Work on HAC-LAC, Control architectures

This commit is contained in:
2020-02-28 17:35:44 +01:00
parent c1ca4b3b78
commit 02943f0f28
52 changed files with 2706 additions and 334 deletions

View File

@@ -4,7 +4,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-02-27 jeu. 14:16 -->
<!-- 2020-02-28 ven. 17:33 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Stewart Platform - Decentralized Active Damping</title>
@@ -249,25 +249,25 @@
<li><a href="#orgd59c804">1. Inertial Control</a>
<ul>
<li><a href="#org5f749c8">1.1. Identification of the Dynamics</a></li>
<li><a href="#orgd637197">1.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
<li><a href="#orgd895eeb">1.3. Obtained Damping</a></li>
<li><a href="#orgeaf5ef8">1.4. Conclusion</a></li>
<li><a href="#org3014959">1.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
<li><a href="#orga144352">1.3. Obtained Damping</a></li>
<li><a href="#org004b094">1.4. Conclusion</a></li>
</ul>
</li>
<li><a href="#org74c7eb4">2. Integral Force Feedback</a>
<ul>
<li><a href="#orgcaa6199">2.1. Identification of the Dynamics with perfect Joints</a></li>
<li><a href="#org1910546">2.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
<li><a href="#org9e1f2e2">2.3. Obtained Damping</a></li>
<li><a href="#org405813e">2.4. Conclusion</a></li>
<li><a href="#org7313778">2.1. Identification of the Dynamics with perfect Joints</a></li>
<li><a href="#org462c581">2.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
<li><a href="#org943bf7b">2.3. Obtained Damping</a></li>
<li><a href="#orga677c7d">2.4. Conclusion</a></li>
</ul>
</li>
<li><a href="#org08917d6">3. Direct Velocity Feedback</a>
<ul>
<li><a href="#org7313778">3.1. Identification of the Dynamics with perfect Joints</a></li>
<li><a href="#org3014959">3.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
<li><a href="#orga144352">3.3. Obtained Damping</a></li>
<li><a href="#org004b094">3.4. Conclusion</a></li>
<li><a href="#orgcd99b62">3.1. Identification of the Dynamics with perfect Joints</a></li>
<li><a href="#orgd0f78f7">3.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
<li><a href="#org3f64d96">3.3. Obtained Damping</a></li>
<li><a href="#org8e1ece7">3.4. Conclusion</a></li>
</ul>
</li>
<li><a href="#org183f3f2">4. Compliance and Transmissibility Comparison</a>
@@ -330,6 +330,7 @@ stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</spa
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
</pre>
</div>
@@ -365,8 +366,8 @@ The transfer function from actuator forces to force sensors is shown in Figure <
</div>
</div>
<div id="outline-container-orgd637197" class="outline-3">
<h3 id="orgd637197"><span class="section-number-3">1.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
<div id="outline-container-org3014959" class="outline-3">
<h3 id="org3014959"><span class="section-number-3">1.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
<div class="outline-text-3" id="text-1-2">
<p>
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
@@ -402,8 +403,8 @@ The new dynamics from force actuator to force sensor is shown in Figure <a href=
</div>
</div>
<div id="outline-container-orgd895eeb" class="outline-3">
<h3 id="orgd895eeb"><span class="section-number-3">1.3</span> Obtained Damping</h3>
<div id="outline-container-orga144352" class="outline-3">
<h3 id="orga144352"><span class="section-number-3">1.3</span> Obtained Damping</h3>
<div class="outline-text-3" id="text-1-3">
<p>
The control is a performed in a decentralized manner.
@@ -428,8 +429,8 @@ The root locus is shown in figure <a href="#org9af9e33">3</a>.
</div>
</div>
<div id="outline-container-orgeaf5ef8" class="outline-3">
<h3 id="orgeaf5ef8"><span class="section-number-3">1.4</span> Conclusion</h3>
<div id="outline-container-org004b094" class="outline-3">
<h3 id="org004b094"><span class="section-number-3">1.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-1-4">
<div class="important">
<p>
@@ -460,8 +461,8 @@ To run the script, open the Simulink Project, and type <code>run active_damping_
</div>
</div>
<div id="outline-container-orgcaa6199" class="outline-3">
<h3 id="orgcaa6199"><span class="section-number-3">2.1</span> Identification of the Dynamics with perfect Joints</h3>
<div id="outline-container-org7313778" class="outline-3">
<h3 id="org7313778"><span class="section-number-3">2.1</span> Identification of the Dynamics with perfect Joints</h3>
<div class="outline-text-3" id="text-2-1">
<p>
We first initialize the Stewart platform without joint stiffness.
@@ -484,11 +485,7 @@ stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</spa
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
</pre>
</div>
@@ -496,11 +493,7 @@ payload = initializePayload(<span class="org-string">'type'</span>, <span class=
And we identify the dynamics from force actuators to force sensors.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'stewart_platform_model'</span>;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
@@ -509,7 +502,7 @@ io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1,
io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'Taum'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Force Sensor Outputs [N]</span>
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G = linearize(mdl, io, options);
G = linearize(mdl, io);
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>};
</pre>
@@ -527,15 +520,15 @@ The transfer function from actuator forces to force sensors is shown in Figure <
</div>
</div>
<div id="outline-container-org1910546" class="outline-3">
<h3 id="org1910546"><span class="section-number-3">2.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
<div id="outline-container-org462c581" class="outline-3">
<h3 id="org462c581"><span class="section-number-3">2.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
<div class="outline-text-3" id="text-2-2">
<p>
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
Gf = linearize(mdl, io, options);
Gf = linearize(mdl, io);
Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Gf.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>};
</pre>
@@ -546,7 +539,7 @@ We now use the amplified actuators and re-identify the dynamics
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeAmplifiedStrutDynamics(stewart);
Ga = linearize(mdl, io, options);
Ga = linearize(mdl, io);
Ga.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Ga.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>};
</pre>
@@ -564,8 +557,8 @@ The new dynamics from force actuator to force sensor is shown in Figure <a href=
</div>
</div>
<div id="outline-container-org9e1f2e2" class="outline-3">
<h3 id="org9e1f2e2"><span class="section-number-3">2.3</span> Obtained Damping</h3>
<div id="outline-container-org943bf7b" class="outline-3">
<h3 id="org943bf7b"><span class="section-number-3">2.3</span> Obtained Damping</h3>
<div class="outline-text-3" id="text-2-3">
<p>
The control is a performed in a decentralized manner.
@@ -597,8 +590,8 @@ The root locus is shown in figure <a href="#orge21bbea">6</a> and the obtained p
</div>
</div>
<div id="outline-container-org405813e" class="outline-3">
<h3 id="org405813e"><span class="section-number-3">2.4</span> Conclusion</h3>
<div id="outline-container-orga677c7d" class="outline-3">
<h3 id="orga677c7d"><span class="section-number-3">2.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-2-4">
<div class="important">
<p>
@@ -630,8 +623,8 @@ To run the script, open the Simulink Project, and type <code>run active_damping_
</div>
</div>
<div id="outline-container-org7313778" class="outline-3">
<h3 id="org7313778"><span class="section-number-3">3.1</span> Identification of the Dynamics with perfect Joints</h3>
<div id="outline-container-orgcd99b62" class="outline-3">
<h3 id="orgcd99b62"><span class="section-number-3">3.1</span> Identification of the Dynamics with perfect Joints</h3>
<div class="outline-text-3" id="text-3-1">
<p>
We first initialize the Stewart platform without joint stiffness.
@@ -654,6 +647,7 @@ stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</spa
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
</pre>
</div>
@@ -693,8 +687,8 @@ The transfer function from actuator forces to relative motion sensors is shown i
</div>
<div id="outline-container-org3014959" class="outline-3">
<h3 id="org3014959"><span class="section-number-3">3.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
<div id="outline-container-orgd0f78f7" class="outline-3">
<h3 id="orgd0f78f7"><span class="section-number-3">3.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
<div class="outline-text-3" id="text-3-2">
<p>
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
@@ -730,8 +724,8 @@ The new dynamics from force actuator to relative motion sensor is shown in Figur
</div>
</div>
<div id="outline-container-orga144352" class="outline-3">
<h3 id="orga144352"><span class="section-number-3">3.3</span> Obtained Damping</h3>
<div id="outline-container-org3f64d96" class="outline-3">
<h3 id="org3f64d96"><span class="section-number-3">3.3</span> Obtained Damping</h3>
<div class="outline-text-3" id="text-3-3">
<p>
The control is a performed in a decentralized manner.
@@ -756,8 +750,8 @@ The root locus is shown in figure <a href="#org277d60d">10</a>.
</div>
</div>
<div id="outline-container-org004b094" class="outline-3">
<h3 id="org004b094"><span class="section-number-3">3.4</span> Conclusion</h3>
<div id="outline-container-org8e1ece7" class="outline-3">
<h3 id="org8e1ece7"><span class="section-number-3">3.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-3-4">
<div class="important">
<p>
@@ -799,6 +793,7 @@ The rotation point of the ground is located at the origin of frame \(\{A\}\).
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
</pre>
</div>
</div>
@@ -822,7 +817,7 @@ Now, let&rsquo;s identify the transmissibility and compliance for the Integral F
</p>
<div class="org-src-container">
<pre class="src src-matlab">controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'iff'</span>);
G_iff = (2e4<span class="org-type">/</span>s)<span class="org-type">*</span>eye(6);
K_iff = (1e4<span class="org-type">/</span>s)<span class="org-type">*</span>eye(6);
[T_iff, T_norm_iff, <span class="org-type">~</span>] = computeTransmissibility();
[C_iff, C_norm_iff, <span class="org-type">~</span>] = computeCompliance();
@@ -834,7 +829,7 @@ And for the Direct Velocity Feedback.
</p>
<div class="org-src-container">
<pre class="src src-matlab">controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'dvf'</span>);
G_dvf = 1e4<span class="org-type">*</span>s<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>5000)<span class="org-type">*</span>eye(6);
K_dvf = 1e4<span class="org-type">*</span>s<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>5000)<span class="org-type">*</span>eye(6);
[T_dvf, T_norm_dvf, <span class="org-type">~</span>] = computeTransmissibility();
[C_dvf, C_norm_dvf, <span class="org-type">~</span>] = computeCompliance();
@@ -872,7 +867,7 @@ G_dvf = 1e4<span class="org-type">*</span>s<span class="org-type">/</span>(1<spa
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-02-27 jeu. 14:16</p>
<p class="date">Created: 2020-02-28 ven. 17:33</p>
</div>
</body>
</html>

File diff suppressed because it is too large Load Diff

370
docs/control-tracking.html Normal file
View File

@@ -0,0 +1,370 @@
<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-02-28 ven. 17:37 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Stewart Platform - Tracking Control</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<style type="text/css">
<!--/*--><![CDATA[/*><!--*/
.title { text-align: center;
margin-bottom: .2em; }
.subtitle { text-align: center;
font-size: medium;
font-weight: bold;
margin-top:0; }
.todo { font-family: monospace; color: red; }
.done { font-family: monospace; color: green; }
.priority { font-family: monospace; color: orange; }
.tag { background-color: #eee; font-family: monospace;
padding: 2px; font-size: 80%; font-weight: normal; }
.timestamp { color: #bebebe; }
.timestamp-kwd { color: #5f9ea0; }
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
.underline { text-decoration: underline; }
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
p.verse { margin-left: 3%; }
pre {
border: 1px solid #ccc;
box-shadow: 3px 3px 3px #eee;
padding: 8pt;
font-family: monospace;
overflow: auto;
margin: 1.2em;
}
pre.src {
position: relative;
overflow: visible;
padding-top: 1.2em;
}
pre.src:before {
display: none;
position: absolute;
background-color: white;
top: -10px;
right: 10px;
padding: 3px;
border: 1px solid black;
}
pre.src:hover:before { display: inline;}
/* Languages per Org manual */
pre.src-asymptote:before { content: 'Asymptote'; }
pre.src-awk:before { content: 'Awk'; }
pre.src-C:before { content: 'C'; }
/* pre.src-C++ doesn't work in CSS */
pre.src-clojure:before { content: 'Clojure'; }
pre.src-css:before { content: 'CSS'; }
pre.src-D:before { content: 'D'; }
pre.src-ditaa:before { content: 'ditaa'; }
pre.src-dot:before { content: 'Graphviz'; }
pre.src-calc:before { content: 'Emacs Calc'; }
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
pre.src-fortran:before { content: 'Fortran'; }
pre.src-gnuplot:before { content: 'gnuplot'; }
pre.src-haskell:before { content: 'Haskell'; }
pre.src-hledger:before { content: 'hledger'; }
pre.src-java:before { content: 'Java'; }
pre.src-js:before { content: 'Javascript'; }
pre.src-latex:before { content: 'LaTeX'; }
pre.src-ledger:before { content: 'Ledger'; }
pre.src-lisp:before { content: 'Lisp'; }
pre.src-lilypond:before { content: 'Lilypond'; }
pre.src-lua:before { content: 'Lua'; }
pre.src-matlab:before { content: 'MATLAB'; }
pre.src-mscgen:before { content: 'Mscgen'; }
pre.src-ocaml:before { content: 'Objective Caml'; }
pre.src-octave:before { content: 'Octave'; }
pre.src-org:before { content: 'Org mode'; }
pre.src-oz:before { content: 'OZ'; }
pre.src-plantuml:before { content: 'Plantuml'; }
pre.src-processing:before { content: 'Processing.js'; }
pre.src-python:before { content: 'Python'; }
pre.src-R:before { content: 'R'; }
pre.src-ruby:before { content: 'Ruby'; }
pre.src-sass:before { content: 'Sass'; }
pre.src-scheme:before { content: 'Scheme'; }
pre.src-screen:before { content: 'Gnu Screen'; }
pre.src-sed:before { content: 'Sed'; }
pre.src-sh:before { content: 'shell'; }
pre.src-sql:before { content: 'SQL'; }
pre.src-sqlite:before { content: 'SQLite'; }
/* additional languages in org.el's org-babel-load-languages alist */
pre.src-forth:before { content: 'Forth'; }
pre.src-io:before { content: 'IO'; }
pre.src-J:before { content: 'J'; }
pre.src-makefile:before { content: 'Makefile'; }
pre.src-maxima:before { content: 'Maxima'; }
pre.src-perl:before { content: 'Perl'; }
pre.src-picolisp:before { content: 'Pico Lisp'; }
pre.src-scala:before { content: 'Scala'; }
pre.src-shell:before { content: 'Shell Script'; }
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
/* additional language identifiers per "defun org-babel-execute"
in ob-*.el */
pre.src-cpp:before { content: 'C++'; }
pre.src-abc:before { content: 'ABC'; }
pre.src-coq:before { content: 'Coq'; }
pre.src-groovy:before { content: 'Groovy'; }
/* additional language identifiers from org-babel-shell-names in
ob-shell.el: ob-shell is the only babel language using a lambda to put
the execution function name together. */
pre.src-bash:before { content: 'bash'; }
pre.src-csh:before { content: 'csh'; }
pre.src-ash:before { content: 'ash'; }
pre.src-dash:before { content: 'dash'; }
pre.src-ksh:before { content: 'ksh'; }
pre.src-mksh:before { content: 'mksh'; }
pre.src-posh:before { content: 'posh'; }
/* Additional Emacs modes also supported by the LaTeX listings package */
pre.src-ada:before { content: 'Ada'; }
pre.src-asm:before { content: 'Assembler'; }
pre.src-caml:before { content: 'Caml'; }
pre.src-delphi:before { content: 'Delphi'; }
pre.src-html:before { content: 'HTML'; }
pre.src-idl:before { content: 'IDL'; }
pre.src-mercury:before { content: 'Mercury'; }
pre.src-metapost:before { content: 'MetaPost'; }
pre.src-modula-2:before { content: 'Modula-2'; }
pre.src-pascal:before { content: 'Pascal'; }
pre.src-ps:before { content: 'PostScript'; }
pre.src-prolog:before { content: 'Prolog'; }
pre.src-simula:before { content: 'Simula'; }
pre.src-tcl:before { content: 'tcl'; }
pre.src-tex:before { content: 'TeX'; }
pre.src-plain-tex:before { content: 'Plain TeX'; }
pre.src-verilog:before { content: 'Verilog'; }
pre.src-vhdl:before { content: 'VHDL'; }
pre.src-xml:before { content: 'XML'; }
pre.src-nxml:before { content: 'XML'; }
/* add a generic configuration mode; LaTeX export needs an additional
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
pre.src-conf:before { content: 'Configuration File'; }
table { border-collapse:collapse; }
caption.t-above { caption-side: top; }
caption.t-bottom { caption-side: bottom; }
td, th { vertical-align:top; }
th.org-right { text-align: center; }
th.org-left { text-align: center; }
th.org-center { text-align: center; }
td.org-right { text-align: right; }
td.org-left { text-align: left; }
td.org-center { text-align: center; }
dt { font-weight: bold; }
.footpara { display: inline; }
.footdef { margin-bottom: 1em; }
.figure { padding: 1em; }
.figure p { text-align: center; }
.equation-container {
display: table;
text-align: center;
width: 100%;
}
.equation {
vertical-align: middle;
}
.equation-label {
display: table-cell;
text-align: right;
vertical-align: middle;
}
.inlinetask {
padding: 10px;
border: 2px solid gray;
margin: 10px;
background: #ffffcc;
}
#org-div-home-and-up
{ text-align: right; font-size: 70%; white-space: nowrap; }
textarea { overflow-x: auto; }
.linenr { font-size: smaller }
.code-highlighted { background-color: #ffff00; }
.org-info-js_info-navigation { border-style: none; }
#org-info-js_console-label
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
.org-info-js_search-highlight
{ background-color: #ffff00; color: #000000; font-weight: bold; }
.org-svg { width: 90%; }
/*]]>*/-->
</style>
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
<script src="./js/jquery.min.js"></script>
<script src="./js/bootstrap.min.js"></script>
<script src="./js/jquery.stickytableheaders.min.js"></script>
<script src="./js/readtheorg.js"></script>
<script type="text/javascript">
// @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later
<!--/*--><![CDATA[/*><!--*/
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
// @license-end
</script>
<script>
MathJax = {
tex: { macros: {
bm: ["\\boldsymbol{#1}",1],
}
}
};
</script>
<script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
<a accesskey="h" href="./index.html"> UP </a>
|
<a accesskey="H" href="./index.html"> HOME </a>
</div><div id="content">
<h1 class="title">Stewart Platform - Tracking Control</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#org4c793a2">1. First Control Architecture</a>
<ul>
<li><a href="#org49467e8">1.1. Control Schematic</a></li>
<li><a href="#org67db718">1.2. Initialize the Stewart platform</a></li>
<li><a href="#org641cba6">1.3. Identification of the plant</a></li>
<li><a href="#orgd9d7b44">1.4. Plant Analysis</a></li>
<li><a href="#orgfaf80fa">1.5. Controller Design</a></li>
</ul>
</li>
</ul>
</div>
</div>
<div id="outline-container-org4c793a2" class="outline-2">
<h2 id="org4c793a2"><span class="section-number-2">1</span> First Control Architecture</h2>
<div class="outline-text-2" id="text-1">
</div>
<div id="outline-container-org49467e8" class="outline-3">
<h3 id="org49467e8"><span class="section-number-3">1.1</span> Control Schematic</h3>
<div class="outline-text-3" id="text-1-1">
<div class="figure">
<p><img src="figs/control_measure_rotating_2dof.png" alt="control_measure_rotating_2dof.png" />
</p>
</div>
</div>
</div>
<div id="outline-container-org67db718" class="outline-3">
<h3 id="org67db718"><span class="section-number-3">1.2</span> Initialize the Stewart platform</h3>
<div class="outline-text-3" id="text-1-2">
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'accelerometer'</span>, <span class="org-string">'freq'</span>, 5e3);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
</pre>
</div>
</div>
</div>
<div id="outline-container-org641cba6" class="outline-3">
<h3 id="org641cba6"><span class="section-number-3">1.3</span> Identification of the plant</h3>
<div class="outline-text-3" id="text-1-3">
<p>
Let&rsquo;s identify the transfer function from \(\bm{\tau}\) to \(\bm{L}\).
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'stewart_platform_model'</span>;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'dLm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Relative Displacement Outputs [m]</span>
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G = linearize(mdl, io);
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'L1'</span>, <span class="org-string">'L2'</span>, <span class="org-string">'L3'</span>, <span class="org-string">'L4'</span>, <span class="org-string">'L5'</span>, <span class="org-string">'L6'</span>};
</pre>
</div>
</div>
</div>
<div id="outline-container-orgd9d7b44" class="outline-3">
<h3 id="orgd9d7b44"><span class="section-number-3">1.4</span> Plant Analysis</h3>
<div class="outline-text-3" id="text-1-4">
<p>
Diagonal terms
Compare to off-diagonal terms
</p>
</div>
</div>
<div id="outline-container-orgfaf80fa" class="outline-3">
<h3 id="orgfaf80fa"><span class="section-number-3">1.5</span> Controller Design</h3>
<div class="outline-text-3" id="text-1-5">
<p>
One integrator should be present in the controller.
</p>
<p>
A lead is added around the crossover frequency which is set to be around 500Hz.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-comment">% wint = 2*pi*100; % Integrate until [rad]</span>
<span class="org-comment">% wlead = 2*pi*500; % Location of the lead [rad]</span>
<span class="org-comment">% hlead = 2; % Lead strengh</span>
<span class="org-comment">% Kl = 1e6 * ... % Gain</span>
<span class="org-comment">% (s + wint)/(s) * ... % Integrator until 100Hz</span>
<span class="org-comment">% (1 + s/(wlead/hlead)/(1 + s/(wlead*hlead))); % Lead</span>
wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>100;
Kl = 1<span class="org-type">/</span>abs(freqresp(G(1,1), wc)) <span class="org-type">*</span> wc<span class="org-type">/</span>s <span class="org-type">*</span> 1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>(3<span class="org-type">*</span>wc));
Kl = Kl <span class="org-type">*</span> eye(6);
</pre>
</div>
</div>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-02-28 ven. 17:37</p>
</div>
</body>
</html>

View File

@@ -4,7 +4,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-02-27 jeu. 14:16 -->
<!-- 2020-02-28 ven. 17:34 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Cubic configuration for the Stewart Platform</title>
@@ -252,33 +252,33 @@
<li><a href="#orga88e79a">1.2. Cubic Stewart platform centered with the cube center - Jacobian not estimated at the cube center</a></li>
<li><a href="#orge02ec88">1.3. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the cube center</a></li>
<li><a href="#org43fd7e4">1.4. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the Stewart platform center</a></li>
<li><a href="#orgd6c60aa">1.5. Conclusion</a></li>
<li><a href="#org3e2b41c">1.5. Conclusion</a></li>
</ul>
</li>
<li><a href="#orgd70418b">2. Configuration with the Cube&rsquo;s center above the mobile platform</a>
<ul>
<li><a href="#org8afa645">2.1. Having Cube&rsquo;s center above the top platform</a></li>
<li><a href="#org78f0f9c">2.2. Conclusion</a></li>
<li><a href="#orgeeac940">2.2. Conclusion</a></li>
</ul>
</li>
<li><a href="#orgcc4ecce">3. Cubic size analysis</a>
<ul>
<li><a href="#org0029d8c">3.1. Analysis</a></li>
<li><a href="#org53a1ab8">3.2. Conclusion</a></li>
<li><a href="#org991d232">3.2. Conclusion</a></li>
</ul>
</li>
<li><a href="#orgf09da67">4. Dynamic Coupling in the Cartesian Frame</a>
<ul>
<li><a href="#org5fe01ec">4.1. Cube&rsquo;s center at the Center of Mass of the mobile platform</a></li>
<li><a href="#org4cb2a36">4.2. Cube&rsquo;s center not coincident with the Mass of the Mobile platform</a></li>
<li><a href="#orga0d81dc">4.3. Conclusion</a></li>
<li><a href="#orgf0acd1f">4.3. Conclusion</a></li>
</ul>
</li>
<li><a href="#org8f26dc0">5. Dynamic Coupling between actuators and sensors of each strut</a>
<ul>
<li><a href="#org6e391c9">5.1. Coupling between the actuators and sensors - Cubic Architecture</a></li>
<li><a href="#orgafd808d">5.2. Coupling between the actuators and sensors - Non-Cubic Architecture</a></li>
<li><a href="#org3e2b41c">5.3. Conclusion</a></li>
<li><a href="#org78c4967">5.3. Conclusion</a></li>
</ul>
</li>
<li><a href="#org3044455">6. Functions</a>
@@ -826,8 +826,8 @@ stewart = initializeCylindricalPlatforms(stewart, <span class="org-string">'Fpr'
</div>
</div>
<div id="outline-container-orgd6c60aa" class="outline-3">
<h3 id="orgd6c60aa"><span class="section-number-3">1.5</span> Conclusion</h3>
<div id="outline-container-org3e2b41c" class="outline-3">
<h3 id="org3e2b41c"><span class="section-number-3">1.5</span> Conclusion</h3>
<div class="outline-text-3" id="text-1-5">
<div class="important">
<p>
@@ -1164,8 +1164,8 @@ FOc = H <span class="org-type">+</span> MO_B; <span class="org-comment">% Cente
</div>
</div>
<div id="outline-container-org78f0f9c" class="outline-3">
<h3 id="org78f0f9c"><span class="section-number-3">2.2</span> Conclusion</h3>
<div id="outline-container-orgeeac940" class="outline-3">
<h3 id="orgeeac940"><span class="section-number-3">2.2</span> Conclusion</h3>
<div class="outline-text-3" id="text-2-2">
<div class="important">
<p>
@@ -1251,8 +1251,8 @@ We also find that \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\) are varyi
</div>
</div>
<div id="outline-container-org53a1ab8" class="outline-3">
<h3 id="org53a1ab8"><span class="section-number-3">3.2</span> Conclusion</h3>
<div id="outline-container-org991d232" class="outline-3">
<h3 id="org991d232"><span class="section-number-3">3.2</span> Conclusion</h3>
<div class="outline-text-3" id="text-3-2">
<p>
We observe that \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\) increase linearly with the cube size.
@@ -1391,6 +1391,7 @@ No flexibility below the Stewart platform and no payload.
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
</pre>
</div>
@@ -1535,6 +1536,7 @@ No flexibility below the Stewart platform and no payload.
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
</pre>
</div>
@@ -1607,8 +1609,8 @@ This was expected as the mass matrix is not diagonal (the Center of Mass of the
</div>
</div>
<div id="outline-container-orga0d81dc" class="outline-3">
<h3 id="orga0d81dc"><span class="section-number-3">4.3</span> Conclusion</h3>
<div id="outline-container-orgf0acd1f" class="outline-3">
<h3 id="orgf0acd1f"><span class="section-number-3">4.3</span> Conclusion</h3>
<div class="outline-text-3" id="text-4-3">
<div class="important">
<p>
@@ -1693,6 +1695,7 @@ No flexibility below the Stewart platform and no payload.
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
</pre>
</div>
@@ -1760,6 +1763,7 @@ No flexibility below the Stewart platform and no payload.
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
</pre>
</div>
@@ -1790,8 +1794,8 @@ And we identify the dynamics from the actuator forces \(\tau_{i}\) to the relati
</div>
</div>
<div id="outline-container-org3e2b41c" class="outline-3">
<h3 id="org3e2b41c"><span class="section-number-3">5.3</span> Conclusion</h3>
<div id="outline-container-org78c4967" class="outline-3">
<h3 id="org78c4967"><span class="section-number-3">5.3</span> Conclusion</h3>
<div class="outline-text-3" id="text-5-3">
<div class="important">
<p>
@@ -1962,7 +1966,7 @@ stewart.platform_M.Mb = Mb;
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-02-27 jeu. 14:16</p>
<p class="date">Created: 2020-02-28 ven. 17:34</p>
</div>
</body>
</html>

View File

@@ -4,7 +4,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-02-27 jeu. 14:16 -->
<!-- 2020-02-28 ven. 17:34 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Stewart Platform - Dynamics Study</title>
@@ -250,13 +250,13 @@
<ul>
<li><a href="#org4509b7d">1.1. Comparison with fixed support</a></li>
<li><a href="#org8662186">1.2. Comparison with a flexible support</a></li>
<li><a href="#org03b2957">1.3. Conclusion</a></li>
<li><a href="#org920d3c4">1.3. Conclusion</a></li>
</ul>
</li>
<li><a href="#org81ab204">2. Comparison of the static transfer function and the Compliance matrix</a>
<ul>
<li><a href="#orge7e7242">2.1. Analysis</a></li>
<li><a href="#org920d3c4">2.2. Conclusion</a></li>
<li><a href="#orgbb930ae">2.2. Conclusion</a></li>
</ul>
</li>
</ul>
@@ -299,6 +299,7 @@ We also don&rsquo;t put any payload on top of the Stewart platform.
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
</pre>
</div>
@@ -441,8 +442,8 @@ And thus \(\mathcal{F}_{x}\) and \(\mathcal{F}_{x,\text{ext}}\) have clearly <b>
</div>
<div id="outline-container-org03b2957" class="outline-3">
<h3 id="org03b2957"><span class="section-number-3">1.3</span> Conclusion</h3>
<div id="outline-container-org920d3c4" class="outline-3">
<h3 id="org920d3c4"><span class="section-number-3">1.3</span> Conclusion</h3>
<div class="outline-text-3" id="text-1-3">
<div class="important">
<p>
@@ -489,6 +490,7 @@ No flexibility below the Stewart platform and no payload.
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
</pre>
</div>
@@ -675,8 +677,8 @@ And now at the Compliance matrix.
</div>
</div>
<div id="outline-container-org920d3c4" class="outline-3">
<h3 id="org920d3c4"><span class="section-number-3">2.2</span> Conclusion</h3>
<div id="outline-container-orgbb930ae" class="outline-3">
<h3 id="orgbb930ae"><span class="section-number-3">2.2</span> Conclusion</h3>
<div class="outline-text-3" id="text-2-2">
<div class="important">
<p>
@@ -690,7 +692,7 @@ The low frequency transfer function matrix from \(\mathcal{\bm{F}}\) to \(\mathc
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-02-27 jeu. 14:16</p>
<p class="date">Created: 2020-02-28 ven. 17:34</p>
</div>
</body>
</html>

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.8 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.8 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.6 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 205 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 199 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 205 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 244 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 243 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 235 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 129 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 135 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 95 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 95 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 196 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

View File

@@ -4,7 +4,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-02-27 jeu. 14:16 -->
<!-- 2020-02-28 ven. 17:34 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Identification of the Stewart Platform using Simscape</title>
@@ -257,13 +257,13 @@
</li>
<li><a href="#org2891722">2. Transmissibility Analysis</a>
<ul>
<li><a href="#org8c667e9">2.1. Initialize the Stewart platform</a></li>
<li><a href="#orgc8e1f51">2.1. Initialize the Stewart platform</a></li>
<li><a href="#org5338f20">2.2. Transmissibility</a></li>
</ul>
</li>
<li><a href="#orgc94edbd">3. Compliance Analysis</a>
<ul>
<li><a href="#orgc8e1f51">3.1. Initialize the Stewart platform</a></li>
<li><a href="#org55d2544">3.1. Initialize the Stewart platform</a></li>
<li><a href="#org1177029">3.2. Compliance</a></li>
</ul>
</li>
@@ -271,18 +271,18 @@
<ul>
<li><a href="#org487c4d4">4.1. Compute the Transmissibility</a>
<ul>
<li><a href="#org851f84d">Function description</a></li>
<li><a href="#orgf5e24cd">Optional Parameters</a></li>
<li><a href="#org64fc1e2">Function description</a></li>
<li><a href="#org54cab00">Optional Parameters</a></li>
<li><a href="#org4629501">Identification of the Transmissibility Matrix</a></li>
<li><a href="#org989379a">Computation of the Frobenius norm</a></li>
<li><a href="#org6f63d37">Computation of the Frobenius norm</a></li>
</ul>
</li>
<li><a href="#org50e35a6">4.2. Compute the Compliance</a>
<ul>
<li><a href="#org64fc1e2">Function description</a></li>
<li><a href="#org54cab00">Optional Parameters</a></li>
<li><a href="#org3cf1d13">Function description</a></li>
<li><a href="#org726b57d">Optional Parameters</a></li>
<li><a href="#orgef06b63">Identification of the Compliance Matrix</a></li>
<li><a href="#org6f63d37">Computation of the Frobenius norm</a></li>
<li><a href="#org1019eaf">Computation of the Frobenius norm</a></li>
</ul>
</li>
</ul>
@@ -329,6 +329,7 @@ stewart = initializeInertialSensor(stewart);
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
</pre>
</div>
</div>
@@ -608,8 +609,8 @@ Save the movie of the mode shape.
<a id="orga989615"></a>
</p>
</div>
<div id="outline-container-org8c667e9" class="outline-3">
<h3 id="org8c667e9"><span class="section-number-3">2.1</span> Initialize the Stewart platform</h3>
<div id="outline-container-orgc8e1f51" class="outline-3">
<h3 id="orgc8e1f51"><span class="section-number-3">2.1</span> Initialize the Stewart platform</h3>
<div class="outline-text-3" id="text-2-1">
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeStewartPlatform();
@@ -632,6 +633,7 @@ We set the rotation point of the ground to be at the same point at frames \(\{A\
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
</pre>
</div>
</div>
@@ -729,8 +731,8 @@ plot(freqs, Gamma)
<a id="org4579374"></a>
</p>
</div>
<div id="outline-container-orgc8e1f51" class="outline-3">
<h3 id="orgc8e1f51"><span class="section-number-3">3.1</span> Initialize the Stewart platform</h3>
<div id="outline-container-org55d2544" class="outline-3">
<h3 id="org55d2544"><span class="section-number-3">3.1</span> Initialize the Stewart platform</h3>
<div class="outline-text-3" id="text-3-1">
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeStewartPlatform();
@@ -753,6 +755,7 @@ We set the rotation point of the ground to be at the same point at frames \(\{A\
<div class="org-src-container">
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
</pre>
</div>
</div>
@@ -841,9 +844,9 @@ plot(freqs, C_norm)
</p>
</div>
<div id="outline-container-org851f84d" class="outline-4">
<h4 id="org851f84d">Function description</h4>
<div class="outline-text-4" id="text-org851f84d">
<div id="outline-container-org64fc1e2" class="outline-4">
<h4 id="org64fc1e2">Function description</h4>
<div class="outline-text-4" id="text-org64fc1e2">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[T, T_norm, freqs]</span> = <span class="org-function-name">computeTransmissibility</span>(<span class="org-variable-name">args</span>)
<span class="org-comment">% computeTransmissibility -</span>
@@ -864,9 +867,9 @@ plot(freqs, C_norm)
</div>
</div>
<div id="outline-container-orgf5e24cd" class="outline-4">
<h4 id="orgf5e24cd">Optional Parameters</h4>
<div class="outline-text-4" id="text-orgf5e24cd">
<div id="outline-container-org54cab00" class="outline-4">
<h4 id="org54cab00">Optional Parameters</h4>
<div class="outline-text-4" id="text-org54cab00">
<div class="org-src-container">
<pre class="src src-matlab">arguments
args.plots logical {mustBeNumericOrLogical} = <span class="org-constant">false</span>
@@ -896,7 +899,7 @@ mdl = <span class="org-string">'stewart_platform_model'</span>;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/D_w'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Base Motion [m, rad]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'output'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
T = linearize(mdl, io, options);
@@ -935,17 +938,17 @@ If wanted, the 6x6 transmissibility matrix is plotted.
han = <span class="org-type">axes</span>(fig, <span class="org-string">'visible'</span>, <span class="org-string">'off'</span>);
han.XLabel.Visible = <span class="org-string">'on'</span>;
han.YLabel.Visible = <span class="org-string">'on'</span>;
ylabel(han, <span class="org-string">'Frequency [Hz]'</span>);
xlabel(han, <span class="org-string">'Transmissibility [m/m]'</span>);
xlabel(han, <span class="org-string">'Frequency [Hz]'</span>);
ylabel(han, <span class="org-string">'Transmissibility [m/m]'</span>);
<span class="org-keyword">end</span>
</pre>
</div>
</div>
</div>
<div id="outline-container-org989379a" class="outline-4">
<h4 id="org989379a">Computation of the Frobenius norm</h4>
<div class="outline-text-4" id="text-org989379a">
<div id="outline-container-org6f63d37" class="outline-4">
<h4 id="org6f63d37">Computation of the Frobenius norm</h4>
<div class="outline-text-4" id="text-org6f63d37">
<div class="org-src-container">
<pre class="src src-matlab">T_norm = zeros(length(freqs), 1);
@@ -982,9 +985,9 @@ If wanted, the 6x6 transmissibility matrix is plotted.
</p>
</div>
<div id="outline-container-org64fc1e2" class="outline-4">
<h4 id="org64fc1e2">Function description</h4>
<div class="outline-text-4" id="text-org64fc1e2">
<div id="outline-container-org3cf1d13" class="outline-4">
<h4 id="org3cf1d13">Function description</h4>
<div class="outline-text-4" id="text-org3cf1d13">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[C, C_norm, freqs]</span> = <span class="org-function-name">computeCompliance</span>(<span class="org-variable-name">args</span>)
<span class="org-comment">% computeCompliance -</span>
@@ -1005,9 +1008,9 @@ If wanted, the 6x6 transmissibility matrix is plotted.
</div>
</div>
<div id="outline-container-org54cab00" class="outline-4">
<h4 id="org54cab00">Optional Parameters</h4>
<div class="outline-text-4" id="text-org54cab00">
<div id="outline-container-org726b57d" class="outline-4">
<h4 id="org726b57d">Optional Parameters</h4>
<div class="outline-text-4" id="text-org726b57d">
<div class="org-src-container">
<pre class="src src-matlab">arguments
args.plots logical {mustBeNumericOrLogical} = <span class="org-constant">false</span>
@@ -1037,7 +1040,7 @@ mdl = <span class="org-string">'stewart_platform_model'</span>;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/F_ext'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% External forces [N, N*m]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'output'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
C = linearize(mdl, io, options);
@@ -1083,9 +1086,9 @@ If wanted, the 6x6 transmissibility matrix is plotted.
</div>
</div>
<div id="outline-container-org6f63d37" class="outline-4">
<h4 id="org6f63d37">Computation of the Frobenius norm</h4>
<div class="outline-text-4" id="text-org6f63d37">
<div id="outline-container-org1019eaf" class="outline-4">
<h4 id="org1019eaf">Computation of the Frobenius norm</h4>
<div class="outline-text-4" id="text-org1019eaf">
<div class="org-src-container">
<pre class="src src-matlab">freqs = args.freqs;
@@ -1114,7 +1117,7 @@ C_norm = zeros(length(freqs), 1);
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-02-27 jeu. 14:16</p>
<p class="date">Created: 2020-02-28 ven. 17:34</p>
</div>
</body>
</html>