Update study: cubic configuration, renew the function for generation

This commit is contained in:
2019-03-25 18:12:43 +01:00
parent 2914d01e8f
commit 7fb03f7b90
29 changed files with 3773 additions and 817 deletions

View File

@@ -0,0 +1,59 @@
function [stewart] = computeGeometricalProperties(stewart, opts_param)
opts = struct(...
'Jd_pos', [0, 0, 30], ... % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]
'Jf_pos', [0, 0, 30] ... % Position of the Jacobian for force location from the top of the mobile platform [mm]
);
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
leg_length = zeros(6, 1); % [mm]
leg_vectors = zeros(6, 3);
legs = stewart.Ab - stewart.Aa;
for i = 1:6
leg_length(i) = norm(legs(i,:));
leg_vectors(i,:) = legs(i,:) / leg_length(i);
end
stewart.Rm = struct('R', eye(3));
for i = 1:6
sx = cross(leg_vectors(i,:), [1 0 0]);
sx = sx/norm(sx);
sy = -cross(sx, leg_vectors(i,:));
sy = sy/norm(sy);
sz = leg_vectors(i,:);
sz = sz/norm(sz);
stewart.Rm(i).R = [sx', sy', sz'];
end
Jd = zeros(6);
for i = 1:6
Jd(i, 1:3) = leg_vectors(i, :);
Jd(i, 4:6) = cross(0.001*(stewart.Bb(i, :) - opts.Jd_pos), leg_vectors(i, :));
end
stewart.Jd = Jd;
stewart.Jd_inv = inv(Jd);
Jf = zeros(6);
for i = 1:6
Jf(i, 1:3) = leg_vectors(i, :);
Jf(i, 4:6) = cross(0.001*(stewart.Bb(i, :) - opts.Jf_pos), leg_vectors(i, :));
end
stewart.Jf = Jf;
stewart.Jf_inv = inv(Jf);
end

View File

@@ -53,7 +53,7 @@ G.OutputName = {'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm', ...
% identifyPlant:7 ends here
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:8]]
sys.G_cart = minreal(G({'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm'}, {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}));
sys.G_cart = G({'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm'}, {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'});
sys.G_forc = minreal(G({'F1m', 'F2m', 'F3m', 'F4m', 'F5m', 'F6m'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}));
sys.G_legs = minreal(G({'D1m', 'D2m', 'D3m', 'D4m', 'D5m', 'D6m'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}));
sys.G_tran = minreal(G({'Dxtm', 'Dytm', 'Dztm', 'Rxtm', 'Rytm', 'Rztm'}, {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'}));

View File

@@ -0,0 +1,89 @@
function [stewart] = initializeCubicConfiguration(opts_param)
opts = struct(...
'H_tot', 90, ... % Total height of the Hexapod [mm]
'L', 110, ... % Size of the Cube [mm]
'H', 40, ... % Height between base joints and platform joints [mm]
'H0', 75 ... % Height between the corner of the cube and the plane containing the base joints [mm]
);
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
points = [0, 0, 0; ...
0, 0, 1; ...
0, 1, 0; ...
0, 1, 1; ...
1, 0, 0; ...
1, 0, 1; ...
1, 1, 0; ...
1, 1, 1];
points = opts.L*points;
sx = cross([1, 1, 1], [1 0 0]);
sx = sx/norm(sx);
sy = -cross(sx, [1, 1, 1]);
sy = sy/norm(sy);
sz = [1, 1, 1];
sz = sz/norm(sz);
R = [sx', sy', sz']';
cube = zeros(size(points));
for i = 1:size(points, 1)
cube(i, :) = R * points(i, :)';
end
leg_indices = [3, 4; ...
2, 4; ...
2, 6; ...
5, 6; ...
5, 7; ...
3, 7];
legs = zeros(6, 3);
legs_start = zeros(6, 3);
for i = 1:6
legs(i, :) = cube(leg_indices(i, 2), :) - cube(leg_indices(i, 1), :);
legs_start(i, :) = cube(leg_indices(i, 1), :);
end
Hmax = cube(4, 3) - cube(2, 3);
if opts.H0 < cube(2, 3)
error(sprintf('H0 is not high enought. Minimum H0 = %.1f', cube(2, 3)));
else if opts.H0 + opts.H > cube(4, 3)
error(sprintf('H0+H is too high. Maximum H0+H = %.1f', cube(4, 3)));
error('H0+H is too high');
end
Aa = zeros(6, 3);
for i = 1:6
t = (opts.H0-legs_start(i, 3))/(legs(i, 3));
Aa(i, :) = legs_start(i, :) + t*legs(i, :);
end
Ab = zeros(6, 3);
for i = 1:6
t = (opts.H0+opts.H-legs_start(i, 3))/(legs(i, 3));
Ab(i, :) = legs_start(i, :) + t*legs(i, :);
end
Bb = zeros(6, 3);
Bb = Ab - (opts.H0 + opts.H_tot/2 + opts.H/2)*[0, 0, 1];
h = opts.H0 + opts.H/2 - opts.H_tot/2;
Aa = Aa - h*[0, 0, 1];
Ab = Ab - h*[0, 0, 1];
stewart = struct();
stewart.Aa = Aa;
stewart.Ab = Ab;
stewart.Bb = Bb;
stewart.H_tot = opts.H_tot;
end

View File

@@ -0,0 +1,47 @@
function [stewart] = initializeGeneralConfiguration(opts_param)
opts = struct(...
'H_tot', 90, ... % Height of the platform [mm]
'H_joint', 15, ... % Height of the joints [mm]
'H_plate', 10, ... % Thickness of the fixed and mobile platforms [mm]
'R_bot', 100, ... % Radius where the legs articulations are positionned [mm]
'R_top', 80, ... % Radius where the legs articulations are positionned [mm]
'a_bot', 10, ... % Angle Offset [deg]
'a_top', 40, ... % Angle Offset [deg]
'da_top', 0 ... % Angle Offset from 0 position [deg]
);
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
Aa = zeros(6, 3); % [mm]
Ab = zeros(6, 3); % [mm]
Bb = zeros(6, 3); % [mm]
for i = 1:3
Aa(2*i-1,:) = [opts.R_bot*cos( pi/180*(120*(i-1) - opts.a_bot) ), ...
opts.R_bot*sin( pi/180*(120*(i-1) - opts.a_bot) ), ...
opts.H_plate+opts.H_joint];
Aa(2*i,:) = [opts.R_bot*cos( pi/180*(120*(i-1) + opts.a_bot) ), ...
opts.R_bot*sin( pi/180*(120*(i-1) + opts.a_bot) ), ...
opts.H_plate+opts.H_joint];
Ab(2*i-1,:) = [opts.R_top*cos( pi/180*(120*(i-1) + opts.da_top - opts.a_top) ), ...
opts.R_top*sin( pi/180*(120*(i-1) + opts.da_top - opts.a_top) ), ...
opts.H_tot - opts.H_plate - opts.H_joint];
Ab(2*i,:) = [opts.R_top*cos( pi/180*(120*(i-1) + opts.da_top + opts.a_top) ), ...
opts.R_top*sin( pi/180*(120*(i-1) + opts.da_top + opts.a_top) ), ...
opts.H_tot - opts.H_plate - opts.H_joint];
end
Bb = Ab - opts.H_tot*[0,0,1];
stewart = struct();
stewart.Aa = Aa;
stewart.Ab = Ab;
stewart.Bb = Bb;
stewart.H_tot = opts.H_tot;
end

View File

@@ -1,228 +1,86 @@
% Function description and arguments
% The =initializeHexapod= function takes one structure that contains configurations for the hexapod and returns one structure representing the hexapod.
function [stewart] = initializeHexapod(opts_param)
% Default values for opts.
opts = struct(...
'height', 90, ... % Height of the platform [mm]
'density', 8000, ... % Density of the material used for the hexapod [kg/m3]
'density', 10, ... % Density of the material used for the hexapod [kg/m3]
'k_ax', 1e8, ... % Stiffness of each actuator [N/m]
'c_ax', 1000, ... % Damping of each actuator [N/(m/s)]
'stroke', 50e-6, ... % Maximum stroke of each actuator [m]
'name', 'stewart' ... % Name of the file
);
% Populate opts with input parameters
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
% Initialization of the stewart structure
% We initialize the Stewart structure
stewart = struct();
% And we defined its total height.
stewart.H = opts.height; % [mm]
% Bottom Plate
% #+name: fig:stewart_bottom_plate
% #+caption: Schematic of the bottom plates with all the parameters
% [[file:./figs/stewart_bottom_plate.png]]
% The bottom plate structure is initialized.
BP = struct();
% We defined its internal radius (if there is a hole in the bottom plate) and its outer radius.
BP.Rint = 0; % Internal Radius [mm]
BP.Rext = 150; % External Radius [mm]
% We define its thickness.
BP.H = 10; % Thickness of the Bottom Plate [mm]
% At which radius legs will be fixed and with that angle offset.
BP.Rleg = 100; % Radius where the legs articulations are positionned [mm]
BP.alpha = 10; % Angle Offset [deg]
% We defined the density of the material of the bottom plate.
BP.alpha = 30; % Angle Offset [deg]
BP.density = opts.density; % Density of the material [kg/m3]
% And its color.
BP.color = [0.7 0.7 0.7]; % Color [RGB]
% Then the profile of the bottom plate is computed and will be used by Simscape
BP.shape = [BP.Rint BP.H; BP.Rint 0; BP.Rext 0; BP.Rext BP.H]; % [mm]
% The structure is added to the stewart structure
stewart.BP = BP;
% Top Plate
% The top plate structure is initialized.
TP = struct();
% We defined the internal and external radius of the top plate.
TP.Rint = 0; % [mm]
TP.Rext = 100; % [mm]
% The thickness of the top plate.
TP.H = 10; % [mm]
% At which radius and angle are fixed the legs.
TP.Rleg = 100; % Radius where the legs articulations are positionned [mm]
TP.alpha = 20; % Angle [deg]
TP.Rleg = 80; % Radius where the legs articulations are positionned [mm]
TP.alpha = 10; % Angle [deg]
TP.dalpha = 0; % Angle Offset from 0 position [deg]
% The density of its material.
TP.density = opts.density; % Density of the material [kg/m3]
% Its color.
TP.color = [0.7 0.7 0.7]; % Color [RGB]
% Then the shape of the top plate is computed
TP.shape = [TP.Rint TP.H; TP.Rint 0; TP.Rext 0; TP.Rext TP.H];
% The structure is added to the stewart structure
stewart.TP = TP;
% Legs
% #+name: fig:stewart_legs
% #+caption: Schematic for the legs of the Stewart platform
% [[file:./figs/stewart_legs.png]]
% The leg structure is initialized.
Leg = struct();
% The maximum Stroke of each leg is defined.
Leg.stroke = opts.stroke; % [m]
% The stiffness and damping of each leg are defined
Leg.k_ax = opts.k_ax; % Stiffness of each leg [N/m]
Leg.c_ax = opts.c_ax; % Damping of each leg [N/(m/s)]
% The radius of the legs are defined
Leg.Rtop = 10; % Radius of the cylinder of the top part of the leg[mm]
Leg.Rbot = 12; % Radius of the cylinder of the bottom part of the leg [mm]
% The density of its material.
Leg.density = opts.density; % Density of the material used for the legs [kg/m3]
% Its color.
Leg.density = 0.01*opts.density; % Density of the material used for the legs [kg/m3]
Leg.color = [0.5 0.5 0.5]; % Color of the top part of the leg [RGB]
% The radius of spheres representing the ball joints are defined.
Leg.R = 1.3*Leg.Rbot; % Size of the sphere at the extremity of the leg [mm]
% The structure is added to the stewart structure
stewart.Leg = Leg;
% Ball Joints
% #+name: fig:stewart_ball_joints
% #+caption: Schematic of the support for the ball joints
% [[file:./figs/stewart_ball_joints.png]]
% =SP= is the structure representing the support for the ball joints at the extremity of each leg.
% The =SP= structure is initialized.
SP = struct();
% We can define its rotational stiffness and damping. For now, we use perfect joints.
SP.k = 0; % [N*m/deg]
SP.c = 0; % [N*m/deg]
% Its height is defined
SP.H = 15; % [mm]
% Its radius is based on the radius on the sphere at the end of the legs.
SP.R = Leg.R; % [mm]
SP.section = [0 SP.H-SP.R;
@@ -230,40 +88,18 @@ SP.section = [0 SP.H-SP.R;
SP.R 0;
SP.R SP.H];
% The density of its material is defined.
SP.density = opts.density; % [kg/m^3]
% Its color is defined.
SP.color = [0.7 0.7 0.7]; % [RGB]
% The structure is added to the Hexapod structure
stewart.SP = SP;
% More parameters are initialized
stewart = initializeParameters(stewart);
% Save the Stewart Structure
save('./mat/stewart.mat', 'stewart')
% initializeParameters Function
function [stewart] = initializeParameters(stewart)
% We first compute $[a_1, a_2, a_3, a_4, a_5, a_6]^T$ and $[b_1, b_2, b_3, b_4, b_5, b_6]^T$.
stewart.Aa = zeros(6, 3); % [mm]
stewart.Ab = zeros(6, 3); % [mm]
stewart.Bb = zeros(6, 3); % [mm]
@@ -285,25 +121,9 @@ for i = 1:3
end
stewart.Bb = stewart.Ab - stewart.H*[0,0,1];
% Now, we compute the leg vectors $\hat{s}_i$ and leg position $l_i$:
% \[ b_i - a_i = l_i \hat{s}_i \]
% We initialize $l_i$ and $\hat{s}_i$
leg_length = zeros(6, 1); % [mm]
leg_vectors = zeros(6, 3);
% We compute $b_i - a_i$, and then:
% \begin{align*}
% l_i &= \left|b_i - a_i\right| \\
% \hat{s}_i &= \frac{b_i - a_i}{l_i}
% \end{align*}
legs = stewart.Ab - stewart.Aa;
for i = 1:6
@@ -311,10 +131,6 @@ for i = 1:6
leg_vectors(i,:) = legs(i,:) / leg_length(i);
end
% Then the shape of the bottom leg is estimated
stewart.Leg.lenght = leg_length(1)/1.5;
stewart.Leg.shape.bot = ...
[0 0; ...
@@ -324,11 +140,6 @@ stewart.Leg.shape.bot = ...
stewart.Leg.Rtop 0.2*stewart.Leg.lenght; ...
0 0.2*stewart.Leg.lenght];
% We compute rotation matrices to have the orientation of the legs.
% The rotation matrix transforms the $z$ axis to the axis of the leg. The other axis are not important here.
stewart.Rm = struct('R', eye(3));
for i = 1:6
@@ -344,10 +155,6 @@ for i = 1:6
stewart.Rm(i).R = [sx', sy', sz'];
end
% Compute Jacobian Matrix
J = zeros(6);
for i = 1:6

View File

@@ -0,0 +1,94 @@
function [stewart] = initializeMechanicalElements(stewart, opts_param)
opts = struct(...
'thickness', 10, ... % Thickness of the base and platform [mm]
'density', 1000, ... % Density of the material used for the hexapod [kg/m3]
'k_ax', 1e8, ... % Stiffness of each actuator [N/m]
'c_ax', 1000, ... % Damping of each actuator [N/(m/s)]
'stroke', 50e-6 ... % Maximum stroke of each actuator [m]
);
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
BP = struct();
BP.Rint = 0; % Internal Radius [mm]
BP.Rext = 150; % External Radius [mm]
BP.H = opts.thickness; % Thickness of the Bottom Plate [mm]
BP.density = opts.density; % Density of the material [kg/m3]
BP.color = [0.7 0.7 0.7]; % Color [RGB]
BP.shape = [BP.Rint BP.H; BP.Rint 0; BP.Rext 0; BP.Rext BP.H]; % [mm]
stewart.BP = BP;
TP = struct();
TP.Rint = 0; % [mm]
TP.Rext = 100; % [mm]
TP.H = 10; % [mm]
TP.density = opts.density; % Density of the material [kg/m3]
TP.color = [0.7 0.7 0.7]; % Color [RGB]
TP.shape = [TP.Rint TP.H; TP.Rint 0; TP.Rext 0; TP.Rext TP.H];
stewart.TP = TP;
Leg = struct();
Leg.stroke = opts.stroke; % [m]
Leg.k_ax = opts.k_ax; % Stiffness of each leg [N/m]
Leg.c_ax = opts.c_ax; % Damping of each leg [N/(m/s)]
Leg.Rtop = 10; % Radius of the cylinder of the top part of the leg[mm]
Leg.Rbot = 12; % Radius of the cylinder of the bottom part of the leg [mm]
Leg.density = opts.density; % Density of the material used for the legs [kg/m3]
Leg.color = [0.5 0.5 0.5]; % Color of the top part of the leg [RGB]
Leg.R = 1.3*Leg.Rbot; % Size of the sphere at the extremity of the leg [mm]
legs = stewart.Ab - stewart.Aa;
Leg.lenght = norm(legs(1,:))/1.5;
Leg.shape.bot = ...
[0 0; ...
Leg.Rbot 0; ...
Leg.Rbot Leg.lenght; ...
Leg.Rtop Leg.lenght; ...
Leg.Rtop 0.2*Leg.lenght; ...
0 0.2*Leg.lenght];
stewart.Leg = Leg;
SP = struct();
SP.k = 0; % [N*m/deg]
SP.c = 0; % [N*m/deg]
SP.H = stewart.Aa(1, 3) - BP.H; % [mm]
SP.R = Leg.R; % [mm]
SP.section = [0 SP.H-SP.R;
0 0;
SP.R 0;
SP.R SP.H];
SP.density = opts.density; % [kg/m^3]
SP.color = [0.7 0.7 0.7]; % [RGB]
stewart.SP = SP;

View File

@@ -1,21 +1,20 @@
function [] = initializeSample(opts_param)
%% Default values for opts
sample = struct( ...
'radius', 100, ... % radius of the cylinder [mm]
'height', 100, ... % height of the cylinder [mm]
'mass', 10, ... % mass of the cylinder [kg]
'measheight', 50, ... % measurement point z-offset [mm]
'offset', [0, 0, 0], ... % offset position of the sample [mm]
'color', [0.9 0.1 0.1] ...
);
%% Populate opts with input parameters
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
sample.(opt{1}) = opts_param.(opt{1});
end
sample = struct( ...
'radius', 100, ... % radius of the cylinder [mm]
'height', 100, ... % height of the cylinder [mm]
'mass', 10, ... % mass of the cylinder [kg]
'measheight', 50, ... % measurement point z-offset [mm]
'offset', [0, 0, 0], ... % offset position of the sample [mm]
'color', [0.9 0.1 0.1] ...
);
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
sample.(opt{1}) = opts_param.(opt{1});
end
%% Save
save('./mat/sample.mat', 'sample');
end
save('./mat/sample.mat', 'sample');
end

View File

@@ -0,0 +1,59 @@
function [stewart] = initializeSimscapeData(stewart, opts_param)
opts = struct(...
'Jd_pos', [0, 0, 30], ... % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]
'Jf_pos', [0, 0, 30] ... % Position of the Jacobian for force location from the top of the mobile platform [mm]
);
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
leg_length = zeros(6, 1); % [mm]
leg_vectors = zeros(6, 3);
legs = stewart.Ab - stewart.Aa;
for i = 1:6
leg_length(i) = norm(legs(i,:));
leg_vectors(i,:) = legs(i,:) / leg_length(i);
end
stewart.Rm = struct('R', eye(3));
for i = 1:6
sx = cross(leg_vectors(i,:), [1 0 0]);
sx = sx/norm(sx);
sy = -cross(sx, leg_vectors(i,:));
sy = sy/norm(sy);
sz = leg_vectors(i,:);
sz = sz/norm(sz);
stewart.Rm(i).R = [sx', sy', sz'];
end
Jd = zeros(6);
for i = 1:6
Jd(i, 1:3) = leg_vectors(i, :);
Jd(i, 4:6) = cross(0.001*(stewart.Bb(i, :) - opts.Jd_pos), leg_vectors(i, :));
end
stewart.Jd = Jd;
stewart.Jd_inv = inv(Jd);
Jf = zeros(6);
for i = 1:6
Jf(i, 1:3) = leg_vectors(i, :);
Jf(i, 4:6) = cross(0.001*(stewart.Bb(i, :) - opts.Jf_pos), leg_vectors(i, :));
end
stewart.Jf = Jf;
stewart.Jf_inv = inv(Jf);
end

View File

@@ -0,0 +1,94 @@
function [stewart] = initializeStewartPlatform(stewart, opts_param)
opts = struct(...
'thickness', 10, ... % Thickness of the base and platform [mm]
'density', 1000, ... % Density of the material used for the hexapod [kg/m3]
'k_ax', 1e8, ... % Stiffness of each actuator [N/m]
'c_ax', 1000, ... % Damping of each actuator [N/(m/s)]
'stroke', 50e-6 ... % Maximum stroke of each actuator [m]
);
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
BP = struct();
BP.Rint = 0; % Internal Radius [mm]
BP.Rext = 150; % External Radius [mm]
BP.H = opts.thickness; % Thickness of the Bottom Plate [mm]
BP.density = opts.density; % Density of the material [kg/m3]
BP.color = [0.7 0.7 0.7]; % Color [RGB]
BP.shape = [BP.Rint BP.H; BP.Rint 0; BP.Rext 0; BP.Rext BP.H]; % [mm]
stewart.BP = BP;
TP = struct();
TP.Rint = 0; % [mm]
TP.Rext = 100; % [mm]
TP.H = 10; % [mm]
TP.density = opts.density; % Density of the material [kg/m3]
TP.color = [0.7 0.7 0.7]; % Color [RGB]
TP.shape = [TP.Rint TP.H; TP.Rint 0; TP.Rext 0; TP.Rext TP.H];
stewart.TP = TP;
Leg = struct();
Leg.stroke = opts.stroke; % [m]
Leg.k_ax = opts.k_ax; % Stiffness of each leg [N/m]
Leg.c_ax = opts.c_ax; % Damping of each leg [N/(m/s)]
Leg.Rtop = 10; % Radius of the cylinder of the top part of the leg[mm]
Leg.Rbot = 12; % Radius of the cylinder of the bottom part of the leg [mm]
Leg.density = opts.density; % Density of the material used for the legs [kg/m3]
Leg.color = [0.5 0.5 0.5]; % Color of the top part of the leg [RGB]
Leg.R = 1.3*Leg.Rbot; % Size of the sphere at the extremity of the leg [mm]
legs = stewart.Ab - stewart.Aa;
Leg.lenght = norm(legs(1,:))/1.5;
Leg.shape.bot = ...
[0 0; ...
Leg.Rbot 0; ...
Leg.Rbot Leg.lenght; ...
Leg.Rtop Leg.lenght; ...
Leg.Rtop 0.2*Leg.lenght; ...
0 0.2*Leg.lenght];
stewart.Leg = Leg;
SP = struct();
SP.k = 0; % [N*m/deg]
SP.c = 0; % [N*m/deg]
SP.H = stewart.Aa(1, 3) - BP.H; % [mm]
SP.R = Leg.R; % [mm]
SP.section = [0 SP.H-SP.R;
0 0;
SP.R 0;
SP.R SP.H];
SP.density = opts.density; % [kg/m^3]
SP.color = [0.7 0.7 0.7]; % [RGB]
stewart.SP = SP;