Update all project: add folders with scripts
This commit is contained in:
		@@ -1,7 +0,0 @@
 | 
			
		||||
function J  = getJacobianMatrix(RM,M_pos_base)
 | 
			
		||||
    % RM: [3x6] unit vector of each leg in the fixed frame
 | 
			
		||||
    % M_pos_base: [3x6] vector of the leg connection at the top platform location in the fixed frame
 | 
			
		||||
    J = zeros(6);
 | 
			
		||||
    J(:, 1:3) = RM';
 | 
			
		||||
    J(:, 4:6) = cross(M_pos_base, RM)';
 | 
			
		||||
end
 | 
			
		||||
@@ -1,3 +1,5 @@
 | 
			
		||||
function [K] = getStiffnessMatrix(leg, J)
 | 
			
		||||
    K = leg.k.ax*(J'*J);
 | 
			
		||||
function [K] = getStiffnessMatrix(k, J)
 | 
			
		||||
    % k - leg stiffness
 | 
			
		||||
    % J - Jacobian matrix
 | 
			
		||||
    K = k*(J'*J);
 | 
			
		||||
end
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										51
									
								
								src/identifyPlant.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										51
									
								
								src/identifyPlant.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,51 @@
 | 
			
		||||
function [sys] = identifyPlant(opts_param)
 | 
			
		||||
    %% Default values for opts
 | 
			
		||||
    opts = struct();
 | 
			
		||||
 | 
			
		||||
    %% Populate opts with input parameters
 | 
			
		||||
    if exist('opts_param','var')
 | 
			
		||||
        for opt = fieldnames(opts_param)'
 | 
			
		||||
            opts.(opt{1}) = opts_param.(opt{1});
 | 
			
		||||
        end
 | 
			
		||||
    end
 | 
			
		||||
 | 
			
		||||
    %% Options for Linearized
 | 
			
		||||
    options = linearizeOptions;
 | 
			
		||||
    options.SampleTime = 0;
 | 
			
		||||
 | 
			
		||||
    %% Name of the Simulink File
 | 
			
		||||
    mdl = 'stewart_identification';
 | 
			
		||||
 | 
			
		||||
    %% Input/Output definition
 | 
			
		||||
    io(1) = linio([mdl, '/F'],  1, 'input'); % Cartesian forces
 | 
			
		||||
    io(2) = linio([mdl, '/Fl'], 1, 'input'); % Leg forces
 | 
			
		||||
    io(3) = linio([mdl, '/Fd'], 1, 'input'); % Direct forces
 | 
			
		||||
    io(4) = linio([mdl, '/Dw'], 1, 'input'); % Base motion
 | 
			
		||||
 | 
			
		||||
    io(5) = linio([mdl, '/Dm'],  1, 'output'); % Relative Motion
 | 
			
		||||
    io(6) = linio([mdl, '/Dlm'], 1, 'output'); % Displacement of each leg
 | 
			
		||||
    io(7) = linio([mdl, '/Flm'], 1, 'output'); % Force sensor in each leg
 | 
			
		||||
    io(8) = linio([mdl, '/Xm'],  1, 'output'); % Absolute motion of platform
 | 
			
		||||
 | 
			
		||||
    %% Run the linearization
 | 
			
		||||
    G = linearize(mdl, io, 0);
 | 
			
		||||
 | 
			
		||||
    %% Input/Output names
 | 
			
		||||
    G.InputName  = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz', ...
 | 
			
		||||
                    'F1', 'F2', 'F3', 'F4', 'F5', 'F6', ...
 | 
			
		||||
                    'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz', ...
 | 
			
		||||
                    'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'};
 | 
			
		||||
    G.OutputName = {'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm', ...
 | 
			
		||||
                    'D1m', 'D2m', 'D3m', 'D4m', 'D5m', 'D6m', ...
 | 
			
		||||
                    'F1m', 'F2m', 'F3m', 'F4m', 'F5m', 'F6m', ...
 | 
			
		||||
                    'Dxtm', 'Dytm', 'Dztm', 'Rxtm', 'Rytm', 'Rztm'};
 | 
			
		||||
 | 
			
		||||
    %% Cut into sub transfer functions
 | 
			
		||||
    sys.G_cart = minreal(G({'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm'}, {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}));
 | 
			
		||||
    sys.G_forc = minreal(G({'F1m', 'F2m', 'F3m', 'F4m', 'F5m', 'F6m'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}));
 | 
			
		||||
    sys.G_legs = G({'D1m', 'D2m', 'D3m', 'D4m', 'D5m', 'D6m'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'});
 | 
			
		||||
    sys.G_tran = minreal(G({'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm'}, {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'}));
 | 
			
		||||
    sys.G_comp = minreal(G({'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm'}, {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'}));
 | 
			
		||||
    sys.G_iner = minreal(G({'Dxtm', 'Dytm', 'Dztm', 'Rxtm', 'Rytm', 'Rztm'}, {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'}));
 | 
			
		||||
    sys.G_all  = minreal(G);
 | 
			
		||||
end
 | 
			
		||||
@@ -1,35 +0,0 @@
 | 
			
		||||
function [G_cart, G_cart_raw] = identifyPlantCart()
 | 
			
		||||
    %% Default values for opts
 | 
			
		||||
    opts = struct('f_low', 1,...
 | 
			
		||||
                  'f_high', 10000 ...
 | 
			
		||||
    );
 | 
			
		||||
 | 
			
		||||
    %% Populate opts with input parameters
 | 
			
		||||
    if exist('opts_param','var')
 | 
			
		||||
        for opt = fieldnames(opts_param)'
 | 
			
		||||
            opts.(opt{1}) = opts_param.(opt{1});
 | 
			
		||||
        end
 | 
			
		||||
    end
 | 
			
		||||
 | 
			
		||||
    %% Options for Linearized
 | 
			
		||||
    options = linearizeOptions;
 | 
			
		||||
    options.SampleTime = 0;
 | 
			
		||||
 | 
			
		||||
    %% Name of the Simulink File
 | 
			
		||||
    mdl = 'stewart_simscape';
 | 
			
		||||
 | 
			
		||||
    %% Centralized control (Cartesian coordinates)
 | 
			
		||||
    % Input/Output definition
 | 
			
		||||
    io(1) = linio([mdl, '/F_cart'],1,'input');
 | 
			
		||||
    io(2) = linio([mdl, '/Stewart_Platform'],1,'output');
 | 
			
		||||
 | 
			
		||||
    % Run the linearization
 | 
			
		||||
    G_cart_raw = linearize(mdl,io, 0);
 | 
			
		||||
 | 
			
		||||
    G_cart = preprocessIdTf(G_cart_raw, opts.f_low, opts.f_high);
 | 
			
		||||
 | 
			
		||||
    % Input/Output names
 | 
			
		||||
    G_cart.InputName  = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
 | 
			
		||||
    G_cart.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
@@ -1,35 +0,0 @@
 | 
			
		||||
function [G_legs, G_legs_raw] = identifyPlantLegs()
 | 
			
		||||
    %% Default values for opts
 | 
			
		||||
    opts = struct('f_low',  1,    ...
 | 
			
		||||
                  'f_high', 10000 ...
 | 
			
		||||
    );
 | 
			
		||||
 | 
			
		||||
    %% Populate opts with input parameters
 | 
			
		||||
    if exist('opts_param','var')
 | 
			
		||||
        for opt = fieldnames(opts_param)'
 | 
			
		||||
            opts.(opt{1}) = opts_param.(opt{1});
 | 
			
		||||
        end
 | 
			
		||||
    end
 | 
			
		||||
 | 
			
		||||
    %% Options for Linearized
 | 
			
		||||
    options = linearizeOptions;
 | 
			
		||||
    options.SampleTime = 0;
 | 
			
		||||
 | 
			
		||||
    %% Name of the Simulink File
 | 
			
		||||
    mdl = 'stewart_simscape';
 | 
			
		||||
 | 
			
		||||
    %% Centralized control (Cartesian coordinates)
 | 
			
		||||
    % Input/Output definition
 | 
			
		||||
    io(1) = linio([mdl, '/F_legs'],          1,'input');
 | 
			
		||||
    io(2) = linio([mdl, '/Stewart_Platform'],2,'output');
 | 
			
		||||
 | 
			
		||||
    % Run the linearization
 | 
			
		||||
    G_legs_raw = linearize(mdl,io, 0);
 | 
			
		||||
 | 
			
		||||
    G_legs = preprocessIdTf(G_legs_raw, opts.f_low, opts.f_high);
 | 
			
		||||
 | 
			
		||||
    % Input/Output names
 | 
			
		||||
    G_legs.InputName  = {'F1', 'F2', 'F3', 'M4', 'M5', 'M6'};
 | 
			
		||||
    G_legs.OutputName = {'D1', 'D2', 'D3', 'R4', 'R5', 'R6'};
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										208
									
								
								src/initializeHexapod.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										208
									
								
								src/initializeHexapod.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,208 @@
 | 
			
		||||
function [stewart] = initializeHexapod(opts_param)
 | 
			
		||||
    %% Default values for opts
 | 
			
		||||
    opts = struct(...
 | 
			
		||||
        'height',   90,       ... % Height of the platform [mm]
 | 
			
		||||
        'jacobian', 150,      ... % Jacobian offset [mm]
 | 
			
		||||
        'density',  8000,     ... % Density of hexapod [mm]
 | 
			
		||||
        'name',     'stewart' ... % Name of the file
 | 
			
		||||
    );
 | 
			
		||||
 | 
			
		||||
    %% Populate opts with input parameters
 | 
			
		||||
    if exist('opts_param','var')
 | 
			
		||||
        for opt = fieldnames(opts_param)'
 | 
			
		||||
            opts.(opt{1}) = opts_param.(opt{1});
 | 
			
		||||
        end
 | 
			
		||||
    end
 | 
			
		||||
 | 
			
		||||
    %% Stewart Object
 | 
			
		||||
    stewart = struct();
 | 
			
		||||
    stewart.h        = opts.height;   % Total height of the platform [mm]
 | 
			
		||||
    stewart.jacobian = opts.jacobian; % distance from the center of the top platform
 | 
			
		||||
                                      % where the jacobian is computed [mm]
 | 
			
		||||
 | 
			
		||||
    %% Bottom Plate
 | 
			
		||||
    BP = struct();
 | 
			
		||||
 | 
			
		||||
    BP.rad.int   = 0;    % Internal Radius [mm]
 | 
			
		||||
    BP.rad.ext   = 150;  % External Radius [mm]
 | 
			
		||||
    BP.thickness = 10;   % Thickness [mm]
 | 
			
		||||
    BP.leg.rad   = 100;  % Radius where the legs articulations are positionned [mm]
 | 
			
		||||
    BP.leg.ang   = 5;    % Angle Offset [deg]
 | 
			
		||||
    BP.density   = opts.density; % Density of the material [kg/m3]
 | 
			
		||||
    BP.color     = [0.7 0.7 0.7]; % Color [rgb]
 | 
			
		||||
    BP.shape     = [BP.rad.int BP.thickness; BP.rad.int 0; BP.rad.ext 0; BP.rad.ext BP.thickness];
 | 
			
		||||
 | 
			
		||||
    %% Top Plate
 | 
			
		||||
    TP = struct();
 | 
			
		||||
 | 
			
		||||
    TP.rad.int   = 0;    % Internal Radius [mm]
 | 
			
		||||
    TP.rad.ext   = 100;  % Internal Radius [mm]
 | 
			
		||||
    TP.thickness = 10;   % Thickness [mm]
 | 
			
		||||
    TP.leg.rad   = 90;   % Radius where the legs articulations are positionned [mm]
 | 
			
		||||
    TP.leg.ang   = 5;    % Angle Offset [deg]
 | 
			
		||||
    TP.density   = opts.density; % Density of the material [kg/m3]
 | 
			
		||||
    TP.color     = [0.7 0.7 0.7]; % Color [rgb]
 | 
			
		||||
    TP.shape     = [TP.rad.int TP.thickness; TP.rad.int 0; TP.rad.ext 0; TP.rad.ext TP.thickness];
 | 
			
		||||
 | 
			
		||||
    %% Leg
 | 
			
		||||
    Leg = struct();
 | 
			
		||||
 | 
			
		||||
    Leg.stroke     = 80e-6; % Maximum Stroke of each leg [m]
 | 
			
		||||
    if strcmp(opts.actuator, 'piezo')
 | 
			
		||||
        Leg.k.ax = 1e7; % Stiffness of each leg [N/m]
 | 
			
		||||
        Leg.c.ax = 500; % [N/(m/s)]
 | 
			
		||||
    elseif strcmp(opts.actuator, 'lorentz')
 | 
			
		||||
        Leg.k.ax = 1e4; % Stiffness of each leg [N/m]
 | 
			
		||||
        Leg.c.ax = 200; % [N/(m/s)]
 | 
			
		||||
   elseif isnumeric(opts.actuator)
 | 
			
		||||
        Leg.k.ax = opts.actuator; % Stiffness of each leg [N/m]
 | 
			
		||||
        Leg.c.ax = 100;           % [N/(m/s)]
 | 
			
		||||
   else
 | 
			
		||||
        error('opts.actuator should be piezo or lorentz or numeric value');
 | 
			
		||||
    end
 | 
			
		||||
    Leg.rad.bottom = 12;   % Radius of the cylinder of the bottom part [mm]
 | 
			
		||||
    Leg.rad.top    = 10;   % Radius of the cylinder of the top part [mm]
 | 
			
		||||
    Leg.density    = opts.density; % Density of the material [kg/m3]
 | 
			
		||||
    Leg.color.bottom  = [0.5 0.5 0.5]; % Color [rgb]
 | 
			
		||||
    Leg.color.top     = [0.5 0.5 0.5]; % Color [rgb]
 | 
			
		||||
 | 
			
		||||
    Leg.sphere.bottom = Leg.rad.bottom; % Size of the sphere at the end of the leg [mm]
 | 
			
		||||
    Leg.sphere.top    = Leg.rad.top; % Size of the sphere at the end of the leg [mm]
 | 
			
		||||
 | 
			
		||||
    %% Sphere
 | 
			
		||||
    SP = struct();
 | 
			
		||||
 | 
			
		||||
    SP.height.bottom  = 15; % [mm]
 | 
			
		||||
    SP.height.top     = 15; % [mm]
 | 
			
		||||
    SP.density.bottom = opts.density; % [kg/m^3]
 | 
			
		||||
    SP.density.top    = opts.density; % [kg/m^3]
 | 
			
		||||
    SP.color.bottom   = [0.7 0.7 0.7]; % [rgb]
 | 
			
		||||
    SP.color.top      = [0.7 0.7 0.7]; % [rgb]
 | 
			
		||||
    SP.k.ax           = 0; % [N*m/deg]
 | 
			
		||||
    SP.c.ax           = 0; % [N*m/deg]
 | 
			
		||||
 | 
			
		||||
    SP.thickness.bottom = SP.height.bottom-Leg.sphere.bottom; % [mm]
 | 
			
		||||
    SP.thickness.top    = SP.height.top-Leg.sphere.top; % [mm]
 | 
			
		||||
    SP.rad.bottom       = Leg.sphere.bottom; % [mm]
 | 
			
		||||
    SP.rad.top          = Leg.sphere.top; % [mm]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    %%
 | 
			
		||||
    Leg.support.bottom = [0 SP.thickness.bottom; 0 0; SP.rad.bottom 0; SP.rad.bottom SP.height.bottom];
 | 
			
		||||
    Leg.support.top    = [0 SP.thickness.top; 0 0; SP.rad.top 0; SP.rad.top SP.height.top];
 | 
			
		||||
 | 
			
		||||
    %%
 | 
			
		||||
    stewart.BP = BP;
 | 
			
		||||
    stewart.TP = TP;
 | 
			
		||||
    stewart.Leg = Leg;
 | 
			
		||||
    stewart.SP = SP;
 | 
			
		||||
 | 
			
		||||
    %%
 | 
			
		||||
    stewart = initializeParameters(stewart);
 | 
			
		||||
 | 
			
		||||
    %%
 | 
			
		||||
    save('./mat/stewart.mat', 'stewart')
 | 
			
		||||
 | 
			
		||||
    %% ==============================================================
 | 
			
		||||
    %  Additional Functions
 | 
			
		||||
    % ===============================================================
 | 
			
		||||
 | 
			
		||||
    %% Initialize Parameters
 | 
			
		||||
    function [stewart] = initializeParameters(stewart)
 | 
			
		||||
        %% Connection points on base and top plate w.r.t. World frame at the center of the base plate
 | 
			
		||||
        stewart.pos_base = zeros(6, 3);
 | 
			
		||||
        stewart.pos_top = zeros(6, 3);
 | 
			
		||||
 | 
			
		||||
        alpha_b = stewart.BP.leg.ang*pi/180; % angle de décalage par rapport à 120 deg (pour positionner les supports bases)
 | 
			
		||||
        alpha_t = stewart.TP.leg.ang*pi/180; % +- offset angle from 120 degree spacing on top
 | 
			
		||||
 | 
			
		||||
        % Height [m] TODO
 | 
			
		||||
        height = (stewart.h-stewart.BP.thickness-stewart.TP.thickness-stewart.Leg.sphere.bottom-stewart.Leg.sphere.top-stewart.SP.thickness.bottom-stewart.SP.thickness.top)*0.001;
 | 
			
		||||
 | 
			
		||||
        radius_b = stewart.BP.leg.rad*0.001; % rayon emplacement support base
 | 
			
		||||
        radius_t = stewart.TP.leg.rad*0.001; % top radius in meters
 | 
			
		||||
 | 
			
		||||
        for i = 1:3
 | 
			
		||||
            % base points
 | 
			
		||||
            angle_m_b = (2*pi/3)* (i-1) - alpha_b;
 | 
			
		||||
            angle_p_b = (2*pi/3)* (i-1) + alpha_b;
 | 
			
		||||
            stewart.pos_base(2*i-1,:) =  [radius_b*cos(angle_m_b), radius_b*sin(angle_m_b), 0.0];
 | 
			
		||||
            stewart.pos_base(2*i,:) = [radius_b*cos(angle_p_b), radius_b*sin(angle_p_b), 0.0];
 | 
			
		||||
 | 
			
		||||
            % top points
 | 
			
		||||
            % Top points are 60 degrees offset
 | 
			
		||||
            angle_m_t = (2*pi/3)* (i-1) - alpha_t + 2*pi/6;
 | 
			
		||||
            angle_p_t = (2*pi/3)* (i-1) + alpha_t + 2*pi/6;
 | 
			
		||||
            stewart.pos_top(2*i-1,:) = [radius_t*cos(angle_m_t), radius_t*sin(angle_m_t), height];
 | 
			
		||||
            stewart.pos_top(2*i,:) = [radius_t*cos(angle_p_t), radius_t*sin(angle_p_t), height];
 | 
			
		||||
        end
 | 
			
		||||
 | 
			
		||||
        % permute pos_top points so that legs are end points of base and top points
 | 
			
		||||
        stewart.pos_top = [stewart.pos_top(6,:); stewart.pos_top(1:5,:)]; %6th point on top connects to 1st on bottom
 | 
			
		||||
        stewart.pos_top_tranform = stewart.pos_top - height*[zeros(6, 2),ones(6, 1)];
 | 
			
		||||
 | 
			
		||||
        %% leg vectors
 | 
			
		||||
        legs = stewart.pos_top - stewart.pos_base;
 | 
			
		||||
        leg_length = zeros(6, 1);
 | 
			
		||||
        leg_vectors = zeros(6, 3);
 | 
			
		||||
        for i = 1:6
 | 
			
		||||
            leg_length(i) = norm(legs(i,:));
 | 
			
		||||
            leg_vectors(i,:)  = legs(i,:) / leg_length(i);
 | 
			
		||||
        end
 | 
			
		||||
 | 
			
		||||
        stewart.Leg.lenght = 1000*leg_length(1)/1.5;
 | 
			
		||||
        stewart.Leg.shape.bot = [0 0; ...
 | 
			
		||||
                            stewart.Leg.rad.bottom 0; ...
 | 
			
		||||
                            stewart.Leg.rad.bottom stewart.Leg.lenght; ...
 | 
			
		||||
                            stewart.Leg.rad.top stewart.Leg.lenght; ...
 | 
			
		||||
                            stewart.Leg.rad.top 0.2*stewart.Leg.lenght; ...
 | 
			
		||||
                            0 0.2*stewart.Leg.lenght];
 | 
			
		||||
 | 
			
		||||
        %% Calculate revolute and cylindrical axes
 | 
			
		||||
        rev1 = zeros(6, 3);
 | 
			
		||||
        rev2 = zeros(6, 3);
 | 
			
		||||
        cyl1 = zeros(6, 3);
 | 
			
		||||
        for i = 1:6
 | 
			
		||||
            rev1(i,:) = cross(leg_vectors(i,:), [0 0 1]);
 | 
			
		||||
            rev1(i,:) = rev1(i,:) / norm(rev1(i,:));
 | 
			
		||||
 | 
			
		||||
            rev2(i,:) = - cross(rev1(i,:), leg_vectors(i,:));
 | 
			
		||||
            rev2(i,:) = rev2(i,:) / norm(rev2(i,:));
 | 
			
		||||
 | 
			
		||||
            cyl1(i,:) = leg_vectors(i,:);
 | 
			
		||||
        end
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        %% Coordinate systems
 | 
			
		||||
        stewart.lower_leg = struct('rotation', eye(3));
 | 
			
		||||
        stewart.upper_leg = struct('rotation', eye(3));
 | 
			
		||||
 | 
			
		||||
        for i = 1:6
 | 
			
		||||
            stewart.lower_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
 | 
			
		||||
            stewart.upper_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
 | 
			
		||||
        end
 | 
			
		||||
 | 
			
		||||
        %% Position Matrix
 | 
			
		||||
        % TODO
 | 
			
		||||
        stewart.M_pos_base = stewart.pos_base + (height+(stewart.TP.thickness+stewart.Leg.sphere.top+stewart.SP.thickness.top+stewart.jacobian)*1e-3)*[zeros(6, 2),ones(6, 1)];
 | 
			
		||||
 | 
			
		||||
        %% Compute Jacobian Matrix
 | 
			
		||||
        % TODO
 | 
			
		||||
%         aa = stewart.pos_top_tranform + (stewart.jacobian - stewart.TP.thickness - stewart.SP.height.top)*1e-3*[zeros(6, 2),ones(6, 1)];
 | 
			
		||||
        bb = stewart.pos_top_tranform - (stewart.TP.thickness + stewart.SP.height.top)*1e-3*[zeros(6, 2),ones(6, 1)];
 | 
			
		||||
        bb = bb - stewart.jacobian*1e-3*[zeros(6, 2),ones(6, 1)];
 | 
			
		||||
        stewart.J = getJacobianMatrix(leg_vectors', bb');
 | 
			
		||||
        
 | 
			
		||||
        stewart.K = stewart.Leg.k.ax*stewart.J'*stewart.J;
 | 
			
		||||
    end
 | 
			
		||||
 | 
			
		||||
    %% Compute the Jacobian Matrix
 | 
			
		||||
    function J  = getJacobianMatrix(RM, M_pos_base)
 | 
			
		||||
        % RM         - [3x6] unit vector of each leg in the fixed frame
 | 
			
		||||
        % M_pos_base - [3x6] vector of the leg connection at the top platform location in the fixed frame
 | 
			
		||||
        J = zeros(6);
 | 
			
		||||
 | 
			
		||||
        J(:, 1:3) = RM';
 | 
			
		||||
        J(:, 4:6) = cross(M_pos_base, RM)';
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
@@ -1,92 +0,0 @@
 | 
			
		||||
function [stewart] = initializeMicroHexapod()
 | 
			
		||||
    %% Stewart Object
 | 
			
		||||
    stewart = struct();
 | 
			
		||||
    stewart.h        = 350; % Total height of the platform [mm]
 | 
			
		||||
    stewart.jacobian = 435; % Point where the Jacobian is computed => Center of rotation [mm]
 | 
			
		||||
 | 
			
		||||
    %% Bottom Plate
 | 
			
		||||
    BP = struct();
 | 
			
		||||
 | 
			
		||||
    BP.rad.int   = 110;   % Internal Radius [mm]
 | 
			
		||||
    BP.rad.ext   = 207.5; % External Radius [mm]
 | 
			
		||||
    BP.thickness = 26;    % Thickness [mm]
 | 
			
		||||
    BP.leg.rad   = 175.5; % Radius where the legs articulations are positionned [mm]
 | 
			
		||||
    BP.leg.ang   = 9.5;   % Angle Offset [deg]
 | 
			
		||||
    BP.density   = 8000;  % Density of the material [kg/m^3]
 | 
			
		||||
    BP.color     = [0.6 0.6 0.6]; % Color [rgb]
 | 
			
		||||
    BP.shape     = [BP.rad.int BP.thickness; BP.rad.int 0; BP.rad.ext 0; BP.rad.ext BP.thickness];
 | 
			
		||||
 | 
			
		||||
    %% Top Plate
 | 
			
		||||
    TP = struct();
 | 
			
		||||
 | 
			
		||||
    TP.rad.int   = 82;   % Internal Radius [mm]
 | 
			
		||||
    TP.rad.ext   = 150;  % Internal Radius [mm]
 | 
			
		||||
    TP.thickness = 26;   % Thickness [mm]
 | 
			
		||||
    TP.leg.rad   = 118;  % Radius where the legs articulations are positionned [mm]
 | 
			
		||||
    TP.leg.ang   = 12.1; % Angle Offset [deg]
 | 
			
		||||
    TP.density   = 8000; % Density of the material [kg/m^3]
 | 
			
		||||
    TP.color     = [0.6 0.6 0.6]; % Color [rgb]
 | 
			
		||||
    TP.shape     = [TP.rad.int TP.thickness; TP.rad.int 0; TP.rad.ext 0; TP.rad.ext TP.thickness];
 | 
			
		||||
 | 
			
		||||
    %% Leg
 | 
			
		||||
    Leg = struct(); 
 | 
			
		||||
 | 
			
		||||
    Leg.stroke     = 10e-3; % Maximum Stroke of each leg [m]
 | 
			
		||||
    Leg.k.ax       = 5e7;   % Stiffness of each leg [N/m]
 | 
			
		||||
    Leg.ksi.ax     = 3;     % Maximum amplification at resonance []
 | 
			
		||||
    Leg.rad.bottom = 25;    % Radius of the cylinder of the bottom part [mm]
 | 
			
		||||
    Leg.rad.top    = 17;    % Radius of the cylinder of the top part [mm]
 | 
			
		||||
    Leg.density    = 8000;  % Density of the material [kg/m^3]
 | 
			
		||||
    Leg.color.bottom  = [0.5 0.5 0.5]; % Color [rgb]
 | 
			
		||||
    Leg.color.top     = [0.5 0.5 0.5]; % Color [rgb]
 | 
			
		||||
 | 
			
		||||
    Leg.sphere.bottom = Leg.rad.bottom; % Size of the sphere at the end of the leg [mm]
 | 
			
		||||
    Leg.sphere.top    = Leg.rad.top; % Size of the sphere at the end of the leg [mm]
 | 
			
		||||
    Leg.m             = TP.density*((pi*(TP.rad.ext/1000)^2)*(TP.thickness/1000)-(pi*(TP.rad.int/1000^2))*(TP.thickness/1000))/6; % TODO [kg]
 | 
			
		||||
    Leg = updateDamping(Leg);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    %% Sphere
 | 
			
		||||
    SP = struct();
 | 
			
		||||
 | 
			
		||||
    SP.height.bottom  = 27; % [mm]
 | 
			
		||||
    SP.height.top     = 27; % [mm]
 | 
			
		||||
    SP.density.bottom = 8000; % [kg/m^3]
 | 
			
		||||
    SP.density.top    = 8000; % [kg/m^3]
 | 
			
		||||
    SP.color.bottom   = [0.6 0.6 0.6]; % [rgb]
 | 
			
		||||
    SP.color.top      = [0.6 0.6 0.6]; % [rgb]
 | 
			
		||||
    SP.k.ax           = 0; % [N*m/deg]
 | 
			
		||||
    SP.ksi.ax         = 10;
 | 
			
		||||
 | 
			
		||||
    SP.thickness.bottom = SP.height.bottom-Leg.sphere.bottom; % [mm]
 | 
			
		||||
    SP.thickness.top    = SP.height.top-Leg.sphere.top; % [mm]
 | 
			
		||||
    SP.rad.bottom       = Leg.sphere.bottom; % [mm]
 | 
			
		||||
    SP.rad.top          = Leg.sphere.top; % [mm]
 | 
			
		||||
    SP.m                = SP.density.bottom*2*pi*((SP.rad.bottom*1e-3)^2)*(SP.height.bottom*1e-3); % TODO [kg]
 | 
			
		||||
 | 
			
		||||
    SP = updateDamping(SP);
 | 
			
		||||
 | 
			
		||||
    %%
 | 
			
		||||
    Leg.support.bottom = [0 SP.thickness.bottom; 0 0; SP.rad.bottom 0; SP.rad.bottom SP.height.bottom];
 | 
			
		||||
    Leg.support.top    = [0 SP.thickness.top; 0 0; SP.rad.top 0; SP.rad.top SP.height.top];
 | 
			
		||||
 | 
			
		||||
    %%
 | 
			
		||||
    stewart.BP = BP;
 | 
			
		||||
    stewart.TP = TP;
 | 
			
		||||
    stewart.Leg = Leg;
 | 
			
		||||
    stewart.SP = SP;
 | 
			
		||||
 | 
			
		||||
    %%
 | 
			
		||||
    stewart = initializeParameters(stewart);
 | 
			
		||||
    
 | 
			
		||||
    %%
 | 
			
		||||
    save('./mat/hexapod.mat', 'stewart');
 | 
			
		||||
 | 
			
		||||
    %%
 | 
			
		||||
    function element = updateDamping(element)
 | 
			
		||||
        field = fieldnames(element.k);
 | 
			
		||||
        for i = 1:length(field)
 | 
			
		||||
            element.c.(field{i}) = 1/element.ksi.(field{i})*sqrt(element.k.(field{i})/element.m);
 | 
			
		||||
        end
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
@@ -1,93 +0,0 @@
 | 
			
		||||
function [stewart] = initializeNanoHexapod()
 | 
			
		||||
    %% Stewart Object
 | 
			
		||||
    stewart = struct();
 | 
			
		||||
    stewart.h        = 90;    % Total height of the platform [mm]
 | 
			
		||||
    stewart.jacobian = 174.5; % Point where the Jacobian is computed => Center of rotation [mm]
 | 
			
		||||
 | 
			
		||||
    %% Bottom Plate
 | 
			
		||||
    BP = struct();
 | 
			
		||||
 | 
			
		||||
    BP.rad.int   = 0;   % Internal Radius [mm]
 | 
			
		||||
    BP.rad.ext   = 150; % External Radius [mm]
 | 
			
		||||
    BP.thickness = 10;  % Thickness [mm]
 | 
			
		||||
    BP.leg.rad   = 100; % Radius where the legs articulations are positionned [mm]
 | 
			
		||||
    BP.leg.ang   = 5;   % Angle Offset [deg]
 | 
			
		||||
    BP.density   = 8000;% Density of the material [kg/m^3]
 | 
			
		||||
    BP.color     = [0.7 0.7 0.7]; % Color [rgb]
 | 
			
		||||
    BP.shape     = [BP.rad.int BP.thickness; BP.rad.int 0; BP.rad.ext 0; BP.rad.ext BP.thickness];
 | 
			
		||||
 | 
			
		||||
    %% Top Plate
 | 
			
		||||
    TP = struct();
 | 
			
		||||
 | 
			
		||||
    TP.rad.int   = 0;   % Internal Radius [mm]
 | 
			
		||||
    TP.rad.ext   = 100; % Internal Radius [mm]
 | 
			
		||||
    TP.thickness = 10;  % Thickness [mm]
 | 
			
		||||
    TP.leg.rad   = 90;  % Radius where the legs articulations are positionned [mm]
 | 
			
		||||
    TP.leg.ang   = 5;   % Angle Offset [deg]
 | 
			
		||||
    TP.density   = 8000;% Density of the material [kg/m^3]
 | 
			
		||||
    TP.color     = [0.7 0.7 0.7]; % Color [rgb]
 | 
			
		||||
    TP.shape     = [TP.rad.int TP.thickness; TP.rad.int 0; TP.rad.ext 0; TP.rad.ext TP.thickness];
 | 
			
		||||
 | 
			
		||||
    %% Leg
 | 
			
		||||
    Leg = struct(); 
 | 
			
		||||
 | 
			
		||||
    Leg.stroke     = 80e-6; % Maximum Stroke of each leg [m]
 | 
			
		||||
    Leg.k.ax       = 5e7;   % Stiffness of each leg [N/m]
 | 
			
		||||
    Leg.ksi.ax     = 10;    % Maximum amplification at resonance []
 | 
			
		||||
    Leg.rad.bottom = 12;    % Radius of the cylinder of the bottom part [mm]
 | 
			
		||||
    Leg.rad.top    = 10;    % Radius of the cylinder of the top part [mm]
 | 
			
		||||
    Leg.density    = 8000;  % Density of the material [kg/m^3]
 | 
			
		||||
    Leg.color.bottom  = [0.5 0.5 0.5]; % Color [rgb]
 | 
			
		||||
    Leg.color.top     = [0.5 0.5 0.5]; % Color [rgb]
 | 
			
		||||
 | 
			
		||||
    Leg.sphere.bottom = Leg.rad.bottom; % Size of the sphere at the end of the leg [mm]
 | 
			
		||||
    Leg.sphere.top    = Leg.rad.top; % Size of the sphere at the end of the leg [mm]
 | 
			
		||||
    Leg.m             = TP.density*((pi*(TP.rad.ext/1000)^2)*(TP.thickness/1000)-(pi*(TP.rad.int/1000^2))*(TP.thickness/1000))/6; % TODO [kg]
 | 
			
		||||
    Leg = updateDamping(Leg);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    %% Sphere
 | 
			
		||||
    SP = struct();
 | 
			
		||||
 | 
			
		||||
    SP.height.bottom  = 15; % [mm]
 | 
			
		||||
    SP.height.top     = 15; % [mm]
 | 
			
		||||
    SP.density.bottom = 8000; % [kg/m^3]
 | 
			
		||||
    SP.density.top    = 8000; % [kg/m^3]
 | 
			
		||||
    SP.color.bottom   = [0.7 0.7 0.7]; % [rgb]
 | 
			
		||||
    SP.color.top      = [0.7 0.7 0.7]; % [rgb]
 | 
			
		||||
    SP.k.ax           = 0; % [N*m/deg]
 | 
			
		||||
    SP.ksi.ax         = 3;
 | 
			
		||||
 | 
			
		||||
    SP.thickness.bottom = SP.height.bottom-Leg.sphere.bottom; % [mm]
 | 
			
		||||
    SP.thickness.top    = SP.height.top-Leg.sphere.top; % [mm]
 | 
			
		||||
    SP.rad.bottom       = Leg.sphere.bottom; % [mm]
 | 
			
		||||
    SP.rad.top          = Leg.sphere.top; % [mm]
 | 
			
		||||
    SP.m                = SP.density.bottom*2*pi*((SP.rad.bottom*1e-3)^2)*(SP.height.bottom*1e-3); % TODO [kg]
 | 
			
		||||
 | 
			
		||||
    SP = updateDamping(SP);
 | 
			
		||||
 | 
			
		||||
    %%
 | 
			
		||||
    Leg.support.bottom = [0 SP.thickness.bottom; 0 0; SP.rad.bottom 0; SP.rad.bottom SP.height.bottom];
 | 
			
		||||
    Leg.support.top    = [0 SP.thickness.top; 0 0; SP.rad.top 0; SP.rad.top SP.height.top];
 | 
			
		||||
 | 
			
		||||
    %%
 | 
			
		||||
    stewart.BP = BP;
 | 
			
		||||
    stewart.TP = TP;
 | 
			
		||||
    stewart.Leg = Leg;
 | 
			
		||||
    stewart.SP = SP;
 | 
			
		||||
 | 
			
		||||
    %%
 | 
			
		||||
    stewart = initializeParameters(stewart);
 | 
			
		||||
 | 
			
		||||
    %%
 | 
			
		||||
    save('./mat/stewart.mat', 'stewart')
 | 
			
		||||
 | 
			
		||||
    %%
 | 
			
		||||
    function element = updateDamping(element)
 | 
			
		||||
        field = fieldnames(element.k);
 | 
			
		||||
        for i = 1:length(field)
 | 
			
		||||
            element.c.(field{i}) = 1/element.ksi.(field{i})*sqrt(element.k.(field{i})/element.m);
 | 
			
		||||
        end
 | 
			
		||||
    end
 | 
			
		||||
 | 
			
		||||
end
 | 
			
		||||
@@ -1,80 +0,0 @@
 | 
			
		||||
function [stewart] = initializeParameters(stewart)
 | 
			
		||||
    %% Connection points on base and top plate w.r.t. World frame at the center of the base plate
 | 
			
		||||
    stewart.pos_base = zeros(6, 3);
 | 
			
		||||
    stewart.pos_top = zeros(6, 3);
 | 
			
		||||
 | 
			
		||||
    alpha_b = stewart.BP.leg.ang*pi/180; % angle de d<EFBFBD>calage par rapport <EFBFBD> 120 deg (pour positionner les supports bases)
 | 
			
		||||
    alpha_t = stewart.TP.leg.ang*pi/180; % +- offset angle from 120 degree spacing on top
 | 
			
		||||
 | 
			
		||||
    height = (stewart.h-stewart.BP.thickness-stewart.TP.thickness-stewart.Leg.sphere.bottom-stewart.Leg.sphere.top-stewart.SP.thickness.bottom-stewart.SP.thickness.top)*0.001; % TODO
 | 
			
		||||
 | 
			
		||||
    radius_b = stewart.BP.leg.rad*0.001; % rayon emplacement support base
 | 
			
		||||
    radius_t = stewart.TP.leg.rad*0.001; % top radius in meters
 | 
			
		||||
 | 
			
		||||
    for i = 1:3
 | 
			
		||||
      % base points
 | 
			
		||||
      angle_m_b = (2*pi/3)* (i-1) - alpha_b;
 | 
			
		||||
      angle_p_b = (2*pi/3)* (i-1) + alpha_b;
 | 
			
		||||
      stewart.pos_base(2*i-1,:) =  [radius_b*cos(angle_m_b), radius_b*sin(angle_m_b), 0.0];
 | 
			
		||||
      stewart.pos_base(2*i,:) = [radius_b*cos(angle_p_b), radius_b*sin(angle_p_b), 0.0];
 | 
			
		||||
 | 
			
		||||
      % top points
 | 
			
		||||
      % Top points are 60 degrees offset
 | 
			
		||||
      angle_m_t = (2*pi/3)* (i-1) - alpha_t + 2*pi/6;
 | 
			
		||||
      angle_p_t = (2*pi/3)* (i-1) + alpha_t + 2*pi/6;
 | 
			
		||||
      stewart.pos_top(2*i-1,:) = [radius_t*cos(angle_m_t), radius_t*sin(angle_m_t), height];
 | 
			
		||||
      stewart.pos_top(2*i,:) = [radius_t*cos(angle_p_t), radius_t*sin(angle_p_t), height];
 | 
			
		||||
    end
 | 
			
		||||
 | 
			
		||||
    % permute pos_top points so that legs are end points of base and top points
 | 
			
		||||
    stewart.pos_top = [stewart.pos_top(6,:); stewart.pos_top(1:5,:)]; %6th point on top connects to 1st on bottom
 | 
			
		||||
    stewart.pos_top_tranform = stewart.pos_top - height*[zeros(6, 2),ones(6, 1)];
 | 
			
		||||
 | 
			
		||||
    %% leg vectors
 | 
			
		||||
    legs = stewart.pos_top - stewart.pos_base;
 | 
			
		||||
    leg_length = zeros(6, 1);
 | 
			
		||||
    leg_vectors = zeros(6, 3);
 | 
			
		||||
    for i = 1:6
 | 
			
		||||
      leg_length(i) = norm(legs(i,:));
 | 
			
		||||
      leg_vectors(i,:)  = legs(i,:) / leg_length(i);
 | 
			
		||||
    end
 | 
			
		||||
 | 
			
		||||
    stewart.Leg.lenght = 1000*leg_length(1)/1.5;
 | 
			
		||||
    stewart.Leg.shape.bot = [0 0; ...
 | 
			
		||||
                             stewart.Leg.rad.bottom 0; ...
 | 
			
		||||
                             stewart.Leg.rad.bottom stewart.Leg.lenght; ...
 | 
			
		||||
                             stewart.Leg.rad.top stewart.Leg.lenght; ...
 | 
			
		||||
                             stewart.Leg.rad.top 0.2*stewart.Leg.lenght; ...
 | 
			
		||||
                             0 0.2*stewart.Leg.lenght];
 | 
			
		||||
 | 
			
		||||
    %% Calculate revolute and cylindrical axes
 | 
			
		||||
    rev1 = zeros(6, 3);
 | 
			
		||||
    rev2 = zeros(6, 3);
 | 
			
		||||
    cyl1 = zeros(6, 3);
 | 
			
		||||
    for i = 1:6
 | 
			
		||||
      rev1(i,:) = cross(leg_vectors(i,:), [0 0 1]);
 | 
			
		||||
      rev1(i,:) = rev1(i,:) / norm(rev1(i,:));
 | 
			
		||||
 | 
			
		||||
      rev2(i,:) = - cross(rev1(i,:), leg_vectors(i,:));
 | 
			
		||||
      rev2(i,:) = rev2(i,:) / norm(rev2(i,:));
 | 
			
		||||
 | 
			
		||||
      cyl1(i,:) = leg_vectors(i,:);
 | 
			
		||||
    end
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    %% Coordinate systems
 | 
			
		||||
    stewart.lower_leg = struct('rotation', eye(3));
 | 
			
		||||
    stewart.upper_leg = struct('rotation', eye(3));
 | 
			
		||||
 | 
			
		||||
    for i = 1:6
 | 
			
		||||
      stewart.lower_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
 | 
			
		||||
      stewart.upper_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
 | 
			
		||||
    end
 | 
			
		||||
 | 
			
		||||
    %% Position Matrix
 | 
			
		||||
    stewart.M_pos_base = stewart.pos_base + (height+(stewart.TP.thickness+stewart.Leg.sphere.top+stewart.SP.thickness.top+stewart.jacobian)*1e-3)*[zeros(6, 2),ones(6, 1)];
 | 
			
		||||
 | 
			
		||||
    %% Compute Jacobian Matrix
 | 
			
		||||
    aa = stewart.pos_top_tranform + (stewart.jacobian - stewart.TP.thickness - stewart.SP.height.top)*1e-3*[zeros(6, 2),ones(6, 1)];
 | 
			
		||||
    stewart.J  = getJacobianMatrix(leg_vectors', aa');
 | 
			
		||||
end
 | 
			
		||||
@@ -1,10 +1,12 @@
 | 
			
		||||
function [] = initializeSample(opts_param)
 | 
			
		||||
    %% Default values for opts
 | 
			
		||||
    sample = struct('radius', 100,...
 | 
			
		||||
                    'height', 300,...
 | 
			
		||||
                    'mass',   50,...
 | 
			
		||||
                    'offset', 0,...
 | 
			
		||||
                    'color',  [0.9 0.1 0.1] ...
 | 
			
		||||
    sample = struct( ...
 | 
			
		||||
        'radius',     100, ... % radius of the cylinder [mm]
 | 
			
		||||
        'height',     300, ... % height of the cylinder [mm]
 | 
			
		||||
        'mass',       50,  ... % mass of the cylinder [kg]
 | 
			
		||||
        'measheight', 150, ... % measurement point z-offset [mm]
 | 
			
		||||
        'offset',     [0, 0, 0],   ... % offset position of the sample [mm]
 | 
			
		||||
        'color',      [0.9 0.1 0.1] ...
 | 
			
		||||
    );
 | 
			
		||||
 | 
			
		||||
    %% Populate opts with input parameters
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user