Add all DCM documents
This commit is contained in:
parent
c10adeffaf
commit
8af7df9d2d
19
.gitmodules
vendored
19
.gitmodules
vendored
@ -132,10 +132,10 @@
|
||||
url = https://git.tdehaeze.xyz/tdehaeze/dehaeze19_compl_filter_shapin_using_synth
|
||||
[submodule "dcm-stepper-calibration"]
|
||||
path = dcm-stepper-calibration
|
||||
url = https://git.tdehaeze.xyz/tdehaeze/dcm-stepper-calibration
|
||||
url = https://gitlab.esrf.fr/dehaeze/dcm-stepper-calibration
|
||||
[submodule "dcm-feedback-control"]
|
||||
path = dcm-feedback-control
|
||||
url = https://git.tdehaeze.xyz/tdehaeze/dcm-feedback-control
|
||||
url = https://gitlab.esrf.fr/dehaeze/dcm-feedback-control
|
||||
[submodule "dcm-simscape-model"]
|
||||
path = dcm-simscape-model
|
||||
url = https://git.tdehaeze.xyz/tdehaeze/dcm-simscape-model
|
||||
@ -145,3 +145,18 @@
|
||||
[submodule "dcm-kinematics"]
|
||||
path = dcm-kinematics
|
||||
url = https://gitlab.esrf.fr/dehaeze/dcm-kinematics
|
||||
[submodule "dcm-user-guide"]
|
||||
path = dcm-user-guide
|
||||
url = https://gitlab.esrf.fr/dehaeze/dcm-user-guide
|
||||
[submodule "dcm-speedgoat"]
|
||||
path = dcm-speedgoat
|
||||
url = https://gitlab.esrf.fr/dehaeze/dcm-speedgoat
|
||||
[submodule "dcm-laser-setup"]
|
||||
path = dcm-laser-setup
|
||||
url = https://gitlab.esrf.fr/dehaeze/dcm-laser-setup
|
||||
[submodule "dcm-bragg-control"]
|
||||
path = dcm-bragg-control
|
||||
url = https://gitlab.esrf.fr/dehaeze/dcm-bragg-control
|
||||
[submodule "dcm-simscape"]
|
||||
path = dcm-simscape
|
||||
url = https://gitlab.esrf.fr/dehaeze/dcm-simscape
|
||||
|
1
dcm-bragg-control
Submodule
1
dcm-bragg-control
Submodule
@ -0,0 +1 @@
|
||||
Subproject commit 30e24e3ad3f62edc31609b3ba9fee7d929d6d050
|
1
dcm-feedback-control
Submodule
1
dcm-feedback-control
Submodule
@ -0,0 +1 @@
|
||||
Subproject commit cbc63a0661ddc4d812e1503beb4d69b571820b3d
|
1
dcm-laser-setup
Submodule
1
dcm-laser-setup
Submodule
@ -0,0 +1 @@
|
||||
Subproject commit eb495136c817b64908b3f028de5cdc73b39475ec
|
1
dcm-simscape
Submodule
1
dcm-simscape
Submodule
@ -0,0 +1 @@
|
||||
Subproject commit f6400c14de49371591162fbc3b520052803d88cb
|
1
dcm-speedgoat
Submodule
1
dcm-speedgoat
Submodule
@ -0,0 +1 @@
|
||||
Subproject commit d4fdcd3e2d8c784ead5c72d47a96c088b611d226
|
1
dcm-stepper-calibration
Submodule
1
dcm-stepper-calibration
Submodule
@ -0,0 +1 @@
|
||||
Subproject commit 1512272e10f96d69b2e6b6560f5c52ef2431a133
|
1
dcm-user-guide
Submodule
1
dcm-user-guide
Submodule
@ -0,0 +1 @@
|
||||
Subproject commit b1a511922af662ea2f57d16fb54f175d8413f1d2
|
150
index.html
150
index.html
@ -3,7 +3,7 @@
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2022-06-02 Thu 19:15 -->
|
||||
<!-- 2022-06-02 Thu 22:34 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<title>Research Pages</title>
|
||||
<meta name="author" content="Dehaeze Thomas" />
|
||||
@ -37,13 +37,13 @@
|
||||
Welcome to my research pages.
|
||||
</p>
|
||||
|
||||
<div id="outline-container-org5bcf370" class="outline-2">
|
||||
<h2 id="org5bcf370"><span class="section-number-2">1.</span> Papers</h2>
|
||||
<div id="outline-container-orga67e658" class="outline-2">
|
||||
<h2 id="orga67e658"><span class="section-number-2">1.</span> Papers</h2>
|
||||
<div class="outline-text-2" id="text-1">
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orge197ac1" class="outline-3">
|
||||
<h3 id="orge197ac1"><span class="section-number-3">1.1.</span> Conference Papers</h3>
|
||||
<div id="outline-container-org1be2914" class="outline-3">
|
||||
<h3 id="org1be2914"><span class="section-number-3">1.1.</span> Conference Papers</h3>
|
||||
<div class="outline-text-3" id="text-1-1">
|
||||
<ul class="org-ul">
|
||||
<li>Dehaeze, T., Mattenet, M. M., Collette, C., <b>Sample Stabilization For Tomography Experiments In Presence Of Large Plant Uncertainty</b>, In MEDSI’18 (pp. 153–157) (2018). Geneva, Switzerland: JACoW Publishing
|
||||
@ -79,8 +79,8 @@ Welcome to my research pages.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org5ffc110" class="outline-3">
|
||||
<h3 id="org5ffc110"><span class="section-number-3">1.2.</span> Journal Papers</h3>
|
||||
<div id="outline-container-org90b1d65" class="outline-3">
|
||||
<h3 id="org90b1d65"><span class="section-number-3">1.2.</span> Journal Papers</h3>
|
||||
<div class="outline-text-3" id="text-1-2">
|
||||
<ul class="org-ul">
|
||||
<li>Verma, M., Dehaeze, T., Zhao, G., Watchi, J., Collette, C., <b>Virtual sensor fusion for high precision control, Mechanical Systems and Signal Processing</b>, 150, 107241 (2020)
|
||||
@ -99,12 +99,12 @@ Welcome to my research pages.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgf56927c" class="outline-2">
|
||||
<h2 id="orgf56927c"><span class="section-number-2">2.</span> Nano Active Stabilization System (NASS)</h2>
|
||||
<div id="outline-container-org420fe1c" class="outline-2">
|
||||
<h2 id="org420fe1c"><span class="section-number-2">2.</span> Nano Active Stabilization System (NASS)</h2>
|
||||
<div class="outline-text-2" id="text-2">
|
||||
</div>
|
||||
<div id="outline-container-org3c680e7" class="outline-3">
|
||||
<h3 id="org3c680e7"><span class="section-number-3">2.1.</span> General Reports</h3>
|
||||
<div id="outline-container-org3ac12d7" class="outline-3">
|
||||
<h3 id="org3ac12d7"><span class="section-number-3">2.1.</span> General Reports</h3>
|
||||
<div class="outline-text-3" id="text-2-1">
|
||||
<p>
|
||||
<a href="nass-report-2020/index.html">NASS - Report 2020</a>
|
||||
@ -117,8 +117,8 @@ General report on the NASS project made in 2020.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgc0f126f" class="outline-3">
|
||||
<h3 id="orgc0f126f"><span class="section-number-3">2.2.</span> Measurements, Models and Test Benches</h3>
|
||||
<div id="outline-container-org1e4a9db" class="outline-3">
|
||||
<h3 id="org1e4a9db"><span class="section-number-3">2.2.</span> Measurements, Models and Test Benches</h3>
|
||||
<div class="outline-text-3" id="text-2-2">
|
||||
<p>
|
||||
<a href="nass-micro-station-measurements/index.html">NASS - Micro Station Measurements</a>
|
||||
@ -169,8 +169,8 @@ Presentation of the short stroke metrology concept.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org7b3660b" class="outline-3">
|
||||
<h3 id="org7b3660b"><span class="section-number-3">2.3.</span> Nano-Hexapod</h3>
|
||||
<div id="outline-container-org4a69b7f" class="outline-3">
|
||||
<h3 id="org4a69b7f"><span class="section-number-3">2.3.</span> Nano-Hexapod</h3>
|
||||
<div class="outline-text-3" id="text-2-3">
|
||||
<p>
|
||||
<b>Equipments</b>:
|
||||
@ -202,22 +202,102 @@ Presentation of the short stroke metrology concept.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org49e79f0" class="outline-2">
|
||||
<h2 id="org49e79f0"><span class="section-number-2">3.</span> Double Crystal Monochromator (DCM)</h2>
|
||||
<div id="outline-container-orgd2f31a7" class="outline-2">
|
||||
<h2 id="orgd2f31a7"><span class="section-number-2">3.</span> Double Crystal Monochromator (DCM)</h2>
|
||||
<div class="outline-text-2" id="text-3">
|
||||
<p>
|
||||
<a href="dcm-kinematics/index.html">Kinematics</a>
|
||||
</p>
|
||||
<blockquote>
|
||||
<p>
|
||||
Kinematics of the DCM is described (both for motors and sensors). Transformations matrices are derived and all notations and conventions are well defined.
|
||||
</p>
|
||||
</blockquote>
|
||||
|
||||
<p>
|
||||
<a href="dcm-metrology/index.html">Metrology</a>
|
||||
</p>
|
||||
<blockquote>
|
||||
<p>
|
||||
Internal metrology of the DCM (i.e. interferometers) is described. Methods to properly initialize and calibrate the metrology are proposed.
|
||||
</p>
|
||||
</blockquote>
|
||||
|
||||
<p>
|
||||
<a href="dcm-feedback-control/index.html">Feedback Control</a>
|
||||
</p>
|
||||
<blockquote>
|
||||
<p>
|
||||
This project deals with the Feedback Control of the DCM:
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Identification of the system’s dynamics Change of coordinates Feedback controller design Obtained performances in closed loop
|
||||
</p>
|
||||
</blockquote>
|
||||
|
||||
<p>
|
||||
<a href="dcm-user-guide/index.html">User Guide</a>
|
||||
</p>
|
||||
<blockquote>
|
||||
<p>
|
||||
The goal of this repository is to provide a simple guide for the use of the DCM.
|
||||
</p>
|
||||
</blockquote>
|
||||
|
||||
<p>
|
||||
<a href="dcm-stepper-calibration/index.html">Stepper Motor Calibration</a>
|
||||
</p>
|
||||
<blockquote>
|
||||
<p>
|
||||
This repository includes all the work done in order to calibrate the errors induced by the stepper motors.
|
||||
</p>
|
||||
</blockquote>
|
||||
|
||||
<p>
|
||||
<a href="dcm-speedgoat/index.html">Speedgoat Real Time Program</a>
|
||||
</p>
|
||||
<blockquote>
|
||||
<p>
|
||||
This repository described the working principles of the Real Time program running on the Speedgoat machine for the DCM.
|
||||
</p>
|
||||
</blockquote>
|
||||
|
||||
<p>
|
||||
<a href="dcm-laser-setup/index.html">Laser Setup</a>
|
||||
</p>
|
||||
<blockquote>
|
||||
<p>
|
||||
This project summarized all the work done on the Laser Setup. This includes alignement, calibration, noise and stability measurements.
|
||||
</p>
|
||||
</blockquote>
|
||||
|
||||
<p>
|
||||
<a href="dcm-bragg-control/index.html">Control of Bragg Axis</a>
|
||||
</p>
|
||||
<blockquote>
|
||||
<p>
|
||||
The control of the Bragg angle using the Aerotech controller is described (control architecture, identified dynamics, etc.).
|
||||
</p>
|
||||
</blockquote>
|
||||
|
||||
<p>
|
||||
<a href="dcm-simscape/index.html">Multi-Body model (Simscape)</a>
|
||||
</p>
|
||||
<blockquote>
|
||||
<p>
|
||||
Multi-body model of the DCM using Simscape (Matlab Toolbox). Dynamics of the system is studied, matched with the identified dynamics. Feedback control is applied, and the model is used to study possible improvements.
|
||||
</p>
|
||||
</blockquote>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org3564575" class="outline-2">
|
||||
<h2 id="org3564575"><span class="section-number-2">4.</span> Useful Pages / Tutorials</h2>
|
||||
<div id="outline-container-orga8b972f" class="outline-2">
|
||||
<h2 id="orga8b972f"><span class="section-number-2">4.</span> Useful Pages / Tutorials</h2>
|
||||
<div class="outline-text-2" id="text-4">
|
||||
</div>
|
||||
<div id="outline-container-orgd677c17" class="outline-3">
|
||||
<h3 id="orgd677c17"><span class="section-number-3">4.1.</span> General Mechatronics</h3>
|
||||
<div id="outline-container-org14f3092" class="outline-3">
|
||||
<h3 id="org14f3092"><span class="section-number-3">4.1.</span> General Mechatronics</h3>
|
||||
<div class="outline-text-3" id="text-4-1">
|
||||
<p>
|
||||
<a href="spectral-analysis/index.html">Spectral Analysis</a>
|
||||
@ -246,8 +326,8 @@ Several types of linear filters (low pass, high pass, notch, lead, etc.) are pre
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org923c658" class="outline-3">
|
||||
<h3 id="org923c658"><span class="section-number-3">4.2.</span> System Modeling using Simscape</h3>
|
||||
<div id="outline-container-org2798ad7" class="outline-3">
|
||||
<h3 id="org2798ad7"><span class="section-number-3">4.2.</span> System Modeling using Simscape</h3>
|
||||
<div class="outline-text-3" id="text-4-2">
|
||||
<p>
|
||||
<a href="simscape-fem/index.html">Finite Element Models with Simscape</a>
|
||||
@ -281,12 +361,12 @@ In order to start the simulation at equilibrium, few measured can be employed th
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org09bc092" class="outline-2">
|
||||
<h2 id="org09bc092"><span class="section-number-2">5.</span> Test Benches / Experiments</h2>
|
||||
<div id="outline-container-org5eddddb" class="outline-2">
|
||||
<h2 id="org5eddddb"><span class="section-number-2">5.</span> Test Benches / Experiments</h2>
|
||||
<div class="outline-text-2" id="text-5">
|
||||
</div>
|
||||
<div id="outline-container-orge25dfd1" class="outline-3">
|
||||
<h3 id="orge25dfd1"><span class="section-number-3">5.1.</span> Intrumentation Related</h3>
|
||||
<div id="outline-container-org3e03e27" class="outline-3">
|
||||
<h3 id="org3e03e27"><span class="section-number-3">5.1.</span> Intrumentation Related</h3>
|
||||
<div class="outline-text-3" id="text-5-1">
|
||||
<p>
|
||||
<a href="test-bench-piezo-amplifiers/index.html">Voltage Amplifiers for Piezoelectric Actuators</a>
|
||||
@ -310,8 +390,8 @@ Its noise characteristics as well as non-linearities are measured.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org50f7033" class="outline-3">
|
||||
<h3 id="org50f7033"><span class="section-number-3">5.2.</span> Amplified Piezoelecric Actuator</h3>
|
||||
<div id="outline-container-orge46b032" class="outline-3">
|
||||
<h3 id="orge46b032"><span class="section-number-3">5.2.</span> Amplified Piezoelecric Actuator</h3>
|
||||
<div class="outline-text-3" id="text-5-2">
|
||||
<p>
|
||||
<a href="test-bench-apa/index.html">Amplified Piezoelectric Actuator - Test bench and Finite Element Model</a>
|
||||
@ -356,8 +436,8 @@ The goal is to form a <i>super sensor</i> that has better noise characteristics
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org2660fa1" class="outline-3">
|
||||
<h3 id="org2660fa1"><span class="section-number-3">5.3.</span> Vibration Table</h3>
|
||||
<div id="outline-container-orgd8627af" class="outline-3">
|
||||
<h3 id="orgd8627af"><span class="section-number-3">5.3.</span> Vibration Table</h3>
|
||||
<div class="outline-text-3" id="text-5-3">
|
||||
<p>
|
||||
<a href="vibration-table/index.html">Instrumented Vibration Table used for Modal Testing</a>
|
||||
@ -371,8 +451,8 @@ A vibration table is developed to perform controlled modal tests.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgc3e10b1" class="outline-2">
|
||||
<h2 id="orgc3e10b1"><span class="section-number-2">6.</span> Notes</h2>
|
||||
<div id="outline-container-org7f51a56" class="outline-2">
|
||||
<h2 id="org7f51a56"><span class="section-number-2">6.</span> Notes</h2>
|
||||
<div class="outline-text-2" id="text-6">
|
||||
<ul class="org-ul">
|
||||
<li><a href="euspen_2020_notes/notes.html">EUSPEN - 2020 - Notes</a></li>
|
||||
@ -380,8 +460,8 @@ A vibration table is developed to perform controlled modal tests.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org58f9fe0" class="outline-2">
|
||||
<h2 id="org58f9fe0"><span class="section-number-2">7.</span> Lectures</h2>
|
||||
<div id="outline-container-org4b54bac" class="outline-2">
|
||||
<h2 id="org4b54bac"><span class="section-number-2">7.</span> Lectures</h2>
|
||||
<div class="outline-text-2" id="text-7">
|
||||
<ul class="org-ul">
|
||||
<li><a href="lecture-h-infinity/index.html">H-Infinity - Robust Control</a></li>
|
||||
|
60
index.org
60
index.org
@ -149,31 +149,53 @@ Presentation of the short stroke metrology concept.
|
||||
- [[file:test-bench-nass-spindle/index.org][Nano-Hexapod on top of Spindle]]
|
||||
|
||||
* Double Crystal Monochromator (DCM)
|
||||
|
||||
[[file:dcm-kinematics/index.html][Kinematics]]
|
||||
#+begin_quote
|
||||
Kinematics of the DCM is described (both for motors and sensors). Transformations matrices are derived and all notations and conventions are well defined.
|
||||
#+end_quote
|
||||
|
||||
[[file:dcm-metrology/index.html][Metrology]]
|
||||
#+begin_quote
|
||||
Internal metrology of the DCM (i.e. interferometers) is described. Methods to properly initialize and calibrate the metrology are proposed.
|
||||
#+end_quote
|
||||
|
||||
# [[file:dcm-stepper-calibration/index.html][Calibration of stepper motors]]
|
||||
# #+begin_quote
|
||||
# Analysis of stepper motors' errors is performed.
|
||||
# Calibration table are computed to compensate for the repeatable errors.
|
||||
# #+end_quote
|
||||
[[file:dcm-feedback-control/index.html][Feedback Control]]
|
||||
#+begin_quote
|
||||
This project deals with the Feedback Control of the DCM:
|
||||
|
||||
# [[file:dcm-metrology/index.html][Metrology]]
|
||||
# #+begin_quote
|
||||
# The metrology concept is described.
|
||||
# The calibration of the metrology is performed using an external metrology using the X-ray.
|
||||
# #+end_quote
|
||||
Identification of the system's dynamics Change of coordinates Feedback controller design Obtained performances in closed loop
|
||||
#+end_quote
|
||||
|
||||
# [[file:dcm-feedback-control/index.html][Feedback Control]]
|
||||
# #+begin_quote
|
||||
# System dynamics is identified.
|
||||
# Feedback control using the piezoelectric actuator is designed and experimentally validated.
|
||||
# #+end_quote
|
||||
[[file:dcm-user-guide/index.html][User Guide]]
|
||||
#+begin_quote
|
||||
The goal of this repository is to provide a simple guide for the use of the DCM.
|
||||
#+end_quote
|
||||
|
||||
# [[file:dcm-simscape-model/index.html][Multi-Body (Simscape) model]]
|
||||
# #+begin_quote
|
||||
# A multi-body model of the DCM is developed and used to test various control strategies and change of architecture.
|
||||
# #+end_quote
|
||||
[[file:dcm-stepper-calibration/index.html][Stepper Motor Calibration]]
|
||||
#+begin_quote
|
||||
This repository includes all the work done in order to calibrate the errors induced by the stepper motors.
|
||||
#+end_quote
|
||||
|
||||
[[file:dcm-speedgoat/index.html][Speedgoat Real Time Program]]
|
||||
#+begin_quote
|
||||
This repository described the working principles of the Real Time program running on the Speedgoat machine for the DCM.
|
||||
#+end_quote
|
||||
|
||||
[[file:dcm-laser-setup/index.html][Laser Setup]]
|
||||
#+begin_quote
|
||||
This project summarized all the work done on the Laser Setup. This includes alignement, calibration, noise and stability measurements.
|
||||
#+end_quote
|
||||
|
||||
[[file:dcm-bragg-control/index.html][Control of Bragg Axis]]
|
||||
#+begin_quote
|
||||
The control of the Bragg angle using the Aerotech controller is described (control architecture, identified dynamics, etc.).
|
||||
#+end_quote
|
||||
|
||||
[[file:dcm-simscape/index.html][Multi-Body model (Simscape)]]
|
||||
#+begin_quote
|
||||
Multi-body model of the DCM using Simscape (Matlab Toolbox). Dynamics of the system is studied, matched with the identified dynamics. Feedback control is applied, and the model is used to study possible improvements.
|
||||
#+end_quote
|
||||
|
||||
* Useful Pages / Tutorials
|
||||
** General Mechatronics
|
||||
|
Loading…
Reference in New Issue
Block a user