Work on HAC-LAC, Control architectures
This commit is contained in:
@@ -93,6 +93,7 @@ To run the script, open the Simulink Project, and type =run active_damping_inert
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
@@ -323,18 +324,11 @@ We first initialize the Stewart platform without joint stiffness.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
||||
payload = initializePayload('type', 'none');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
And we identify the dynamics from force actuators to force sensors.
|
||||
#+begin_src matlab
|
||||
%% Options for Linearized
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
%% Name of the Simulink File
|
||||
mdl = 'stewart_platform_model';
|
||||
|
||||
@@ -344,7 +338,7 @@ And we identify the dynamics from force actuators to force sensors.
|
||||
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Taum'); io_i = io_i + 1; % Force Sensor Outputs [N]
|
||||
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io, options);
|
||||
G = linearize(mdl, io);
|
||||
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
G.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
|
||||
#+end_src
|
||||
@@ -398,7 +392,7 @@ The transfer function from actuator forces to force sensors is shown in Figure [
|
||||
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
|
||||
#+begin_src matlab
|
||||
stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
|
||||
Gf = linearize(mdl, io, options);
|
||||
Gf = linearize(mdl, io);
|
||||
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
Gf.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
|
||||
#+end_src
|
||||
@@ -406,7 +400,7 @@ We add some stiffness and damping in the flexible joints and we re-identify the
|
||||
We now use the amplified actuators and re-identify the dynamics
|
||||
#+begin_src matlab
|
||||
stewart = initializeAmplifiedStrutDynamics(stewart);
|
||||
Ga = linearize(mdl, io, options);
|
||||
Ga = linearize(mdl, io);
|
||||
Ga.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
Ga.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
|
||||
#+end_src
|
||||
@@ -596,6 +590,7 @@ We first initialize the Stewart platform without joint stiffness.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
And we identify the dynamics from force actuators to force sensors.
|
||||
@@ -778,6 +773,24 @@ The root locus is shown in figure [[fig:root_locus_dvf_rot_stiffness]].
|
||||
Joint stiffness does increase the resonance frequencies of the system but does not change the attainable damping when using relative motion sensors.
|
||||
#+end_important
|
||||
* Compliance and Transmissibility Comparison
|
||||
** Introduction :ignore:
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
simulinkproject('../');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
open('stewart_platform_model.slx')
|
||||
#+end_src
|
||||
|
||||
** Initialization
|
||||
We first initialize the Stewart platform without joint stiffness.
|
||||
#+begin_src matlab
|
||||
@@ -798,6 +811,7 @@ The rotation point of the ground is located at the origin of frame $\{A\}$.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
** Identification
|
||||
@@ -811,7 +825,7 @@ Let's first identify the transmissibility and compliance in the open-loop case.
|
||||
Now, let's identify the transmissibility and compliance for the Integral Force Feedback architecture.
|
||||
#+begin_src matlab
|
||||
controller = initializeController('type', 'iff');
|
||||
G_iff = (2e4/s)*eye(6);
|
||||
K_iff = (1e4/s)*eye(6);
|
||||
|
||||
[T_iff, T_norm_iff, ~] = computeTransmissibility();
|
||||
[C_iff, C_norm_iff, ~] = computeCompliance();
|
||||
@@ -820,7 +834,7 @@ Now, let's identify the transmissibility and compliance for the Integral Force F
|
||||
And for the Direct Velocity Feedback.
|
||||
#+begin_src matlab
|
||||
controller = initializeController('type', 'dvf');
|
||||
G_dvf = 1e4*s/(1+s/2/pi/5000)*eye(6);
|
||||
K_dvf = 1e4*s/(1+s/2/pi/5000)*eye(6);
|
||||
|
||||
[T_dvf, T_norm_dvf, ~] = computeTransmissibility();
|
||||
[C_dvf, C_norm_dvf, ~] = computeCompliance();
|
||||
@@ -857,8 +871,8 @@ And for the Direct Velocity Feedback.
|
||||
han = axes(fig, 'visible', 'off');
|
||||
han.XLabel.Visible = 'on';
|
||||
han.YLabel.Visible = 'on';
|
||||
ylabel(han, 'Frequency [Hz]');
|
||||
xlabel(han, 'Transmissibility');
|
||||
xlabel(han, 'Frequency [Hz]');
|
||||
ylabel(han, 'Transmissibility');
|
||||
#+end_src
|
||||
|
||||
#+header: :tangle no :exports results :results none :noweb yes
|
||||
@@ -900,8 +914,8 @@ And for the Direct Velocity Feedback.
|
||||
han = axes(fig, 'visible', 'off');
|
||||
han.XLabel.Visible = 'on';
|
||||
han.YLabel.Visible = 'on';
|
||||
ylabel(han, 'Frequency [Hz]');
|
||||
xlabel(han, 'Compliance');
|
||||
xlabel(han, 'Frequency [Hz]');
|
||||
ylabel(han, 'Compliance');
|
||||
#+end_src
|
||||
|
||||
#+header: :tangle no :exports results :results none :noweb yes
|
||||
|
File diff suppressed because it is too large
Load Diff
257
org/control-tracking.org
Normal file
257
org/control-tracking.org
Normal file
@@ -0,0 +1,257 @@
|
||||
#+TITLE: Stewart Platform - Tracking Control
|
||||
:DRAWER:
|
||||
#+STARTUP: overview
|
||||
|
||||
#+LANGUAGE: en
|
||||
#+EMAIL: dehaeze.thomas@gmail.com
|
||||
#+AUTHOR: Dehaeze Thomas
|
||||
|
||||
#+HTML_LINK_HOME: ./index.html
|
||||
#+HTML_LINK_UP: ./index.html
|
||||
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
||||
#+HTML_HEAD: <script src="./js/jquery.min.js"></script>
|
||||
#+HTML_HEAD: <script src="./js/bootstrap.min.js"></script>
|
||||
#+HTML_HEAD: <script src="./js/jquery.stickytableheaders.min.js"></script>
|
||||
#+HTML_HEAD: <script src="./js/readtheorg.js"></script>
|
||||
|
||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
||||
#+PROPERTY: header-args:matlab+ :comments org
|
||||
#+PROPERTY: header-args:matlab+ :exports both
|
||||
#+PROPERTY: header-args:matlab+ :results none
|
||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
||||
#+PROPERTY: header-args:matlab+ :noweb yes
|
||||
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||||
|
||||
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/}{config.tex}")
|
||||
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
|
||||
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
|
||||
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
|
||||
#+PROPERTY: header-args:latex+ :results file raw replace
|
||||
#+PROPERTY: header-args:latex+ :buffer no
|
||||
#+PROPERTY: header-args:latex+ :eval no-export
|
||||
#+PROPERTY: header-args:latex+ :exports results
|
||||
#+PROPERTY: header-args:latex+ :mkdirp yes
|
||||
#+PROPERTY: header-args:latex+ :output-dir figs
|
||||
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
|
||||
:END:
|
||||
|
||||
* First Control Architecture
|
||||
** Matlab Init :noexport:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
simulinkproject('../');
|
||||
#+end_src
|
||||
|
||||
** Control Schematic
|
||||
#+begin_src latex :file control_measure_rotating_2dof.pdf
|
||||
\begin{tikzpicture}
|
||||
% Blocs
|
||||
\node[block] (J) at (0, 0) {$J$};
|
||||
\node[addb={+}{}{}{}{-}, right=1 of J] (subr) {};
|
||||
\node[block, right=0.8 of subr] (K) {$K_{L}$};
|
||||
\node[block, right=1 of K] (G) {$G_{L}$};
|
||||
|
||||
% Connections and labels
|
||||
\draw[<-] (J.west)node[above left]{$\bm{r}_{n}$} -- ++(-1, 0);
|
||||
\draw[->] (J.east) -- (subr.west) node[above left]{$\bm{r}_{L}$};
|
||||
\draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{L}$};
|
||||
\draw[->] (K.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
||||
\draw[->] (G.east) node[above right]{$\bm{L}$} -| ($(G.east)+(1, -1)$) -| (subr.south);
|
||||
\end{tikzpicture}
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
[[file:figs/control_measure_rotating_2dof.png]]
|
||||
|
||||
** Initialize the Stewart platform
|
||||
#+begin_src matlab
|
||||
stewart = initializeStewartPlatform();
|
||||
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
||||
stewart = generateGeneralConfiguration(stewart);
|
||||
stewart = computeJointsPose(stewart);
|
||||
stewart = initializeStrutDynamics(stewart);
|
||||
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
|
||||
stewart = initializeCylindricalPlatforms(stewart);
|
||||
stewart = initializeCylindricalStruts(stewart);
|
||||
stewart = computeJacobian(stewart);
|
||||
stewart = initializeStewartPose(stewart);
|
||||
stewart = initializeInertialSensor(stewart, 'type', 'accelerometer', 'freq', 5e3);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
#+end_src
|
||||
|
||||
** Identification of the plant
|
||||
Let's identify the transfer function from $\bm{\tau}$ to $\bm{L}$.
|
||||
#+begin_src matlab
|
||||
%% Name of the Simulink File
|
||||
mdl = 'stewart_platform_model';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
||||
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m]
|
||||
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io);
|
||||
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
G.OutputName = {'L1', 'L2', 'L3', 'L4', 'L5', 'L6'};
|
||||
#+end_src
|
||||
|
||||
** Plant Analysis
|
||||
Diagonal terms
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(1, 4, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G(i, i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
Compare to off-diagonal terms
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(1, 4, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
** Controller Design
|
||||
One integrator should be present in the controller.
|
||||
|
||||
A lead is added around the crossover frequency which is set to be around 500Hz.
|
||||
|
||||
#+begin_src matlab
|
||||
% wint = 2*pi*100; % Integrate until [rad]
|
||||
% wlead = 2*pi*500; % Location of the lead [rad]
|
||||
% hlead = 2; % Lead strengh
|
||||
|
||||
% Kl = 1e6 * ... % Gain
|
||||
% (s + wint)/(s) * ... % Integrator until 100Hz
|
||||
% (1 + s/(wlead/hlead)/(1 + s/(wlead*hlead))); % Lead
|
||||
|
||||
wc = 2*pi*100;
|
||||
Kl = 1/abs(freqresp(G(1,1), wc)) * wc/s * 1/(1 + s/(3*wc));
|
||||
Kl = Kl * eye(6);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(1, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(1, 4, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(Kl(i,i)*G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(i, i)*G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
@@ -695,6 +695,7 @@ No flexibility below the Stewart platform and no payload.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
The obtain geometry is shown in figure [[fig:stewart_cubic_conf_decouple_dynamics]].
|
||||
@@ -880,6 +881,7 @@ No flexibility below the Stewart platform and no payload.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
The obtain geometry is shown in figure [[fig:stewart_cubic_conf_mass_above]].
|
||||
@@ -1087,6 +1089,7 @@ No flexibility below the Stewart platform and no payload.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
@@ -1258,6 +1261,7 @@ No flexibility below the Stewart platform and no payload.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
|
@@ -80,6 +80,7 @@ We also don't put any payload on top of the Stewart platform.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
The transfer function from actuator forces $\bm{\tau}$ to the relative displacement of the mobile platform $\mathcal{\bm{X}}$ is extracted.
|
||||
@@ -327,6 +328,7 @@ No flexibility below the Stewart platform and no payload.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
Estimation of the transfer function from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$:
|
||||
|
@@ -83,6 +83,7 @@ In this document, we discuss the various methods to identify the behavior of the
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
** Identification
|
||||
@@ -284,6 +285,7 @@ We set the rotation point of the ground to be at the same point at frames $\{A\}
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
|
||||
payload = initializePayload('type', 'rigid');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
** Transmissibility
|
||||
@@ -396,6 +398,7 @@ We set the rotation point of the ground to be at the same point at frames $\{A\}
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'rigid');
|
||||
controller = initializeController('type', 'open-loop');
|
||||
#+end_src
|
||||
|
||||
** Compliance
|
||||
@@ -517,7 +520,7 @@ We can try to use the Frobenius norm to obtain a scalar value representing the 6
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Disturbances/D_w'], 1, 'openinput'); io_i = io_i + 1; % Base Motion [m, rad]
|
||||
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad]
|
||||
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'output'); io_i = io_i + 1; % Absolute Motion [m, rad]
|
||||
|
||||
%% Run the linearization
|
||||
T = linearize(mdl, io, options);
|
||||
@@ -553,8 +556,8 @@ If wanted, the 6x6 transmissibility matrix is plotted.
|
||||
han = axes(fig, 'visible', 'off');
|
||||
han.XLabel.Visible = 'on';
|
||||
han.YLabel.Visible = 'on';
|
||||
ylabel(han, 'Frequency [Hz]');
|
||||
xlabel(han, 'Transmissibility [m/m]');
|
||||
xlabel(han, 'Frequency [Hz]');
|
||||
ylabel(han, 'Transmissibility [m/m]');
|
||||
end
|
||||
#+end_src
|
||||
|
||||
@@ -642,7 +645,7 @@ If wanted, the 6x6 transmissibility matrix is plotted.
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Disturbances/F_ext'], 1, 'openinput'); io_i = io_i + 1; % External forces [N, N*m]
|
||||
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad]
|
||||
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'output'); io_i = io_i + 1; % Absolute Motion [m, rad]
|
||||
|
||||
%% Run the linearization
|
||||
C = linearize(mdl, io, options);
|
||||
|
Reference in New Issue
Block a user