5.8 KiB
5.8 KiB
Sensor Fusion - Test Bench
Experimental Setup
Accelerometer | PCB 393B05 - Vertical (link) |
Geophone | Mark Product L4C - Vertical |
Huddle Test
Load Data
load('./mat/huddle_test.mat', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 't');
dt = t(2) - t(1);
Data
acc_1 = acc_1 - mean(acc_1);
acc_2 = acc_2 - mean(acc_2);
geo_1 = geo_1 - mean(geo_1);
geo_2 = geo_2 - mean(geo_2);
Scale Data
From raw data to estimated velocity. This takes into account the sensibility of the sensor and possible integration to go from acceleration to velocity.
G0 = 1.02; % [V/(m/s2)]
G_acc = tf(G0);
T = 276;
xi = 0.5;
w = 2*pi;
G_geo = -T*s^2/(s^2 + 2*xi*w*s + w^2);
acc_1 = lsim(inv(G_acc), acc_1, t);
acc_2 = lsim(inv(G_acc), acc_2, t);
geo_1 = 1e2*lsim(inv(G_geo), geo_1, t);
geo_2 = lsim(inv(G_geo), geo_2, t);
Compare Time Domain Signals
figure;
hold on;
plot(t, acc_1);
plot(t, acc_2);
plot(t, geo_1);
plot(t, geo_2);
hold off;
Compute PSD
We first define the parameters for the frequency domain analysis.
Fs = 1/dt; % [Hz]
win = hanning(ceil(1*Fs));
Then we compute the Power Spectral Density using pwelch
function.
[p_acc_1, f] = pwelch(acc_1, win, [], [], Fs);
[p_acc_2, ~] = pwelch(acc_2, win, [], [], Fs);
[p_geo_1, ~] = pwelch(geo_1, win, [], [], Fs);
[p_geo_2, ~] = pwelch(geo_2, win, [], [], Fs);
figure;
hold on;
plot(f, sqrt(p_acc_1));
plot(f, sqrt(p_acc_2));
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD Accelerometers $\left[\frac{m/s}{\sqrt{Hz}}\right]$')
xlim([1, 5000]);
figure;
hold on;
plot(f, sqrt(p_geo_1));
plot(f, sqrt(p_geo_2));
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD Geophones $\left[\frac{m/s}{\sqrt{Hz}}\right]$')
xlim([1, 5000]);
Dynamical Uncertainty
[T_acc, ~] = tfestimate(acc_1, acc_2, win, [], [], Fs);
[T_geo, ~] = tfestimate(geo_1, geo_2, win, [], [], Fs);
Sensor Noise
[coh_acc, ~] = mscohere(acc_1, acc_2, win, [], [], Fs);
[coh_geo, ~] = mscohere(geo_1, geo_2, win, [], [], Fs);
pN_acc = p_acc_1.*(1 - coh_acc);
pN_geo = p_geo_1.*(1 - coh_geo);
figure;
hold on;
plot(f, pN_acc, '-', 'DisplayName', 'Accelerometers');
plot(f, pN_geo, '-', 'DisplayName', 'Geophones');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the Measurement Noise $\left[\frac{m/s}{\sqrt{Hz}}\right]$');
xlim([1, 5000]);
legend('location', 'northeast');