Add Compliance and Transmissibility computation
Change solid to rigid
This commit is contained in:
		
							
								
								
									
										83
									
								
								src/computeCompliance.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										83
									
								
								src/computeCompliance.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,83 @@
 | 
			
		||||
function [C, C_norm, freqs] = computeCompliance(args)
 | 
			
		||||
% computeCompliance -
 | 
			
		||||
%
 | 
			
		||||
% Syntax: [C, C_norm, freqs] = computeCompliance(args)
 | 
			
		||||
%
 | 
			
		||||
% Inputs:
 | 
			
		||||
%    - args - Structure with the following fields:
 | 
			
		||||
%        - plots [true/false] - Should plot the transmissilibty matrix and its Frobenius norm
 | 
			
		||||
%        - freqs [] - Frequency vector to estimate the Frobenius norm
 | 
			
		||||
%
 | 
			
		||||
% Outputs:
 | 
			
		||||
%    - C      [6x6 ss] - Compliance matrix
 | 
			
		||||
%    - C_norm [length(freqs)x1] - Frobenius norm of the Compliance matrix
 | 
			
		||||
%    - freqs  [length(freqs)x1] - Frequency vector in [Hz]
 | 
			
		||||
 | 
			
		||||
arguments
 | 
			
		||||
  args.plots logical {mustBeNumericOrLogical} = false
 | 
			
		||||
  args.freqs double {mustBeNumeric, mustBeNonnegative} = logspace(1,4,1000)
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
freqs = args.freqs;
 | 
			
		||||
 | 
			
		||||
%% Options for Linearized
 | 
			
		||||
options = linearizeOptions;
 | 
			
		||||
options.SampleTime = 0;
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'stewart_platform_model';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Disturbances/F_ext'],      1, 'openinput');  io_i = io_i + 1; % External forces [N, N*m]
 | 
			
		||||
io(io_i) = linio([mdl, '/Absolute Motion Sensor'],  1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad]
 | 
			
		||||
 | 
			
		||||
%% Run the linearization
 | 
			
		||||
C = linearize(mdl, io, options);
 | 
			
		||||
C.InputName  = {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'};
 | 
			
		||||
C.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
 | 
			
		||||
 | 
			
		||||
p_handle = zeros(6*6,1);
 | 
			
		||||
 | 
			
		||||
if args.plots
 | 
			
		||||
  fig = figure;
 | 
			
		||||
  for ix = 1:6
 | 
			
		||||
    for iy = 1:6
 | 
			
		||||
      p_handle((ix-1)*6 + iy) = subplot(6, 6, (ix-1)*6 + iy);
 | 
			
		||||
      hold on;
 | 
			
		||||
      plot(freqs, abs(squeeze(freqresp(C(ix, iy), freqs, 'Hz'))), 'k-');
 | 
			
		||||
      set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
      if ix < 6
 | 
			
		||||
          xticklabels({});
 | 
			
		||||
      end
 | 
			
		||||
      if iy > 1
 | 
			
		||||
          yticklabels({});
 | 
			
		||||
      end
 | 
			
		||||
    end
 | 
			
		||||
  end
 | 
			
		||||
 | 
			
		||||
  linkaxes(p_handle, 'xy')
 | 
			
		||||
  xlim([freqs(1), freqs(end)]);
 | 
			
		||||
 | 
			
		||||
  han = axes(fig, 'visible', 'off');
 | 
			
		||||
  han.XLabel.Visible = 'on';
 | 
			
		||||
  han.YLabel.Visible = 'on';
 | 
			
		||||
  xlabel(han, 'Frequency [Hz]');
 | 
			
		||||
  ylabel(han, 'Compliance [m/N, rad/(N*m)]');
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
freqs = args.freqs;
 | 
			
		||||
 | 
			
		||||
C_norm = zeros(length(freqs), 1);
 | 
			
		||||
 | 
			
		||||
for i = 1:length(freqs)
 | 
			
		||||
  C_norm(i) = sqrt(trace(freqresp(C, freqs(i), 'Hz')*freqresp(C, freqs(i), 'Hz')'));
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
if args.plots
 | 
			
		||||
  figure;
 | 
			
		||||
  plot(freqs, C_norm)
 | 
			
		||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
  xlabel('Frequency [Hz]');
 | 
			
		||||
  ylabel('Compliance - Frobenius Norm');
 | 
			
		||||
end
 | 
			
		||||
							
								
								
									
										84
									
								
								src/computeTransmissibility.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										84
									
								
								src/computeTransmissibility.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,84 @@
 | 
			
		||||
function [T, T_norm, freqs] = computeTransmissibility(args)
 | 
			
		||||
% computeTransmissibility -
 | 
			
		||||
%
 | 
			
		||||
% Syntax: [T, T_norm, freqs] = computeTransmissibility(args)
 | 
			
		||||
%
 | 
			
		||||
% Inputs:
 | 
			
		||||
%    - args - Structure with the following fields:
 | 
			
		||||
%        - plots [true/false] - Should plot the transmissilibty matrix and its Frobenius norm
 | 
			
		||||
%        - freqs [] - Frequency vector to estimate the Frobenius norm
 | 
			
		||||
%
 | 
			
		||||
% Outputs:
 | 
			
		||||
%    - T      [6x6 ss] - Transmissibility matrix
 | 
			
		||||
%    - T_norm [length(freqs)x1] - Frobenius norm of the Transmissibility matrix
 | 
			
		||||
%    - freqs  [length(freqs)x1] - Frequency vector in [Hz]
 | 
			
		||||
 | 
			
		||||
arguments
 | 
			
		||||
  args.plots logical {mustBeNumericOrLogical} = false
 | 
			
		||||
  args.freqs double {mustBeNumeric, mustBeNonnegative} = logspace(1,4,1000)
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
freqs = args.freqs;
 | 
			
		||||
 | 
			
		||||
%% Options for Linearized
 | 
			
		||||
options = linearizeOptions;
 | 
			
		||||
options.SampleTime = 0;
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'stewart_platform_model';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Disturbances/D_w'],        1, 'openinput');  io_i = io_i + 1; % Base Motion [m, rad]
 | 
			
		||||
io(io_i) = linio([mdl, '/Absolute Motion Sensor'],  1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad]
 | 
			
		||||
 | 
			
		||||
%% Run the linearization
 | 
			
		||||
T = linearize(mdl, io, options);
 | 
			
		||||
T.InputName = {'Wdx', 'Wdy', 'Wdz', 'Wrx', 'Wry', 'Wrz'};
 | 
			
		||||
T.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
 | 
			
		||||
 | 
			
		||||
p_handle = zeros(6*6,1);
 | 
			
		||||
 | 
			
		||||
if args.plots
 | 
			
		||||
  fig = figure;
 | 
			
		||||
  for ix = 1:6
 | 
			
		||||
    for iy = 1:6
 | 
			
		||||
      p_handle((ix-1)*6 + iy) = subplot(6, 6, (ix-1)*6 + iy);
 | 
			
		||||
      hold on;
 | 
			
		||||
      plot(freqs, abs(squeeze(freqresp(T(ix, iy), freqs, 'Hz'))), 'k-');
 | 
			
		||||
      set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
      if ix < 6
 | 
			
		||||
          xticklabels({});
 | 
			
		||||
      end
 | 
			
		||||
      if iy > 1
 | 
			
		||||
          yticklabels({});
 | 
			
		||||
      end
 | 
			
		||||
    end
 | 
			
		||||
  end
 | 
			
		||||
 | 
			
		||||
  linkaxes(p_handle, 'xy')
 | 
			
		||||
  xlim([freqs(1), freqs(end)]);
 | 
			
		||||
  ylim([1e-5, 1e2]);
 | 
			
		||||
 | 
			
		||||
  han = axes(fig, 'visible', 'off');
 | 
			
		||||
  han.XLabel.Visible = 'on';
 | 
			
		||||
  han.YLabel.Visible = 'on';
 | 
			
		||||
  ylabel(han, 'Frequency [Hz]');
 | 
			
		||||
  xlabel(han, 'Transmissibility [m/m]');
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
T_norm = zeros(length(freqs), 1);
 | 
			
		||||
 | 
			
		||||
for i = 1:length(freqs)
 | 
			
		||||
  T_norm(i) = sqrt(trace(freqresp(T, freqs(i), 'Hz')*freqresp(T, freqs(i), 'Hz')'));
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
T_norm = T_norm/sqrt(6);
 | 
			
		||||
 | 
			
		||||
if args.plots
 | 
			
		||||
  figure;
 | 
			
		||||
  plot(freqs, T_norm)
 | 
			
		||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
  xlabel('Frequency [Hz]');
 | 
			
		||||
  ylabel('Transmissibility - Frobenius Norm');
 | 
			
		||||
end
 | 
			
		||||
@@ -6,17 +6,19 @@ function [ground] = initializeGround(args)
 | 
			
		||||
% Inputs:
 | 
			
		||||
%    - args - Structure with the following fields:
 | 
			
		||||
%        - type - 'none', 'solid', 'flexible'
 | 
			
		||||
%        - rot_point [3x1] - Rotation point for the ground motion [m]
 | 
			
		||||
%        - K [3x1] - Translation Stiffness of the Ground [N/m]
 | 
			
		||||
%        - C [3x1] - Translation Damping of the Ground [N/(m/s)]
 | 
			
		||||
%
 | 
			
		||||
% Outputs:
 | 
			
		||||
%    - ground - Struture with the following properties:
 | 
			
		||||
%        - type - 1 (none), 2 (solid), 3 (flexible)
 | 
			
		||||
%        - type - 1 (none), 2 (rigid), 3 (flexible)
 | 
			
		||||
%        - K [3x1] - Translation Stiffness of the Ground [N/m]
 | 
			
		||||
%        - C [3x1] - Translation Damping of the Ground [N/(m/s)]
 | 
			
		||||
 | 
			
		||||
arguments
 | 
			
		||||
  args.type char {mustBeMember(args.type,{'none', 'solid', 'flexible'})} = 'none'
 | 
			
		||||
  args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'none'
 | 
			
		||||
  args.rot_point (3,1) double {mustBeNumeric} = zeros(3,1)
 | 
			
		||||
  args.K (3,1) double {mustBeNumeric, mustBeNonnegative} = 1e8*ones(3,1)
 | 
			
		||||
  args.C (3,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(3,1)
 | 
			
		||||
end
 | 
			
		||||
@@ -24,7 +26,7 @@ end
 | 
			
		||||
switch args.type
 | 
			
		||||
  case 'none'
 | 
			
		||||
    ground.type = 1;
 | 
			
		||||
  case 'solid'
 | 
			
		||||
  case 'rigid'
 | 
			
		||||
    ground.type = 2;
 | 
			
		||||
  case 'flexible'
 | 
			
		||||
    ground.type = 3;
 | 
			
		||||
@@ -32,3 +34,5 @@ end
 | 
			
		||||
 | 
			
		||||
ground.K = args.K;
 | 
			
		||||
ground.C = args.C;
 | 
			
		||||
 | 
			
		||||
ground.rot_point = args.rot_point;
 | 
			
		||||
 
 | 
			
		||||
@@ -5,7 +5,7 @@ function [payload] = initializePayload(args)
 | 
			
		||||
%
 | 
			
		||||
% Inputs:
 | 
			
		||||
%    - args - Structure with the following fields:
 | 
			
		||||
%        - type - 'none', 'solid', 'flexible', 'cartesian'
 | 
			
		||||
%        - type - 'none', 'rigid', 'flexible', 'cartesian'
 | 
			
		||||
%        - h [1x1] - Height of the CoM of the payload w.r.t {M} [m]
 | 
			
		||||
%                    This also the position where K and C are defined
 | 
			
		||||
%        - K [6x1] - Stiffness of the Payload [N/m, N/rad]
 | 
			
		||||
@@ -15,7 +15,7 @@ function [payload] = initializePayload(args)
 | 
			
		||||
%
 | 
			
		||||
% Outputs:
 | 
			
		||||
%    - payload - Struture with the following properties:
 | 
			
		||||
%        - type - 1 (none), 2 (solid), 3 (flexible)
 | 
			
		||||
%        - type - 1 (none), 2 (rigid), 3 (flexible)
 | 
			
		||||
%        - h [1x1] - Height of the CoM of the payload w.r.t {M} [m]
 | 
			
		||||
%        - K [6x1] - Stiffness of the Payload [N/m, N/rad]
 | 
			
		||||
%        - C [6x1] - Stiffness of the Payload [N/(m/s), N/(rad/s)]
 | 
			
		||||
@@ -23,7 +23,7 @@ function [payload] = initializePayload(args)
 | 
			
		||||
%        - I [3x3] - Inertia matrix for the Payload [kg*m2]
 | 
			
		||||
 | 
			
		||||
arguments
 | 
			
		||||
  args.type char {mustBeMember(args.type,{'none', 'solid', 'flexible', 'cartesian'})} = 'none'
 | 
			
		||||
  args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible', 'cartesian'})} = 'none'
 | 
			
		||||
  args.K (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e8*ones(6,1)
 | 
			
		||||
  args.C (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(6,1)
 | 
			
		||||
  args.h (1,1) double {mustBeNumeric, mustBeNonnegative} = 100e-3
 | 
			
		||||
@@ -34,7 +34,7 @@ end
 | 
			
		||||
switch args.type
 | 
			
		||||
  case 'none'
 | 
			
		||||
    payload.type = 1;
 | 
			
		||||
  case 'solid'
 | 
			
		||||
  case 'rigid'
 | 
			
		||||
    payload.type = 2;
 | 
			
		||||
  case 'flexible'
 | 
			
		||||
    payload.type = 3;
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user