + (height+(stewart.TP.thickness+stewart.Leg.sphere.top+stewart.SP.thickness.top+stewart.jacobian)*1e-3)*[zeros(6, 2),ones(6, 1)];
%% Compute Jacobian Matrix
% TODO
% aa = stewart.pos_top_tranform + (stewart.jacobian - stewart.TP.thickness - stewart.SP.height.top)*1e-3*[zeros(6, 2),ones(6, 1)];
bb = stewart.pos_top_tranform - (stewart.TP.thickness + stewart.SP.height.top)*1e-3*[zeros(6, 2),ones(6, 1)];
bb = bb - stewart.jacobian*1e-3*[zeros(6, 2),ones(6, 1)];
stewart.J = getJacobianMatrix(leg_vectors', bb');
stewart.K = stewart.Leg.k.ax*stewart.J'*stewart.J;
end
%% Compute the Jacobian Matrix
function J = getJacobianMatrix(RM, M_pos_base)
% RM - [3x6] unit vector of each leg in the fixed frame
% M_pos_base - [3x6] vector of the leg connection at the top platform location in the fixed frame
J = zeros(6);
J(:, 1:3) = RM';
J(:, 4:6) = cross(M_pos_base, RM)';
end end
end end
stewart = struct();
stewart.H = opts.height; % [mm]
BP = struct();
BP.Rint = 0; % Internal Radius [mm]
BP.Rext = 150; % External Radius [mm]
BP.H = 10; % Thickness of the Bottom Plate [mm]
BP.Rleg = 100; % Radius where the legs articulations are positionned [mm]
BP.alpha = 10; % Angle Offset [deg]
BP.density = opts.density; % Density of the material [kg/m3]
BP.color = [0.7 0.7 0.7]; % Color [RGB]
BP.shape = [BP.Rint BP.H; BP.Rint 0; BP.Rext 0; BP.Rext BP.H]; % [mm]
stewart.BP = BP;
TP = struct();
TP.Rint = 0; % [mm]
TP.Rext = 100; % [mm]
TP.H = 10; % [mm]
TP.Rleg = 100; % Radius where the legs articulations are positionned [mm]
TP.alpha = 20; % Angle [deg]
TP.dalpha = 0; % Angle Offset from 0 position [deg]
TP.density = opts.density; % Density of the material [kg/m3]
TP.color = [0.7 0.7 0.7]; % Color [RGB]
TP.shape = [TP.Rint TP.H; TP.Rint 0; TP.Rext 0; TP.Rext TP.H];
stewart.TP = TP;
Leg = struct();
Leg.stroke = opts.stroke; % [m]
Leg.k_ax = opts.k_ax; % Stiffness of each leg [N/m]
Leg.c_ax = opts.c_ax; % Damping of each leg [N/(m/s)]
Leg.Rtop = 10; % Radius of the cylinder of the top part of the leg[mm]
Leg.Rbot = 12; % Radius of the cylinder of the bottom part of the leg [mm]
Leg.density = opts.density; % Density of the material used for the legs [kg/m3]
Leg.color = [0.5 0.5 0.5]; % Color of the top part of the leg [RGB]
Leg.R = 1.3*Leg.Rbot; % Size of the sphere at the extremity of the leg [mm]
stewart.Leg = Leg;
SP = struct();
SP.k = 0; % [N*m/deg]
SP.c = 0; % [N*m/deg]
SP.H = 15; % [mm]
SP.R = Leg.R; % [mm]
SP.section = [0 SP.H-SP.R;
0 0;
SP.R 0;
SP.R SP.H];
SP.density = opts.density; % [kg/m^3]
SP.color = [0.7 0.7 0.7]; % [RGB]
stewart.SP = SP;
stewart = initializeParameters(stewart);
save('./mat/stewart.mat', 'stewart')
function [stewart] = initializeParameters(stewart)
stewart.Aa = zeros(6, 3); % [mm]
stewart.Ab = zeros(6, 3); % [mm]
stewart.Bb = zeros(6, 3); % [mm]
for i = 1:3
stewart.Aa(2*i-1,:) = [stewart.BP.Rleg*cos( pi/180*(120*(i-1) - stewart.BP.alpha) ), ...
stewart.BP.Rleg*sin( pi/180*(120*(i-1) - stewart.BP.alpha) ), ...
stewart.BP.H+stewart.SP.H];
stewart.Aa(2*i,:) = [stewart.BP.Rleg*cos( pi/180*(120*(i-1) + stewart.BP.alpha) ), ...
stewart.BP.Rleg*sin( pi/180*(120*(i-1) + stewart.BP.alpha) ), ...
stewart.BP.H+stewart.SP.H];
stewart.Ab(2*i-1,:) = [stewart.TP.Rleg*cos( pi/180*(120*(i-1) + stewart.TP.dalpha - stewart.TP.alpha) ), ...
stewart.TP.Rleg*sin( pi/180*(120*(i-1) + stewart.TP.dalpha - stewart.TP.alpha) ), ...
stewart.H - stewart.TP.H - stewart.SP.H];
stewart.Ab(2*i,:) = [stewart.TP.Rleg*cos( pi/180*(120*(i-1) + stewart.TP.dalpha + stewart.TP.alpha) ), ...
stewart.TP.Rleg*sin( pi/180*(120*(i-1) + stewart.TP.dalpha + stewart.TP.alpha) ), ...
stewart.H - stewart.TP.H - stewart.SP.H];
end
stewart.Bb = stewart.Ab - stewart.H*[0,0,1];
leg_length = zeros(6, 1); % [mm]
leg_vectors = zeros(6, 3);
legs = stewart.Ab - stewart.Aa;
for i = 1:6
leg_length(i) = norm(legs(i,:));
leg_vectors(i,:) = legs(i,:) / leg_length(i);
end
stewart.Leg.lenght = leg_length(1)/1.5;
stewart.Leg.shape.bot = ...
[0 0; ...
stewart.Leg.Rbot 0; ...
stewart.Leg.Rbot stewart.Leg.lenght; ...
stewart.Leg.Rtop stewart.Leg.lenght; ...
stewart.Leg.Rtop 0.2*stewart.Leg.lenght; ...
0 0.2*stewart.Leg.lenght];
stewart.Rm = struct('R', eye(3));
for i = 1:6
sx = cross(leg_vectors(i,:), [1 0 0]);
sx = sx/norm(sx);
sy = -cross(sx, leg_vectors(i,:));
sy = sy/norm(sy);
sz = leg_vectors(i,:);
sz = sz/norm(sz);
stewart.Rm(i).R = [sx', sy', sz'];
end
J = zeros(6);
for i = 1:6
J(i, 1:3) = leg_vectors(i, :);
J(i, 4:6) = cross(0.001*stewart.Bb(i, :), leg_vectors(i, :));
end
stewart.J = J;
stewart.K = stewart.Leg.k_ax*stewart.J'*stewart.J;
end
end

BIN
stewart.slx Normal file

Binary file not shown.

Binary file not shown.