Compare commits

1 Commits

Author SHA1 Message Date
60950797a2 Version sent for printing the book 2025-07-15 15:09:47 +02:00
5 changed files with 39 additions and 25 deletions

View File

@@ -26,6 +26,8 @@
\usepackage{floatrow}
\floatsetup[table]{font={footnotesize,sf},capposition=top}
% \usepackage[bottom=2.5cm]{geometry}
\clubpenalty = 10000
\widowpenalty = 10000
\displaywidowpenalty = 10000

View File

@@ -10,8 +10,9 @@
#+DATE: {{{time(%Y-%m-%d)}}}
#+LATEX_CLASS: scrreprt
#+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]
# #+LATEX_CLASS_OPTIONS: [a4paper, twoside, 11pt, onecolumn, bibliography=totoc, openright, appendixprefix=true]
# #+LaTeX_CLASS_OPTIONS: [a4paper, twoside, headings=openright, 10pt, DIV=12, BCOR=1cm, parskip=full, bibliography=totoc, usegeometry]
#+LaTeX_CLASS_OPTIONS: [a4paper, twoside, headings=openright, 10pt, DIV=13, BCOR=1cm, parskip=full, bibliography=totoc]
# #+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]
#+OPTIONS: num:t toc:nil ':t *:t -:t ::t <:nil author:t date:t tags:nil todo:nil |:t H:5 title:nil
@@ -276,12 +277,16 @@ This approach represents a modest contribution towards a more open, reliable, an
* Grants :ignore:
#+begin_export latex
\newpage
\thispagestyle{empty}
\vspace*{\fill}
#+latex: \vspace*{\fill}
The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
\vspace*{\fill}
#+begin_export latex
% \newpage
% \thispagestyle{empty}
% \vspace*{\fill}
% The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
% \vspace*{\fill}
#+end_export
* Table of Contents :ignore:
@@ -649,7 +654,7 @@ A more comprehensive review of actively controlled end-stations is provided in S
#+attr_latex: :width 0.95\linewidth
[[file:figs/introduction_stages_villar.jpg]]
#+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN - Microscope. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}}
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}}
#+attr_latex: :options {0.48\textwidth}
#+begin_subfigure
#+attr_latex: :scale 0.9
@@ -1535,7 +1540,7 @@ The cumulative amplitude spectrum of the distance $d$ with all three active damp
All three active damping methods give similar results.
#+name: fig:uniaxial_cas_active_damping
#+caption: Comparison of the acrlong:cas of the distance $d$ for all three active damping techniques.
#+caption: Comparison of the Cumulative Amplitude Spectrum of the distance $d$ for all three active damping techniques.
#+attr_latex: :options [htbp]
#+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:uniaxial_cas_active_damping_soft}$k_n = 0.01\,\text{N}/\upmu\text{m}$}
@@ -2487,7 +2492,7 @@ For small values of $\omega_i$, the added damping is limited by the maximum allo
For larger values of $\omega_i$, the attainable damping ratio decreases as a function of $\omega_i$ as was predicted from the root locus plot of Figure\nbsp{}ref:fig:rotating_iff_root_locus_hpf_large.
#+name: fig:rotating_iff_modified_effect_wi
#+caption: Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). The achievable damping ratio decreases as $\omega_i$ increases (\subref{fig:rotating_iff_hpf_optimal_gain}).
#+caption: Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). Achievable damping ratio decreases as $\omega_i$ increases (\subref{fig:rotating_iff_hpf_optimal_gain}).
#+attr_latex: :options [htbp]
#+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:rotating_root_locus_iff_modified_effect_wi}Root locus}
@@ -2727,7 +2732,7 @@ It does not increase the low-frequency coupling as compared to the Integral Forc
#+attr_latex: :caption \subcaption{\label{fig:rotating_rdc_root_locus}Root locus for Relative Damping Control}
#+attr_latex: :options {0.49\linewidth}
#+begin_subfigure
#+attr_latex: :scale 0.8
#+attr_latex: :scale 0.9
[[file:figs/rotating_rdc_root_locus.png]]
#+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:rotating_rdc_damped_plant}Damped plant using Relative Damping Control}
@@ -2949,7 +2954,7 @@ The gain is chosen such that 99% of modal damping is obtained (obtained gains ar
| $0.01\,\text{N}/\upmu\text{m}$ | 1600 | 0.99 |
| $1\,\text{N}/\upmu\text{m}$ | 8200 | 0.99 |
| $100\,\text{N}/\upmu\text{m}$ | 80000 | 0.99 |
#+latex: \captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the acrlong:rdc}
#+latex: \captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the RDC}
#+end_minipage
***** Comparison of the Obtained Damped Plants
@@ -8055,7 +8060,7 @@ The sensor dynamics estimate $\hat{G}_i(s)$ may be a simple gain or a more compl
#+caption: Sensor models with and without normalization.
#+attr_latex: :options [htbp]
#+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and acrshort:lti transfer function $G_i(s)$}
#+attr_latex: :caption \subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and LTI transfer function $G_i(s)$}
#+attr_latex: :options {0.48\textwidth}
#+begin_subfigure
#+attr_latex: :scale 1

Binary file not shown.

View File

@@ -1,6 +1,6 @@
% Created 2025-07-09 Wed 19:41
% Created 2025-07-15 Tue 13:58
% Intended LaTeX compiler: pdflatex
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
\documentclass[a4paper, twoside, headings=openright, 10pt, DIV=13, BCOR=1cm, parskip=full, bibliography=totoc]{scrreprt}
\input{config.tex}
\newacronym{adc}{ADC}{Analog to Digital Converter}
@@ -55,7 +55,7 @@
\addbibresource{ref.bib}
\addbibresource{phd-thesis.bib}
\author{Dehaeze Thomas}
\date{2025-07-09}
\date{2025-07-15}
\title{Nano Active Stabilization of samples for tomography experiments: A mechatronic design approach}
\subtitle{PhD Thesis}
\hypersetup{
@@ -193,11 +193,15 @@ The organization of the code mirrors that of the manuscript, with corresponding
All materials have been made available under the MIT License, permitting free reuse.
This approach represents a modest contribution towards a more open, reliable, and collaborative scientific ecosystem.
\newpage
\thispagestyle{empty}
\vspace*{\fill}
The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
\vspace*{\fill}
% \newpage
% \thispagestyle{empty}
% \vspace*{\fill}
% The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
% \vspace*{\fill}
\clearpage
\dominitoc
\tableofcontents
@@ -523,7 +527,7 @@ A more comprehensive review of actively controlled end-stations is provided in S
\begin{center}
\includegraphics[scale=1,scale=0.9]{figs/introduction_stages_nazaretski.png}
\end{center}
\subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN - Microscope. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}}
\subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}}
\end{subfigure}
\caption{\label{fig:introduction_active_stations}Example of two end-stations with real-time position feedback based on an online metrology.}
\end{figure}
@@ -1346,7 +1350,7 @@ All three active damping methods give similar results.
\end{center}
\subcaption{\label{fig:uniaxial_cas_active_damping_stiff}$k_n = 100\,\text{N}/\upmu\text{m}$}
\end{subfigure}
\caption{\label{fig:uniaxial_cas_active_damping}Comparison of the \acrlong{cas} of the distance \(d\) for all three active damping techniques.}
\caption{\label{fig:uniaxial_cas_active_damping}Comparison of the Cumulative Amplitude Spectrum of the distance \(d\) for all three active damping techniques.}
\end{figure}
\paragraph{Conclusion}
Three active damping strategies have been studied for the \acrfull{nass}.
@@ -2233,7 +2237,7 @@ For larger values of \(\omega_i\), the attainable damping ratio decreases as a f
\end{center}
\subcaption{\label{fig:rotating_iff_hpf_optimal_gain}Attainable damping ratio as a function of $\omega_i/\omega_0$. Maximum and optical control gains are also shown}
\end{subfigure}
\caption{\label{fig:rotating_iff_modified_effect_wi}Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). The achievable damping ratio decreases as \(\omega_i\) increases (\subref{fig:rotating_iff_hpf_optimal_gain}).}
\caption{\label{fig:rotating_iff_modified_effect_wi}Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). Achievable damping ratio decreases as \(\omega_i\) increases (\subref{fig:rotating_iff_hpf_optimal_gain}).}
\end{figure}
\paragraph{Obtained Damped Plant}
To study how the parameter \(\omega_i\) affects the damped plant, the obtained damped plants for several \(\omega_i\) are compared in Figure~\ref{fig:rotating_iff_hpf_damped_plant_effect_wi_plant}.
@@ -2438,7 +2442,7 @@ It does not increase the low-frequency coupling as compared to the Integral Forc
\begin{figure}[htbp]
\begin{subfigure}{0.49\linewidth}
\begin{center}
\includegraphics[scale=1,scale=0.8]{figs/rotating_rdc_root_locus.png}
\includegraphics[scale=1,scale=0.9]{figs/rotating_rdc_root_locus.png}
\end{center}
\subcaption{\label{fig:rotating_rdc_root_locus}Root locus for Relative Damping Control}
\end{subfigure}
@@ -2651,7 +2655,7 @@ The gain is chosen such that 99\% of modal damping is obtained (obtained gains a
\(100\,\text{N}/\upmu\text{m}\) & 80000 & 0.99\\
\bottomrule
\end{tabularx}}
\captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the acrlong:rdc}
\captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the RDC}
\end{minipage}
\paragraph{Comparison of the Obtained Damped Plants}
Now that the optimal parameters for the three considered active damping techniques have been determined, the obtained damped plants are computed and compared in Figure~\ref{fig:rotating_nass_damped_plant_comp}.
@@ -7451,7 +7455,7 @@ The sensor dynamics estimate \(\hat{G}_i(s)\) may be a simple gain or a more com
\begin{center}
\includegraphics[scale=1,scale=1]{figs/detail_control_sensor_model.png}
\end{center}
\subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and acrshort:lti transfer function $G_i(s)$}
\subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and LTI transfer function $G_i(s)$}
\end{subfigure}
\begin{subfigure}{0.48\textwidth}
\begin{center}

View File

@@ -125,6 +125,9 @@ I reduce the size of tables so that longer tables can still fit into an A4 (redu
** Geometry
# \usepackage[paperheight=24.41cm,paperwidth=17.21cm,bottom=3cm,left=1.4cm,right=2cm,heightrounded]{geometry}
#+begin_src latex
% \usepackage[bottom=2.5cm]{geometry}
#+end_src
** Penalties
#+begin_src latex