Compare commits
1 Commits
Author | SHA1 | Date | |
---|---|---|---|
60950797a2 |
@@ -26,6 +26,8 @@
|
|||||||
\usepackage{floatrow}
|
\usepackage{floatrow}
|
||||||
\floatsetup[table]{font={footnotesize,sf},capposition=top}
|
\floatsetup[table]{font={footnotesize,sf},capposition=top}
|
||||||
|
|
||||||
|
% \usepackage[bottom=2.5cm]{geometry}
|
||||||
|
|
||||||
\clubpenalty = 10000
|
\clubpenalty = 10000
|
||||||
\widowpenalty = 10000
|
\widowpenalty = 10000
|
||||||
\displaywidowpenalty = 10000
|
\displaywidowpenalty = 10000
|
||||||
|
@@ -10,8 +10,9 @@
|
|||||||
#+DATE: {{{time(%Y-%m-%d)}}}
|
#+DATE: {{{time(%Y-%m-%d)}}}
|
||||||
|
|
||||||
#+LATEX_CLASS: scrreprt
|
#+LATEX_CLASS: scrreprt
|
||||||
#+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]
|
# #+LaTeX_CLASS_OPTIONS: [a4paper, twoside, headings=openright, 10pt, DIV=12, BCOR=1cm, parskip=full, bibliography=totoc, usegeometry]
|
||||||
# #+LATEX_CLASS_OPTIONS: [a4paper, twoside, 11pt, onecolumn, bibliography=totoc, openright, appendixprefix=true]
|
#+LaTeX_CLASS_OPTIONS: [a4paper, twoside, headings=openright, 10pt, DIV=13, BCOR=1cm, parskip=full, bibliography=totoc]
|
||||||
|
# #+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]
|
||||||
|
|
||||||
#+OPTIONS: num:t toc:nil ':t *:t -:t ::t <:nil author:t date:t tags:nil todo:nil |:t H:5 title:nil
|
#+OPTIONS: num:t toc:nil ':t *:t -:t ::t <:nil author:t date:t tags:nil todo:nil |:t H:5 title:nil
|
||||||
|
|
||||||
@@ -276,12 +277,16 @@ This approach represents a modest contribution towards a more open, reliable, an
|
|||||||
|
|
||||||
* Grants :ignore:
|
* Grants :ignore:
|
||||||
|
|
||||||
#+begin_export latex
|
#+latex: \vspace*{\fill}
|
||||||
\newpage
|
|
||||||
\thispagestyle{empty}
|
|
||||||
\vspace*{\fill}
|
|
||||||
The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
|
The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
|
||||||
\vspace*{\fill}
|
|
||||||
|
#+begin_export latex
|
||||||
|
% \newpage
|
||||||
|
% \thispagestyle{empty}
|
||||||
|
% \vspace*{\fill}
|
||||||
|
% The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
|
||||||
|
% \vspace*{\fill}
|
||||||
#+end_export
|
#+end_export
|
||||||
|
|
||||||
* Table of Contents :ignore:
|
* Table of Contents :ignore:
|
||||||
@@ -649,7 +654,7 @@ A more comprehensive review of actively controlled end-stations is provided in S
|
|||||||
#+attr_latex: :width 0.95\linewidth
|
#+attr_latex: :width 0.95\linewidth
|
||||||
[[file:figs/introduction_stages_villar.jpg]]
|
[[file:figs/introduction_stages_villar.jpg]]
|
||||||
#+end_subfigure
|
#+end_subfigure
|
||||||
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN - Microscope. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}}
|
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}}
|
||||||
#+attr_latex: :options {0.48\textwidth}
|
#+attr_latex: :options {0.48\textwidth}
|
||||||
#+begin_subfigure
|
#+begin_subfigure
|
||||||
#+attr_latex: :scale 0.9
|
#+attr_latex: :scale 0.9
|
||||||
@@ -1535,7 +1540,7 @@ The cumulative amplitude spectrum of the distance $d$ with all three active damp
|
|||||||
All three active damping methods give similar results.
|
All three active damping methods give similar results.
|
||||||
|
|
||||||
#+name: fig:uniaxial_cas_active_damping
|
#+name: fig:uniaxial_cas_active_damping
|
||||||
#+caption: Comparison of the acrlong:cas of the distance $d$ for all three active damping techniques.
|
#+caption: Comparison of the Cumulative Amplitude Spectrum of the distance $d$ for all three active damping techniques.
|
||||||
#+attr_latex: :options [htbp]
|
#+attr_latex: :options [htbp]
|
||||||
#+begin_figure
|
#+begin_figure
|
||||||
#+attr_latex: :caption \subcaption{\label{fig:uniaxial_cas_active_damping_soft}$k_n = 0.01\,\text{N}/\upmu\text{m}$}
|
#+attr_latex: :caption \subcaption{\label{fig:uniaxial_cas_active_damping_soft}$k_n = 0.01\,\text{N}/\upmu\text{m}$}
|
||||||
@@ -2487,7 +2492,7 @@ For small values of $\omega_i$, the added damping is limited by the maximum allo
|
|||||||
For larger values of $\omega_i$, the attainable damping ratio decreases as a function of $\omega_i$ as was predicted from the root locus plot of Figure\nbsp{}ref:fig:rotating_iff_root_locus_hpf_large.
|
For larger values of $\omega_i$, the attainable damping ratio decreases as a function of $\omega_i$ as was predicted from the root locus plot of Figure\nbsp{}ref:fig:rotating_iff_root_locus_hpf_large.
|
||||||
|
|
||||||
#+name: fig:rotating_iff_modified_effect_wi
|
#+name: fig:rotating_iff_modified_effect_wi
|
||||||
#+caption: Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). The achievable damping ratio decreases as $\omega_i$ increases (\subref{fig:rotating_iff_hpf_optimal_gain}).
|
#+caption: Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). Achievable damping ratio decreases as $\omega_i$ increases (\subref{fig:rotating_iff_hpf_optimal_gain}).
|
||||||
#+attr_latex: :options [htbp]
|
#+attr_latex: :options [htbp]
|
||||||
#+begin_figure
|
#+begin_figure
|
||||||
#+attr_latex: :caption \subcaption{\label{fig:rotating_root_locus_iff_modified_effect_wi}Root locus}
|
#+attr_latex: :caption \subcaption{\label{fig:rotating_root_locus_iff_modified_effect_wi}Root locus}
|
||||||
@@ -2727,7 +2732,7 @@ It does not increase the low-frequency coupling as compared to the Integral Forc
|
|||||||
#+attr_latex: :caption \subcaption{\label{fig:rotating_rdc_root_locus}Root locus for Relative Damping Control}
|
#+attr_latex: :caption \subcaption{\label{fig:rotating_rdc_root_locus}Root locus for Relative Damping Control}
|
||||||
#+attr_latex: :options {0.49\linewidth}
|
#+attr_latex: :options {0.49\linewidth}
|
||||||
#+begin_subfigure
|
#+begin_subfigure
|
||||||
#+attr_latex: :scale 0.8
|
#+attr_latex: :scale 0.9
|
||||||
[[file:figs/rotating_rdc_root_locus.png]]
|
[[file:figs/rotating_rdc_root_locus.png]]
|
||||||
#+end_subfigure
|
#+end_subfigure
|
||||||
#+attr_latex: :caption \subcaption{\label{fig:rotating_rdc_damped_plant}Damped plant using Relative Damping Control}
|
#+attr_latex: :caption \subcaption{\label{fig:rotating_rdc_damped_plant}Damped plant using Relative Damping Control}
|
||||||
@@ -2949,7 +2954,7 @@ The gain is chosen such that 99% of modal damping is obtained (obtained gains ar
|
|||||||
| $0.01\,\text{N}/\upmu\text{m}$ | 1600 | 0.99 |
|
| $0.01\,\text{N}/\upmu\text{m}$ | 1600 | 0.99 |
|
||||||
| $1\,\text{N}/\upmu\text{m}$ | 8200 | 0.99 |
|
| $1\,\text{N}/\upmu\text{m}$ | 8200 | 0.99 |
|
||||||
| $100\,\text{N}/\upmu\text{m}$ | 80000 | 0.99 |
|
| $100\,\text{N}/\upmu\text{m}$ | 80000 | 0.99 |
|
||||||
#+latex: \captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the acrlong:rdc}
|
#+latex: \captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the RDC}
|
||||||
#+end_minipage
|
#+end_minipage
|
||||||
|
|
||||||
***** Comparison of the Obtained Damped Plants
|
***** Comparison of the Obtained Damped Plants
|
||||||
@@ -8055,7 +8060,7 @@ The sensor dynamics estimate $\hat{G}_i(s)$ may be a simple gain or a more compl
|
|||||||
#+caption: Sensor models with and without normalization.
|
#+caption: Sensor models with and without normalization.
|
||||||
#+attr_latex: :options [htbp]
|
#+attr_latex: :options [htbp]
|
||||||
#+begin_figure
|
#+begin_figure
|
||||||
#+attr_latex: :caption \subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and acrshort:lti transfer function $G_i(s)$}
|
#+attr_latex: :caption \subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and LTI transfer function $G_i(s)$}
|
||||||
#+attr_latex: :options {0.48\textwidth}
|
#+attr_latex: :options {0.48\textwidth}
|
||||||
#+begin_subfigure
|
#+begin_subfigure
|
||||||
#+attr_latex: :scale 1
|
#+attr_latex: :scale 1
|
||||||
|
BIN
phd-thesis.pdf
BIN
phd-thesis.pdf
Binary file not shown.
@@ -1,6 +1,6 @@
|
|||||||
% Created 2025-07-09 Wed 19:41
|
% Created 2025-07-15 Tue 13:58
|
||||||
% Intended LaTeX compiler: pdflatex
|
% Intended LaTeX compiler: pdflatex
|
||||||
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
|
\documentclass[a4paper, twoside, headings=openright, 10pt, DIV=13, BCOR=1cm, parskip=full, bibliography=totoc]{scrreprt}
|
||||||
|
|
||||||
\input{config.tex}
|
\input{config.tex}
|
||||||
\newacronym{adc}{ADC}{Analog to Digital Converter}
|
\newacronym{adc}{ADC}{Analog to Digital Converter}
|
||||||
@@ -55,7 +55,7 @@
|
|||||||
\addbibresource{ref.bib}
|
\addbibresource{ref.bib}
|
||||||
\addbibresource{phd-thesis.bib}
|
\addbibresource{phd-thesis.bib}
|
||||||
\author{Dehaeze Thomas}
|
\author{Dehaeze Thomas}
|
||||||
\date{2025-07-09}
|
\date{2025-07-15}
|
||||||
\title{Nano Active Stabilization of samples for tomography experiments: A mechatronic design approach}
|
\title{Nano Active Stabilization of samples for tomography experiments: A mechatronic design approach}
|
||||||
\subtitle{PhD Thesis}
|
\subtitle{PhD Thesis}
|
||||||
\hypersetup{
|
\hypersetup{
|
||||||
@@ -193,11 +193,15 @@ The organization of the code mirrors that of the manuscript, with corresponding
|
|||||||
All materials have been made available under the MIT License, permitting free reuse.
|
All materials have been made available under the MIT License, permitting free reuse.
|
||||||
|
|
||||||
This approach represents a modest contribution towards a more open, reliable, and collaborative scientific ecosystem.
|
This approach represents a modest contribution towards a more open, reliable, and collaborative scientific ecosystem.
|
||||||
\newpage
|
|
||||||
\thispagestyle{empty}
|
|
||||||
\vspace*{\fill}
|
\vspace*{\fill}
|
||||||
|
|
||||||
The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
|
The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
|
||||||
\vspace*{\fill}
|
|
||||||
|
% \newpage
|
||||||
|
% \thispagestyle{empty}
|
||||||
|
% \vspace*{\fill}
|
||||||
|
% The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
|
||||||
|
% \vspace*{\fill}
|
||||||
\clearpage
|
\clearpage
|
||||||
\dominitoc
|
\dominitoc
|
||||||
\tableofcontents
|
\tableofcontents
|
||||||
@@ -523,7 +527,7 @@ A more comprehensive review of actively controlled end-stations is provided in S
|
|||||||
\begin{center}
|
\begin{center}
|
||||||
\includegraphics[scale=1,scale=0.9]{figs/introduction_stages_nazaretski.png}
|
\includegraphics[scale=1,scale=0.9]{figs/introduction_stages_nazaretski.png}
|
||||||
\end{center}
|
\end{center}
|
||||||
\subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN - Microscope. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}}
|
\subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
\caption{\label{fig:introduction_active_stations}Example of two end-stations with real-time position feedback based on an online metrology.}
|
\caption{\label{fig:introduction_active_stations}Example of two end-stations with real-time position feedback based on an online metrology.}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
@@ -1346,7 +1350,7 @@ All three active damping methods give similar results.
|
|||||||
\end{center}
|
\end{center}
|
||||||
\subcaption{\label{fig:uniaxial_cas_active_damping_stiff}$k_n = 100\,\text{N}/\upmu\text{m}$}
|
\subcaption{\label{fig:uniaxial_cas_active_damping_stiff}$k_n = 100\,\text{N}/\upmu\text{m}$}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
\caption{\label{fig:uniaxial_cas_active_damping}Comparison of the \acrlong{cas} of the distance \(d\) for all three active damping techniques.}
|
\caption{\label{fig:uniaxial_cas_active_damping}Comparison of the Cumulative Amplitude Spectrum of the distance \(d\) for all three active damping techniques.}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
\paragraph{Conclusion}
|
\paragraph{Conclusion}
|
||||||
Three active damping strategies have been studied for the \acrfull{nass}.
|
Three active damping strategies have been studied for the \acrfull{nass}.
|
||||||
@@ -2233,7 +2237,7 @@ For larger values of \(\omega_i\), the attainable damping ratio decreases as a f
|
|||||||
\end{center}
|
\end{center}
|
||||||
\subcaption{\label{fig:rotating_iff_hpf_optimal_gain}Attainable damping ratio as a function of $\omega_i/\omega_0$. Maximum and optical control gains are also shown}
|
\subcaption{\label{fig:rotating_iff_hpf_optimal_gain}Attainable damping ratio as a function of $\omega_i/\omega_0$. Maximum and optical control gains are also shown}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
\caption{\label{fig:rotating_iff_modified_effect_wi}Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). The achievable damping ratio decreases as \(\omega_i\) increases (\subref{fig:rotating_iff_hpf_optimal_gain}).}
|
\caption{\label{fig:rotating_iff_modified_effect_wi}Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). Achievable damping ratio decreases as \(\omega_i\) increases (\subref{fig:rotating_iff_hpf_optimal_gain}).}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
\paragraph{Obtained Damped Plant}
|
\paragraph{Obtained Damped Plant}
|
||||||
To study how the parameter \(\omega_i\) affects the damped plant, the obtained damped plants for several \(\omega_i\) are compared in Figure~\ref{fig:rotating_iff_hpf_damped_plant_effect_wi_plant}.
|
To study how the parameter \(\omega_i\) affects the damped plant, the obtained damped plants for several \(\omega_i\) are compared in Figure~\ref{fig:rotating_iff_hpf_damped_plant_effect_wi_plant}.
|
||||||
@@ -2438,7 +2442,7 @@ It does not increase the low-frequency coupling as compared to the Integral Forc
|
|||||||
\begin{figure}[htbp]
|
\begin{figure}[htbp]
|
||||||
\begin{subfigure}{0.49\linewidth}
|
\begin{subfigure}{0.49\linewidth}
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\includegraphics[scale=1,scale=0.8]{figs/rotating_rdc_root_locus.png}
|
\includegraphics[scale=1,scale=0.9]{figs/rotating_rdc_root_locus.png}
|
||||||
\end{center}
|
\end{center}
|
||||||
\subcaption{\label{fig:rotating_rdc_root_locus}Root locus for Relative Damping Control}
|
\subcaption{\label{fig:rotating_rdc_root_locus}Root locus for Relative Damping Control}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
@@ -2651,7 +2655,7 @@ The gain is chosen such that 99\% of modal damping is obtained (obtained gains a
|
|||||||
\(100\,\text{N}/\upmu\text{m}\) & 80000 & 0.99\\
|
\(100\,\text{N}/\upmu\text{m}\) & 80000 & 0.99\\
|
||||||
\bottomrule
|
\bottomrule
|
||||||
\end{tabularx}}
|
\end{tabularx}}
|
||||||
\captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the acrlong:rdc}
|
\captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the RDC}
|
||||||
\end{minipage}
|
\end{minipage}
|
||||||
\paragraph{Comparison of the Obtained Damped Plants}
|
\paragraph{Comparison of the Obtained Damped Plants}
|
||||||
Now that the optimal parameters for the three considered active damping techniques have been determined, the obtained damped plants are computed and compared in Figure~\ref{fig:rotating_nass_damped_plant_comp}.
|
Now that the optimal parameters for the three considered active damping techniques have been determined, the obtained damped plants are computed and compared in Figure~\ref{fig:rotating_nass_damped_plant_comp}.
|
||||||
@@ -7451,7 +7455,7 @@ The sensor dynamics estimate \(\hat{G}_i(s)\) may be a simple gain or a more com
|
|||||||
\begin{center}
|
\begin{center}
|
||||||
\includegraphics[scale=1,scale=1]{figs/detail_control_sensor_model.png}
|
\includegraphics[scale=1,scale=1]{figs/detail_control_sensor_model.png}
|
||||||
\end{center}
|
\end{center}
|
||||||
\subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and acrshort:lti transfer function $G_i(s)$}
|
\subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and LTI transfer function $G_i(s)$}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
\begin{subfigure}{0.48\textwidth}
|
\begin{subfigure}{0.48\textwidth}
|
||||||
\begin{center}
|
\begin{center}
|
||||||
|
@@ -125,6 +125,9 @@ I reduce the size of tables so that longer tables can still fit into an A4 (redu
|
|||||||
** Geometry
|
** Geometry
|
||||||
|
|
||||||
# \usepackage[paperheight=24.41cm,paperwidth=17.21cm,bottom=3cm,left=1.4cm,right=2cm,heightrounded]{geometry}
|
# \usepackage[paperheight=24.41cm,paperwidth=17.21cm,bottom=3cm,left=1.4cm,right=2cm,heightrounded]{geometry}
|
||||||
|
#+begin_src latex
|
||||||
|
% \usepackage[bottom=2.5cm]{geometry}
|
||||||
|
#+end_src
|
||||||
|
|
||||||
** Penalties
|
** Penalties
|
||||||
#+begin_src latex
|
#+begin_src latex
|
||||||
|
Reference in New Issue
Block a user