Work on HAC-LAC, Control architectures
@ -4,7 +4,7 @@
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2020-02-27 jeu. 14:16 -->
|
||||
<!-- 2020-02-28 ven. 17:33 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
<title>Stewart Platform - Decentralized Active Damping</title>
|
||||
@ -249,25 +249,25 @@
|
||||
<li><a href="#orgd59c804">1. Inertial Control</a>
|
||||
<ul>
|
||||
<li><a href="#org5f749c8">1.1. Identification of the Dynamics</a></li>
|
||||
<li><a href="#orgd637197">1.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
|
||||
<li><a href="#orgd895eeb">1.3. Obtained Damping</a></li>
|
||||
<li><a href="#orgeaf5ef8">1.4. Conclusion</a></li>
|
||||
<li><a href="#org3014959">1.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
|
||||
<li><a href="#orga144352">1.3. Obtained Damping</a></li>
|
||||
<li><a href="#org004b094">1.4. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org74c7eb4">2. Integral Force Feedback</a>
|
||||
<ul>
|
||||
<li><a href="#orgcaa6199">2.1. Identification of the Dynamics with perfect Joints</a></li>
|
||||
<li><a href="#org1910546">2.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
|
||||
<li><a href="#org9e1f2e2">2.3. Obtained Damping</a></li>
|
||||
<li><a href="#org405813e">2.4. Conclusion</a></li>
|
||||
<li><a href="#org7313778">2.1. Identification of the Dynamics with perfect Joints</a></li>
|
||||
<li><a href="#org462c581">2.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
|
||||
<li><a href="#org943bf7b">2.3. Obtained Damping</a></li>
|
||||
<li><a href="#orga677c7d">2.4. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org08917d6">3. Direct Velocity Feedback</a>
|
||||
<ul>
|
||||
<li><a href="#org7313778">3.1. Identification of the Dynamics with perfect Joints</a></li>
|
||||
<li><a href="#org3014959">3.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
|
||||
<li><a href="#orga144352">3.3. Obtained Damping</a></li>
|
||||
<li><a href="#org004b094">3.4. Conclusion</a></li>
|
||||
<li><a href="#orgcd99b62">3.1. Identification of the Dynamics with perfect Joints</a></li>
|
||||
<li><a href="#orgd0f78f7">3.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
|
||||
<li><a href="#org3f64d96">3.3. Obtained Damping</a></li>
|
||||
<li><a href="#org8e1ece7">3.4. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org183f3f2">4. Compliance and Transmissibility Comparison</a>
|
||||
@ -330,6 +330,7 @@ stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</spa
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@ -365,8 +366,8 @@ The transfer function from actuator forces to force sensors is shown in Figure <
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgd637197" class="outline-3">
|
||||
<h3 id="orgd637197"><span class="section-number-3">1.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
|
||||
<div id="outline-container-org3014959" class="outline-3">
|
||||
<h3 id="org3014959"><span class="section-number-3">1.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
|
||||
<div class="outline-text-3" id="text-1-2">
|
||||
<p>
|
||||
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
|
||||
@ -402,8 +403,8 @@ The new dynamics from force actuator to force sensor is shown in Figure <a href=
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgd895eeb" class="outline-3">
|
||||
<h3 id="orgd895eeb"><span class="section-number-3">1.3</span> Obtained Damping</h3>
|
||||
<div id="outline-container-orga144352" class="outline-3">
|
||||
<h3 id="orga144352"><span class="section-number-3">1.3</span> Obtained Damping</h3>
|
||||
<div class="outline-text-3" id="text-1-3">
|
||||
<p>
|
||||
The control is a performed in a decentralized manner.
|
||||
@ -428,8 +429,8 @@ The root locus is shown in figure <a href="#org9af9e33">3</a>.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgeaf5ef8" class="outline-3">
|
||||
<h3 id="orgeaf5ef8"><span class="section-number-3">1.4</span> Conclusion</h3>
|
||||
<div id="outline-container-org004b094" class="outline-3">
|
||||
<h3 id="org004b094"><span class="section-number-3">1.4</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-1-4">
|
||||
<div class="important">
|
||||
<p>
|
||||
@ -460,8 +461,8 @@ To run the script, open the Simulink Project, and type <code>run active_damping_
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgcaa6199" class="outline-3">
|
||||
<h3 id="orgcaa6199"><span class="section-number-3">2.1</span> Identification of the Dynamics with perfect Joints</h3>
|
||||
<div id="outline-container-org7313778" class="outline-3">
|
||||
<h3 id="org7313778"><span class="section-number-3">2.1</span> Identification of the Dynamics with perfect Joints</h3>
|
||||
<div class="outline-text-3" id="text-2-1">
|
||||
<p>
|
||||
We first initialize the Stewart platform without joint stiffness.
|
||||
@ -484,11 +485,7 @@ stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</spa
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@ -496,11 +493,7 @@ payload = initializePayload(<span class="org-string">'type'</span>, <span class=
|
||||
And we identify the dynamics from force actuators to force sensors.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||||
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
@ -509,7 +502,7 @@ io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1,
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'Taum'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Force Sensor Outputs [N]</span>
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
G = linearize(mdl, io, options);
|
||||
G = linearize(mdl, io);
|
||||
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
||||
G.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>};
|
||||
</pre>
|
||||
@ -527,15 +520,15 @@ The transfer function from actuator forces to force sensors is shown in Figure <
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org1910546" class="outline-3">
|
||||
<h3 id="org1910546"><span class="section-number-3">2.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
|
||||
<div id="outline-container-org462c581" class="outline-3">
|
||||
<h3 id="org462c581"><span class="section-number-3">2.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
|
||||
<div class="outline-text-3" id="text-2-2">
|
||||
<p>
|
||||
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
|
||||
Gf = linearize(mdl, io, options);
|
||||
Gf = linearize(mdl, io);
|
||||
Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
||||
Gf.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>};
|
||||
</pre>
|
||||
@ -546,7 +539,7 @@ We now use the amplified actuators and re-identify the dynamics
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">stewart = initializeAmplifiedStrutDynamics(stewart);
|
||||
Ga = linearize(mdl, io, options);
|
||||
Ga = linearize(mdl, io);
|
||||
Ga.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
||||
Ga.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>};
|
||||
</pre>
|
||||
@ -564,8 +557,8 @@ The new dynamics from force actuator to force sensor is shown in Figure <a href=
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org9e1f2e2" class="outline-3">
|
||||
<h3 id="org9e1f2e2"><span class="section-number-3">2.3</span> Obtained Damping</h3>
|
||||
<div id="outline-container-org943bf7b" class="outline-3">
|
||||
<h3 id="org943bf7b"><span class="section-number-3">2.3</span> Obtained Damping</h3>
|
||||
<div class="outline-text-3" id="text-2-3">
|
||||
<p>
|
||||
The control is a performed in a decentralized manner.
|
||||
@ -597,8 +590,8 @@ The root locus is shown in figure <a href="#orge21bbea">6</a> and the obtained p
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org405813e" class="outline-3">
|
||||
<h3 id="org405813e"><span class="section-number-3">2.4</span> Conclusion</h3>
|
||||
<div id="outline-container-orga677c7d" class="outline-3">
|
||||
<h3 id="orga677c7d"><span class="section-number-3">2.4</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-2-4">
|
||||
<div class="important">
|
||||
<p>
|
||||
@ -630,8 +623,8 @@ To run the script, open the Simulink Project, and type <code>run active_damping_
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org7313778" class="outline-3">
|
||||
<h3 id="org7313778"><span class="section-number-3">3.1</span> Identification of the Dynamics with perfect Joints</h3>
|
||||
<div id="outline-container-orgcd99b62" class="outline-3">
|
||||
<h3 id="orgcd99b62"><span class="section-number-3">3.1</span> Identification of the Dynamics with perfect Joints</h3>
|
||||
<div class="outline-text-3" id="text-3-1">
|
||||
<p>
|
||||
We first initialize the Stewart platform without joint stiffness.
|
||||
@ -654,6 +647,7 @@ stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</spa
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@ -693,8 +687,8 @@ The transfer function from actuator forces to relative motion sensors is shown i
|
||||
</div>
|
||||
|
||||
|
||||
<div id="outline-container-org3014959" class="outline-3">
|
||||
<h3 id="org3014959"><span class="section-number-3">3.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
|
||||
<div id="outline-container-orgd0f78f7" class="outline-3">
|
||||
<h3 id="orgd0f78f7"><span class="section-number-3">3.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
|
||||
<div class="outline-text-3" id="text-3-2">
|
||||
<p>
|
||||
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
|
||||
@ -730,8 +724,8 @@ The new dynamics from force actuator to relative motion sensor is shown in Figur
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orga144352" class="outline-3">
|
||||
<h3 id="orga144352"><span class="section-number-3">3.3</span> Obtained Damping</h3>
|
||||
<div id="outline-container-org3f64d96" class="outline-3">
|
||||
<h3 id="org3f64d96"><span class="section-number-3">3.3</span> Obtained Damping</h3>
|
||||
<div class="outline-text-3" id="text-3-3">
|
||||
<p>
|
||||
The control is a performed in a decentralized manner.
|
||||
@ -756,8 +750,8 @@ The root locus is shown in figure <a href="#org277d60d">10</a>.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org004b094" class="outline-3">
|
||||
<h3 id="org004b094"><span class="section-number-3">3.4</span> Conclusion</h3>
|
||||
<div id="outline-container-org8e1ece7" class="outline-3">
|
||||
<h3 id="org8e1ece7"><span class="section-number-3">3.4</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-3-4">
|
||||
<div class="important">
|
||||
<p>
|
||||
@ -799,6 +793,7 @@ The rotation point of the ground is located at the origin of frame \(\{A\}\).
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
@ -822,7 +817,7 @@ Now, let’s identify the transmissibility and compliance for the Integral F
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'iff'</span>);
|
||||
G_iff = (2e4<span class="org-type">/</span>s)<span class="org-type">*</span>eye(6);
|
||||
K_iff = (1e4<span class="org-type">/</span>s)<span class="org-type">*</span>eye(6);
|
||||
|
||||
[T_iff, T_norm_iff, <span class="org-type">~</span>] = computeTransmissibility();
|
||||
[C_iff, C_norm_iff, <span class="org-type">~</span>] = computeCompliance();
|
||||
@ -834,7 +829,7 @@ And for the Direct Velocity Feedback.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'dvf'</span>);
|
||||
G_dvf = 1e4<span class="org-type">*</span>s<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>5000)<span class="org-type">*</span>eye(6);
|
||||
K_dvf = 1e4<span class="org-type">*</span>s<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>5000)<span class="org-type">*</span>eye(6);
|
||||
|
||||
[T_dvf, T_norm_dvf, <span class="org-type">~</span>] = computeTransmissibility();
|
||||
[C_dvf, C_norm_dvf, <span class="org-type">~</span>] = computeCompliance();
|
||||
@ -872,7 +867,7 @@ G_dvf = 1e4<span class="org-type">*</span>s<span class="org-type">/</span>(1<spa
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2020-02-27 jeu. 14:16</p>
|
||||
<p class="date">Created: 2020-02-28 ven. 17:33</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
370
docs/control-tracking.html
Normal file
@ -0,0 +1,370 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2020-02-28 ven. 17:37 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
<title>Stewart Platform - Tracking Control</title>
|
||||
<meta name="generator" content="Org mode" />
|
||||
<meta name="author" content="Dehaeze Thomas" />
|
||||
<style type="text/css">
|
||||
<!--/*--><![CDATA[/*><!--*/
|
||||
.title { text-align: center;
|
||||
margin-bottom: .2em; }
|
||||
.subtitle { text-align: center;
|
||||
font-size: medium;
|
||||
font-weight: bold;
|
||||
margin-top:0; }
|
||||
.todo { font-family: monospace; color: red; }
|
||||
.done { font-family: monospace; color: green; }
|
||||
.priority { font-family: monospace; color: orange; }
|
||||
.tag { background-color: #eee; font-family: monospace;
|
||||
padding: 2px; font-size: 80%; font-weight: normal; }
|
||||
.timestamp { color: #bebebe; }
|
||||
.timestamp-kwd { color: #5f9ea0; }
|
||||
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
|
||||
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
|
||||
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
|
||||
.underline { text-decoration: underline; }
|
||||
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
|
||||
p.verse { margin-left: 3%; }
|
||||
pre {
|
||||
border: 1px solid #ccc;
|
||||
box-shadow: 3px 3px 3px #eee;
|
||||
padding: 8pt;
|
||||
font-family: monospace;
|
||||
overflow: auto;
|
||||
margin: 1.2em;
|
||||
}
|
||||
pre.src {
|
||||
position: relative;
|
||||
overflow: visible;
|
||||
padding-top: 1.2em;
|
||||
}
|
||||
pre.src:before {
|
||||
display: none;
|
||||
position: absolute;
|
||||
background-color: white;
|
||||
top: -10px;
|
||||
right: 10px;
|
||||
padding: 3px;
|
||||
border: 1px solid black;
|
||||
}
|
||||
pre.src:hover:before { display: inline;}
|
||||
/* Languages per Org manual */
|
||||
pre.src-asymptote:before { content: 'Asymptote'; }
|
||||
pre.src-awk:before { content: 'Awk'; }
|
||||
pre.src-C:before { content: 'C'; }
|
||||
/* pre.src-C++ doesn't work in CSS */
|
||||
pre.src-clojure:before { content: 'Clojure'; }
|
||||
pre.src-css:before { content: 'CSS'; }
|
||||
pre.src-D:before { content: 'D'; }
|
||||
pre.src-ditaa:before { content: 'ditaa'; }
|
||||
pre.src-dot:before { content: 'Graphviz'; }
|
||||
pre.src-calc:before { content: 'Emacs Calc'; }
|
||||
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
|
||||
pre.src-fortran:before { content: 'Fortran'; }
|
||||
pre.src-gnuplot:before { content: 'gnuplot'; }
|
||||
pre.src-haskell:before { content: 'Haskell'; }
|
||||
pre.src-hledger:before { content: 'hledger'; }
|
||||
pre.src-java:before { content: 'Java'; }
|
||||
pre.src-js:before { content: 'Javascript'; }
|
||||
pre.src-latex:before { content: 'LaTeX'; }
|
||||
pre.src-ledger:before { content: 'Ledger'; }
|
||||
pre.src-lisp:before { content: 'Lisp'; }
|
||||
pre.src-lilypond:before { content: 'Lilypond'; }
|
||||
pre.src-lua:before { content: 'Lua'; }
|
||||
pre.src-matlab:before { content: 'MATLAB'; }
|
||||
pre.src-mscgen:before { content: 'Mscgen'; }
|
||||
pre.src-ocaml:before { content: 'Objective Caml'; }
|
||||
pre.src-octave:before { content: 'Octave'; }
|
||||
pre.src-org:before { content: 'Org mode'; }
|
||||
pre.src-oz:before { content: 'OZ'; }
|
||||
pre.src-plantuml:before { content: 'Plantuml'; }
|
||||
pre.src-processing:before { content: 'Processing.js'; }
|
||||
pre.src-python:before { content: 'Python'; }
|
||||
pre.src-R:before { content: 'R'; }
|
||||
pre.src-ruby:before { content: 'Ruby'; }
|
||||
pre.src-sass:before { content: 'Sass'; }
|
||||
pre.src-scheme:before { content: 'Scheme'; }
|
||||
pre.src-screen:before { content: 'Gnu Screen'; }
|
||||
pre.src-sed:before { content: 'Sed'; }
|
||||
pre.src-sh:before { content: 'shell'; }
|
||||
pre.src-sql:before { content: 'SQL'; }
|
||||
pre.src-sqlite:before { content: 'SQLite'; }
|
||||
/* additional languages in org.el's org-babel-load-languages alist */
|
||||
pre.src-forth:before { content: 'Forth'; }
|
||||
pre.src-io:before { content: 'IO'; }
|
||||
pre.src-J:before { content: 'J'; }
|
||||
pre.src-makefile:before { content: 'Makefile'; }
|
||||
pre.src-maxima:before { content: 'Maxima'; }
|
||||
pre.src-perl:before { content: 'Perl'; }
|
||||
pre.src-picolisp:before { content: 'Pico Lisp'; }
|
||||
pre.src-scala:before { content: 'Scala'; }
|
||||
pre.src-shell:before { content: 'Shell Script'; }
|
||||
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
|
||||
/* additional language identifiers per "defun org-babel-execute"
|
||||
in ob-*.el */
|
||||
pre.src-cpp:before { content: 'C++'; }
|
||||
pre.src-abc:before { content: 'ABC'; }
|
||||
pre.src-coq:before { content: 'Coq'; }
|
||||
pre.src-groovy:before { content: 'Groovy'; }
|
||||
/* additional language identifiers from org-babel-shell-names in
|
||||
ob-shell.el: ob-shell is the only babel language using a lambda to put
|
||||
the execution function name together. */
|
||||
pre.src-bash:before { content: 'bash'; }
|
||||
pre.src-csh:before { content: 'csh'; }
|
||||
pre.src-ash:before { content: 'ash'; }
|
||||
pre.src-dash:before { content: 'dash'; }
|
||||
pre.src-ksh:before { content: 'ksh'; }
|
||||
pre.src-mksh:before { content: 'mksh'; }
|
||||
pre.src-posh:before { content: 'posh'; }
|
||||
/* Additional Emacs modes also supported by the LaTeX listings package */
|
||||
pre.src-ada:before { content: 'Ada'; }
|
||||
pre.src-asm:before { content: 'Assembler'; }
|
||||
pre.src-caml:before { content: 'Caml'; }
|
||||
pre.src-delphi:before { content: 'Delphi'; }
|
||||
pre.src-html:before { content: 'HTML'; }
|
||||
pre.src-idl:before { content: 'IDL'; }
|
||||
pre.src-mercury:before { content: 'Mercury'; }
|
||||
pre.src-metapost:before { content: 'MetaPost'; }
|
||||
pre.src-modula-2:before { content: 'Modula-2'; }
|
||||
pre.src-pascal:before { content: 'Pascal'; }
|
||||
pre.src-ps:before { content: 'PostScript'; }
|
||||
pre.src-prolog:before { content: 'Prolog'; }
|
||||
pre.src-simula:before { content: 'Simula'; }
|
||||
pre.src-tcl:before { content: 'tcl'; }
|
||||
pre.src-tex:before { content: 'TeX'; }
|
||||
pre.src-plain-tex:before { content: 'Plain TeX'; }
|
||||
pre.src-verilog:before { content: 'Verilog'; }
|
||||
pre.src-vhdl:before { content: 'VHDL'; }
|
||||
pre.src-xml:before { content: 'XML'; }
|
||||
pre.src-nxml:before { content: 'XML'; }
|
||||
/* add a generic configuration mode; LaTeX export needs an additional
|
||||
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
|
||||
pre.src-conf:before { content: 'Configuration File'; }
|
||||
|
||||
table { border-collapse:collapse; }
|
||||
caption.t-above { caption-side: top; }
|
||||
caption.t-bottom { caption-side: bottom; }
|
||||
td, th { vertical-align:top; }
|
||||
th.org-right { text-align: center; }
|
||||
th.org-left { text-align: center; }
|
||||
th.org-center { text-align: center; }
|
||||
td.org-right { text-align: right; }
|
||||
td.org-left { text-align: left; }
|
||||
td.org-center { text-align: center; }
|
||||
dt { font-weight: bold; }
|
||||
.footpara { display: inline; }
|
||||
.footdef { margin-bottom: 1em; }
|
||||
.figure { padding: 1em; }
|
||||
.figure p { text-align: center; }
|
||||
.equation-container {
|
||||
display: table;
|
||||
text-align: center;
|
||||
width: 100%;
|
||||
}
|
||||
.equation {
|
||||
vertical-align: middle;
|
||||
}
|
||||
.equation-label {
|
||||
display: table-cell;
|
||||
text-align: right;
|
||||
vertical-align: middle;
|
||||
}
|
||||
.inlinetask {
|
||||
padding: 10px;
|
||||
border: 2px solid gray;
|
||||
margin: 10px;
|
||||
background: #ffffcc;
|
||||
}
|
||||
#org-div-home-and-up
|
||||
{ text-align: right; font-size: 70%; white-space: nowrap; }
|
||||
textarea { overflow-x: auto; }
|
||||
.linenr { font-size: smaller }
|
||||
.code-highlighted { background-color: #ffff00; }
|
||||
.org-info-js_info-navigation { border-style: none; }
|
||||
#org-info-js_console-label
|
||||
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
|
||||
.org-info-js_search-highlight
|
||||
{ background-color: #ffff00; color: #000000; font-weight: bold; }
|
||||
.org-svg { width: 90%; }
|
||||
/*]]>*/-->
|
||||
</style>
|
||||
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
||||
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
||||
<script src="./js/jquery.min.js"></script>
|
||||
<script src="./js/bootstrap.min.js"></script>
|
||||
<script src="./js/jquery.stickytableheaders.min.js"></script>
|
||||
<script src="./js/readtheorg.js"></script>
|
||||
<script type="text/javascript">
|
||||
// @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later
|
||||
<!--/*--><![CDATA[/*><!--*/
|
||||
function CodeHighlightOn(elem, id)
|
||||
{
|
||||
var target = document.getElementById(id);
|
||||
if(null != target) {
|
||||
elem.cacheClassElem = elem.className;
|
||||
elem.cacheClassTarget = target.className;
|
||||
target.className = "code-highlighted";
|
||||
elem.className = "code-highlighted";
|
||||
}
|
||||
}
|
||||
function CodeHighlightOff(elem, id)
|
||||
{
|
||||
var target = document.getElementById(id);
|
||||
if(elem.cacheClassElem)
|
||||
elem.className = elem.cacheClassElem;
|
||||
if(elem.cacheClassTarget)
|
||||
target.className = elem.cacheClassTarget;
|
||||
}
|
||||
/*]]>*///-->
|
||||
// @license-end
|
||||
</script>
|
||||
<script>
|
||||
MathJax = {
|
||||
tex: { macros: {
|
||||
bm: ["\\boldsymbol{#1}",1],
|
||||
}
|
||||
}
|
||||
};
|
||||
</script>
|
||||
<script type="text/javascript"
|
||||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
||||
</head>
|
||||
<body>
|
||||
<div id="org-div-home-and-up">
|
||||
<a accesskey="h" href="./index.html"> UP </a>
|
||||
|
|
||||
<a accesskey="H" href="./index.html"> HOME </a>
|
||||
</div><div id="content">
|
||||
<h1 class="title">Stewart Platform - Tracking Control</h1>
|
||||
<div id="table-of-contents">
|
||||
<h2>Table of Contents</h2>
|
||||
<div id="text-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#org4c793a2">1. First Control Architecture</a>
|
||||
<ul>
|
||||
<li><a href="#org49467e8">1.1. Control Schematic</a></li>
|
||||
<li><a href="#org67db718">1.2. Initialize the Stewart platform</a></li>
|
||||
<li><a href="#org641cba6">1.3. Identification of the plant</a></li>
|
||||
<li><a href="#orgd9d7b44">1.4. Plant Analysis</a></li>
|
||||
<li><a href="#orgfaf80fa">1.5. Controller Design</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org4c793a2" class="outline-2">
|
||||
<h2 id="org4c793a2"><span class="section-number-2">1</span> First Control Architecture</h2>
|
||||
<div class="outline-text-2" id="text-1">
|
||||
</div>
|
||||
<div id="outline-container-org49467e8" class="outline-3">
|
||||
<h3 id="org49467e8"><span class="section-number-3">1.1</span> Control Schematic</h3>
|
||||
<div class="outline-text-3" id="text-1-1">
|
||||
|
||||
<div class="figure">
|
||||
<p><img src="figs/control_measure_rotating_2dof.png" alt="control_measure_rotating_2dof.png" />
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org67db718" class="outline-3">
|
||||
<h3 id="org67db718"><span class="section-number-3">1.2</span> Initialize the Stewart platform</h3>
|
||||
<div class="outline-text-3" id="text-1-2">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||||
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
|
||||
stewart = generateGeneralConfiguration(stewart);
|
||||
stewart = computeJointsPose(stewart);
|
||||
stewart = initializeStrutDynamics(stewart);
|
||||
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
|
||||
stewart = initializeCylindricalPlatforms(stewart);
|
||||
stewart = initializeCylindricalStruts(stewart);
|
||||
stewart = computeJacobian(stewart);
|
||||
stewart = initializeStewartPose(stewart);
|
||||
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'accelerometer'</span>, <span class="org-string">'freq'</span>, 5e3);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org641cba6" class="outline-3">
|
||||
<h3 id="org641cba6"><span class="section-number-3">1.3</span> Identification of the plant</h3>
|
||||
<div class="outline-text-3" id="text-1-3">
|
||||
<p>
|
||||
Let’s identify the transfer function from \(\bm{\tau}\) to \(\bm{L}\).
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||||
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'dLm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Relative Displacement Outputs [m]</span>
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
G = linearize(mdl, io);
|
||||
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
|
||||
G.OutputName = {<span class="org-string">'L1'</span>, <span class="org-string">'L2'</span>, <span class="org-string">'L3'</span>, <span class="org-string">'L4'</span>, <span class="org-string">'L5'</span>, <span class="org-string">'L6'</span>};
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgd9d7b44" class="outline-3">
|
||||
<h3 id="orgd9d7b44"><span class="section-number-3">1.4</span> Plant Analysis</h3>
|
||||
<div class="outline-text-3" id="text-1-4">
|
||||
<p>
|
||||
Diagonal terms
|
||||
Compare to off-diagonal terms
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
<div id="outline-container-orgfaf80fa" class="outline-3">
|
||||
<h3 id="orgfaf80fa"><span class="section-number-3">1.5</span> Controller Design</h3>
|
||||
<div class="outline-text-3" id="text-1-5">
|
||||
<p>
|
||||
One integrator should be present in the controller.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
A lead is added around the crossover frequency which is set to be around 500Hz.
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-comment">% wint = 2*pi*100; % Integrate until [rad]</span>
|
||||
<span class="org-comment">% wlead = 2*pi*500; % Location of the lead [rad]</span>
|
||||
<span class="org-comment">% hlead = 2; % Lead strengh</span>
|
||||
|
||||
<span class="org-comment">% Kl = 1e6 * ... % Gain</span>
|
||||
<span class="org-comment">% (s + wint)/(s) * ... % Integrator until 100Hz</span>
|
||||
<span class="org-comment">% (1 + s/(wlead/hlead)/(1 + s/(wlead*hlead))); % Lead</span>
|
||||
|
||||
wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>100;
|
||||
Kl = 1<span class="org-type">/</span>abs(freqresp(G(1,1), wc)) <span class="org-type">*</span> wc<span class="org-type">/</span>s <span class="org-type">*</span> 1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>(3<span class="org-type">*</span>wc));
|
||||
Kl = Kl <span class="org-type">*</span> eye(6);
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2020-02-28 ven. 17:37</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
@ -4,7 +4,7 @@
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2020-02-27 jeu. 14:16 -->
|
||||
<!-- 2020-02-28 ven. 17:34 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
<title>Cubic configuration for the Stewart Platform</title>
|
||||
@ -252,33 +252,33 @@
|
||||
<li><a href="#orga88e79a">1.2. Cubic Stewart platform centered with the cube center - Jacobian not estimated at the cube center</a></li>
|
||||
<li><a href="#orge02ec88">1.3. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the cube center</a></li>
|
||||
<li><a href="#org43fd7e4">1.4. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the Stewart platform center</a></li>
|
||||
<li><a href="#orgd6c60aa">1.5. Conclusion</a></li>
|
||||
<li><a href="#org3e2b41c">1.5. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgd70418b">2. Configuration with the Cube’s center above the mobile platform</a>
|
||||
<ul>
|
||||
<li><a href="#org8afa645">2.1. Having Cube’s center above the top platform</a></li>
|
||||
<li><a href="#org78f0f9c">2.2. Conclusion</a></li>
|
||||
<li><a href="#orgeeac940">2.2. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgcc4ecce">3. Cubic size analysis</a>
|
||||
<ul>
|
||||
<li><a href="#org0029d8c">3.1. Analysis</a></li>
|
||||
<li><a href="#org53a1ab8">3.2. Conclusion</a></li>
|
||||
<li><a href="#org991d232">3.2. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgf09da67">4. Dynamic Coupling in the Cartesian Frame</a>
|
||||
<ul>
|
||||
<li><a href="#org5fe01ec">4.1. Cube’s center at the Center of Mass of the mobile platform</a></li>
|
||||
<li><a href="#org4cb2a36">4.2. Cube’s center not coincident with the Mass of the Mobile platform</a></li>
|
||||
<li><a href="#orga0d81dc">4.3. Conclusion</a></li>
|
||||
<li><a href="#orgf0acd1f">4.3. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org8f26dc0">5. Dynamic Coupling between actuators and sensors of each strut</a>
|
||||
<ul>
|
||||
<li><a href="#org6e391c9">5.1. Coupling between the actuators and sensors - Cubic Architecture</a></li>
|
||||
<li><a href="#orgafd808d">5.2. Coupling between the actuators and sensors - Non-Cubic Architecture</a></li>
|
||||
<li><a href="#org3e2b41c">5.3. Conclusion</a></li>
|
||||
<li><a href="#org78c4967">5.3. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org3044455">6. Functions</a>
|
||||
@ -826,8 +826,8 @@ stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgd6c60aa" class="outline-3">
|
||||
<h3 id="orgd6c60aa"><span class="section-number-3">1.5</span> Conclusion</h3>
|
||||
<div id="outline-container-org3e2b41c" class="outline-3">
|
||||
<h3 id="org3e2b41c"><span class="section-number-3">1.5</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-1-5">
|
||||
<div class="important">
|
||||
<p>
|
||||
@ -1164,8 +1164,8 @@ FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Cente
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org78f0f9c" class="outline-3">
|
||||
<h3 id="org78f0f9c"><span class="section-number-3">2.2</span> Conclusion</h3>
|
||||
<div id="outline-container-orgeeac940" class="outline-3">
|
||||
<h3 id="orgeeac940"><span class="section-number-3">2.2</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-2-2">
|
||||
<div class="important">
|
||||
<p>
|
||||
@ -1251,8 +1251,8 @@ We also find that \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\) are varyi
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org53a1ab8" class="outline-3">
|
||||
<h3 id="org53a1ab8"><span class="section-number-3">3.2</span> Conclusion</h3>
|
||||
<div id="outline-container-org991d232" class="outline-3">
|
||||
<h3 id="org991d232"><span class="section-number-3">3.2</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-3-2">
|
||||
<p>
|
||||
We observe that \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\) increase linearly with the cube size.
|
||||
@ -1391,6 +1391,7 @@ No flexibility below the Stewart platform and no payload.
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@ -1535,6 +1536,7 @@ No flexibility below the Stewart platform and no payload.
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@ -1607,8 +1609,8 @@ This was expected as the mass matrix is not diagonal (the Center of Mass of the
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orga0d81dc" class="outline-3">
|
||||
<h3 id="orga0d81dc"><span class="section-number-3">4.3</span> Conclusion</h3>
|
||||
<div id="outline-container-orgf0acd1f" class="outline-3">
|
||||
<h3 id="orgf0acd1f"><span class="section-number-3">4.3</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-4-3">
|
||||
<div class="important">
|
||||
<p>
|
||||
@ -1693,6 +1695,7 @@ No flexibility below the Stewart platform and no payload.
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@ -1760,6 +1763,7 @@ No flexibility below the Stewart platform and no payload.
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@ -1790,8 +1794,8 @@ And we identify the dynamics from the actuator forces \(\tau_{i}\) to the relati
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org3e2b41c" class="outline-3">
|
||||
<h3 id="org3e2b41c"><span class="section-number-3">5.3</span> Conclusion</h3>
|
||||
<div id="outline-container-org78c4967" class="outline-3">
|
||||
<h3 id="org78c4967"><span class="section-number-3">5.3</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-5-3">
|
||||
<div class="important">
|
||||
<p>
|
||||
@ -1962,7 +1966,7 @@ stewart.platform_M.Mb = Mb;
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2020-02-27 jeu. 14:16</p>
|
||||
<p class="date">Created: 2020-02-28 ven. 17:34</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
@ -4,7 +4,7 @@
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2020-02-27 jeu. 14:16 -->
|
||||
<!-- 2020-02-28 ven. 17:34 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
<title>Stewart Platform - Dynamics Study</title>
|
||||
@ -250,13 +250,13 @@
|
||||
<ul>
|
||||
<li><a href="#org4509b7d">1.1. Comparison with fixed support</a></li>
|
||||
<li><a href="#org8662186">1.2. Comparison with a flexible support</a></li>
|
||||
<li><a href="#org03b2957">1.3. Conclusion</a></li>
|
||||
<li><a href="#org920d3c4">1.3. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org81ab204">2. Comparison of the static transfer function and the Compliance matrix</a>
|
||||
<ul>
|
||||
<li><a href="#orge7e7242">2.1. Analysis</a></li>
|
||||
<li><a href="#org920d3c4">2.2. Conclusion</a></li>
|
||||
<li><a href="#orgbb930ae">2.2. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
@ -299,6 +299,7 @@ We also don’t put any payload on top of the Stewart platform.
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@ -441,8 +442,8 @@ And thus \(\mathcal{F}_{x}\) and \(\mathcal{F}_{x,\text{ext}}\) have clearly <b>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="outline-container-org03b2957" class="outline-3">
|
||||
<h3 id="org03b2957"><span class="section-number-3">1.3</span> Conclusion</h3>
|
||||
<div id="outline-container-org920d3c4" class="outline-3">
|
||||
<h3 id="org920d3c4"><span class="section-number-3">1.3</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-1-3">
|
||||
<div class="important">
|
||||
<p>
|
||||
@ -489,6 +490,7 @@ No flexibility below the Stewart platform and no payload.
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@ -675,8 +677,8 @@ And now at the Compliance matrix.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org920d3c4" class="outline-3">
|
||||
<h3 id="org920d3c4"><span class="section-number-3">2.2</span> Conclusion</h3>
|
||||
<div id="outline-container-orgbb930ae" class="outline-3">
|
||||
<h3 id="orgbb930ae"><span class="section-number-3">2.2</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-2-2">
|
||||
<div class="important">
|
||||
<p>
|
||||
@ -690,7 +692,7 @@ The low frequency transfer function matrix from \(\mathcal{\bm{F}}\) to \(\mathc
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2020-02-27 jeu. 14:16</p>
|
||||
<p class="date">Created: 2020-02-28 ven. 17:34</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
BIN
docs/figs/control_arch_hac_dvf.pdf
Normal file
BIN
docs/figs/control_arch_hac_dvf.png
Normal file
After Width: | Height: | Size: 10 KiB |
BIN
docs/figs/control_arch_hac_iff.pdf
Normal file
BIN
docs/figs/control_arch_hac_iff.png
Normal file
After Width: | Height: | Size: 9.8 KiB |
BIN
docs/figs/control_arch_static_decoupling.pdf
Normal file
BIN
docs/figs/control_arch_static_decoupling.png
Normal file
After Width: | Height: | Size: 8.8 KiB |
BIN
docs/figs/control_arch_static_decoupling_K.pdf
Normal file
BIN
docs/figs/control_arch_static_decoupling_K.png
Normal file
After Width: | Height: | Size: 8.6 KiB |
BIN
docs/figs/general_control_names.pdf
Normal file
BIN
docs/figs/general_control_names.png
Normal file
After Width: | Height: | Size: 12 KiB |
BIN
docs/figs/hac_lac_C_T_comparison.pdf
Normal file
BIN
docs/figs/hac_lac_C_T_comparison.png
Normal file
After Width: | Height: | Size: 205 KiB |
BIN
docs/figs/hac_lac_C_T_dvf.pdf
Normal file
BIN
docs/figs/hac_lac_C_T_dvf.png
Normal file
After Width: | Height: | Size: 199 KiB |
BIN
docs/figs/hac_lac_C_T_iff.pdf
Normal file
BIN
docs/figs/hac_lac_C_T_iff.png
Normal file
After Width: | Height: | Size: 205 KiB |
BIN
docs/figs/hac_lac_C_full_comparison.pdf
Normal file
BIN
docs/figs/hac_lac_C_full_comparison.png
Normal file
After Width: | Height: | Size: 244 KiB |
BIN
docs/figs/hac_lac_T_full_comparison.pdf
Normal file
BIN
docs/figs/hac_lac_T_full_comparison.png
Normal file
After Width: | Height: | Size: 243 KiB |
BIN
docs/figs/hac_lac_coupling_jacobian.pdf
Normal file
BIN
docs/figs/hac_lac_coupling_jacobian.png
Normal file
After Width: | Height: | Size: 235 KiB |
BIN
docs/figs/hac_lac_loop_gain_dvf.pdf
Normal file
BIN
docs/figs/hac_lac_loop_gain_dvf.png
Normal file
After Width: | Height: | Size: 129 KiB |
BIN
docs/figs/hac_lac_loop_gain_iff.pdf
Normal file
BIN
docs/figs/hac_lac_loop_gain_iff.png
Normal file
After Width: | Height: | Size: 135 KiB |
BIN
docs/figs/hac_lac_plant_dvf.pdf
Normal file
BIN
docs/figs/hac_lac_plant_dvf.png
Normal file
After Width: | Height: | Size: 95 KiB |
BIN
docs/figs/hac_lac_plant_iff.pdf
Normal file
BIN
docs/figs/hac_lac_plant_iff.png
Normal file
After Width: | Height: | Size: 95 KiB |
BIN
docs/figs/static_decoupling_C_T_frobenius_norm.pdf
Normal file
BIN
docs/figs/static_decoupling_C_T_frobenius_norm.png
Normal file
After Width: | Height: | Size: 196 KiB |
BIN
docs/figs/static_decoupling_diagonal_plant.pdf
Normal file
BIN
docs/figs/static_decoupling_diagonal_plant.png
Normal file
After Width: | Height: | Size: 102 KiB |
@ -4,7 +4,7 @@
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2020-02-27 jeu. 14:16 -->
|
||||
<!-- 2020-02-28 ven. 17:34 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
<title>Identification of the Stewart Platform using Simscape</title>
|
||||
@ -257,13 +257,13 @@
|
||||
</li>
|
||||
<li><a href="#org2891722">2. Transmissibility Analysis</a>
|
||||
<ul>
|
||||
<li><a href="#org8c667e9">2.1. Initialize the Stewart platform</a></li>
|
||||
<li><a href="#orgc8e1f51">2.1. Initialize the Stewart platform</a></li>
|
||||
<li><a href="#org5338f20">2.2. Transmissibility</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgc94edbd">3. Compliance Analysis</a>
|
||||
<ul>
|
||||
<li><a href="#orgc8e1f51">3.1. Initialize the Stewart platform</a></li>
|
||||
<li><a href="#org55d2544">3.1. Initialize the Stewart platform</a></li>
|
||||
<li><a href="#org1177029">3.2. Compliance</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
@ -271,18 +271,18 @@
|
||||
<ul>
|
||||
<li><a href="#org487c4d4">4.1. Compute the Transmissibility</a>
|
||||
<ul>
|
||||
<li><a href="#org851f84d">Function description</a></li>
|
||||
<li><a href="#orgf5e24cd">Optional Parameters</a></li>
|
||||
<li><a href="#org64fc1e2">Function description</a></li>
|
||||
<li><a href="#org54cab00">Optional Parameters</a></li>
|
||||
<li><a href="#org4629501">Identification of the Transmissibility Matrix</a></li>
|
||||
<li><a href="#org989379a">Computation of the Frobenius norm</a></li>
|
||||
<li><a href="#org6f63d37">Computation of the Frobenius norm</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org50e35a6">4.2. Compute the Compliance</a>
|
||||
<ul>
|
||||
<li><a href="#org64fc1e2">Function description</a></li>
|
||||
<li><a href="#org54cab00">Optional Parameters</a></li>
|
||||
<li><a href="#org3cf1d13">Function description</a></li>
|
||||
<li><a href="#org726b57d">Optional Parameters</a></li>
|
||||
<li><a href="#orgef06b63">Identification of the Compliance Matrix</a></li>
|
||||
<li><a href="#org6f63d37">Computation of the Frobenius norm</a></li>
|
||||
<li><a href="#org1019eaf">Computation of the Frobenius norm</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
@ -329,6 +329,7 @@ stewart = initializeInertialSensor(stewart);
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
@ -608,8 +609,8 @@ Save the movie of the mode shape.
|
||||
<a id="orga989615"></a>
|
||||
</p>
|
||||
</div>
|
||||
<div id="outline-container-org8c667e9" class="outline-3">
|
||||
<h3 id="org8c667e9"><span class="section-number-3">2.1</span> Initialize the Stewart platform</h3>
|
||||
<div id="outline-container-orgc8e1f51" class="outline-3">
|
||||
<h3 id="orgc8e1f51"><span class="section-number-3">2.1</span> Initialize the Stewart platform</h3>
|
||||
<div class="outline-text-3" id="text-2-1">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||||
@ -632,6 +633,7 @@ We set the rotation point of the ground to be at the same point at frames \(\{A\
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
@ -729,8 +731,8 @@ plot(freqs, Gamma)
|
||||
<a id="org4579374"></a>
|
||||
</p>
|
||||
</div>
|
||||
<div id="outline-container-orgc8e1f51" class="outline-3">
|
||||
<h3 id="orgc8e1f51"><span class="section-number-3">3.1</span> Initialize the Stewart platform</h3>
|
||||
<div id="outline-container-org55d2544" class="outline-3">
|
||||
<h3 id="org55d2544"><span class="section-number-3">3.1</span> Initialize the Stewart platform</h3>
|
||||
<div class="outline-text-3" id="text-3-1">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||||
@ -753,6 +755,7 @@ We set the rotation point of the ground to be at the same point at frames \(\{A\
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
@ -841,9 +844,9 @@ plot(freqs, C_norm)
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org851f84d" class="outline-4">
|
||||
<h4 id="org851f84d">Function description</h4>
|
||||
<div class="outline-text-4" id="text-org851f84d">
|
||||
<div id="outline-container-org64fc1e2" class="outline-4">
|
||||
<h4 id="org64fc1e2">Function description</h4>
|
||||
<div class="outline-text-4" id="text-org64fc1e2">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[T, T_norm, freqs]</span> = <span class="org-function-name">computeTransmissibility</span>(<span class="org-variable-name">args</span>)
|
||||
<span class="org-comment">% computeTransmissibility -</span>
|
||||
@ -864,9 +867,9 @@ plot(freqs, C_norm)
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgf5e24cd" class="outline-4">
|
||||
<h4 id="orgf5e24cd">Optional Parameters</h4>
|
||||
<div class="outline-text-4" id="text-orgf5e24cd">
|
||||
<div id="outline-container-org54cab00" class="outline-4">
|
||||
<h4 id="org54cab00">Optional Parameters</h4>
|
||||
<div class="outline-text-4" id="text-org54cab00">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">arguments
|
||||
args.plots logical {mustBeNumericOrLogical} = <span class="org-constant">false</span>
|
||||
@ -896,7 +899,7 @@ mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/D_w'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Base Motion [m, rad]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'output'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
T = linearize(mdl, io, options);
|
||||
@ -935,17 +938,17 @@ If wanted, the 6x6 transmissibility matrix is plotted.
|
||||
han = <span class="org-type">axes</span>(fig, <span class="org-string">'visible'</span>, <span class="org-string">'off'</span>);
|
||||
han.XLabel.Visible = <span class="org-string">'on'</span>;
|
||||
han.YLabel.Visible = <span class="org-string">'on'</span>;
|
||||
ylabel(han, <span class="org-string">'Frequency [Hz]'</span>);
|
||||
xlabel(han, <span class="org-string">'Transmissibility [m/m]'</span>);
|
||||
xlabel(han, <span class="org-string">'Frequency [Hz]'</span>);
|
||||
ylabel(han, <span class="org-string">'Transmissibility [m/m]'</span>);
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org989379a" class="outline-4">
|
||||
<h4 id="org989379a">Computation of the Frobenius norm</h4>
|
||||
<div class="outline-text-4" id="text-org989379a">
|
||||
<div id="outline-container-org6f63d37" class="outline-4">
|
||||
<h4 id="org6f63d37">Computation of the Frobenius norm</h4>
|
||||
<div class="outline-text-4" id="text-org6f63d37">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">T_norm = zeros(length(freqs), 1);
|
||||
|
||||
@ -982,9 +985,9 @@ If wanted, the 6x6 transmissibility matrix is plotted.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org64fc1e2" class="outline-4">
|
||||
<h4 id="org64fc1e2">Function description</h4>
|
||||
<div class="outline-text-4" id="text-org64fc1e2">
|
||||
<div id="outline-container-org3cf1d13" class="outline-4">
|
||||
<h4 id="org3cf1d13">Function description</h4>
|
||||
<div class="outline-text-4" id="text-org3cf1d13">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[C, C_norm, freqs]</span> = <span class="org-function-name">computeCompliance</span>(<span class="org-variable-name">args</span>)
|
||||
<span class="org-comment">% computeCompliance -</span>
|
||||
@ -1005,9 +1008,9 @@ If wanted, the 6x6 transmissibility matrix is plotted.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org54cab00" class="outline-4">
|
||||
<h4 id="org54cab00">Optional Parameters</h4>
|
||||
<div class="outline-text-4" id="text-org54cab00">
|
||||
<div id="outline-container-org726b57d" class="outline-4">
|
||||
<h4 id="org726b57d">Optional Parameters</h4>
|
||||
<div class="outline-text-4" id="text-org726b57d">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">arguments
|
||||
args.plots logical {mustBeNumericOrLogical} = <span class="org-constant">false</span>
|
||||
@ -1037,7 +1040,7 @@ mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/F_ext'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% External forces [N, N*m]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'output'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
C = linearize(mdl, io, options);
|
||||
@ -1083,9 +1086,9 @@ If wanted, the 6x6 transmissibility matrix is plotted.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org6f63d37" class="outline-4">
|
||||
<h4 id="org6f63d37">Computation of the Frobenius norm</h4>
|
||||
<div class="outline-text-4" id="text-org6f63d37">
|
||||
<div id="outline-container-org1019eaf" class="outline-4">
|
||||
<h4 id="org1019eaf">Computation of the Frobenius norm</h4>
|
||||
<div class="outline-text-4" id="text-org1019eaf">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">freqs = args.freqs;
|
||||
|
||||
@ -1114,7 +1117,7 @@ C_norm = zeros(length(freqs), 1);
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2020-02-27 jeu. 14:16</p>
|
||||
<p class="date">Created: 2020-02-28 ven. 17:34</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
@ -93,6 +93,7 @@ To run the script, open the Simulink Project, and type =run active_damping_inert
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
@ -323,18 +324,11 @@ We first initialize the Stewart platform without joint stiffness.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
||||
payload = initializePayload('type', 'none');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
And we identify the dynamics from force actuators to force sensors.
|
||||
#+begin_src matlab
|
||||
%% Options for Linearized
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
%% Name of the Simulink File
|
||||
mdl = 'stewart_platform_model';
|
||||
|
||||
@ -344,7 +338,7 @@ And we identify the dynamics from force actuators to force sensors.
|
||||
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Taum'); io_i = io_i + 1; % Force Sensor Outputs [N]
|
||||
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io, options);
|
||||
G = linearize(mdl, io);
|
||||
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
G.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
|
||||
#+end_src
|
||||
@ -398,7 +392,7 @@ The transfer function from actuator forces to force sensors is shown in Figure [
|
||||
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
|
||||
#+begin_src matlab
|
||||
stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
|
||||
Gf = linearize(mdl, io, options);
|
||||
Gf = linearize(mdl, io);
|
||||
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
Gf.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
|
||||
#+end_src
|
||||
@ -406,7 +400,7 @@ We add some stiffness and damping in the flexible joints and we re-identify the
|
||||
We now use the amplified actuators and re-identify the dynamics
|
||||
#+begin_src matlab
|
||||
stewart = initializeAmplifiedStrutDynamics(stewart);
|
||||
Ga = linearize(mdl, io, options);
|
||||
Ga = linearize(mdl, io);
|
||||
Ga.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
Ga.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
|
||||
#+end_src
|
||||
@ -596,6 +590,7 @@ We first initialize the Stewart platform without joint stiffness.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
And we identify the dynamics from force actuators to force sensors.
|
||||
@ -778,6 +773,24 @@ The root locus is shown in figure [[fig:root_locus_dvf_rot_stiffness]].
|
||||
Joint stiffness does increase the resonance frequencies of the system but does not change the attainable damping when using relative motion sensors.
|
||||
#+end_important
|
||||
* Compliance and Transmissibility Comparison
|
||||
** Introduction :ignore:
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
simulinkproject('../');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
open('stewart_platform_model.slx')
|
||||
#+end_src
|
||||
|
||||
** Initialization
|
||||
We first initialize the Stewart platform without joint stiffness.
|
||||
#+begin_src matlab
|
||||
@ -798,6 +811,7 @@ The rotation point of the ground is located at the origin of frame $\{A\}$.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
** Identification
|
||||
@ -811,7 +825,7 @@ Let's first identify the transmissibility and compliance in the open-loop case.
|
||||
Now, let's identify the transmissibility and compliance for the Integral Force Feedback architecture.
|
||||
#+begin_src matlab
|
||||
controller = initializeController('type', 'iff');
|
||||
G_iff = (2e4/s)*eye(6);
|
||||
K_iff = (1e4/s)*eye(6);
|
||||
|
||||
[T_iff, T_norm_iff, ~] = computeTransmissibility();
|
||||
[C_iff, C_norm_iff, ~] = computeCompliance();
|
||||
@ -820,7 +834,7 @@ Now, let's identify the transmissibility and compliance for the Integral Force F
|
||||
And for the Direct Velocity Feedback.
|
||||
#+begin_src matlab
|
||||
controller = initializeController('type', 'dvf');
|
||||
G_dvf = 1e4*s/(1+s/2/pi/5000)*eye(6);
|
||||
K_dvf = 1e4*s/(1+s/2/pi/5000)*eye(6);
|
||||
|
||||
[T_dvf, T_norm_dvf, ~] = computeTransmissibility();
|
||||
[C_dvf, C_norm_dvf, ~] = computeCompliance();
|
||||
@ -857,8 +871,8 @@ And for the Direct Velocity Feedback.
|
||||
han = axes(fig, 'visible', 'off');
|
||||
han.XLabel.Visible = 'on';
|
||||
han.YLabel.Visible = 'on';
|
||||
ylabel(han, 'Frequency [Hz]');
|
||||
xlabel(han, 'Transmissibility');
|
||||
xlabel(han, 'Frequency [Hz]');
|
||||
ylabel(han, 'Transmissibility');
|
||||
#+end_src
|
||||
|
||||
#+header: :tangle no :exports results :results none :noweb yes
|
||||
@ -900,8 +914,8 @@ And for the Direct Velocity Feedback.
|
||||
han = axes(fig, 'visible', 'off');
|
||||
han.XLabel.Visible = 'on';
|
||||
han.YLabel.Visible = 'on';
|
||||
ylabel(han, 'Frequency [Hz]');
|
||||
xlabel(han, 'Compliance');
|
||||
xlabel(han, 'Frequency [Hz]');
|
||||
ylabel(han, 'Compliance');
|
||||
#+end_src
|
||||
|
||||
#+header: :tangle no :exports results :results none :noweb yes
|
||||
|
257
org/control-tracking.org
Normal file
@ -0,0 +1,257 @@
|
||||
#+TITLE: Stewart Platform - Tracking Control
|
||||
:DRAWER:
|
||||
#+STARTUP: overview
|
||||
|
||||
#+LANGUAGE: en
|
||||
#+EMAIL: dehaeze.thomas@gmail.com
|
||||
#+AUTHOR: Dehaeze Thomas
|
||||
|
||||
#+HTML_LINK_HOME: ./index.html
|
||||
#+HTML_LINK_UP: ./index.html
|
||||
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
||||
#+HTML_HEAD: <script src="./js/jquery.min.js"></script>
|
||||
#+HTML_HEAD: <script src="./js/bootstrap.min.js"></script>
|
||||
#+HTML_HEAD: <script src="./js/jquery.stickytableheaders.min.js"></script>
|
||||
#+HTML_HEAD: <script src="./js/readtheorg.js"></script>
|
||||
|
||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
||||
#+PROPERTY: header-args:matlab+ :comments org
|
||||
#+PROPERTY: header-args:matlab+ :exports both
|
||||
#+PROPERTY: header-args:matlab+ :results none
|
||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
||||
#+PROPERTY: header-args:matlab+ :noweb yes
|
||||
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||||
|
||||
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/}{config.tex}")
|
||||
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
|
||||
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
|
||||
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
|
||||
#+PROPERTY: header-args:latex+ :results file raw replace
|
||||
#+PROPERTY: header-args:latex+ :buffer no
|
||||
#+PROPERTY: header-args:latex+ :eval no-export
|
||||
#+PROPERTY: header-args:latex+ :exports results
|
||||
#+PROPERTY: header-args:latex+ :mkdirp yes
|
||||
#+PROPERTY: header-args:latex+ :output-dir figs
|
||||
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
|
||||
:END:
|
||||
|
||||
* First Control Architecture
|
||||
** Matlab Init :noexport:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
simulinkproject('../');
|
||||
#+end_src
|
||||
|
||||
** Control Schematic
|
||||
#+begin_src latex :file control_measure_rotating_2dof.pdf
|
||||
\begin{tikzpicture}
|
||||
% Blocs
|
||||
\node[block] (J) at (0, 0) {$J$};
|
||||
\node[addb={+}{}{}{}{-}, right=1 of J] (subr) {};
|
||||
\node[block, right=0.8 of subr] (K) {$K_{L}$};
|
||||
\node[block, right=1 of K] (G) {$G_{L}$};
|
||||
|
||||
% Connections and labels
|
||||
\draw[<-] (J.west)node[above left]{$\bm{r}_{n}$} -- ++(-1, 0);
|
||||
\draw[->] (J.east) -- (subr.west) node[above left]{$\bm{r}_{L}$};
|
||||
\draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{L}$};
|
||||
\draw[->] (K.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
||||
\draw[->] (G.east) node[above right]{$\bm{L}$} -| ($(G.east)+(1, -1)$) -| (subr.south);
|
||||
\end{tikzpicture}
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
[[file:figs/control_measure_rotating_2dof.png]]
|
||||
|
||||
** Initialize the Stewart platform
|
||||
#+begin_src matlab
|
||||
stewart = initializeStewartPlatform();
|
||||
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
||||
stewart = generateGeneralConfiguration(stewart);
|
||||
stewart = computeJointsPose(stewart);
|
||||
stewart = initializeStrutDynamics(stewart);
|
||||
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
|
||||
stewart = initializeCylindricalPlatforms(stewart);
|
||||
stewart = initializeCylindricalStruts(stewart);
|
||||
stewart = computeJacobian(stewart);
|
||||
stewart = initializeStewartPose(stewart);
|
||||
stewart = initializeInertialSensor(stewart, 'type', 'accelerometer', 'freq', 5e3);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
#+end_src
|
||||
|
||||
** Identification of the plant
|
||||
Let's identify the transfer function from $\bm{\tau}$ to $\bm{L}$.
|
||||
#+begin_src matlab
|
||||
%% Name of the Simulink File
|
||||
mdl = 'stewart_platform_model';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
||||
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m]
|
||||
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io);
|
||||
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
G.OutputName = {'L1', 'L2', 'L3', 'L4', 'L5', 'L6'};
|
||||
#+end_src
|
||||
|
||||
** Plant Analysis
|
||||
Diagonal terms
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(1, 4, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G(i, i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
Compare to off-diagonal terms
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(1, 4, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
** Controller Design
|
||||
One integrator should be present in the controller.
|
||||
|
||||
A lead is added around the crossover frequency which is set to be around 500Hz.
|
||||
|
||||
#+begin_src matlab
|
||||
% wint = 2*pi*100; % Integrate until [rad]
|
||||
% wlead = 2*pi*500; % Location of the lead [rad]
|
||||
% hlead = 2; % Lead strengh
|
||||
|
||||
% Kl = 1e6 * ... % Gain
|
||||
% (s + wint)/(s) * ... % Integrator until 100Hz
|
||||
% (1 + s/(wlead/hlead)/(1 + s/(wlead*hlead))); % Lead
|
||||
|
||||
wc = 2*pi*100;
|
||||
Kl = 1/abs(freqresp(G(1,1), wc)) * wc/s * 1/(1 + s/(3*wc));
|
||||
Kl = Kl * eye(6);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(1, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(1, 4, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(Kl(i,i)*G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(i, i)*G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
@ -695,6 +695,7 @@ No flexibility below the Stewart platform and no payload.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
The obtain geometry is shown in figure [[fig:stewart_cubic_conf_decouple_dynamics]].
|
||||
@ -880,6 +881,7 @@ No flexibility below the Stewart platform and no payload.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
The obtain geometry is shown in figure [[fig:stewart_cubic_conf_mass_above]].
|
||||
@ -1087,6 +1089,7 @@ No flexibility below the Stewart platform and no payload.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
@ -1258,6 +1261,7 @@ No flexibility below the Stewart platform and no payload.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
|
@ -80,6 +80,7 @@ We also don't put any payload on top of the Stewart platform.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
The transfer function from actuator forces $\bm{\tau}$ to the relative displacement of the mobile platform $\mathcal{\bm{X}}$ is extracted.
|
||||
@ -327,6 +328,7 @@ No flexibility below the Stewart platform and no payload.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
Estimation of the transfer function from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$:
|
||||
|
@ -83,6 +83,7 @@ In this document, we discuss the various methods to identify the behavior of the
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
** Identification
|
||||
@ -284,6 +285,7 @@ We set the rotation point of the ground to be at the same point at frames $\{A\}
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
||||
payload = initializePayload('type', 'rigid');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
** Transmissibility
|
||||
@ -396,6 +398,7 @@ We set the rotation point of the ground to be at the same point at frames $\{A\}
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'rigid');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
** Compliance
|
||||
@ -517,7 +520,7 @@ We can try to use the Frobenius norm to obtain a scalar value representing the 6
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Disturbances/D_w'], 1, 'openinput'); io_i = io_i + 1; % Base Motion [m, rad]
|
||||
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad]
|
||||
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'output'); io_i = io_i + 1; % Absolute Motion [m, rad]
|
||||
|
||||
%% Run the linearization
|
||||
T = linearize(mdl, io, options);
|
||||
@ -553,8 +556,8 @@ If wanted, the 6x6 transmissibility matrix is plotted.
|
||||
han = axes(fig, 'visible', 'off');
|
||||
han.XLabel.Visible = 'on';
|
||||
han.YLabel.Visible = 'on';
|
||||
ylabel(han, 'Frequency [Hz]');
|
||||
xlabel(han, 'Transmissibility [m/m]');
|
||||
xlabel(han, 'Frequency [Hz]');
|
||||
ylabel(han, 'Transmissibility [m/m]');
|
||||
end
|
||||
#+end_src
|
||||
|
||||
@ -642,7 +645,7 @@ If wanted, the 6x6 transmissibility matrix is plotted.
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Disturbances/F_ext'], 1, 'openinput'); io_i = io_i + 1; % External forces [N, N*m]
|
||||
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad]
|
||||
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'output'); io_i = io_i + 1; % Absolute Motion [m, rad]
|
||||
|
||||
%% Run the linearization
|
||||
C = linearize(mdl, io, options);
|
||||
|
@ -30,7 +30,7 @@ mdl = 'stewart_platform_model';
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Disturbances/F_ext'], 1, 'openinput'); io_i = io_i + 1; % External forces [N, N*m]
|
||||
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad]
|
||||
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'output'); io_i = io_i + 1; % Absolute Motion [m, rad]
|
||||
|
||||
%% Run the linearization
|
||||
C = linearize(mdl, io, options);
|
||||
|
@ -30,7 +30,7 @@ mdl = 'stewart_platform_model';
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Disturbances/D_w'], 1, 'openinput'); io_i = io_i + 1; % Base Motion [m, rad]
|
||||
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad]
|
||||
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'output'); io_i = io_i + 1; % Absolute Motion [m, rad]
|
||||
|
||||
%% Run the linearization
|
||||
T = linearize(mdl, io, options);
|
||||
@ -63,8 +63,8 @@ if args.plots
|
||||
han = axes(fig, 'visible', 'off');
|
||||
han.XLabel.Visible = 'on';
|
||||
han.YLabel.Visible = 'on';
|
||||
ylabel(han, 'Frequency [Hz]');
|
||||
xlabel(han, 'Transmissibility [m/m]');
|
||||
xlabel(han, 'Frequency [Hz]');
|
||||
ylabel(han, 'Transmissibility [m/m]');
|
||||
end
|
||||
|
||||
T_norm = zeros(length(freqs), 1);
|
||||
|
@ -7,7 +7,7 @@ function [controller] = initializeController(args)
|
||||
% - args - Can have the following fields:
|
||||
|
||||
arguments
|
||||
args.type char {mustBeMember(args.type, {'open-loop', 'iff', 'dvf'})} = 'open-loop'
|
||||
args.type char {mustBeMember(args.type, {'open-loop', 'iff', 'dvf', 'hac-iff', 'hac-dvf'})} = 'open-loop'
|
||||
end
|
||||
|
||||
controller = struct();
|
||||
@ -19,4 +19,8 @@ switch args.type
|
||||
controller.type = 1;
|
||||
case 'dvf'
|
||||
controller.type = 2;
|
||||
case 'hac-iff'
|
||||
controller.type = 3;
|
||||
case 'hac-dvf'
|
||||
controller.type = 4;
|
||||
end
|
||||
|