465 lines
18 KiB
HTML
465 lines
18 KiB
HTML
<?xml version="1.0" encoding="utf-8"?>
|
||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||
<head>
|
||
<!-- 2022-08-16 Tue 20:31 -->
|
||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||
<title>Research Pages</title>
|
||
<meta name="author" content="Dehaeze Thomas" />
|
||
<meta name="generator" content="Org Mode" />
|
||
<link rel="stylesheet" type="text/css" href="css/style.css"/>
|
||
<link rel="stylesheet" href="https://maxst.icons8.com/vue-static/landings/line-awesome/line-awesome/1.3.0/css/line-awesome.min.css">
|
||
<script type="text/javascript" src="js/script.js"></script>
|
||
<style> #content {margin: auto;} </style>
|
||
<script>
|
||
MathJax = {
|
||
svg: {
|
||
scale: 1,
|
||
fontCache: "global"
|
||
},
|
||
tex: {
|
||
tags: "ams",
|
||
multlineWidth: "%MULTLINEWIDTH",
|
||
tagSide: "right",
|
||
macros: {bm: ["\\boldsymbol{#1}",1],},
|
||
tagIndent: ".8em"
|
||
}
|
||
};
|
||
</script>
|
||
<script id="MathJax-script" async
|
||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"></script>
|
||
</head>
|
||
<body>
|
||
<div id="content" class="content">
|
||
<h1 class="title">Research Pages</h1>
|
||
<p>
|
||
Welcome to my research pages.
|
||
</p>
|
||
|
||
<div id="outline-container-orgf4ecbf1" class="outline-2">
|
||
<h2 id="orgf4ecbf1"><span class="section-number-2">1.</span> Papers</h2>
|
||
<div class="outline-text-2" id="text-1">
|
||
</div>
|
||
|
||
<div id="outline-container-org1d2c088" class="outline-3">
|
||
<h3 id="org1d2c088"><span class="section-number-3">1.1.</span> Conference Papers</h3>
|
||
<div class="outline-text-3" id="text-1-1">
|
||
<ul class="org-ul">
|
||
<li>Dehaeze, T., Mattenet, M. M., Collette, C., <b>Sample Stabilization For Tomography Experiments In Presence Of Large Plant Uncertainty</b>, In MEDSI’18 (pp. 153–157) (2018). Geneva, Switzerland: JACoW Publishing
|
||
<a href="dehaeze18_sampl_stabil_for_tomog_exper/index.html"><i class="las la-globe"></i></a>
|
||
<a href="dehaeze18_sampl_stabil_for_tomog_exper/paper/dehaeze18_sampl_stabil_for_tomog_exper.pdf"><i class="las la-file-pdf"></i></a>
|
||
<a href="dehaeze18_sampl_stabil_for_tomog_exper/poster/dehaeze18_sampl_stabil_for_tomog_exper_poster.pdf"><i class="las la-pager"></i></a>
|
||
<a href="dehaeze18_sampl_stabil_for_tomog_exper/talk/dehaeze18_sampl_stabil_for_tomog_exper_talk.pdf"><i class="las la-file-video"></i></a>
|
||
<a href="dehaeze18_sampl_stabil_for_tomog_exper/dehaeze18_sampl_stabil_for_tomog_exper.bib"><i class="las la-quote-left"></i></a></li>
|
||
<li>Dehaeze, T., Vermat, M., Christophe, C., <b>Complementary filters shaping using \(H_\infty\) synthesis</b>, In 7th International Conference on Control, Mechatronics and Automation (ICCMA) (pp. 459–464) (2019)
|
||
<a href="dehaeze19_compl_filter_shapin_using_synth/index.html"><i class="las la-globe"></i></a>
|
||
<a href="dehaeze19_compl_filter_shapin_using_synth/paper/dehaeze19_compl_filter_shapin_using_synth.pdf"><i class="las la-file-pdf"></i></a>
|
||
<a href="dehaeze19_compl_filter_shapin_using_synth/matlab/index.html"><i class="las la-file-code"></i></a>
|
||
<a href="dehaeze19_compl_filter_shapin_using_synth/poster/dehaeze19_compl_filter_shapin_using_synth_poster.pdf"><i class="las la-pager"></i></a>
|
||
<a href="dehaeze19_compl_filter_shapin_using_synth/talk/dehaeze19_compl_filter_shapin_using_synth_talk.pdf"><i class="las la-file-video"></i></a>
|
||
<a href="dehaeze19_compl_filter_shapin_using_synth/dehaeze19_compl_filter_shapin_using_synth.bib"><i class="las la-quote-left"></i></a></li>
|
||
<li>Dehaeze, T., Collette, C., <b>Active damping of rotating platforms using Integral Force Feedback</b>, In Proceedings of the International Conference on Modal Analysis Noise and Vibration Engineering (ISMA) (2020)
|
||
<a href="dehaeze20_activ_dampin_rotat_platf_integ_force_feedb/index.html"><i class="las la-globe"></i></a>
|
||
<a href="dehaeze20_activ_dampin_rotat_platf_integ_force_feedb/paper/dehaeze20_activ_dampin_rotat_platf_integ_force_feedb.pdf"><i class="las la-file-pdf"></i></a>
|
||
<a href="dehaeze20_activ_dampin_rotat_platf_integ_force_feedb/matlab/index.html"><i class="las la-file-code"></i></a>
|
||
<a href="https://www.youtube.com/watch?v=F9j2-ge2FPE"><i class="las la-file-video"></i></a>
|
||
<a href="dehaeze20_activ_dampin_rotat_platf_integ_force_feedb/dehaeze20_activ_dampin_rotat_platf_integ_force_feedb.bib"><i class="las la-quote-left"></i></a></li>
|
||
<li>Dehaeze, T., Bonnefoy, J., Collette, C., <b>Mechatronics approach for the development of a Nano-Active-Stabilization-System</b>, In MEDSI’20 (2021). JACoW Publishing
|
||
<a href="dehaeze21_mechatronics_approach_nass/index.html"><i class="las la-globe"></i></a>
|
||
<a href="dehaeze21_mechatronics_approach_nass/paper/dehaeze21_mechatronics_approach_nass.pdf"><i class="las la-file-pdf"></i></a>
|
||
<a href="dehaeze21_mechatronics_approach_nass/talk/dehaeze21_mechatronics_approach_nass_talk.pdf"><i class="las la-pager"></i></a>
|
||
<a href="https://www.youtube.com/watch?v=kaplQJoqqDg"><i class="las la-file-video"></i></a>
|
||
<a href="dehaeze21_mechatronics_approach_nass/dehaeze21_mechatronics_approach_nass.bib"><i class="las la-quote-left"></i></a></li>
|
||
<li>Brumund, P., Dehaeze, T., <b>Multibody simulations with reduced order flexible bodies obtained by FEA</b>, In MEDSI’20 (2021). JACoW Publishing
|
||
<a href="brumund21_multib_simul_reduc_order_flexib_bodies_fea/index.html"><i class="las la-globe"></i></a>
|
||
<a href="brumund21_multib_simul_reduc_order_flexib_bodies_fea/paper/brumund21_multib_simul_reduc_order_flexib_bodies_fea.pdf"><i class="las la-file-pdf"></i></a>
|
||
<a href="brumund21_multib_simul_reduc_order_flexib_bodies_fea/brumund21_multib_simul_reduc_order_flexib_bodies_fea.bib"><i class="las la-quote-left"></i></a></li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org54b0f02" class="outline-3">
|
||
<h3 id="org54b0f02"><span class="section-number-3">1.2.</span> Journal Papers</h3>
|
||
<div class="outline-text-3" id="text-1-2">
|
||
<ul class="org-ul">
|
||
<li>Verma, M., Dehaeze, T., Zhao, G., Watchi, J., Collette, C., <b>Virtual sensor fusion for high precision control, Mechanical Systems and Signal Processing</b>, 150, 107241 (2020)
|
||
<a href="personnal-papers/verma20_virtual_sensor_fusion_high_precis_contr.pdf"><i class="las la-file-pdf"></i></a>
|
||
<a href="personnal-papers/verma20_virtual_sensor_fusion_high_precis_contr.bib"><i class="las la-quote-left"></i></a></li>
|
||
<li>Verma, M., Lafarga, V., Dehaeze, T., Collette, C., <b>Multi-degree of freedom isolation system with high frequency roll-off for drone camera stabilization</b>, IEEE Access, (2020)
|
||
<a href="personnal-papers/verma20_multi_degree_freed_isolat_system.pdf"><i class="las la-file-pdf"></i></a>
|
||
<a href="personnal-papers/verma20_multi_degree_freed_isolat_system.bib"><i class="las la-quote-left"></i></a></li>
|
||
<li>Dehaeze, T., Collette, C., <b>Active damping of rotating platforms using integral force feedback</b>, Engineering Research Express, (2021)
|
||
<a href="dehaeze21_activ_dampin_rotat_platf_using/index.html"><i class="las la-globe"></i></a>
|
||
<a href="dehaeze21_activ_dampin_rotat_platf_using/journal/dehaeze21_activ_dampin_rotat_platf_using.pdf"><i class="las la-file-pdf"></i></a>
|
||
<a href="dehaeze21_activ_dampin_rotat_platf_using/matlab/index.html"><i class="las la-file-code"></i></a>
|
||
<a href="dehaeze21_activ_dampin_rotat_platf_using/dehaeze21_activ_dampin_rotat_platf_using.bib"><i class="las la-quote-left"></i></a></li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org573519e" class="outline-2">
|
||
<h2 id="org573519e"><span class="section-number-2">2.</span> Nano Active Stabilization System (NASS)</h2>
|
||
<div class="outline-text-2" id="text-2">
|
||
</div>
|
||
<div id="outline-container-org92954d9" class="outline-3">
|
||
<h3 id="org92954d9"><span class="section-number-3">2.1.</span> General Reports</h3>
|
||
<div class="outline-text-3" id="text-2-1">
|
||
<p>
|
||
<a href="nass-report-2020/index.html">NASS - Report 2020</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
General report on the NASS project made in 2020.
|
||
</p>
|
||
</blockquote>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orgbacbc1f" class="outline-3">
|
||
<h3 id="orgbacbc1f"><span class="section-number-3">2.2.</span> Measurements, Models and Test Benches</h3>
|
||
<div class="outline-text-3" id="text-2-2">
|
||
<p>
|
||
<a href="nass-micro-station-measurements/index.html">NASS - Micro Station Measurements</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
This document gathers all the measurements made on the Micro-Station.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="nass-simscape/docs/index.html">NASS - Simscape Model</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
This document presents the Simscape model used to represent the micro-station as well as the Nano Active Stabilization System.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="nass-fem/index.html">NASS - Finite Element Models</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
Finite Element Models of the nano-hexapod are developed and used with Simscape to perform dynamics meaurements.
|
||
In this document, models of Amplified Piezoelectric Actuators, Flexible Joints, and Entire Stewart platform’s strut are developed and tested.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="nass-metrology-test-bench/index.html">NASS - Metrology Concept 1</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
Presentation of the first metrology concept for the NASS.
|
||
First experimental results are presented.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="nass-short-stroke-metrology/short-stroke-metrology.html">NASS - Short Stroke Metrology</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
Presentation of the short stroke metrology concept.
|
||
</p>
|
||
</blockquote>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org36da088" class="outline-3">
|
||
<h3 id="org36da088"><span class="section-number-3">2.3.</span> Nano-Hexapod</h3>
|
||
<div class="outline-text-3" id="text-2-3">
|
||
<p>
|
||
<b>Equipments</b>:
|
||
</p>
|
||
<ul class="org-ul">
|
||
<li><a href="test-bench-pd200/index.html">Voltage Amplifier: PD200</a></li>
|
||
<li><a href="test-bench-vionic/index.html">Encoder: Renishaw Vionic</a></li>
|
||
<li><a href="test-bench-nass-flexible-joints/index.html">Flexible Joints</a></li>
|
||
<li><a href="test-bench-apa300ml/index.html">Amplified Piezoelectric Actuator: APA300ML</a></li>
|
||
<li><a href="nass-cabling/index.html">Control Electronics and Cabling</a></li>
|
||
</ul>
|
||
|
||
<p>
|
||
<b>Assembly</b>:
|
||
</p>
|
||
<ul class="org-ul">
|
||
<li><a href="test-bench-strut-mounting/index.html">Nano-Hexapod Struts - Assembly</a></li>
|
||
<li><a href="nass-nano-hexapod-assembly/index.html">Nano-Hexapod - Assembly</a></li>
|
||
</ul>
|
||
|
||
<p>
|
||
<b>Nano-Hexapod Test Benches</b>:
|
||
</p>
|
||
<ul class="org-ul">
|
||
<li><a href="test-bench-nano-hexapod/index.html">Nano-Hexapod on a Granite</a></li>
|
||
<li><a href="test-bench-nass-spindle/index.html">Nano-Hexapod on top of Spindle</a></li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org725796d" class="outline-2">
|
||
<h2 id="org725796d"><span class="section-number-2">3.</span> Double Crystal Monochromator (DCM)</h2>
|
||
<div class="outline-text-2" id="text-3">
|
||
<p>
|
||
<a href="dcm-kinematics/index.html">Kinematics</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
Kinematics of the DCM is described (both for motors and sensors). Transformations matrices are derived and all notations and conventions are well defined.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="dcm-metrology/index.html">Metrology</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
Internal metrology of the DCM (i.e. interferometers) is described. Methods to properly initialize and calibrate the metrology are proposed.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="dcm-feedback-control/index.html">Feedback Control</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
This project deals with the Feedback Control of the DCM:
|
||
</p>
|
||
|
||
<p>
|
||
Identification of the system’s dynamics Change of coordinates Feedback controller design Obtained performances in closed loop
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="dcm-user-guide/index.html">User Guide</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
The goal of this repository is to provide a simple guide for the use of the DCM.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="dcm-stepper-calibration/index.html">Stepper Motor Calibration</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
This repository includes all the work done in order to calibrate the errors induced by the stepper motors.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="dcm-laser-setup/index.html">Laser Setup</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
This project summarized all the work done on the Laser Setup. This includes alignement, calibration, noise and stability measurements.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="dcm-bragg-control/index.html">Control of Bragg Axis</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
The control of the Bragg angle using the Aerotech controller is described (control architecture, identified dynamics, etc.).
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="dcm-simscape/index.html">Multi-Body model (Simscape)</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
Multi-body model of the DCM using Simscape (Matlab Toolbox). Dynamics of the system is studied, matched with the identified dynamics. Feedback control is applied, and the model is used to study possible improvements.
|
||
</p>
|
||
</blockquote>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org08aac7b" class="outline-2">
|
||
<h2 id="org08aac7b"><span class="section-number-2">4.</span> Useful Pages / Tutorials</h2>
|
||
<div class="outline-text-2" id="text-4">
|
||
</div>
|
||
<div id="outline-container-org1506f1e" class="outline-3">
|
||
<h3 id="org1506f1e"><span class="section-number-3">4.1.</span> General Mechatronics</h3>
|
||
<div class="outline-text-3" id="text-4-1">
|
||
<p>
|
||
<a href="spectral-analysis/index.html">Spectral Analysis</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
Basics of spectral analysis are presented alongside the Matlab codes.
|
||
This includes:
|
||
</p>
|
||
<ul class="org-ul">
|
||
<li>power spectral density</li>
|
||
<li>cumulative power spectrum</li>
|
||
<li>noise budgeting</li>
|
||
<li>…</li>
|
||
</ul>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="filters-matlab-bank/index.html">Bank of Filters using matlab</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
Several types of linear filters (low pass, high pass, notch, lead, etc.) are presented with the corresponding Matlab code.
|
||
</p>
|
||
</blockquote>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org30a45fa" class="outline-3">
|
||
<h3 id="org30a45fa"><span class="section-number-3">4.2.</span> System Modeling using Simscape</h3>
|
||
<div class="outline-text-3" id="text-4-2">
|
||
<p>
|
||
<a href="simscape-fem/index.html">Finite Element Models with Simscape</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
Finite Element Models (FEM) can be included into Simscape Multi-Body models.
|
||
This document presents how to do so.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="stewart-simscape/docs/index.html">Stewart Platforms modeled with Simscape</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
The goal of this project is to provide a Matlab/Simscape Toolbox to study Stewart platforms.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="simscape-gravity/index.html">Manage Gravity within Simscape</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
Gravity can add some problems in multi-body simscape models: at the beginning of the simulation, some sag will be experience that may be unwanted.
|
||
In order to start the simulation at equilibrium, few measured can be employed that are described in this document.
|
||
</p>
|
||
</blockquote>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orged54513" class="outline-2">
|
||
<h2 id="orged54513"><span class="section-number-2">5.</span> Test Benches / Experiments</h2>
|
||
<div class="outline-text-2" id="text-5">
|
||
</div>
|
||
<div id="outline-container-org5d3e0ef" class="outline-3">
|
||
<h3 id="org5d3e0ef"><span class="section-number-3">5.1.</span> Intrumentation Related</h3>
|
||
<div class="outline-text-3" id="text-5-1">
|
||
<p>
|
||
<a href="test-bench-piezo-amplifiers/index.html">Voltage Amplifiers for Piezoelectric Actuators</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
Voltage amplifiers for capacitive loads (piezoelectric actuators) are measured in term of dynamics from input voltage to output voltage.
|
||
Their output impedance are also measured.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="attocube-test-bench/index.html">Attocube</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
The Attocube (a fiber based interferometer) is tested.
|
||
Its noise characteristics as well as non-linearities are measured.
|
||
</p>
|
||
</blockquote>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orgeae29eb" class="outline-3">
|
||
<h3 id="orgeae29eb"><span class="section-number-3">5.2.</span> Amplified Piezoelecric Actuator</h3>
|
||
<div class="outline-text-3" id="text-5-2">
|
||
<p>
|
||
<a href="test-bench-apa/index.html">Amplified Piezoelectric Actuator - Test bench and Finite Element Model</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
A test bench is used to characterise the performances of an Amplified Piezoelectric Actuator (APA).
|
||
The dynamics of the system is identified and compared with a Finite Element Model (FEM).
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="encoder-test-bench/test-bench-encoder.html">Encoder in parallel with an Amplified Piezoelectric Actuator</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
An encoder is fixed in parallel with an amplified piezoelectric actuator.
|
||
The transfer function from the actuator to the motions measured by the encoder is identified.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="test-bench-force-sensor/index.html">Piezoelectric Stack as Force Sensor</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
A part of a piezoelectric stack can be used as a force sensor.
|
||
Then, the force sensors is collocated with the part of the stack used as an actuator and Integral Force Feedback control strategy can be used to add damping in the system.
|
||
This is performed on an Amplified Piezoelectric Actuator
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="sensor-fusion-test-bench/index.html">Sensor Fusion of Inertial Sensors</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
A geophone and a accelerometer are experimentally fused together using complementary filters.
|
||
The goal is to form a <i>super sensor</i> that has better noise characteristics than the individual sensors.
|
||
</p>
|
||
</blockquote>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orgb023554" class="outline-3">
|
||
<h3 id="orgb023554"><span class="section-number-3">5.3.</span> Vibration Table</h3>
|
||
<div class="outline-text-3" id="text-5-3">
|
||
<p>
|
||
<a href="vibration-table/index.html">Instrumented Vibration Table used for Modal Testing</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
A vibration table is developed to perform controlled modal tests.
|
||
</p>
|
||
</blockquote>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orgf8f9a12" class="outline-2">
|
||
<h2 id="orgf8f9a12"><span class="section-number-2">6.</span> Notes</h2>
|
||
<div class="outline-text-2" id="text-6">
|
||
<ul class="org-ul">
|
||
<li><a href="euspen_2020_notes/notes.html">EUSPEN - 2020 - Notes</a></li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org8b720a8" class="outline-2">
|
||
<h2 id="org8b720a8"><span class="section-number-2">7.</span> Lectures</h2>
|
||
<div class="outline-text-2" id="text-7">
|
||
<ul class="org-ul">
|
||
<li><a href="lecture-h-infinity/index.html">H-Infinity - Robust Control</a></li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</body>
|
||
</html>
|