phd-thesis/phd-thesis.tex
2023-02-07 09:35:47 +01:00

727 lines
21 KiB
TeX

% Created 2023-01-31 Tue 23:33
% Intended LaTeX compiler: pdflatex
\documentclass[a4paper, twoside, 11pt, onecolumn, bibliography=totoc, openright, appendixprefix=true]{scrreprt}
\input{config.tex}
\newacronym{mimo}{MIMO}{Multiple-Inputs Multiple-Outputs}
\newacronym{siso}{SISO}{Single-Input Single-Output}
\newacronym{nass}{NASS}{Nano Active Stabilization System}
\newacronym{lti}{LTI}{Linear Time Invariant}
\newglossaryentry{ka}{name=\ensuremath{k_a},description={{Actuator Stiffness in}}}
\newglossaryentry{phi}{name=\ensuremath{\phi},description={{A woody bush}}}
\input{config_extra.tex}
\addbibresource{ref.bib}
\author{Dehaeze Thomas}
\date{2023-01-31}
\title{Mechatronic approach for the design of a Nano Active Stabilization System}
\subtitle{PhD Thesis}
\hypersetup{
pdfauthor={Dehaeze Thomas},
pdftitle={Mechatronic approach for the design of a Nano Active Stabilization System},
pdfkeywords={},
pdfsubject={},
pdfcreator={Emacs 28.2 (Org mode 9.5.2)},
pdflang={English}}
\usepackage{biblatex}
\begin{document}
\begin{titlepage}
\vspace*{5cm}
\makeatletter
\begin{center}
\begin{Huge}
\@title
\end{Huge}\\[0.1cm]
%
\begin{Large}
\@subtitle
\end{Large}\\
%
\emph{by}\\
\@author
%
\vfill
A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (PhD) in Engineering Science\\
at\\
\textsc{Liège Université}
\end{center}
\makeatother
\end{titlepage}
\newpage
\null
\thispagestyle{empty}
\newpage
\chapter*{Abstract}
\chapter*{Résumé}
\chapter*{Acknowledgments}
\dominitoc
\tableofcontents
\listoftables
\listoffigures
\chapter{Introduction}
\section{Context of this thesis / Background and Motivation}
\begin{itemize}
\item ESRF (Figure \ref{fig:esrf_picture})
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.7\linewidth]{figs/esrf_picture.jpg}
\caption{\label{fig:esrf_picture}European Synchrotron Radiation Facility}
\end{figure}
\begin{itemize}
\item ID31 and Micro Station (Figure \ref{fig:id31_microstation_picture})
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.49\linewidth]{figs/id31_microstation_picture.png}
\caption{\label{fig:id31_microstation_picture}Picture of the ID31 Micro-Station with annotations}
\end{figure}
Alternative: \texttt{id31\_microstation\_cad\_view.png} (CAD view)
\begin{itemize}
\item X-ray beam + detectors + sample stage (Figure \ref{fig:id31_beamline_schematic})
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.49\linewidth]{figs/id31_beamline_schematic.png}
\caption{\label{fig:id31_beamline_schematic}ID31 Beamline Schematic. With light source, nano-focusing optics, sample stage and detector.}
\end{figure}
\begin{itemize}
\item Few words about science made on ID31 and why nano-meter accuracy is required
\item Typical experiments (tomography, \ldots{}), various samples (up to 50kg)
\item Example of picture obtained (Figure \ref{fig:id31_tomography_result})
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.49\linewidth]{example-image-c.png}
\caption{\label{fig:id31_tomography_result}Image obtained on the ID31 beamline}
\end{figure}
\begin{itemize}
\item Explain wanted positioning accuracy and why micro-station cannot have this accuracy (backlash, play, thermal expansion, \ldots{})
\end{itemize}
\section{Challenge definition}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/nass_concept_schematic.png}
\caption{\label{fig:nass_concept_schematic}Nass Concept. 1: micro-station, 2: nano-hexapod, 3: sample, 4: 5DoF metrology}
\end{figure}
\begin{itemize}
\item 6DoF vibration control platform on top of a complex positioning platform
\item \textbf{Goal}: Improve accuracy of 6DoF long stroke position platform
\item \textbf{Approach}: Mechatronic approach / model based / predictive
\item \textbf{Control}: Robust control approach / various payloads.
First hexapod with control bandwidth higher than the suspension modes that accepts various payloads?
\item Rotation aspect
\item Compactness? (more related to mechanical design)
\end{itemize}
\section{Literature Review}
\begin{figure}
\begin{subfigure}{0.49\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.8\linewidth]{example-image-a.png}
\end{center}
\subcaption{Stewart platform based on voice coil actuators}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.8\linewidth]{example-image-b.png}
\end{center}
\subcaption{Stewart platform based on piezoelectric actuators}
\end{subfigure}
\caption{\label{fig:stewart_platform_examples}Examples of Stewart Platforms}
\end{figure}
\begin{itemize}
\item Hexapods
\cite{li01_simul_fault_vibrat_isolat_point}
\cite{bishop02_devel_precis_point_contr_vibrat}
\cite{hanieh03_activ_stewar}
\cite{afzali-far16_vibrat_dynam_isotr_hexap_analy_studies}
\cite{naves20_desig}
\item Positioning stations
\item Mechatronic approach?
\cite{rankers98_machin}
\cite{monkhorst04_dynam_error_budget}
\cite{jabben07_mechat}
\end{itemize}
\section{Outline of thesis / Thesis Summary / Thesis Contributions}
\textbf{Mechatronic Design Approach} / \textbf{Model Based Design}:
\begin{itemize}
\item \cite{monkhorst04_dynam_error_budget} high costs of the design process: the designed system must be \textbf{first time right}.
When the system is finally build, its performance level should satisfy the specifications.
No significant changes are allowed in the post design phase.
Because of this, the designer wants to be able to predict the performance of the system a-priori and gain insight in the performance limiting factors of the system.
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/nass_mechatronics_approach.png}
\caption{\label{fig:nass_mechatronics_approach}Overview of the mechatronic approach used for the Nano-Active-Stabilization-System}
\end{figure}
\chapter{Conceptual Design Development}
\minitoc
\paragraph{Abstract}
Schematic that summarizes this phase.
Uniaxial => Rotation => Multi body => Simulations
\section{Constrains on the system}
\begin{itemize}
\item Size
\item Payload
\item Connections to samples
\item \ldots{} should justify the nano-hexapod design
\begin{itemize}
\item choice of parallel architecture
\end{itemize}
\item[{$\square$}] Picture/schematic of the micro-station with indicated location of Nano-Hexapod
\end{itemize}
\section{Uni-axial Model}
\begin{itemize}
\item Explain what we want to capture with this model
\item Schematic of the uniaxial model (with X-ray)
\item Identification of disturbances (ground motion, stage vibrations)
\item Optimal nano-hexapod stiffness/actuator: Voice coil VS Piezo (conclusion?)
\item Control architecture (IFF, DVF, \ldots{})?
\item Conclusion
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/mass_spring_damper_nass.png}
\caption{\label{fig:mass_spring_damper_nass}3-DoF uniaxial mass-spring-damper model of the NASS}
\end{figure}
\subsection{Noise Budgeting}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.4\linewidth]{measurement_microstation_vibration_picture.jpg}
\caption{\label{fig:measurement_microstation_vibration_picture}Setup used to measure the micro-station vibrations during operation}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.49\linewidth]{example-image-b.png}
\caption{\label{fig:asd_ground_motion_ustation_dist}Amplitude Spectral density of the measured disturbance sources}
\end{figure}
\subsection{Effect of support compliance}
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty\_support.org}{study}
\begin{itemize}
\item \textbf{goal}: make the nano-hexapod independent of the support compliance
\item Simple 2DoF model
\item Generalized to any support compliance
\item \textbf{conclusion}: frequency of nano-hexapod resonances should be lower than first suspension mode of the support
\end{itemize}
\subsection{Effect of payload dynamics}
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty\_payload.org}{study}
\begin{itemize}
\item \textbf{goal}: be robust to a change of payload
\item Simple 2DoF model
\item Generalized to any payload dynamics
\end{itemize}
\subsection{Active Damping}
Conclusion: IFF is better for this application
\paragraph{Integral Force Feedback}
\begin{itemize}
\item Mass spring damper model
\item Root Locus
\item Sensitivity to disturbances
\end{itemize}
\paragraph{Direct Velocity Feedback}
\begin{itemize}
\item Mass spring damper model
\item Root Locus
\item Sensitivity to disturbances
\end{itemize}
\section{Effect of rotation}
\cite{dehaeze20_activ_dampin_rotat_platf_integ_force_feedb,dehaeze21_activ_dampin_rotat_platf_using}
\subsection{X-Y rotating platform model}
\begin{itemize}
\item x-y-Rz model
\item explain why this is representing the NASS
\item Equation of motion
\item Centrifugal forces, Coriolis
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/2dof_rotating_system.png}
\caption{\label{fig:2dof_rotating_system}Mass spring damper model of an X-Y stage on top of a rotating stage}
\end{figure}
\subsection{Effect of rotational velocity on the system dynamics}
\begin{itemize}
\item Campbell diagram
\end{itemize}
\subsection{Decentralized Integral Force Feedback}
\begin{itemize}
\item Control diagram
\item Root Locus: unstable with pure IFF
\end{itemize}
\subsection{Two proposed modification of IFF}
\begin{itemize}
\item Comparison of parallel stiffness and change of controller
\item Transmissibility
\end{itemize}
\subsection{Conclusion}
\begin{itemize}
\item problem with voice coil actuator
\item Two solutions: add parallel stiffness, or change controller
\item Conclusion: minimum stiffness is required
\item APA is a nice architecture for parallel stiffness + integrated force sensor (have to speak about IFF before that)
\end{itemize}
\section{Multi Body Model - Nano Hexapod}
\begin{itemize}
\item What we want to capture with this model
\item Explain what is a multi body model (rigid body, springs, etc\ldots{})
\item Key elements (plates, joints, struts): for now simplistic model (rigid body elements, perfect joints, \ldots{}), but in next section, FEM will be used
\item Matlab/Simulink developed toolbox for the study of Stewart platforms
\end{itemize}
\subsection{Stewart Platform Architecture}
\begin{itemize}
\item Little review
\item explain key elements:
\begin{itemize}
\item two plates
\item joints
\item actuators
\end{itemize}
\item explain advantages compared to serial architecture
\end{itemize}
\subsection{Kinematics}
\begin{itemize}
\item Well define elements, frames, \ldots{}
\item Derivation of jacobian matrices: for forces and for displacement
\item Explain this is true for small displacements (show how small)
\end{itemize}
\subsection{Model of an Amplified Piezoelectric Actuator}
\begin{itemize}
\item APA test bench
\item Piezoelectric effects
\item mass spring damper representation (2dof)
\item Compare the model and the experiment
\end{itemize}
\subsection{Dynamics}
\begin{itemize}
\item Effect of joints stiffnesses
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/simscape_nano_hexapod.png}
\caption{\label{fig:simscape_nano_hexapod}3D view of the multi-body model of the Nano-Hexapod (simplified)}
\end{figure}
\section{Multi Body Model - Micro Station}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.7\linewidth]{figs/simscape_first_model_screenshot.jpg}
\caption{\label{fig:simscape_first_model_screenshot}3D view of the multi-body model of the micro-station}
\end{figure}
\subsection{Kinematics}
\begin{itemize}
\item Small overview of each stage and associated stiffnesses / inertia
\item schematic that shows to considered DoF
\item import from CAD
\end{itemize}
\subsection{Modal Analysis}
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-measurements/modal-analysis/index.org}{study}
\begin{itemize}
\item Picture of the experimental setup
\item Location of accelerometers
\item Show obtained modes
\item Validation of rigid body assumption
\item Explain how this helps tuning the multi-body model
\end{itemize}
\subsection{Validation of the Model}
\begin{itemize}
\item Most important metric: support compliance
\item Compare model and measurement
\end{itemize}
\section{Control Architecture}
Discussion of:
\begin{itemize}
\item Transformation matrices / control architecture
\item Control in the frame of struts or cartesian?
\item Effect of rotation on IFF? => APA
\item HAC-LAC
\end{itemize}
\subsection{High Authority Control - Low Authority Control (HAC-LAC)}
\begin{itemize}
\item general idea
\item case for parallel manipulator: decentralized LAC + centralized HAC
\end{itemize}
\subsection{Decoupling Strategies for parallel manipulators}
\href{file:///home/thomas/Cloud/research/matlab/decoupling-strategies/svd-control.org}{study}
\begin{itemize}
\item Jacobian matrices, CoK, CoM, \ldots{}
\item Discussion of cubic architecture
\item SVD, Modal, \ldots{}
\end{itemize}
\subsection{Decentralized Integral Force Feedback (LAC)}
\begin{itemize}
\item Root Locus
\item Damping optimization
\end{itemize}
\subsection{Control Kinematics}
\begin{itemize}
\item Explain how the position error can be expressed in the frame of the nano-hexapod
\item block diagram
\item Explain how to go from external metrology to the frame of the nano-hexapod
\end{itemize}
\subsection{Decoupled Dynamics}
\begin{itemize}
\item Centralized HAC
\item Control in the frame of the struts
\item Effect of IFF
\end{itemize}
\subsection{Centralized Position Controller (HAC)}
\begin{itemize}
\item Decoupled plant
\item Controller design
\end{itemize}
\section{Simulations - Concept Validation}
\begin{itemize}
\item Tomography experiment
\item Open VS Closed loop results
\item \textbf{Conclusion}: concept validation
nano hexapod architecture with APA
decentralized IFF + centralized HAC
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/simscape_nass_final.png}
\caption{\label{fig:simscape_nass_final}3D view of the multi-body model including the micro-station, the nano-hexapod and the associated metrology}
\end{figure}
\section{Conclusion}
\chapter{Detailed Design}
\minitoc
\paragraph{Abstract}
CAD view of the nano-hexapod with key components:
\begin{itemize}
\item plates
\item flexible joints
\item APA
\item required instrumentation (ADC, DAC, Speedgoat, Amplifiers, Force Sensor instrumentation, \ldots{})
\end{itemize}
\section{Optimal Nano-Hexapod geometry}
\begin{itemize}
\item[{$\square$}] Geometry?
\begin{itemize}
\item[{$\square$}] Cubic architecture?
\item[{$\square$}] Kinematics
\item[{$\square$}] Trade-off for the strut orientation
\end{itemize}
\item[{$\square$}] Sensors required
\end{itemize}
\subsection{Optimal strut orientation}
\subsection{Cubic Architecture: a Special Case?}
\section{Including Flexible elements in the Multi-body model}
Reduced order flexible bodies \cite{brumund21_multib_simul_reduc_order_flexib_bodies_fea}
\begin{itemize}
\item Used with APA, Flexible joints, Plates
\end{itemize}
\subsection{Reduced order flexible bodies}
\begin{itemize}
\item Quick explanation of the theory
\item Implementation with Ansys (or Comsol) and Simscape
\end{itemize}
\subsection{Numerical Validation}
\begin{itemize}
\item Numerical Validation Ansys VS Simscape (APA)
\item Figure with 0 and 1kg mass
\end{itemize}
\subsection{Experimental Validation}
\begin{itemize}
\item Test bench
\item Obtained transfer functions and comparison with Simscape model with reduced order flexible body
\end{itemize}
\section{Amplified Piezoelectric Actuator}
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/test-bench-apa/index.org}{study 1}, \href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/test-bench-apa300ml/test-bench-apa300ml.org}{study 2}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.49\linewidth]{example-image-a.png}
\caption{\label{fig:apa_schmeatic}Schematical representation of an Amplified Piezoelectric Actuator}
\end{figure}
\begin{itemize}
\item First tests with the APA95ML
\end{itemize}
\subsection{Model}
Piezoelectric equations
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.49\linewidth]{example-image-a.png}
\caption{\label{fig:apa_schmeatic_2dof}Schematical representation of a 2DoF model of an Amplified Piezoelectric Actuator}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.49\linewidth]{example-image-b.png}
\caption{\label{fig:apa_schmeatic_fem}Schematical representation of a FEM of an Amplified Piezoelectric Actuator}
\end{figure}
\begin{itemize}
\item FEM
\item Simscape model
\item (2 DoF, FEM, \ldots{})
\end{itemize}
\subsection{Experimental System Identification}
\begin{itemize}
\item Experimental validation (granite test bench)
\item Electrical parameters
\item Required instrumentation to read force sensor?
\item Add resistor to include high pass filtering: no risk of saturating the ADC
\item Estimation of piezoelectric parameters
\end{itemize}
\subsection{Validation with Simscape model}
\begin{itemize}
\item Tuned Simscape model
\item IFF results: OK
\end{itemize}
\section{Flexible Joints}
\subsection{Effect of flexible joint characteristics on obtained dynamics}
\begin{itemize}
\item Based on Simscape model
\item Effect of axial stiffness, bending stiffness, \ldots{}
\item Obtained specifications (trade-off)
\end{itemize}
\subsection{Flexible joint geometry optimization}
\begin{itemize}
\item Chosen geometry
\item Optimisation with Ansys
\item Validation with Simscape model
\end{itemize}
\subsection{Experimental identification}
\begin{itemize}
\item Experimental validation, characterisation (\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/test-bench-flexible-joints-adv/bending.org}{study})
\item Visual inspection
\item Test bench
\item Obtained results
\end{itemize}
\section{Instrumentation}
\subsection{DAC}
\subsection{ADC}
Force sensor
\subsection{Voltage amplifier (\href{https://research.tdehaeze.xyz/test-bench-pd200/}{link})}
\begin{itemize}
\item Test Bench: capacitive load, ADC, DAC, Instrumentation amplifier
\item Noise measurement
\item Transfer function measurement
\end{itemize}
\subsection{Encoder (\href{https://research.tdehaeze.xyz/test-bench-vionic/}{link})}
\begin{itemize}
\item Noise measurement
\end{itemize}
\section{Obtained Mechanical Design}
\begin{itemize}
\item CAD view of the nano-hexapod
\item Chosen geometry, materials, ease of mounting, cabling, \ldots{}
\end{itemize}
\chapter{Experimental Validation}
\minitoc
\paragraph{Abstract}
Schematic representation of the experimental validation process.
\begin{itemize}
\item APA
\item Strut
\item Nano-hexapod on suspended table
\item Nano-hexapod with Spindle
\end{itemize}
\section{Amplified Piezoelectric Actuator (\href{https://research.tdehaeze.xyz/test-bench-apa300ml/}{link})}
APA alone:
\begin{itemize}
\item \textbf{Goal}: Tune model of APA
\item[{$\square$}] FRF and fit with FEM model
\item[{$\square$}] Show all six FRF and how close they are
\item[{$\square$}] IFF
\end{itemize}
\section{Struts}
Strut (APA + joints):
\begin{itemize}
\item[{$\square$}] FRF, tune model
\item[{$\square$}] Issue with encoder (comparison with axial motion)
\item[{$\square$}] IFF
\end{itemize}
\section{Nano-Hexapod}
Mounting
Test bench on top of soft table:
\begin{itemize}
\item \textbf{Goal}: Tune model of nano-hexapod, validation of dynamics
\item modal analysis soft table (first mode at xxx Hz => rigid body in Simscape)
\item FRF + comp model (multiple masses)
\item IFF and robustness to change of mass
\end{itemize}
\section{Rotating Nano-Hexapod}
\begin{itemize}
\item \textbf{Goal}: validation of control strategy with rotation
\item Interferometers to have more stroke
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.49\linewidth]{example-image-a.png}
\caption{\label{fig:rot_nano_hexapod_bench_schematic}Schematic of the rotating nano-hexapod test bench}
\end{figure}
\section{ID31 Micro Station}
\begin{itemize}
\item \textbf{Goal}: full validation without the full metrology
\end{itemize}
\chapter{Conclusion and Future Work}
\appendix
\chapter{Stewart Platform - Kinematics}
\chapter{Comments on something}
\printbibliography[heading=bibintoc,title={Bibliography}]
\chapter*{List of Publications}
\begin{refsection}[ref.bib]
% List all papers even if not cited
\nocite{*}
% Sort by year
\newrefcontext[sorting=ynt]
% Articles
\printbibliography[keyword={publication},heading={subbibliography},title={Articles},env=mypubs,type={article}]
% Proceedings
\printbibliography[keyword={publication},heading={subbibliography},title={In Proceedings},env=mypubs,type={inproceedings}]
\end{refsection}
\printglossary[type=\acronymtype]
\printglossary
\end{document}