Work on HAC-LAC, Control architectures

This commit is contained in:
2020-02-28 17:35:44 +01:00
parent c1ca4b3b78
commit 02943f0f28
52 changed files with 2706 additions and 334 deletions

View File

@@ -93,6 +93,7 @@ To run the script, open the Simulink Project, and type =run active_damping_inert
#+begin_src matlab
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
#+end_src
#+begin_src matlab
@@ -323,18 +324,11 @@ We first initialize the Stewart platform without joint stiffness.
#+begin_src matlab
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
payload = initializePayload('type', 'none');
#+end_src
#+begin_src matlab
controller = initializeController('type', 'open-loop');
#+end_src
And we identify the dynamics from force actuators to force sensors.
#+begin_src matlab
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_model';
@@ -344,7 +338,7 @@ And we identify the dynamics from force actuators to force sensors.
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Taum'); io_i = io_i + 1; % Force Sensor Outputs [N]
%% Run the linearization
G = linearize(mdl, io, options);
G = linearize(mdl, io);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
#+end_src
@@ -398,7 +392,7 @@ The transfer function from actuator forces to force sensors is shown in Figure [
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
#+begin_src matlab
stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
Gf = linearize(mdl, io, options);
Gf = linearize(mdl, io);
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gf.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
#+end_src
@@ -406,7 +400,7 @@ We add some stiffness and damping in the flexible joints and we re-identify the
We now use the amplified actuators and re-identify the dynamics
#+begin_src matlab
stewart = initializeAmplifiedStrutDynamics(stewart);
Ga = linearize(mdl, io, options);
Ga = linearize(mdl, io);
Ga.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Ga.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
#+end_src
@@ -596,6 +590,7 @@ We first initialize the Stewart platform without joint stiffness.
#+begin_src matlab
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
#+end_src
And we identify the dynamics from force actuators to force sensors.
@@ -778,6 +773,24 @@ The root locus is shown in figure [[fig:root_locus_dvf_rot_stiffness]].
Joint stiffness does increase the resonance frequencies of the system but does not change the attainable damping when using relative motion sensors.
#+end_important
* Compliance and Transmissibility Comparison
** Introduction :ignore:
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
#+begin_src matlab
simulinkproject('../');
#+end_src
#+begin_src matlab
open('stewart_platform_model.slx')
#+end_src
** Initialization
We first initialize the Stewart platform without joint stiffness.
#+begin_src matlab
@@ -798,6 +811,7 @@ The rotation point of the ground is located at the origin of frame $\{A\}$.
#+begin_src matlab
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
#+end_src
** Identification
@@ -811,7 +825,7 @@ Let's first identify the transmissibility and compliance in the open-loop case.
Now, let's identify the transmissibility and compliance for the Integral Force Feedback architecture.
#+begin_src matlab
controller = initializeController('type', 'iff');
G_iff = (2e4/s)*eye(6);
K_iff = (1e4/s)*eye(6);
[T_iff, T_norm_iff, ~] = computeTransmissibility();
[C_iff, C_norm_iff, ~] = computeCompliance();
@@ -820,7 +834,7 @@ Now, let's identify the transmissibility and compliance for the Integral Force F
And for the Direct Velocity Feedback.
#+begin_src matlab
controller = initializeController('type', 'dvf');
G_dvf = 1e4*s/(1+s/2/pi/5000)*eye(6);
K_dvf = 1e4*s/(1+s/2/pi/5000)*eye(6);
[T_dvf, T_norm_dvf, ~] = computeTransmissibility();
[C_dvf, C_norm_dvf, ~] = computeCompliance();
@@ -857,8 +871,8 @@ And for the Direct Velocity Feedback.
han = axes(fig, 'visible', 'off');
han.XLabel.Visible = 'on';
han.YLabel.Visible = 'on';
ylabel(han, 'Frequency [Hz]');
xlabel(han, 'Transmissibility');
xlabel(han, 'Frequency [Hz]');
ylabel(han, 'Transmissibility');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
@@ -900,8 +914,8 @@ And for the Direct Velocity Feedback.
han = axes(fig, 'visible', 'off');
han.XLabel.Visible = 'on';
han.YLabel.Visible = 'on';
ylabel(han, 'Frequency [Hz]');
xlabel(han, 'Compliance');
xlabel(han, 'Frequency [Hz]');
ylabel(han, 'Compliance');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes

File diff suppressed because it is too large Load Diff

257
org/control-tracking.org Normal file
View File

@@ -0,0 +1,257 @@
#+TITLE: Stewart Platform - Tracking Control
:DRAWER:
#+STARTUP: overview
#+LANGUAGE: en
#+EMAIL: dehaeze.thomas@gmail.com
#+AUTHOR: Dehaeze Thomas
#+HTML_LINK_HOME: ./index.html
#+HTML_LINK_UP: ./index.html
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
#+HTML_HEAD: <script src="./js/jquery.min.js"></script>
#+HTML_HEAD: <script src="./js/bootstrap.min.js"></script>
#+HTML_HEAD: <script src="./js/jquery.stickytableheaders.min.js"></script>
#+HTML_HEAD: <script src="./js/readtheorg.js"></script>
#+PROPERTY: header-args:matlab :session *MATLAB*
#+PROPERTY: header-args:matlab+ :comments org
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :results none
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :noweb yes
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:matlab+ :output-dir figs
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/}{config.tex}")
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
#+PROPERTY: header-args:latex+ :results file raw replace
#+PROPERTY: header-args:latex+ :buffer no
#+PROPERTY: header-args:latex+ :eval no-export
#+PROPERTY: header-args:latex+ :exports results
#+PROPERTY: header-args:latex+ :mkdirp yes
#+PROPERTY: header-args:latex+ :output-dir figs
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
:END:
* First Control Architecture
** Matlab Init :noexport:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
#+begin_src matlab
simulinkproject('../');
#+end_src
** Control Schematic
#+begin_src latex :file control_measure_rotating_2dof.pdf
\begin{tikzpicture}
% Blocs
\node[block] (J) at (0, 0) {$J$};
\node[addb={+}{}{}{}{-}, right=1 of J] (subr) {};
\node[block, right=0.8 of subr] (K) {$K_{L}$};
\node[block, right=1 of K] (G) {$G_{L}$};
% Connections and labels
\draw[<-] (J.west)node[above left]{$\bm{r}_{n}$} -- ++(-1, 0);
\draw[->] (J.east) -- (subr.west) node[above left]{$\bm{r}_{L}$};
\draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{L}$};
\draw[->] (K.east) -- (G.west) node[above left]{$\bm{\tau}$};
\draw[->] (G.east) node[above right]{$\bm{L}$} -| ($(G.east)+(1, -1)$) -| (subr.south);
\end{tikzpicture}
#+end_src
#+RESULTS:
[[file:figs/control_measure_rotating_2dof.png]]
** Initialize the Stewart platform
#+begin_src matlab
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart, 'type', 'accelerometer', 'freq', 5e3);
#+end_src
#+begin_src matlab
ground = initializeGround('type', 'none');
payload = initializePayload('type', 'none');
#+end_src
** Identification of the plant
Let's identify the transfer function from $\bm{\tau}$ to $\bm{L}$.
#+begin_src matlab
%% Name of the Simulink File
mdl = 'stewart_platform_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m]
%% Run the linearization
G = linearize(mdl, io);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'L1', 'L2', 'L3', 'L4', 'L5', 'L6'};
#+end_src
** Plant Analysis
Diagonal terms
#+begin_src matlab :exports none
freqs = logspace(1, 4, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:6
plot(freqs, abs(squeeze(freqresp(G(i, i), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, i), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
#+end_src
Compare to off-diagonal terms
#+begin_src matlab :exports none
freqs = logspace(1, 4, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:5
for j = i+1:6
plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:5
for j = i+1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
#+end_src
** Controller Design
One integrator should be present in the controller.
A lead is added around the crossover frequency which is set to be around 500Hz.
#+begin_src matlab
% wint = 2*pi*100; % Integrate until [rad]
% wlead = 2*pi*500; % Location of the lead [rad]
% hlead = 2; % Lead strengh
% Kl = 1e6 * ... % Gain
% (s + wint)/(s) * ... % Integrator until 100Hz
% (1 + s/(wlead/hlead)/(1 + s/(wlead*hlead))); % Lead
wc = 2*pi*100;
Kl = 1/abs(freqresp(G(1,1), wc)) * wc/s * 1/(1 + s/(3*wc));
Kl = Kl * eye(6);
#+end_src
#+begin_src matlab :exports none
freqs = logspace(1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(freqs, abs(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
#+end_src
#+begin_src matlab :exports none
freqs = logspace(1, 4, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:5
for j = i+1:6
plot(freqs, abs(squeeze(freqresp(Kl(i,i)*G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:5
for j = i+1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(i, i)*G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
#+end_src

View File

@@ -695,6 +695,7 @@ No flexibility below the Stewart platform and no payload.
#+begin_src matlab
ground = initializeGround('type', 'none');
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
#+end_src
The obtain geometry is shown in figure [[fig:stewart_cubic_conf_decouple_dynamics]].
@@ -880,6 +881,7 @@ No flexibility below the Stewart platform and no payload.
#+begin_src matlab
ground = initializeGround('type', 'none');
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
#+end_src
The obtain geometry is shown in figure [[fig:stewart_cubic_conf_mass_above]].
@@ -1087,6 +1089,7 @@ No flexibility below the Stewart platform and no payload.
#+begin_src matlab
ground = initializeGround('type', 'none');
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
#+end_src
#+begin_src matlab :exports none
@@ -1258,6 +1261,7 @@ No flexibility below the Stewart platform and no payload.
#+begin_src matlab
ground = initializeGround('type', 'none');
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
#+end_src
#+begin_src matlab :exports none

View File

@@ -80,6 +80,7 @@ We also don't put any payload on top of the Stewart platform.
#+begin_src matlab
ground = initializeGround('type', 'none');
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
#+end_src
The transfer function from actuator forces $\bm{\tau}$ to the relative displacement of the mobile platform $\mathcal{\bm{X}}$ is extracted.
@@ -327,6 +328,7 @@ No flexibility below the Stewart platform and no payload.
#+begin_src matlab
ground = initializeGround('type', 'none');
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
#+end_src
Estimation of the transfer function from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$:

View File

@@ -83,6 +83,7 @@ In this document, we discuss the various methods to identify the behavior of the
#+begin_src matlab
ground = initializeGround('type', 'none');
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
#+end_src
** Identification
@@ -284,6 +285,7 @@ We set the rotation point of the ground to be at the same point at frames $\{A\}
#+begin_src matlab
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
payload = initializePayload('type', 'rigid');
controller = initializeController('type', 'open-loop');
#+end_src
** Transmissibility
@@ -396,6 +398,7 @@ We set the rotation point of the ground to be at the same point at frames $\{A\}
#+begin_src matlab
ground = initializeGround('type', 'none');
payload = initializePayload('type', 'rigid');
controller = initializeController('type', 'open-loop');
#+end_src
** Compliance
@@ -517,7 +520,7 @@ We can try to use the Frobenius norm to obtain a scalar value representing the 6
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Disturbances/D_w'], 1, 'openinput'); io_i = io_i + 1; % Base Motion [m, rad]
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad]
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'output'); io_i = io_i + 1; % Absolute Motion [m, rad]
%% Run the linearization
T = linearize(mdl, io, options);
@@ -553,8 +556,8 @@ If wanted, the 6x6 transmissibility matrix is plotted.
han = axes(fig, 'visible', 'off');
han.XLabel.Visible = 'on';
han.YLabel.Visible = 'on';
ylabel(han, 'Frequency [Hz]');
xlabel(han, 'Transmissibility [m/m]');
xlabel(han, 'Frequency [Hz]');
ylabel(han, 'Transmissibility [m/m]');
end
#+end_src
@@ -642,7 +645,7 @@ If wanted, the 6x6 transmissibility matrix is plotted.
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Disturbances/F_ext'], 1, 'openinput'); io_i = io_i + 1; % External forces [N, N*m]
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad]
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'output'); io_i = io_i + 1; % Absolute Motion [m, rad]
%% Run the linearization
C = linearize(mdl, io, options);