Work on HAC-LAC, Control architectures
| @@ -4,7 +4,7 @@ | ||||
| "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> | ||||
| <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> | ||||
| <head> | ||||
| <!-- 2020-02-27 jeu. 14:16 --> | ||||
| <!-- 2020-02-28 ven. 17:33 --> | ||||
| <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> | ||||
| <meta name="viewport" content="width=device-width, initial-scale=1" /> | ||||
| <title>Stewart Platform - Decentralized Active Damping</title> | ||||
| @@ -249,25 +249,25 @@ | ||||
| <li><a href="#orgd59c804">1. Inertial Control</a> | ||||
| <ul> | ||||
| <li><a href="#org5f749c8">1.1. Identification of the Dynamics</a></li> | ||||
| <li><a href="#orgd637197">1.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li> | ||||
| <li><a href="#orgd895eeb">1.3. Obtained Damping</a></li> | ||||
| <li><a href="#orgeaf5ef8">1.4. Conclusion</a></li> | ||||
| <li><a href="#org3014959">1.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li> | ||||
| <li><a href="#orga144352">1.3. Obtained Damping</a></li> | ||||
| <li><a href="#org004b094">1.4. Conclusion</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#org74c7eb4">2. Integral Force Feedback</a> | ||||
| <ul> | ||||
| <li><a href="#orgcaa6199">2.1. Identification of the Dynamics with perfect Joints</a></li> | ||||
| <li><a href="#org1910546">2.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li> | ||||
| <li><a href="#org9e1f2e2">2.3. Obtained Damping</a></li> | ||||
| <li><a href="#org405813e">2.4. Conclusion</a></li> | ||||
| <li><a href="#org7313778">2.1. Identification of the Dynamics with perfect Joints</a></li> | ||||
| <li><a href="#org462c581">2.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li> | ||||
| <li><a href="#org943bf7b">2.3. Obtained Damping</a></li> | ||||
| <li><a href="#orga677c7d">2.4. Conclusion</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#org08917d6">3. Direct Velocity Feedback</a> | ||||
| <ul> | ||||
| <li><a href="#org7313778">3.1. Identification of the Dynamics with perfect Joints</a></li> | ||||
| <li><a href="#org3014959">3.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li> | ||||
| <li><a href="#orga144352">3.3. Obtained Damping</a></li> | ||||
| <li><a href="#org004b094">3.4. Conclusion</a></li> | ||||
| <li><a href="#orgcd99b62">3.1. Identification of the Dynamics with perfect Joints</a></li> | ||||
| <li><a href="#orgd0f78f7">3.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li> | ||||
| <li><a href="#org3f64d96">3.3. Obtained Damping</a></li> | ||||
| <li><a href="#org8e1ece7">3.4. Conclusion</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#org183f3f2">4. Compliance and Transmissibility Comparison</a> | ||||
| @@ -330,6 +330,7 @@ stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</spa | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A); | ||||
| payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); | ||||
| </pre> | ||||
| </div> | ||||
|  | ||||
| @@ -365,8 +366,8 @@ The transfer function from actuator forces to force sensors is shown in Figure < | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-orgd637197" class="outline-3"> | ||||
| <h3 id="orgd637197"><span class="section-number-3">1.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3> | ||||
| <div id="outline-container-org3014959" class="outline-3"> | ||||
| <h3 id="org3014959"><span class="section-number-3">1.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3> | ||||
| <div class="outline-text-3" id="text-1-2"> | ||||
| <p> | ||||
| We add some stiffness and damping in the flexible joints and we re-identify the dynamics. | ||||
| @@ -402,8 +403,8 @@ The new dynamics from force actuator to force sensor is shown in Figure <a href= | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-orgd895eeb" class="outline-3"> | ||||
| <h3 id="orgd895eeb"><span class="section-number-3">1.3</span> Obtained Damping</h3> | ||||
| <div id="outline-container-orga144352" class="outline-3"> | ||||
| <h3 id="orga144352"><span class="section-number-3">1.3</span> Obtained Damping</h3> | ||||
| <div class="outline-text-3" id="text-1-3"> | ||||
| <p> | ||||
| The control is a performed in a decentralized manner. | ||||
| @@ -428,8 +429,8 @@ The root locus is shown in figure <a href="#org9af9e33">3</a>. | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-orgeaf5ef8" class="outline-3"> | ||||
| <h3 id="orgeaf5ef8"><span class="section-number-3">1.4</span> Conclusion</h3> | ||||
| <div id="outline-container-org004b094" class="outline-3"> | ||||
| <h3 id="org004b094"><span class="section-number-3">1.4</span> Conclusion</h3> | ||||
| <div class="outline-text-3" id="text-1-4"> | ||||
| <div class="important"> | ||||
| <p> | ||||
| @@ -460,8 +461,8 @@ To run the script, open the Simulink Project, and type <code>run active_damping_ | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-orgcaa6199" class="outline-3"> | ||||
| <h3 id="orgcaa6199"><span class="section-number-3">2.1</span> Identification of the Dynamics with perfect Joints</h3> | ||||
| <div id="outline-container-org7313778" class="outline-3"> | ||||
| <h3 id="org7313778"><span class="section-number-3">2.1</span> Identification of the Dynamics with perfect Joints</h3> | ||||
| <div class="outline-text-3" id="text-2-1"> | ||||
| <p> | ||||
| We first initialize the Stewart platform without joint stiffness. | ||||
| @@ -484,11 +485,7 @@ stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</spa | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A); | ||||
| payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| </pre> | ||||
| </div> | ||||
|  | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); | ||||
| controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); | ||||
| </pre> | ||||
| </div> | ||||
|  | ||||
| @@ -496,11 +493,7 @@ payload = initializePayload(<span class="org-string">'type'</span>, <span class= | ||||
| And we identify the dynamics from force actuators to force sensors. | ||||
| </p> | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> | ||||
| options = linearizeOptions; | ||||
| options.SampleTime = 0; | ||||
|  | ||||
| <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> | ||||
| <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> | ||||
| mdl = <span class="org-string">'stewart_platform_model'</span>; | ||||
|  | ||||
| <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> | ||||
| @@ -509,7 +502,7 @@ io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>],        1, | ||||
| io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>],  1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'Taum'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Force Sensor Outputs [N]</span> | ||||
|  | ||||
| <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> | ||||
| G = linearize(mdl, io, options); | ||||
| G = linearize(mdl, io); | ||||
| G.InputName  = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; | ||||
| G.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>}; | ||||
| </pre> | ||||
| @@ -527,15 +520,15 @@ The transfer function from actuator forces to force sensors is shown in Figure < | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-org1910546" class="outline-3"> | ||||
| <h3 id="org1910546"><span class="section-number-3">2.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3> | ||||
| <div id="outline-container-org462c581" class="outline-3"> | ||||
| <h3 id="org462c581"><span class="section-number-3">2.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3> | ||||
| <div class="outline-text-3" id="text-2-2"> | ||||
| <p> | ||||
| We add some stiffness and damping in the flexible joints and we re-identify the dynamics. | ||||
| </p> | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>); | ||||
| Gf = linearize(mdl, io, options); | ||||
| Gf = linearize(mdl, io); | ||||
| Gf.InputName  = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; | ||||
| Gf.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>}; | ||||
| </pre> | ||||
| @@ -546,7 +539,7 @@ We now use the amplified actuators and re-identify the dynamics | ||||
| </p> | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">stewart = initializeAmplifiedStrutDynamics(stewart); | ||||
| Ga = linearize(mdl, io, options); | ||||
| Ga = linearize(mdl, io); | ||||
| Ga.InputName  = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; | ||||
| Ga.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>}; | ||||
| </pre> | ||||
| @@ -564,8 +557,8 @@ The new dynamics from force actuator to force sensor is shown in Figure <a href= | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-org9e1f2e2" class="outline-3"> | ||||
| <h3 id="org9e1f2e2"><span class="section-number-3">2.3</span> Obtained Damping</h3> | ||||
| <div id="outline-container-org943bf7b" class="outline-3"> | ||||
| <h3 id="org943bf7b"><span class="section-number-3">2.3</span> Obtained Damping</h3> | ||||
| <div class="outline-text-3" id="text-2-3"> | ||||
| <p> | ||||
| The control is a performed in a decentralized manner. | ||||
| @@ -597,8 +590,8 @@ The root locus is shown in figure <a href="#orge21bbea">6</a> and the obtained p | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-org405813e" class="outline-3"> | ||||
| <h3 id="org405813e"><span class="section-number-3">2.4</span> Conclusion</h3> | ||||
| <div id="outline-container-orga677c7d" class="outline-3"> | ||||
| <h3 id="orga677c7d"><span class="section-number-3">2.4</span> Conclusion</h3> | ||||
| <div class="outline-text-3" id="text-2-4"> | ||||
| <div class="important"> | ||||
| <p> | ||||
| @@ -630,8 +623,8 @@ To run the script, open the Simulink Project, and type <code>run active_damping_ | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-org7313778" class="outline-3"> | ||||
| <h3 id="org7313778"><span class="section-number-3">3.1</span> Identification of the Dynamics with perfect Joints</h3> | ||||
| <div id="outline-container-orgcd99b62" class="outline-3"> | ||||
| <h3 id="orgcd99b62"><span class="section-number-3">3.1</span> Identification of the Dynamics with perfect Joints</h3> | ||||
| <div class="outline-text-3" id="text-3-1"> | ||||
| <p> | ||||
| We first initialize the Stewart platform without joint stiffness. | ||||
| @@ -654,6 +647,7 @@ stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</spa | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A); | ||||
| payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); | ||||
| </pre> | ||||
| </div> | ||||
|  | ||||
| @@ -693,8 +687,8 @@ The transfer function from actuator forces to relative motion sensors is shown i | ||||
| </div> | ||||
|  | ||||
|  | ||||
| <div id="outline-container-org3014959" class="outline-3"> | ||||
| <h3 id="org3014959"><span class="section-number-3">3.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3> | ||||
| <div id="outline-container-orgd0f78f7" class="outline-3"> | ||||
| <h3 id="orgd0f78f7"><span class="section-number-3">3.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3> | ||||
| <div class="outline-text-3" id="text-3-2"> | ||||
| <p> | ||||
| We add some stiffness and damping in the flexible joints and we re-identify the dynamics. | ||||
| @@ -730,8 +724,8 @@ The new dynamics from force actuator to relative motion sensor is shown in Figur | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-orga144352" class="outline-3"> | ||||
| <h3 id="orga144352"><span class="section-number-3">3.3</span> Obtained Damping</h3> | ||||
| <div id="outline-container-org3f64d96" class="outline-3"> | ||||
| <h3 id="org3f64d96"><span class="section-number-3">3.3</span> Obtained Damping</h3> | ||||
| <div class="outline-text-3" id="text-3-3"> | ||||
| <p> | ||||
| The control is a performed in a decentralized manner. | ||||
| @@ -756,8 +750,8 @@ The root locus is shown in figure <a href="#org277d60d">10</a>. | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-org004b094" class="outline-3"> | ||||
| <h3 id="org004b094"><span class="section-number-3">3.4</span> Conclusion</h3> | ||||
| <div id="outline-container-org8e1ece7" class="outline-3"> | ||||
| <h3 id="org8e1ece7"><span class="section-number-3">3.4</span> Conclusion</h3> | ||||
| <div class="outline-text-3" id="text-3-4"> | ||||
| <div class="important"> | ||||
| <p> | ||||
| @@ -799,6 +793,7 @@ The rotation point of the ground is located at the origin of frame \(\{A\}\). | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A); | ||||
| payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); | ||||
| </pre> | ||||
| </div> | ||||
| </div> | ||||
| @@ -822,7 +817,7 @@ Now, let’s identify the transmissibility and compliance for the Integral F | ||||
| </p> | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'iff'</span>); | ||||
| G_iff = (2e4<span class="org-type">/</span>s)<span class="org-type">*</span>eye(6); | ||||
| K_iff = (1e4<span class="org-type">/</span>s)<span class="org-type">*</span>eye(6); | ||||
|  | ||||
| [T_iff, T_norm_iff, <span class="org-type">~</span>] = computeTransmissibility(); | ||||
| [C_iff, C_norm_iff, <span class="org-type">~</span>] = computeCompliance(); | ||||
| @@ -834,7 +829,7 @@ And for the Direct Velocity Feedback. | ||||
| </p> | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'dvf'</span>); | ||||
| G_dvf = 1e4<span class="org-type">*</span>s<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>5000)<span class="org-type">*</span>eye(6); | ||||
| K_dvf = 1e4<span class="org-type">*</span>s<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>5000)<span class="org-type">*</span>eye(6); | ||||
|  | ||||
| [T_dvf, T_norm_dvf, <span class="org-type">~</span>] = computeTransmissibility(); | ||||
| [C_dvf, C_norm_dvf, <span class="org-type">~</span>] = computeCompliance(); | ||||
| @@ -872,7 +867,7 @@ G_dvf = 1e4<span class="org-type">*</span>s<span class="org-type">/</span>(1<spa | ||||
| </div> | ||||
| <div id="postamble" class="status"> | ||||
| <p class="author">Author: Dehaeze Thomas</p> | ||||
| <p class="date">Created: 2020-02-27 jeu. 14:16</p> | ||||
| <p class="date">Created: 2020-02-28 ven. 17:33</p> | ||||
| </div> | ||||
| </body> | ||||
| </html> | ||||
|   | ||||
							
								
								
									
										370
									
								
								docs/control-tracking.html
									
									
									
									
									
										Normal file
									
								
							
							
						
						| @@ -0,0 +1,370 @@ | ||||
| <?xml version="1.0" encoding="utf-8"?> | ||||
| <?xml version="1.0" encoding="utf-8"?> | ||||
| <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" | ||||
| "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> | ||||
| <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> | ||||
| <head> | ||||
| <!-- 2020-02-28 ven. 17:37 --> | ||||
| <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> | ||||
| <meta name="viewport" content="width=device-width, initial-scale=1" /> | ||||
| <title>Stewart Platform - Tracking Control</title> | ||||
| <meta name="generator" content="Org mode" /> | ||||
| <meta name="author" content="Dehaeze Thomas" /> | ||||
| <style type="text/css"> | ||||
|  <!--/*--><![CDATA[/*><!--*/ | ||||
|   .title  { text-align: center; | ||||
|              margin-bottom: .2em; } | ||||
|   .subtitle { text-align: center; | ||||
|               font-size: medium; | ||||
|               font-weight: bold; | ||||
|               margin-top:0; } | ||||
|   .todo   { font-family: monospace; color: red; } | ||||
|   .done   { font-family: monospace; color: green; } | ||||
|   .priority { font-family: monospace; color: orange; } | ||||
|   .tag    { background-color: #eee; font-family: monospace; | ||||
|             padding: 2px; font-size: 80%; font-weight: normal; } | ||||
|   .timestamp { color: #bebebe; } | ||||
|   .timestamp-kwd { color: #5f9ea0; } | ||||
|   .org-right  { margin-left: auto; margin-right: 0px;  text-align: right; } | ||||
|   .org-left   { margin-left: 0px;  margin-right: auto; text-align: left; } | ||||
|   .org-center { margin-left: auto; margin-right: auto; text-align: center; } | ||||
|   .underline { text-decoration: underline; } | ||||
|   #postamble p, #preamble p { font-size: 90%; margin: .2em; } | ||||
|   p.verse { margin-left: 3%; } | ||||
|   pre { | ||||
|     border: 1px solid #ccc; | ||||
|     box-shadow: 3px 3px 3px #eee; | ||||
|     padding: 8pt; | ||||
|     font-family: monospace; | ||||
|     overflow: auto; | ||||
|     margin: 1.2em; | ||||
|   } | ||||
|   pre.src { | ||||
|     position: relative; | ||||
|     overflow: visible; | ||||
|     padding-top: 1.2em; | ||||
|   } | ||||
|   pre.src:before { | ||||
|     display: none; | ||||
|     position: absolute; | ||||
|     background-color: white; | ||||
|     top: -10px; | ||||
|     right: 10px; | ||||
|     padding: 3px; | ||||
|     border: 1px solid black; | ||||
|   } | ||||
|   pre.src:hover:before { display: inline;} | ||||
|   /* Languages per Org manual */ | ||||
|   pre.src-asymptote:before { content: 'Asymptote'; } | ||||
|   pre.src-awk:before { content: 'Awk'; } | ||||
|   pre.src-C:before { content: 'C'; } | ||||
|   /* pre.src-C++ doesn't work in CSS */ | ||||
|   pre.src-clojure:before { content: 'Clojure'; } | ||||
|   pre.src-css:before { content: 'CSS'; } | ||||
|   pre.src-D:before { content: 'D'; } | ||||
|   pre.src-ditaa:before { content: 'ditaa'; } | ||||
|   pre.src-dot:before { content: 'Graphviz'; } | ||||
|   pre.src-calc:before { content: 'Emacs Calc'; } | ||||
|   pre.src-emacs-lisp:before { content: 'Emacs Lisp'; } | ||||
|   pre.src-fortran:before { content: 'Fortran'; } | ||||
|   pre.src-gnuplot:before { content: 'gnuplot'; } | ||||
|   pre.src-haskell:before { content: 'Haskell'; } | ||||
|   pre.src-hledger:before { content: 'hledger'; } | ||||
|   pre.src-java:before { content: 'Java'; } | ||||
|   pre.src-js:before { content: 'Javascript'; } | ||||
|   pre.src-latex:before { content: 'LaTeX'; } | ||||
|   pre.src-ledger:before { content: 'Ledger'; } | ||||
|   pre.src-lisp:before { content: 'Lisp'; } | ||||
|   pre.src-lilypond:before { content: 'Lilypond'; } | ||||
|   pre.src-lua:before { content: 'Lua'; } | ||||
|   pre.src-matlab:before { content: 'MATLAB'; } | ||||
|   pre.src-mscgen:before { content: 'Mscgen'; } | ||||
|   pre.src-ocaml:before { content: 'Objective Caml'; } | ||||
|   pre.src-octave:before { content: 'Octave'; } | ||||
|   pre.src-org:before { content: 'Org mode'; } | ||||
|   pre.src-oz:before { content: 'OZ'; } | ||||
|   pre.src-plantuml:before { content: 'Plantuml'; } | ||||
|   pre.src-processing:before { content: 'Processing.js'; } | ||||
|   pre.src-python:before { content: 'Python'; } | ||||
|   pre.src-R:before { content: 'R'; } | ||||
|   pre.src-ruby:before { content: 'Ruby'; } | ||||
|   pre.src-sass:before { content: 'Sass'; } | ||||
|   pre.src-scheme:before { content: 'Scheme'; } | ||||
|   pre.src-screen:before { content: 'Gnu Screen'; } | ||||
|   pre.src-sed:before { content: 'Sed'; } | ||||
|   pre.src-sh:before { content: 'shell'; } | ||||
|   pre.src-sql:before { content: 'SQL'; } | ||||
|   pre.src-sqlite:before { content: 'SQLite'; } | ||||
|   /* additional languages in org.el's org-babel-load-languages alist */ | ||||
|   pre.src-forth:before { content: 'Forth'; } | ||||
|   pre.src-io:before { content: 'IO'; } | ||||
|   pre.src-J:before { content: 'J'; } | ||||
|   pre.src-makefile:before { content: 'Makefile'; } | ||||
|   pre.src-maxima:before { content: 'Maxima'; } | ||||
|   pre.src-perl:before { content: 'Perl'; } | ||||
|   pre.src-picolisp:before { content: 'Pico Lisp'; } | ||||
|   pre.src-scala:before { content: 'Scala'; } | ||||
|   pre.src-shell:before { content: 'Shell Script'; } | ||||
|   pre.src-ebnf2ps:before { content: 'ebfn2ps'; } | ||||
|   /* additional language identifiers per "defun org-babel-execute" | ||||
|        in ob-*.el */ | ||||
|   pre.src-cpp:before  { content: 'C++'; } | ||||
|   pre.src-abc:before  { content: 'ABC'; } | ||||
|   pre.src-coq:before  { content: 'Coq'; } | ||||
|   pre.src-groovy:before  { content: 'Groovy'; } | ||||
|   /* additional language identifiers from org-babel-shell-names in | ||||
|      ob-shell.el: ob-shell is the only babel language using a lambda to put | ||||
|      the execution function name together. */ | ||||
|   pre.src-bash:before  { content: 'bash'; } | ||||
|   pre.src-csh:before  { content: 'csh'; } | ||||
|   pre.src-ash:before  { content: 'ash'; } | ||||
|   pre.src-dash:before  { content: 'dash'; } | ||||
|   pre.src-ksh:before  { content: 'ksh'; } | ||||
|   pre.src-mksh:before  { content: 'mksh'; } | ||||
|   pre.src-posh:before  { content: 'posh'; } | ||||
|   /* Additional Emacs modes also supported by the LaTeX listings package */ | ||||
|   pre.src-ada:before { content: 'Ada'; } | ||||
|   pre.src-asm:before { content: 'Assembler'; } | ||||
|   pre.src-caml:before { content: 'Caml'; } | ||||
|   pre.src-delphi:before { content: 'Delphi'; } | ||||
|   pre.src-html:before { content: 'HTML'; } | ||||
|   pre.src-idl:before { content: 'IDL'; } | ||||
|   pre.src-mercury:before { content: 'Mercury'; } | ||||
|   pre.src-metapost:before { content: 'MetaPost'; } | ||||
|   pre.src-modula-2:before { content: 'Modula-2'; } | ||||
|   pre.src-pascal:before { content: 'Pascal'; } | ||||
|   pre.src-ps:before { content: 'PostScript'; } | ||||
|   pre.src-prolog:before { content: 'Prolog'; } | ||||
|   pre.src-simula:before { content: 'Simula'; } | ||||
|   pre.src-tcl:before { content: 'tcl'; } | ||||
|   pre.src-tex:before { content: 'TeX'; } | ||||
|   pre.src-plain-tex:before { content: 'Plain TeX'; } | ||||
|   pre.src-verilog:before { content: 'Verilog'; } | ||||
|   pre.src-vhdl:before { content: 'VHDL'; } | ||||
|   pre.src-xml:before { content: 'XML'; } | ||||
|   pre.src-nxml:before { content: 'XML'; } | ||||
|   /* add a generic configuration mode; LaTeX export needs an additional | ||||
|      (add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */ | ||||
|   pre.src-conf:before { content: 'Configuration File'; } | ||||
|  | ||||
|   table { border-collapse:collapse; } | ||||
|   caption.t-above { caption-side: top; } | ||||
|   caption.t-bottom { caption-side: bottom; } | ||||
|   td, th { vertical-align:top;  } | ||||
|   th.org-right  { text-align: center;  } | ||||
|   th.org-left   { text-align: center;   } | ||||
|   th.org-center { text-align: center; } | ||||
|   td.org-right  { text-align: right;  } | ||||
|   td.org-left   { text-align: left;   } | ||||
|   td.org-center { text-align: center; } | ||||
|   dt { font-weight: bold; } | ||||
|   .footpara { display: inline; } | ||||
|   .footdef  { margin-bottom: 1em; } | ||||
|   .figure { padding: 1em; } | ||||
|   .figure p { text-align: center; } | ||||
|   .equation-container { | ||||
|     display: table; | ||||
|     text-align: center; | ||||
|     width: 100%; | ||||
|   } | ||||
|   .equation { | ||||
|     vertical-align: middle; | ||||
|   } | ||||
|   .equation-label { | ||||
|     display: table-cell; | ||||
|     text-align: right; | ||||
|     vertical-align: middle; | ||||
|   } | ||||
|   .inlinetask { | ||||
|     padding: 10px; | ||||
|     border: 2px solid gray; | ||||
|     margin: 10px; | ||||
|     background: #ffffcc; | ||||
|   } | ||||
|   #org-div-home-and-up | ||||
|    { text-align: right; font-size: 70%; white-space: nowrap; } | ||||
|   textarea { overflow-x: auto; } | ||||
|   .linenr { font-size: smaller } | ||||
|   .code-highlighted { background-color: #ffff00; } | ||||
|   .org-info-js_info-navigation { border-style: none; } | ||||
|   #org-info-js_console-label | ||||
|     { font-size: 10px; font-weight: bold; white-space: nowrap; } | ||||
|   .org-info-js_search-highlight | ||||
|     { background-color: #ffff00; color: #000000; font-weight: bold; } | ||||
|   .org-svg { width: 90%; } | ||||
|   /*]]>*/--> | ||||
| </style> | ||||
| <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/> | ||||
| <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/> | ||||
| <script src="./js/jquery.min.js"></script> | ||||
| <script src="./js/bootstrap.min.js"></script> | ||||
| <script src="./js/jquery.stickytableheaders.min.js"></script> | ||||
| <script src="./js/readtheorg.js"></script> | ||||
| <script type="text/javascript"> | ||||
| // @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later | ||||
| <!--/*--><![CDATA[/*><!--*/ | ||||
|      function CodeHighlightOn(elem, id) | ||||
|      { | ||||
|        var target = document.getElementById(id); | ||||
|        if(null != target) { | ||||
|          elem.cacheClassElem = elem.className; | ||||
|          elem.cacheClassTarget = target.className; | ||||
|          target.className = "code-highlighted"; | ||||
|          elem.className   = "code-highlighted"; | ||||
|        } | ||||
|      } | ||||
|      function CodeHighlightOff(elem, id) | ||||
|      { | ||||
|        var target = document.getElementById(id); | ||||
|        if(elem.cacheClassElem) | ||||
|          elem.className = elem.cacheClassElem; | ||||
|        if(elem.cacheClassTarget) | ||||
|          target.className = elem.cacheClassTarget; | ||||
|      } | ||||
|     /*]]>*///--> | ||||
| // @license-end | ||||
| </script> | ||||
| <script> | ||||
|       MathJax = { | ||||
|           tex: { macros: { | ||||
|                   bm: ["\\boldsymbol{#1}",1], | ||||
|                   } | ||||
|               } | ||||
|           }; | ||||
|           </script> | ||||
|           <script type="text/javascript" | ||||
|           src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> | ||||
| </head> | ||||
| <body> | ||||
| <div id="org-div-home-and-up"> | ||||
|  <a accesskey="h" href="./index.html"> UP </a> | ||||
|  | | ||||
|  <a accesskey="H" href="./index.html"> HOME </a> | ||||
| </div><div id="content"> | ||||
| <h1 class="title">Stewart Platform - Tracking Control</h1> | ||||
| <div id="table-of-contents"> | ||||
| <h2>Table of Contents</h2> | ||||
| <div id="text-table-of-contents"> | ||||
| <ul> | ||||
| <li><a href="#org4c793a2">1. First Control Architecture</a> | ||||
| <ul> | ||||
| <li><a href="#org49467e8">1.1. Control Schematic</a></li> | ||||
| <li><a href="#org67db718">1.2. Initialize the Stewart platform</a></li> | ||||
| <li><a href="#org641cba6">1.3. Identification of the plant</a></li> | ||||
| <li><a href="#orgd9d7b44">1.4. Plant Analysis</a></li> | ||||
| <li><a href="#orgfaf80fa">1.5. Controller Design</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| </ul> | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-org4c793a2" class="outline-2"> | ||||
| <h2 id="org4c793a2"><span class="section-number-2">1</span> First Control Architecture</h2> | ||||
| <div class="outline-text-2" id="text-1"> | ||||
| </div> | ||||
| <div id="outline-container-org49467e8" class="outline-3"> | ||||
| <h3 id="org49467e8"><span class="section-number-3">1.1</span> Control Schematic</h3> | ||||
| <div class="outline-text-3" id="text-1-1"> | ||||
|  | ||||
| <div class="figure"> | ||||
| <p><img src="figs/control_measure_rotating_2dof.png" alt="control_measure_rotating_2dof.png" /> | ||||
| </p> | ||||
| </div> | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-org67db718" class="outline-3"> | ||||
| <h3 id="org67db718"><span class="section-number-3">1.2</span> Initialize the Stewart platform</h3> | ||||
| <div class="outline-text-3" id="text-1-2"> | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">stewart = initializeStewartPlatform(); | ||||
| stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3); | ||||
| stewart = generateGeneralConfiguration(stewart); | ||||
| stewart = computeJointsPose(stewart); | ||||
| stewart = initializeStrutDynamics(stewart); | ||||
| stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>); | ||||
| stewart = initializeCylindricalPlatforms(stewart); | ||||
| stewart = initializeCylindricalStruts(stewart); | ||||
| stewart = computeJacobian(stewart); | ||||
| stewart = initializeStewartPose(stewart); | ||||
| stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'accelerometer'</span>, <span class="org-string">'freq'</span>, 5e3); | ||||
| </pre> | ||||
| </div> | ||||
|  | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| </pre> | ||||
| </div> | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-org641cba6" class="outline-3"> | ||||
| <h3 id="org641cba6"><span class="section-number-3">1.3</span> Identification of the plant</h3> | ||||
| <div class="outline-text-3" id="text-1-3"> | ||||
| <p> | ||||
| Let’s identify the transfer function from \(\bm{\tau}\) to \(\bm{L}\). | ||||
| </p> | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> | ||||
| mdl = <span class="org-string">'stewart_platform_model'</span>; | ||||
|  | ||||
| <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> | ||||
| clear io; io_i = 1; | ||||
| io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>],        1, <span class="org-string">'openinput'</span>);  io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span> | ||||
| io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>],  1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'dLm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Relative Displacement Outputs [m]</span> | ||||
|  | ||||
| <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> | ||||
| G = linearize(mdl, io); | ||||
| G.InputName  = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; | ||||
| G.OutputName = {<span class="org-string">'L1'</span>, <span class="org-string">'L2'</span>, <span class="org-string">'L3'</span>, <span class="org-string">'L4'</span>, <span class="org-string">'L5'</span>, <span class="org-string">'L6'</span>}; | ||||
| </pre> | ||||
| </div> | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-orgd9d7b44" class="outline-3"> | ||||
| <h3 id="orgd9d7b44"><span class="section-number-3">1.4</span> Plant Analysis</h3> | ||||
| <div class="outline-text-3" id="text-1-4"> | ||||
| <p> | ||||
| Diagonal terms | ||||
| Compare to off-diagonal terms | ||||
| </p> | ||||
| </div> | ||||
| </div> | ||||
| <div id="outline-container-orgfaf80fa" class="outline-3"> | ||||
| <h3 id="orgfaf80fa"><span class="section-number-3">1.5</span> Controller Design</h3> | ||||
| <div class="outline-text-3" id="text-1-5"> | ||||
| <p> | ||||
| One integrator should be present in the controller. | ||||
| </p> | ||||
|  | ||||
| <p> | ||||
| A lead is added around the crossover frequency which is set to be around 500Hz. | ||||
| </p> | ||||
|  | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab"><span class="org-comment">% wint = 2*pi*100; % Integrate until [rad]</span> | ||||
| <span class="org-comment">% wlead = 2*pi*500; % Location of the lead [rad]</span> | ||||
| <span class="org-comment">% hlead = 2; % Lead strengh</span> | ||||
|  | ||||
| <span class="org-comment">% Kl = 1e6 * ... % Gain</span> | ||||
| <span class="org-comment">%      (s + wint)/(s) * ... % Integrator until 100Hz</span> | ||||
| <span class="org-comment">%      (1 + s/(wlead/hlead)/(1 + s/(wlead*hlead))); % Lead</span> | ||||
|  | ||||
| wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>100; | ||||
| Kl = 1<span class="org-type">/</span>abs(freqresp(G(1,1), wc)) <span class="org-type">*</span> wc<span class="org-type">/</span>s <span class="org-type">*</span> 1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>(3<span class="org-type">*</span>wc)); | ||||
| Kl = Kl <span class="org-type">*</span> eye(6); | ||||
| </pre> | ||||
| </div> | ||||
| </div> | ||||
| </div> | ||||
| </div> | ||||
| </div> | ||||
| <div id="postamble" class="status"> | ||||
| <p class="author">Author: Dehaeze Thomas</p> | ||||
| <p class="date">Created: 2020-02-28 ven. 17:37</p> | ||||
| </div> | ||||
| </body> | ||||
| </html> | ||||
| @@ -4,7 +4,7 @@ | ||||
| "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> | ||||
| <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> | ||||
| <head> | ||||
| <!-- 2020-02-27 jeu. 14:16 --> | ||||
| <!-- 2020-02-28 ven. 17:34 --> | ||||
| <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> | ||||
| <meta name="viewport" content="width=device-width, initial-scale=1" /> | ||||
| <title>Cubic configuration for the Stewart Platform</title> | ||||
| @@ -252,33 +252,33 @@ | ||||
| <li><a href="#orga88e79a">1.2. Cubic Stewart platform centered with the cube center - Jacobian not estimated at the cube center</a></li> | ||||
| <li><a href="#orge02ec88">1.3. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the cube center</a></li> | ||||
| <li><a href="#org43fd7e4">1.4. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the Stewart platform center</a></li> | ||||
| <li><a href="#orgd6c60aa">1.5. Conclusion</a></li> | ||||
| <li><a href="#org3e2b41c">1.5. Conclusion</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#orgd70418b">2. Configuration with the Cube’s center above the mobile platform</a> | ||||
| <ul> | ||||
| <li><a href="#org8afa645">2.1. Having Cube’s center above the top platform</a></li> | ||||
| <li><a href="#org78f0f9c">2.2. Conclusion</a></li> | ||||
| <li><a href="#orgeeac940">2.2. Conclusion</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#orgcc4ecce">3. Cubic size analysis</a> | ||||
| <ul> | ||||
| <li><a href="#org0029d8c">3.1. Analysis</a></li> | ||||
| <li><a href="#org53a1ab8">3.2. Conclusion</a></li> | ||||
| <li><a href="#org991d232">3.2. Conclusion</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#orgf09da67">4. Dynamic Coupling in the Cartesian Frame</a> | ||||
| <ul> | ||||
| <li><a href="#org5fe01ec">4.1. Cube’s center at the Center of Mass of the mobile platform</a></li> | ||||
| <li><a href="#org4cb2a36">4.2. Cube’s center not coincident with the Mass of the Mobile platform</a></li> | ||||
| <li><a href="#orga0d81dc">4.3. Conclusion</a></li> | ||||
| <li><a href="#orgf0acd1f">4.3. Conclusion</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#org8f26dc0">5. Dynamic Coupling between actuators and sensors of each strut</a> | ||||
| <ul> | ||||
| <li><a href="#org6e391c9">5.1. Coupling between the actuators and sensors - Cubic Architecture</a></li> | ||||
| <li><a href="#orgafd808d">5.2. Coupling between the actuators and sensors - Non-Cubic Architecture</a></li> | ||||
| <li><a href="#org3e2b41c">5.3. Conclusion</a></li> | ||||
| <li><a href="#org78c4967">5.3. Conclusion</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#org3044455">6. Functions</a> | ||||
| @@ -826,8 +826,8 @@ stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr' | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-orgd6c60aa" class="outline-3"> | ||||
| <h3 id="orgd6c60aa"><span class="section-number-3">1.5</span> Conclusion</h3> | ||||
| <div id="outline-container-org3e2b41c" class="outline-3"> | ||||
| <h3 id="org3e2b41c"><span class="section-number-3">1.5</span> Conclusion</h3> | ||||
| <div class="outline-text-3" id="text-1-5"> | ||||
| <div class="important"> | ||||
| <p> | ||||
| @@ -1164,8 +1164,8 @@ FOc  = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Cente | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-org78f0f9c" class="outline-3"> | ||||
| <h3 id="org78f0f9c"><span class="section-number-3">2.2</span> Conclusion</h3> | ||||
| <div id="outline-container-orgeeac940" class="outline-3"> | ||||
| <h3 id="orgeeac940"><span class="section-number-3">2.2</span> Conclusion</h3> | ||||
| <div class="outline-text-3" id="text-2-2"> | ||||
| <div class="important"> | ||||
| <p> | ||||
| @@ -1251,8 +1251,8 @@ We also find that \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\) are varyi | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-org53a1ab8" class="outline-3"> | ||||
| <h3 id="org53a1ab8"><span class="section-number-3">3.2</span> Conclusion</h3> | ||||
| <div id="outline-container-org991d232" class="outline-3"> | ||||
| <h3 id="org991d232"><span class="section-number-3">3.2</span> Conclusion</h3> | ||||
| <div class="outline-text-3" id="text-3-2"> | ||||
| <p> | ||||
| We observe that \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\) increase linearly with the cube size. | ||||
| @@ -1391,6 +1391,7 @@ No flexibility below the Stewart platform and no payload. | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); | ||||
| </pre> | ||||
| </div> | ||||
|  | ||||
| @@ -1535,6 +1536,7 @@ No flexibility below the Stewart platform and no payload. | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); | ||||
| </pre> | ||||
| </div> | ||||
|  | ||||
| @@ -1607,8 +1609,8 @@ This was expected as the mass matrix is not diagonal (the Center of Mass of the | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-orga0d81dc" class="outline-3"> | ||||
| <h3 id="orga0d81dc"><span class="section-number-3">4.3</span> Conclusion</h3> | ||||
| <div id="outline-container-orgf0acd1f" class="outline-3"> | ||||
| <h3 id="orgf0acd1f"><span class="section-number-3">4.3</span> Conclusion</h3> | ||||
| <div class="outline-text-3" id="text-4-3"> | ||||
| <div class="important"> | ||||
| <p> | ||||
| @@ -1693,6 +1695,7 @@ No flexibility below the Stewart platform and no payload. | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); | ||||
| </pre> | ||||
| </div> | ||||
|  | ||||
| @@ -1760,6 +1763,7 @@ No flexibility below the Stewart platform and no payload. | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); | ||||
| </pre> | ||||
| </div> | ||||
|  | ||||
| @@ -1790,8 +1794,8 @@ And we identify the dynamics from the actuator forces \(\tau_{i}\) to the relati | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-org3e2b41c" class="outline-3"> | ||||
| <h3 id="org3e2b41c"><span class="section-number-3">5.3</span> Conclusion</h3> | ||||
| <div id="outline-container-org78c4967" class="outline-3"> | ||||
| <h3 id="org78c4967"><span class="section-number-3">5.3</span> Conclusion</h3> | ||||
| <div class="outline-text-3" id="text-5-3"> | ||||
| <div class="important"> | ||||
| <p> | ||||
| @@ -1962,7 +1966,7 @@ stewart.platform_M.Mb = Mb; | ||||
| </div> | ||||
| <div id="postamble" class="status"> | ||||
| <p class="author">Author: Dehaeze Thomas</p> | ||||
| <p class="date">Created: 2020-02-27 jeu. 14:16</p> | ||||
| <p class="date">Created: 2020-02-28 ven. 17:34</p> | ||||
| </div> | ||||
| </body> | ||||
| </html> | ||||
|   | ||||
| @@ -4,7 +4,7 @@ | ||||
| "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> | ||||
| <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> | ||||
| <head> | ||||
| <!-- 2020-02-27 jeu. 14:16 --> | ||||
| <!-- 2020-02-28 ven. 17:34 --> | ||||
| <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> | ||||
| <meta name="viewport" content="width=device-width, initial-scale=1" /> | ||||
| <title>Stewart Platform - Dynamics Study</title> | ||||
| @@ -250,13 +250,13 @@ | ||||
| <ul> | ||||
| <li><a href="#org4509b7d">1.1. Comparison with fixed support</a></li> | ||||
| <li><a href="#org8662186">1.2. Comparison with a flexible support</a></li> | ||||
| <li><a href="#org03b2957">1.3. Conclusion</a></li> | ||||
| <li><a href="#org920d3c4">1.3. Conclusion</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#org81ab204">2. Comparison of the static transfer function and the Compliance matrix</a> | ||||
| <ul> | ||||
| <li><a href="#orge7e7242">2.1. Analysis</a></li> | ||||
| <li><a href="#org920d3c4">2.2. Conclusion</a></li> | ||||
| <li><a href="#orgbb930ae">2.2. Conclusion</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| </ul> | ||||
| @@ -299,6 +299,7 @@ We also don’t put any payload on top of the Stewart platform. | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); | ||||
| </pre> | ||||
| </div> | ||||
|  | ||||
| @@ -441,8 +442,8 @@ And thus \(\mathcal{F}_{x}\) and \(\mathcal{F}_{x,\text{ext}}\) have clearly <b> | ||||
| </div> | ||||
|  | ||||
|  | ||||
| <div id="outline-container-org03b2957" class="outline-3"> | ||||
| <h3 id="org03b2957"><span class="section-number-3">1.3</span> Conclusion</h3> | ||||
| <div id="outline-container-org920d3c4" class="outline-3"> | ||||
| <h3 id="org920d3c4"><span class="section-number-3">1.3</span> Conclusion</h3> | ||||
| <div class="outline-text-3" id="text-1-3"> | ||||
| <div class="important"> | ||||
| <p> | ||||
| @@ -489,6 +490,7 @@ No flexibility below the Stewart platform and no payload. | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); | ||||
| </pre> | ||||
| </div> | ||||
|  | ||||
| @@ -675,8 +677,8 @@ And now at the Compliance matrix. | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-org920d3c4" class="outline-3"> | ||||
| <h3 id="org920d3c4"><span class="section-number-3">2.2</span> Conclusion</h3> | ||||
| <div id="outline-container-orgbb930ae" class="outline-3"> | ||||
| <h3 id="orgbb930ae"><span class="section-number-3">2.2</span> Conclusion</h3> | ||||
| <div class="outline-text-3" id="text-2-2"> | ||||
| <div class="important"> | ||||
| <p> | ||||
| @@ -690,7 +692,7 @@ The low frequency transfer function matrix from \(\mathcal{\bm{F}}\) to \(\mathc | ||||
| </div> | ||||
| <div id="postamble" class="status"> | ||||
| <p class="author">Author: Dehaeze Thomas</p> | ||||
| <p class="date">Created: 2020-02-27 jeu. 14:16</p> | ||||
| <p class="date">Created: 2020-02-28 ven. 17:34</p> | ||||
| </div> | ||||
| </body> | ||||
| </html> | ||||
|   | ||||
							
								
								
									
										
											BIN
										
									
								
								docs/figs/control_arch_hac_dvf.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								docs/figs/control_arch_hac_dvf.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 10 KiB | 
							
								
								
									
										
											BIN
										
									
								
								docs/figs/control_arch_hac_iff.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								docs/figs/control_arch_hac_iff.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 9.8 KiB | 
							
								
								
									
										
											BIN
										
									
								
								docs/figs/control_arch_static_decoupling.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								docs/figs/control_arch_static_decoupling.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 8.8 KiB | 
							
								
								
									
										
											BIN
										
									
								
								docs/figs/control_arch_static_decoupling_K.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								docs/figs/control_arch_static_decoupling_K.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 8.6 KiB | 
							
								
								
									
										
											BIN
										
									
								
								docs/figs/general_control_names.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								docs/figs/general_control_names.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 12 KiB | 
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_C_T_comparison.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_C_T_comparison.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 205 KiB | 
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_C_T_dvf.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_C_T_dvf.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 199 KiB | 
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_C_T_iff.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_C_T_iff.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 205 KiB | 
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_C_full_comparison.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_C_full_comparison.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 244 KiB | 
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_T_full_comparison.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_T_full_comparison.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 243 KiB | 
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_coupling_jacobian.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_coupling_jacobian.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 235 KiB | 
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_loop_gain_dvf.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_loop_gain_dvf.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 129 KiB | 
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_loop_gain_iff.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_loop_gain_iff.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 135 KiB | 
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_plant_dvf.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_plant_dvf.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 95 KiB | 
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_plant_iff.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								docs/figs/hac_lac_plant_iff.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 95 KiB | 
							
								
								
									
										
											BIN
										
									
								
								docs/figs/static_decoupling_C_T_frobenius_norm.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								docs/figs/static_decoupling_C_T_frobenius_norm.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 196 KiB | 
							
								
								
									
										
											BIN
										
									
								
								docs/figs/static_decoupling_diagonal_plant.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								docs/figs/static_decoupling_diagonal_plant.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 102 KiB | 
| @@ -4,7 +4,7 @@ | ||||
| "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> | ||||
| <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> | ||||
| <head> | ||||
| <!-- 2020-02-27 jeu. 14:16 --> | ||||
| <!-- 2020-02-28 ven. 17:34 --> | ||||
| <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> | ||||
| <meta name="viewport" content="width=device-width, initial-scale=1" /> | ||||
| <title>Identification of the Stewart Platform using Simscape</title> | ||||
| @@ -257,13 +257,13 @@ | ||||
| </li> | ||||
| <li><a href="#org2891722">2. Transmissibility Analysis</a> | ||||
| <ul> | ||||
| <li><a href="#org8c667e9">2.1. Initialize the Stewart platform</a></li> | ||||
| <li><a href="#orgc8e1f51">2.1. Initialize the Stewart platform</a></li> | ||||
| <li><a href="#org5338f20">2.2. Transmissibility</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#orgc94edbd">3. Compliance Analysis</a> | ||||
| <ul> | ||||
| <li><a href="#orgc8e1f51">3.1. Initialize the Stewart platform</a></li> | ||||
| <li><a href="#org55d2544">3.1. Initialize the Stewart platform</a></li> | ||||
| <li><a href="#org1177029">3.2. Compliance</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| @@ -271,18 +271,18 @@ | ||||
| <ul> | ||||
| <li><a href="#org487c4d4">4.1. Compute the Transmissibility</a> | ||||
| <ul> | ||||
| <li><a href="#org851f84d">Function description</a></li> | ||||
| <li><a href="#orgf5e24cd">Optional Parameters</a></li> | ||||
| <li><a href="#org64fc1e2">Function description</a></li> | ||||
| <li><a href="#org54cab00">Optional Parameters</a></li> | ||||
| <li><a href="#org4629501">Identification of the Transmissibility Matrix</a></li> | ||||
| <li><a href="#org989379a">Computation of the Frobenius norm</a></li> | ||||
| <li><a href="#org6f63d37">Computation of the Frobenius norm</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#org50e35a6">4.2. Compute the Compliance</a> | ||||
| <ul> | ||||
| <li><a href="#org64fc1e2">Function description</a></li> | ||||
| <li><a href="#org54cab00">Optional Parameters</a></li> | ||||
| <li><a href="#org3cf1d13">Function description</a></li> | ||||
| <li><a href="#org726b57d">Optional Parameters</a></li> | ||||
| <li><a href="#orgef06b63">Identification of the Compliance Matrix</a></li> | ||||
| <li><a href="#org6f63d37">Computation of the Frobenius norm</a></li> | ||||
| <li><a href="#org1019eaf">Computation of the Frobenius norm</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| </ul> | ||||
| @@ -329,6 +329,7 @@ stewart = initializeInertialSensor(stewart); | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); | ||||
| </pre> | ||||
| </div> | ||||
| </div> | ||||
| @@ -608,8 +609,8 @@ Save the movie of the mode shape. | ||||
| <a id="orga989615"></a> | ||||
| </p> | ||||
| </div> | ||||
| <div id="outline-container-org8c667e9" class="outline-3"> | ||||
| <h3 id="org8c667e9"><span class="section-number-3">2.1</span> Initialize the Stewart platform</h3> | ||||
| <div id="outline-container-orgc8e1f51" class="outline-3"> | ||||
| <h3 id="orgc8e1f51"><span class="section-number-3">2.1</span> Initialize the Stewart platform</h3> | ||||
| <div class="outline-text-3" id="text-2-1"> | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">stewart = initializeStewartPlatform(); | ||||
| @@ -632,6 +633,7 @@ We set the rotation point of the ground to be at the same point at frames \(\{A\ | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A); | ||||
| payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>); | ||||
| controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); | ||||
| </pre> | ||||
| </div> | ||||
| </div> | ||||
| @@ -729,8 +731,8 @@ plot(freqs, Gamma) | ||||
| <a id="org4579374"></a> | ||||
| </p> | ||||
| </div> | ||||
| <div id="outline-container-orgc8e1f51" class="outline-3"> | ||||
| <h3 id="orgc8e1f51"><span class="section-number-3">3.1</span> Initialize the Stewart platform</h3> | ||||
| <div id="outline-container-org55d2544" class="outline-3"> | ||||
| <h3 id="org55d2544"><span class="section-number-3">3.1</span> Initialize the Stewart platform</h3> | ||||
| <div class="outline-text-3" id="text-3-1"> | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">stewart = initializeStewartPlatform(); | ||||
| @@ -753,6 +755,7 @@ We set the rotation point of the ground to be at the same point at frames \(\{A\ | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); | ||||
| payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>); | ||||
| controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); | ||||
| </pre> | ||||
| </div> | ||||
| </div> | ||||
| @@ -841,9 +844,9 @@ plot(freqs, C_norm) | ||||
| </p> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-org851f84d" class="outline-4"> | ||||
| <h4 id="org851f84d">Function description</h4> | ||||
| <div class="outline-text-4" id="text-org851f84d"> | ||||
| <div id="outline-container-org64fc1e2" class="outline-4"> | ||||
| <h4 id="org64fc1e2">Function description</h4> | ||||
| <div class="outline-text-4" id="text-org64fc1e2"> | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[T, T_norm, freqs]</span> = <span class="org-function-name">computeTransmissibility</span>(<span class="org-variable-name">args</span>) | ||||
| <span class="org-comment">% computeTransmissibility -</span> | ||||
| @@ -864,9 +867,9 @@ plot(freqs, C_norm) | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-orgf5e24cd" class="outline-4"> | ||||
| <h4 id="orgf5e24cd">Optional Parameters</h4> | ||||
| <div class="outline-text-4" id="text-orgf5e24cd"> | ||||
| <div id="outline-container-org54cab00" class="outline-4"> | ||||
| <h4 id="org54cab00">Optional Parameters</h4> | ||||
| <div class="outline-text-4" id="text-org54cab00"> | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">arguments | ||||
|   args.plots logical {mustBeNumericOrLogical} = <span class="org-constant">false</span> | ||||
| @@ -896,7 +899,7 @@ mdl = <span class="org-string">'stewart_platform_model'</span>; | ||||
| <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> | ||||
| clear io; io_i = 1; | ||||
| io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/D_w'</span>],        1, <span class="org-string">'openinput'</span>);  io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Base Motion [m, rad]</span> | ||||
| io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>],  1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span> | ||||
| io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>],  1, <span class="org-string">'output'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span> | ||||
|  | ||||
| <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> | ||||
| T = linearize(mdl, io, options); | ||||
| @@ -935,17 +938,17 @@ If wanted, the 6x6 transmissibility matrix is plotted. | ||||
|   han = <span class="org-type">axes</span>(fig, <span class="org-string">'visible'</span>, <span class="org-string">'off'</span>); | ||||
|   han.XLabel.Visible = <span class="org-string">'on'</span>; | ||||
|   han.YLabel.Visible = <span class="org-string">'on'</span>; | ||||
|   ylabel(han, <span class="org-string">'Frequency [Hz]'</span>); | ||||
|   xlabel(han, <span class="org-string">'Transmissibility [m/m]'</span>); | ||||
|   xlabel(han, <span class="org-string">'Frequency [Hz]'</span>); | ||||
|   ylabel(han, <span class="org-string">'Transmissibility [m/m]'</span>); | ||||
| <span class="org-keyword">end</span> | ||||
| </pre> | ||||
| </div> | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-org989379a" class="outline-4"> | ||||
| <h4 id="org989379a">Computation of the Frobenius norm</h4> | ||||
| <div class="outline-text-4" id="text-org989379a"> | ||||
| <div id="outline-container-org6f63d37" class="outline-4"> | ||||
| <h4 id="org6f63d37">Computation of the Frobenius norm</h4> | ||||
| <div class="outline-text-4" id="text-org6f63d37"> | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">T_norm = zeros(length(freqs), 1); | ||||
|  | ||||
| @@ -982,9 +985,9 @@ If wanted, the 6x6 transmissibility matrix is plotted. | ||||
| </p> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-org64fc1e2" class="outline-4"> | ||||
| <h4 id="org64fc1e2">Function description</h4> | ||||
| <div class="outline-text-4" id="text-org64fc1e2"> | ||||
| <div id="outline-container-org3cf1d13" class="outline-4"> | ||||
| <h4 id="org3cf1d13">Function description</h4> | ||||
| <div class="outline-text-4" id="text-org3cf1d13"> | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[C, C_norm, freqs]</span> = <span class="org-function-name">computeCompliance</span>(<span class="org-variable-name">args</span>) | ||||
| <span class="org-comment">% computeCompliance -</span> | ||||
| @@ -1005,9 +1008,9 @@ If wanted, the 6x6 transmissibility matrix is plotted. | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-org54cab00" class="outline-4"> | ||||
| <h4 id="org54cab00">Optional Parameters</h4> | ||||
| <div class="outline-text-4" id="text-org54cab00"> | ||||
| <div id="outline-container-org726b57d" class="outline-4"> | ||||
| <h4 id="org726b57d">Optional Parameters</h4> | ||||
| <div class="outline-text-4" id="text-org726b57d"> | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">arguments | ||||
|   args.plots logical {mustBeNumericOrLogical} = <span class="org-constant">false</span> | ||||
| @@ -1037,7 +1040,7 @@ mdl = <span class="org-string">'stewart_platform_model'</span>; | ||||
| <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> | ||||
| clear io; io_i = 1; | ||||
| io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/F_ext'</span>],      1, <span class="org-string">'openinput'</span>);  io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% External forces [N, N*m]</span> | ||||
| io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>],  1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span> | ||||
| io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>],  1, <span class="org-string">'output'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span> | ||||
|  | ||||
| <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> | ||||
| C = linearize(mdl, io, options); | ||||
| @@ -1083,9 +1086,9 @@ If wanted, the 6x6 transmissibility matrix is plotted. | ||||
| </div> | ||||
| </div> | ||||
|  | ||||
| <div id="outline-container-org6f63d37" class="outline-4"> | ||||
| <h4 id="org6f63d37">Computation of the Frobenius norm</h4> | ||||
| <div class="outline-text-4" id="text-org6f63d37"> | ||||
| <div id="outline-container-org1019eaf" class="outline-4"> | ||||
| <h4 id="org1019eaf">Computation of the Frobenius norm</h4> | ||||
| <div class="outline-text-4" id="text-org1019eaf"> | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">freqs = args.freqs; | ||||
|  | ||||
| @@ -1114,7 +1117,7 @@ C_norm = zeros(length(freqs), 1); | ||||
| </div> | ||||
| <div id="postamble" class="status"> | ||||
| <p class="author">Author: Dehaeze Thomas</p> | ||||
| <p class="date">Created: 2020-02-27 jeu. 14:16</p> | ||||
| <p class="date">Created: 2020-02-28 ven. 17:34</p> | ||||
| </div> | ||||
| </body> | ||||
| </html> | ||||
|   | ||||
| @@ -93,6 +93,7 @@ To run the script, open the Simulink Project, and type =run active_damping_inert | ||||
| #+begin_src matlab | ||||
|   ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A); | ||||
|   payload = initializePayload('type', 'none'); | ||||
|   controller = initializeController('type', 'open-loop'); | ||||
| #+end_src | ||||
|  | ||||
| #+begin_src matlab | ||||
| @@ -323,18 +324,11 @@ We first initialize the Stewart platform without joint stiffness. | ||||
| #+begin_src matlab | ||||
|   ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A); | ||||
|   payload = initializePayload('type', 'none'); | ||||
| #+end_src | ||||
|  | ||||
| #+begin_src matlab | ||||
|   controller = initializeController('type', 'open-loop'); | ||||
| #+end_src | ||||
|  | ||||
| And we identify the dynamics from force actuators to force sensors. | ||||
| #+begin_src matlab | ||||
|   %% Options for Linearized | ||||
|   options = linearizeOptions; | ||||
|   options.SampleTime = 0; | ||||
|  | ||||
|   %% Name of the Simulink File | ||||
|   mdl = 'stewart_platform_model'; | ||||
|  | ||||
| @@ -344,7 +338,7 @@ And we identify the dynamics from force actuators to force sensors. | ||||
|   io(io_i) = linio([mdl, '/Stewart Platform'],  1, 'openoutput', [], 'Taum'); io_i = io_i + 1; % Force Sensor Outputs [N] | ||||
|  | ||||
|   %% Run the linearization | ||||
|   G = linearize(mdl, io, options); | ||||
|   G = linearize(mdl, io); | ||||
|   G.InputName  = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; | ||||
|   G.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'}; | ||||
| #+end_src | ||||
| @@ -398,7 +392,7 @@ The transfer function from actuator forces to force sensors is shown in Figure [ | ||||
| We add some stiffness and damping in the flexible joints and we re-identify the dynamics. | ||||
| #+begin_src matlab | ||||
|   stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical'); | ||||
|   Gf = linearize(mdl, io, options); | ||||
|   Gf = linearize(mdl, io); | ||||
|   Gf.InputName  = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; | ||||
|   Gf.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'}; | ||||
| #+end_src | ||||
| @@ -406,7 +400,7 @@ We add some stiffness and damping in the flexible joints and we re-identify the | ||||
| We now use the amplified actuators and re-identify the dynamics | ||||
| #+begin_src matlab | ||||
|   stewart = initializeAmplifiedStrutDynamics(stewart); | ||||
|   Ga = linearize(mdl, io, options); | ||||
|   Ga = linearize(mdl, io); | ||||
|   Ga.InputName  = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; | ||||
|   Ga.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'}; | ||||
| #+end_src | ||||
| @@ -596,6 +590,7 @@ We first initialize the Stewart platform without joint stiffness. | ||||
| #+begin_src matlab | ||||
|   ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A); | ||||
|   payload = initializePayload('type', 'none'); | ||||
|   controller = initializeController('type', 'open-loop'); | ||||
| #+end_src | ||||
|  | ||||
| And we identify the dynamics from force actuators to force sensors. | ||||
| @@ -778,6 +773,24 @@ The root locus is shown in figure [[fig:root_locus_dvf_rot_stiffness]]. | ||||
|   Joint stiffness does increase the resonance frequencies of the system but does not change the attainable damping when using relative motion sensors. | ||||
| #+end_important | ||||
| * Compliance and Transmissibility Comparison | ||||
| ** Introduction                                                      :ignore: | ||||
| ** Matlab Init                                             :noexport:ignore: | ||||
| #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) | ||||
| <<matlab-dir>> | ||||
| #+end_src | ||||
|  | ||||
| #+begin_src matlab :exports none :results silent :noweb yes | ||||
| <<matlab-init>> | ||||
| #+end_src | ||||
|  | ||||
| #+begin_src matlab | ||||
|   simulinkproject('../'); | ||||
| #+end_src | ||||
|  | ||||
| #+begin_src matlab | ||||
|   open('stewart_platform_model.slx') | ||||
| #+end_src | ||||
|  | ||||
| ** Initialization | ||||
| We first initialize the Stewart platform without joint stiffness. | ||||
| #+begin_src matlab | ||||
| @@ -798,6 +811,7 @@ The rotation point of the ground is located at the origin of frame $\{A\}$. | ||||
| #+begin_src matlab | ||||
|   ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A); | ||||
|   payload = initializePayload('type', 'none'); | ||||
|   controller = initializeController('type', 'open-loop'); | ||||
| #+end_src | ||||
|  | ||||
| ** Identification | ||||
| @@ -811,7 +825,7 @@ Let's first identify the transmissibility and compliance in the open-loop case. | ||||
| Now, let's identify the transmissibility and compliance for the Integral Force Feedback architecture. | ||||
| #+begin_src matlab | ||||
|   controller = initializeController('type', 'iff'); | ||||
|   G_iff = (2e4/s)*eye(6); | ||||
|   K_iff = (1e4/s)*eye(6); | ||||
|  | ||||
|   [T_iff, T_norm_iff, ~] = computeTransmissibility(); | ||||
|   [C_iff, C_norm_iff, ~] = computeCompliance(); | ||||
| @@ -820,7 +834,7 @@ Now, let's identify the transmissibility and compliance for the Integral Force F | ||||
| And for the Direct Velocity Feedback. | ||||
| #+begin_src matlab | ||||
|   controller = initializeController('type', 'dvf'); | ||||
|   G_dvf = 1e4*s/(1+s/2/pi/5000)*eye(6); | ||||
|   K_dvf = 1e4*s/(1+s/2/pi/5000)*eye(6); | ||||
|  | ||||
|   [T_dvf, T_norm_dvf, ~] = computeTransmissibility(); | ||||
|   [C_dvf, C_norm_dvf, ~] = computeCompliance(); | ||||
| @@ -857,8 +871,8 @@ And for the Direct Velocity Feedback. | ||||
|   han = axes(fig, 'visible', 'off'); | ||||
|   han.XLabel.Visible = 'on'; | ||||
|   han.YLabel.Visible = 'on'; | ||||
|   ylabel(han, 'Frequency [Hz]'); | ||||
|   xlabel(han, 'Transmissibility'); | ||||
|   xlabel(han, 'Frequency [Hz]'); | ||||
|   ylabel(han, 'Transmissibility'); | ||||
| #+end_src | ||||
|  | ||||
| #+header: :tangle no :exports results :results none :noweb yes | ||||
| @@ -900,8 +914,8 @@ And for the Direct Velocity Feedback. | ||||
|   han = axes(fig, 'visible', 'off'); | ||||
|   han.XLabel.Visible = 'on'; | ||||
|   han.YLabel.Visible = 'on'; | ||||
|   ylabel(han, 'Frequency [Hz]'); | ||||
|   xlabel(han, 'Compliance'); | ||||
|   xlabel(han, 'Frequency [Hz]'); | ||||
|   ylabel(han, 'Compliance'); | ||||
| #+end_src | ||||
|  | ||||
| #+header: :tangle no :exports results :results none :noweb yes | ||||
|   | ||||
							
								
								
									
										257
									
								
								org/control-tracking.org
									
									
									
									
									
										Normal file
									
								
							
							
						
						| @@ -0,0 +1,257 @@ | ||||
| #+TITLE: Stewart Platform - Tracking Control | ||||
| :DRAWER: | ||||
| #+STARTUP: overview | ||||
|  | ||||
| #+LANGUAGE: en | ||||
| #+EMAIL: dehaeze.thomas@gmail.com | ||||
| #+AUTHOR: Dehaeze Thomas | ||||
|  | ||||
| #+HTML_LINK_HOME: ./index.html | ||||
| #+HTML_LINK_UP: ./index.html | ||||
|  | ||||
| #+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/> | ||||
| #+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/> | ||||
| #+HTML_HEAD: <script src="./js/jquery.min.js"></script> | ||||
| #+HTML_HEAD: <script src="./js/bootstrap.min.js"></script> | ||||
| #+HTML_HEAD: <script src="./js/jquery.stickytableheaders.min.js"></script> | ||||
| #+HTML_HEAD: <script src="./js/readtheorg.js"></script> | ||||
|  | ||||
| #+PROPERTY: header-args:matlab  :session *MATLAB* | ||||
| #+PROPERTY: header-args:matlab+ :comments org | ||||
| #+PROPERTY: header-args:matlab+ :exports both | ||||
| #+PROPERTY: header-args:matlab+ :results none | ||||
| #+PROPERTY: header-args:matlab+ :eval no-export | ||||
| #+PROPERTY: header-args:matlab+ :noweb yes | ||||
| #+PROPERTY: header-args:matlab+ :mkdirp yes | ||||
| #+PROPERTY: header-args:matlab+ :output-dir figs | ||||
|  | ||||
| #+PROPERTY: header-args:latex  :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/}{config.tex}") | ||||
| #+PROPERTY: header-args:latex+ :imagemagick t :fit yes | ||||
| #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 | ||||
| #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 | ||||
| #+PROPERTY: header-args:latex+ :results file raw replace | ||||
| #+PROPERTY: header-args:latex+ :buffer no | ||||
| #+PROPERTY: header-args:latex+ :eval no-export | ||||
| #+PROPERTY: header-args:latex+ :exports results | ||||
| #+PROPERTY: header-args:latex+ :mkdirp yes | ||||
| #+PROPERTY: header-args:latex+ :output-dir figs | ||||
| #+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png") | ||||
| :END: | ||||
|  | ||||
| * First Control Architecture | ||||
| ** Matlab Init                                                     :noexport: | ||||
| #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) | ||||
|   <<matlab-dir>> | ||||
| #+end_src | ||||
|  | ||||
| #+begin_src matlab :exports none :results silent :noweb yes | ||||
|   <<matlab-init>> | ||||
| #+end_src | ||||
|  | ||||
| #+begin_src matlab | ||||
|   simulinkproject('../'); | ||||
| #+end_src | ||||
|  | ||||
| ** Control Schematic | ||||
| #+begin_src latex :file control_measure_rotating_2dof.pdf | ||||
|   \begin{tikzpicture} | ||||
|     % Blocs | ||||
|     \node[block] (J) at (0, 0) {$J$}; | ||||
|     \node[addb={+}{}{}{}{-}, right=1 of J] (subr) {}; | ||||
|     \node[block, right=0.8 of subr] (K) {$K_{L}$}; | ||||
|     \node[block, right=1 of K] (G) {$G_{L}$}; | ||||
|  | ||||
|     % Connections and labels | ||||
|     \draw[<-] (J.west)node[above left]{$\bm{r}_{n}$} -- ++(-1, 0); | ||||
|     \draw[->] (J.east) -- (subr.west) node[above left]{$\bm{r}_{L}$}; | ||||
|     \draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{L}$}; | ||||
|     \draw[->] (K.east) -- (G.west) node[above left]{$\bm{\tau}$}; | ||||
|     \draw[->] (G.east) node[above right]{$\bm{L}$} -| ($(G.east)+(1, -1)$) -| (subr.south); | ||||
|   \end{tikzpicture} | ||||
| #+end_src | ||||
|  | ||||
| #+RESULTS: | ||||
| [[file:figs/control_measure_rotating_2dof.png]] | ||||
|  | ||||
| ** Initialize the Stewart platform | ||||
| #+begin_src matlab | ||||
|   stewart = initializeStewartPlatform(); | ||||
|   stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3); | ||||
|   stewart = generateGeneralConfiguration(stewart); | ||||
|   stewart = computeJointsPose(stewart); | ||||
|   stewart = initializeStrutDynamics(stewart); | ||||
|   stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p'); | ||||
|   stewart = initializeCylindricalPlatforms(stewart); | ||||
|   stewart = initializeCylindricalStruts(stewart); | ||||
|   stewart = computeJacobian(stewart); | ||||
|   stewart = initializeStewartPose(stewart); | ||||
|   stewart = initializeInertialSensor(stewart, 'type', 'accelerometer', 'freq', 5e3); | ||||
| #+end_src | ||||
|  | ||||
| #+begin_src matlab | ||||
|   ground = initializeGround('type', 'none'); | ||||
|   payload = initializePayload('type', 'none'); | ||||
| #+end_src | ||||
|  | ||||
| ** Identification of the plant | ||||
| Let's identify the transfer function from $\bm{\tau}$ to $\bm{L}$. | ||||
| #+begin_src matlab | ||||
|   %% Name of the Simulink File | ||||
|   mdl = 'stewart_platform_model'; | ||||
|  | ||||
|   %% Input/Output definition | ||||
|   clear io; io_i = 1; | ||||
|   io(io_i) = linio([mdl, '/Controller'],        1, 'openinput');  io_i = io_i + 1; % Actuator Force Inputs [N] | ||||
|   io(io_i) = linio([mdl, '/Stewart Platform'],  1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m] | ||||
|  | ||||
|   %% Run the linearization | ||||
|   G = linearize(mdl, io); | ||||
|   G.InputName  = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; | ||||
|   G.OutputName = {'L1', 'L2', 'L3', 'L4', 'L5', 'L6'}; | ||||
| #+end_src | ||||
|  | ||||
| ** Plant Analysis | ||||
| Diagonal terms | ||||
| #+begin_src matlab :exports none | ||||
|   freqs = logspace(1, 4, 1000); | ||||
|  | ||||
|   figure; | ||||
|  | ||||
|   ax1 = subplot(2, 1, 1); | ||||
|   hold on; | ||||
|   for i = 1:6 | ||||
|     plot(freqs, abs(squeeze(freqresp(G(i, i), freqs, 'Hz')))); | ||||
|   end | ||||
|   hold off; | ||||
|   set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); | ||||
|   ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); | ||||
|  | ||||
|   ax2 = subplot(2, 1, 2); | ||||
|   hold on; | ||||
|   for i = 1:6 | ||||
|     plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, i), freqs, 'Hz')))); | ||||
|   end | ||||
|   hold off; | ||||
|   set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); | ||||
|   ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); | ||||
|   ylim([-180, 180]); | ||||
|   yticks([-180, -90, 0, 90, 180]); | ||||
|  | ||||
|   linkaxes([ax1,ax2],'x'); | ||||
| #+end_src | ||||
|  | ||||
| Compare to off-diagonal terms | ||||
| #+begin_src matlab :exports none | ||||
|   freqs = logspace(1, 4, 1000); | ||||
|  | ||||
|   figure; | ||||
|  | ||||
|   ax1 = subplot(2, 1, 1); | ||||
|   hold on; | ||||
|   for i = 1:5 | ||||
|     for j = i+1:6 | ||||
|       plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); | ||||
|     end | ||||
|   end | ||||
|   set(gca,'ColorOrderIndex',1); | ||||
|   plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); | ||||
|   hold off; | ||||
|   set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); | ||||
|   ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); | ||||
|  | ||||
|   ax2 = subplot(2, 1, 2); | ||||
|   hold on; | ||||
|   for i = 1:5 | ||||
|     for j = i+1:6 | ||||
|       plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); | ||||
|     end | ||||
|   end | ||||
|   set(gca,'ColorOrderIndex',1); | ||||
|   plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); | ||||
|   hold off; | ||||
|   set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); | ||||
|   ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); | ||||
|   ylim([-180, 180]); | ||||
|   yticks([-180, -90, 0, 90, 180]); | ||||
|  | ||||
|   linkaxes([ax1,ax2],'x'); | ||||
| #+end_src | ||||
|  | ||||
| ** Controller Design | ||||
| One integrator should be present in the controller. | ||||
|  | ||||
| A lead is added around the crossover frequency which is set to be around 500Hz. | ||||
|  | ||||
| #+begin_src matlab | ||||
|   % wint = 2*pi*100; % Integrate until [rad] | ||||
|   % wlead = 2*pi*500; % Location of the lead [rad] | ||||
|   % hlead = 2; % Lead strengh | ||||
|  | ||||
|   % Kl = 1e6 * ... % Gain | ||||
|   %      (s + wint)/(s) * ... % Integrator until 100Hz | ||||
|   %      (1 + s/(wlead/hlead)/(1 + s/(wlead*hlead))); % Lead | ||||
|  | ||||
|   wc = 2*pi*100; | ||||
|   Kl = 1/abs(freqresp(G(1,1), wc)) * wc/s * 1/(1 + s/(3*wc)); | ||||
|   Kl = Kl * eye(6); | ||||
| #+end_src | ||||
|  | ||||
| #+begin_src matlab :exports none | ||||
|   freqs = logspace(1, 3, 1000); | ||||
|  | ||||
|   figure; | ||||
|  | ||||
|   ax1 = subplot(2, 1, 1); | ||||
|   hold on; | ||||
|   plot(freqs, abs(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz')))); | ||||
|   hold off; | ||||
|   set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); | ||||
|   ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); | ||||
|  | ||||
|   ax2 = subplot(2, 1, 2); | ||||
|   hold on; | ||||
|   plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz')))); | ||||
|   hold off; | ||||
|   set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); | ||||
|   ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); | ||||
|   ylim([-180, 180]); | ||||
|   yticks([-180, -90, 0, 90, 180]); | ||||
|  | ||||
|   linkaxes([ax1,ax2],'x'); | ||||
| #+end_src | ||||
|  | ||||
| #+begin_src matlab :exports none | ||||
|   freqs = logspace(1, 4, 1000); | ||||
|  | ||||
|   figure; | ||||
|  | ||||
|   ax1 = subplot(2, 1, 1); | ||||
|   hold on; | ||||
|   for i = 1:5 | ||||
|     for j = i+1:6 | ||||
|       plot(freqs, abs(squeeze(freqresp(Kl(i,i)*G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); | ||||
|     end | ||||
|   end | ||||
|   set(gca,'ColorOrderIndex',1); | ||||
|   plot(freqs, abs(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz')))); | ||||
|   hold off; | ||||
|   set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); | ||||
|   ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); | ||||
|  | ||||
|   ax2 = subplot(2, 1, 2); | ||||
|   hold on; | ||||
|   for i = 1:5 | ||||
|     for j = i+1:6 | ||||
|       plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(i, i)*G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); | ||||
|     end | ||||
|   end | ||||
|   set(gca,'ColorOrderIndex',1); | ||||
|   plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz')))); | ||||
|   hold off; | ||||
|   set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); | ||||
|   ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); | ||||
|   ylim([-180, 180]); | ||||
|   yticks([-180, -90, 0, 90, 180]); | ||||
|  | ||||
|   linkaxes([ax1,ax2],'x'); | ||||
| #+end_src | ||||
| @@ -695,6 +695,7 @@ No flexibility below the Stewart platform and no payload. | ||||
| #+begin_src matlab | ||||
|   ground = initializeGround('type', 'none'); | ||||
|   payload = initializePayload('type', 'none'); | ||||
|   controller = initializeController('type', 'open-loop'); | ||||
| #+end_src | ||||
|  | ||||
| The obtain geometry is shown in figure [[fig:stewart_cubic_conf_decouple_dynamics]]. | ||||
| @@ -880,6 +881,7 @@ No flexibility below the Stewart platform and no payload. | ||||
| #+begin_src matlab | ||||
|   ground = initializeGround('type', 'none'); | ||||
|   payload = initializePayload('type', 'none'); | ||||
|   controller = initializeController('type', 'open-loop'); | ||||
| #+end_src | ||||
|  | ||||
| The obtain geometry is shown in figure [[fig:stewart_cubic_conf_mass_above]]. | ||||
| @@ -1087,6 +1089,7 @@ No flexibility below the Stewart platform and no payload. | ||||
| #+begin_src matlab | ||||
|   ground = initializeGround('type', 'none'); | ||||
|   payload = initializePayload('type', 'none'); | ||||
|   controller = initializeController('type', 'open-loop'); | ||||
| #+end_src | ||||
|  | ||||
| #+begin_src matlab :exports none | ||||
| @@ -1258,6 +1261,7 @@ No flexibility below the Stewart platform and no payload. | ||||
| #+begin_src matlab | ||||
|   ground = initializeGround('type', 'none'); | ||||
|   payload = initializePayload('type', 'none'); | ||||
|   controller = initializeController('type', 'open-loop'); | ||||
| #+end_src | ||||
|  | ||||
| #+begin_src matlab :exports none | ||||
|   | ||||
| @@ -80,6 +80,7 @@ We also don't put any payload on top of the Stewart platform. | ||||
| #+begin_src matlab | ||||
|   ground = initializeGround('type', 'none'); | ||||
|   payload = initializePayload('type', 'none'); | ||||
|   controller = initializeController('type', 'open-loop'); | ||||
| #+end_src | ||||
|  | ||||
| The transfer function from actuator forces $\bm{\tau}$ to the relative displacement of the mobile platform $\mathcal{\bm{X}}$ is extracted. | ||||
| @@ -327,6 +328,7 @@ No flexibility below the Stewart platform and no payload. | ||||
| #+begin_src matlab | ||||
|   ground = initializeGround('type', 'none'); | ||||
|   payload = initializePayload('type', 'none'); | ||||
|   controller = initializeController('type', 'open-loop'); | ||||
| #+end_src | ||||
|  | ||||
| Estimation of the transfer function from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$: | ||||
|   | ||||
| @@ -83,6 +83,7 @@ In this document, we discuss the various methods to identify the behavior of the | ||||
| #+begin_src matlab | ||||
|   ground = initializeGround('type', 'none'); | ||||
|   payload = initializePayload('type', 'none'); | ||||
|   controller = initializeController('type', 'open-loop'); | ||||
| #+end_src | ||||
|  | ||||
| ** Identification | ||||
| @@ -284,6 +285,7 @@ We set the rotation point of the ground to be at the same point at frames $\{A\} | ||||
| #+begin_src matlab | ||||
|   ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A); | ||||
|   payload = initializePayload('type', 'rigid'); | ||||
|   controller = initializeController('type', 'open-loop'); | ||||
| #+end_src | ||||
|  | ||||
| ** Transmissibility | ||||
| @@ -396,6 +398,7 @@ We set the rotation point of the ground to be at the same point at frames $\{A\} | ||||
| #+begin_src matlab | ||||
|   ground = initializeGround('type', 'none'); | ||||
|   payload = initializePayload('type', 'rigid'); | ||||
|   controller = initializeController('type', 'open-loop'); | ||||
| #+end_src | ||||
|  | ||||
| ** Compliance | ||||
| @@ -517,7 +520,7 @@ We can try to use the Frobenius norm to obtain a scalar value representing the 6 | ||||
|   %% Input/Output definition | ||||
|   clear io; io_i = 1; | ||||
|   io(io_i) = linio([mdl, '/Disturbances/D_w'],        1, 'openinput');  io_i = io_i + 1; % Base Motion [m, rad] | ||||
|   io(io_i) = linio([mdl, '/Absolute Motion Sensor'],  1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad] | ||||
|   io(io_i) = linio([mdl, '/Absolute Motion Sensor'],  1, 'output'); io_i = io_i + 1; % Absolute Motion [m, rad] | ||||
|  | ||||
|   %% Run the linearization | ||||
|   T = linearize(mdl, io, options); | ||||
| @@ -553,8 +556,8 @@ If wanted, the 6x6 transmissibility matrix is plotted. | ||||
|     han = axes(fig, 'visible', 'off'); | ||||
|     han.XLabel.Visible = 'on'; | ||||
|     han.YLabel.Visible = 'on'; | ||||
|     ylabel(han, 'Frequency [Hz]'); | ||||
|     xlabel(han, 'Transmissibility [m/m]'); | ||||
|     xlabel(han, 'Frequency [Hz]'); | ||||
|     ylabel(han, 'Transmissibility [m/m]'); | ||||
|   end | ||||
| #+end_src | ||||
|  | ||||
| @@ -642,7 +645,7 @@ If wanted, the 6x6 transmissibility matrix is plotted. | ||||
|   %% Input/Output definition | ||||
|   clear io; io_i = 1; | ||||
|   io(io_i) = linio([mdl, '/Disturbances/F_ext'],      1, 'openinput');  io_i = io_i + 1; % External forces [N, N*m] | ||||
|   io(io_i) = linio([mdl, '/Absolute Motion Sensor'],  1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad] | ||||
|   io(io_i) = linio([mdl, '/Absolute Motion Sensor'],  1, 'output'); io_i = io_i + 1; % Absolute Motion [m, rad] | ||||
|  | ||||
|   %% Run the linearization | ||||
|   C = linearize(mdl, io, options); | ||||
|   | ||||
| @@ -30,7 +30,7 @@ mdl = 'stewart_platform_model'; | ||||
| %% Input/Output definition | ||||
| clear io; io_i = 1; | ||||
| io(io_i) = linio([mdl, '/Disturbances/F_ext'],      1, 'openinput');  io_i = io_i + 1; % External forces [N, N*m] | ||||
| io(io_i) = linio([mdl, '/Absolute Motion Sensor'],  1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad] | ||||
| io(io_i) = linio([mdl, '/Absolute Motion Sensor'],  1, 'output'); io_i = io_i + 1; % Absolute Motion [m, rad] | ||||
|  | ||||
| %% Run the linearization | ||||
| C = linearize(mdl, io, options); | ||||
|   | ||||
| @@ -30,7 +30,7 @@ mdl = 'stewart_platform_model'; | ||||
| %% Input/Output definition | ||||
| clear io; io_i = 1; | ||||
| io(io_i) = linio([mdl, '/Disturbances/D_w'],        1, 'openinput');  io_i = io_i + 1; % Base Motion [m, rad] | ||||
| io(io_i) = linio([mdl, '/Absolute Motion Sensor'],  1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad] | ||||
| io(io_i) = linio([mdl, '/Absolute Motion Sensor'],  1, 'output'); io_i = io_i + 1; % Absolute Motion [m, rad] | ||||
|  | ||||
| %% Run the linearization | ||||
| T = linearize(mdl, io, options); | ||||
| @@ -63,8 +63,8 @@ if args.plots | ||||
|   han = axes(fig, 'visible', 'off'); | ||||
|   han.XLabel.Visible = 'on'; | ||||
|   han.YLabel.Visible = 'on'; | ||||
|   ylabel(han, 'Frequency [Hz]'); | ||||
|   xlabel(han, 'Transmissibility [m/m]'); | ||||
|   xlabel(han, 'Frequency [Hz]'); | ||||
|   ylabel(han, 'Transmissibility [m/m]'); | ||||
| end | ||||
|  | ||||
| T_norm = zeros(length(freqs), 1); | ||||
|   | ||||
| @@ -7,7 +7,7 @@ function [controller] = initializeController(args) | ||||
| %    - args - Can have the following fields: | ||||
|  | ||||
| arguments | ||||
|   args.type   char   {mustBeMember(args.type, {'open-loop', 'iff', 'dvf'})} = 'open-loop' | ||||
|   args.type   char   {mustBeMember(args.type, {'open-loop', 'iff', 'dvf', 'hac-iff', 'hac-dvf'})} = 'open-loop' | ||||
| end | ||||
|  | ||||
| controller = struct(); | ||||
| @@ -19,4 +19,8 @@ switch args.type | ||||
|     controller.type = 1; | ||||
|   case 'dvf' | ||||
|     controller.type = 2; | ||||
|   case 'hac-iff' | ||||
|     controller.type = 3; | ||||
|   case 'hac-dvf' | ||||
|     controller.type = 4; | ||||
| end | ||||
|   | ||||