Compare commits

1 Commits

Author SHA1 Message Date
60950797a2 Version sent for printing the book 2025-07-15 15:09:47 +02:00
5 changed files with 39 additions and 25 deletions

View File

@@ -26,6 +26,8 @@
\usepackage{floatrow} \usepackage{floatrow}
\floatsetup[table]{font={footnotesize,sf},capposition=top} \floatsetup[table]{font={footnotesize,sf},capposition=top}
% \usepackage[bottom=2.5cm]{geometry}
\clubpenalty = 10000 \clubpenalty = 10000
\widowpenalty = 10000 \widowpenalty = 10000
\displaywidowpenalty = 10000 \displaywidowpenalty = 10000

View File

@@ -10,8 +10,9 @@
#+DATE: {{{time(%Y-%m-%d)}}} #+DATE: {{{time(%Y-%m-%d)}}}
#+LATEX_CLASS: scrreprt #+LATEX_CLASS: scrreprt
#+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc] # #+LaTeX_CLASS_OPTIONS: [a4paper, twoside, headings=openright, 10pt, DIV=12, BCOR=1cm, parskip=full, bibliography=totoc, usegeometry]
# #+LATEX_CLASS_OPTIONS: [a4paper, twoside, 11pt, onecolumn, bibliography=totoc, openright, appendixprefix=true] #+LaTeX_CLASS_OPTIONS: [a4paper, twoside, headings=openright, 10pt, DIV=13, BCOR=1cm, parskip=full, bibliography=totoc]
# #+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]
#+OPTIONS: num:t toc:nil ':t *:t -:t ::t <:nil author:t date:t tags:nil todo:nil |:t H:5 title:nil #+OPTIONS: num:t toc:nil ':t *:t -:t ::t <:nil author:t date:t tags:nil todo:nil |:t H:5 title:nil
@@ -276,12 +277,16 @@ This approach represents a modest contribution towards a more open, reliable, an
* Grants :ignore: * Grants :ignore:
#+begin_export latex #+latex: \vspace*{\fill}
\newpage
\thispagestyle{empty}
\vspace*{\fill}
The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze. The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
\vspace*{\fill}
#+begin_export latex
% \newpage
% \thispagestyle{empty}
% \vspace*{\fill}
% The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
% \vspace*{\fill}
#+end_export #+end_export
* Table of Contents :ignore: * Table of Contents :ignore:
@@ -649,7 +654,7 @@ A more comprehensive review of actively controlled end-stations is provided in S
#+attr_latex: :width 0.95\linewidth #+attr_latex: :width 0.95\linewidth
[[file:figs/introduction_stages_villar.jpg]] [[file:figs/introduction_stages_villar.jpg]]
#+end_subfigure #+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN - Microscope. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}} #+attr_latex: :caption \subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}}
#+attr_latex: :options {0.48\textwidth} #+attr_latex: :options {0.48\textwidth}
#+begin_subfigure #+begin_subfigure
#+attr_latex: :scale 0.9 #+attr_latex: :scale 0.9
@@ -1535,7 +1540,7 @@ The cumulative amplitude spectrum of the distance $d$ with all three active damp
All three active damping methods give similar results. All three active damping methods give similar results.
#+name: fig:uniaxial_cas_active_damping #+name: fig:uniaxial_cas_active_damping
#+caption: Comparison of the acrlong:cas of the distance $d$ for all three active damping techniques. #+caption: Comparison of the Cumulative Amplitude Spectrum of the distance $d$ for all three active damping techniques.
#+attr_latex: :options [htbp] #+attr_latex: :options [htbp]
#+begin_figure #+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:uniaxial_cas_active_damping_soft}$k_n = 0.01\,\text{N}/\upmu\text{m}$} #+attr_latex: :caption \subcaption{\label{fig:uniaxial_cas_active_damping_soft}$k_n = 0.01\,\text{N}/\upmu\text{m}$}
@@ -2487,7 +2492,7 @@ For small values of $\omega_i$, the added damping is limited by the maximum allo
For larger values of $\omega_i$, the attainable damping ratio decreases as a function of $\omega_i$ as was predicted from the root locus plot of Figure\nbsp{}ref:fig:rotating_iff_root_locus_hpf_large. For larger values of $\omega_i$, the attainable damping ratio decreases as a function of $\omega_i$ as was predicted from the root locus plot of Figure\nbsp{}ref:fig:rotating_iff_root_locus_hpf_large.
#+name: fig:rotating_iff_modified_effect_wi #+name: fig:rotating_iff_modified_effect_wi
#+caption: Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). The achievable damping ratio decreases as $\omega_i$ increases (\subref{fig:rotating_iff_hpf_optimal_gain}). #+caption: Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). Achievable damping ratio decreases as $\omega_i$ increases (\subref{fig:rotating_iff_hpf_optimal_gain}).
#+attr_latex: :options [htbp] #+attr_latex: :options [htbp]
#+begin_figure #+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:rotating_root_locus_iff_modified_effect_wi}Root locus} #+attr_latex: :caption \subcaption{\label{fig:rotating_root_locus_iff_modified_effect_wi}Root locus}
@@ -2727,7 +2732,7 @@ It does not increase the low-frequency coupling as compared to the Integral Forc
#+attr_latex: :caption \subcaption{\label{fig:rotating_rdc_root_locus}Root locus for Relative Damping Control} #+attr_latex: :caption \subcaption{\label{fig:rotating_rdc_root_locus}Root locus for Relative Damping Control}
#+attr_latex: :options {0.49\linewidth} #+attr_latex: :options {0.49\linewidth}
#+begin_subfigure #+begin_subfigure
#+attr_latex: :scale 0.8 #+attr_latex: :scale 0.9
[[file:figs/rotating_rdc_root_locus.png]] [[file:figs/rotating_rdc_root_locus.png]]
#+end_subfigure #+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:rotating_rdc_damped_plant}Damped plant using Relative Damping Control} #+attr_latex: :caption \subcaption{\label{fig:rotating_rdc_damped_plant}Damped plant using Relative Damping Control}
@@ -2949,7 +2954,7 @@ The gain is chosen such that 99% of modal damping is obtained (obtained gains ar
| $0.01\,\text{N}/\upmu\text{m}$ | 1600 | 0.99 | | $0.01\,\text{N}/\upmu\text{m}$ | 1600 | 0.99 |
| $1\,\text{N}/\upmu\text{m}$ | 8200 | 0.99 | | $1\,\text{N}/\upmu\text{m}$ | 8200 | 0.99 |
| $100\,\text{N}/\upmu\text{m}$ | 80000 | 0.99 | | $100\,\text{N}/\upmu\text{m}$ | 80000 | 0.99 |
#+latex: \captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the acrlong:rdc} #+latex: \captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the RDC}
#+end_minipage #+end_minipage
***** Comparison of the Obtained Damped Plants ***** Comparison of the Obtained Damped Plants
@@ -8055,7 +8060,7 @@ The sensor dynamics estimate $\hat{G}_i(s)$ may be a simple gain or a more compl
#+caption: Sensor models with and without normalization. #+caption: Sensor models with and without normalization.
#+attr_latex: :options [htbp] #+attr_latex: :options [htbp]
#+begin_figure #+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and acrshort:lti transfer function $G_i(s)$} #+attr_latex: :caption \subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and LTI transfer function $G_i(s)$}
#+attr_latex: :options {0.48\textwidth} #+attr_latex: :options {0.48\textwidth}
#+begin_subfigure #+begin_subfigure
#+attr_latex: :scale 1 #+attr_latex: :scale 1

Binary file not shown.

View File

@@ -1,6 +1,6 @@
% Created 2025-07-09 Wed 19:41 % Created 2025-07-15 Tue 13:58
% Intended LaTeX compiler: pdflatex % Intended LaTeX compiler: pdflatex
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt} \documentclass[a4paper, twoside, headings=openright, 10pt, DIV=13, BCOR=1cm, parskip=full, bibliography=totoc]{scrreprt}
\input{config.tex} \input{config.tex}
\newacronym{adc}{ADC}{Analog to Digital Converter} \newacronym{adc}{ADC}{Analog to Digital Converter}
@@ -55,7 +55,7 @@
\addbibresource{ref.bib} \addbibresource{ref.bib}
\addbibresource{phd-thesis.bib} \addbibresource{phd-thesis.bib}
\author{Dehaeze Thomas} \author{Dehaeze Thomas}
\date{2025-07-09} \date{2025-07-15}
\title{Nano Active Stabilization of samples for tomography experiments: A mechatronic design approach} \title{Nano Active Stabilization of samples for tomography experiments: A mechatronic design approach}
\subtitle{PhD Thesis} \subtitle{PhD Thesis}
\hypersetup{ \hypersetup{
@@ -193,11 +193,15 @@ The organization of the code mirrors that of the manuscript, with corresponding
All materials have been made available under the MIT License, permitting free reuse. All materials have been made available under the MIT License, permitting free reuse.
This approach represents a modest contribution towards a more open, reliable, and collaborative scientific ecosystem. This approach represents a modest contribution towards a more open, reliable, and collaborative scientific ecosystem.
\newpage
\thispagestyle{empty}
\vspace*{\fill} \vspace*{\fill}
The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze. The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
\vspace*{\fill}
% \newpage
% \thispagestyle{empty}
% \vspace*{\fill}
% The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
% \vspace*{\fill}
\clearpage \clearpage
\dominitoc \dominitoc
\tableofcontents \tableofcontents
@@ -523,7 +527,7 @@ A more comprehensive review of actively controlled end-stations is provided in S
\begin{center} \begin{center}
\includegraphics[scale=1,scale=0.9]{figs/introduction_stages_nazaretski.png} \includegraphics[scale=1,scale=0.9]{figs/introduction_stages_nazaretski.png}
\end{center} \end{center}
\subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN - Microscope. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}} \subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}}
\end{subfigure} \end{subfigure}
\caption{\label{fig:introduction_active_stations}Example of two end-stations with real-time position feedback based on an online metrology.} \caption{\label{fig:introduction_active_stations}Example of two end-stations with real-time position feedback based on an online metrology.}
\end{figure} \end{figure}
@@ -1346,7 +1350,7 @@ All three active damping methods give similar results.
\end{center} \end{center}
\subcaption{\label{fig:uniaxial_cas_active_damping_stiff}$k_n = 100\,\text{N}/\upmu\text{m}$} \subcaption{\label{fig:uniaxial_cas_active_damping_stiff}$k_n = 100\,\text{N}/\upmu\text{m}$}
\end{subfigure} \end{subfigure}
\caption{\label{fig:uniaxial_cas_active_damping}Comparison of the \acrlong{cas} of the distance \(d\) for all three active damping techniques.} \caption{\label{fig:uniaxial_cas_active_damping}Comparison of the Cumulative Amplitude Spectrum of the distance \(d\) for all three active damping techniques.}
\end{figure} \end{figure}
\paragraph{Conclusion} \paragraph{Conclusion}
Three active damping strategies have been studied for the \acrfull{nass}. Three active damping strategies have been studied for the \acrfull{nass}.
@@ -2233,7 +2237,7 @@ For larger values of \(\omega_i\), the attainable damping ratio decreases as a f
\end{center} \end{center}
\subcaption{\label{fig:rotating_iff_hpf_optimal_gain}Attainable damping ratio as a function of $\omega_i/\omega_0$. Maximum and optical control gains are also shown} \subcaption{\label{fig:rotating_iff_hpf_optimal_gain}Attainable damping ratio as a function of $\omega_i/\omega_0$. Maximum and optical control gains are also shown}
\end{subfigure} \end{subfigure}
\caption{\label{fig:rotating_iff_modified_effect_wi}Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). The achievable damping ratio decreases as \(\omega_i\) increases (\subref{fig:rotating_iff_hpf_optimal_gain}).} \caption{\label{fig:rotating_iff_modified_effect_wi}Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). Achievable damping ratio decreases as \(\omega_i\) increases (\subref{fig:rotating_iff_hpf_optimal_gain}).}
\end{figure} \end{figure}
\paragraph{Obtained Damped Plant} \paragraph{Obtained Damped Plant}
To study how the parameter \(\omega_i\) affects the damped plant, the obtained damped plants for several \(\omega_i\) are compared in Figure~\ref{fig:rotating_iff_hpf_damped_plant_effect_wi_plant}. To study how the parameter \(\omega_i\) affects the damped plant, the obtained damped plants for several \(\omega_i\) are compared in Figure~\ref{fig:rotating_iff_hpf_damped_plant_effect_wi_plant}.
@@ -2438,7 +2442,7 @@ It does not increase the low-frequency coupling as compared to the Integral Forc
\begin{figure}[htbp] \begin{figure}[htbp]
\begin{subfigure}{0.49\linewidth} \begin{subfigure}{0.49\linewidth}
\begin{center} \begin{center}
\includegraphics[scale=1,scale=0.8]{figs/rotating_rdc_root_locus.png} \includegraphics[scale=1,scale=0.9]{figs/rotating_rdc_root_locus.png}
\end{center} \end{center}
\subcaption{\label{fig:rotating_rdc_root_locus}Root locus for Relative Damping Control} \subcaption{\label{fig:rotating_rdc_root_locus}Root locus for Relative Damping Control}
\end{subfigure} \end{subfigure}
@@ -2651,7 +2655,7 @@ The gain is chosen such that 99\% of modal damping is obtained (obtained gains a
\(100\,\text{N}/\upmu\text{m}\) & 80000 & 0.99\\ \(100\,\text{N}/\upmu\text{m}\) & 80000 & 0.99\\
\bottomrule \bottomrule
\end{tabularx}} \end{tabularx}}
\captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the acrlong:rdc} \captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the RDC}
\end{minipage} \end{minipage}
\paragraph{Comparison of the Obtained Damped Plants} \paragraph{Comparison of the Obtained Damped Plants}
Now that the optimal parameters for the three considered active damping techniques have been determined, the obtained damped plants are computed and compared in Figure~\ref{fig:rotating_nass_damped_plant_comp}. Now that the optimal parameters for the three considered active damping techniques have been determined, the obtained damped plants are computed and compared in Figure~\ref{fig:rotating_nass_damped_plant_comp}.
@@ -7451,7 +7455,7 @@ The sensor dynamics estimate \(\hat{G}_i(s)\) may be a simple gain or a more com
\begin{center} \begin{center}
\includegraphics[scale=1,scale=1]{figs/detail_control_sensor_model.png} \includegraphics[scale=1,scale=1]{figs/detail_control_sensor_model.png}
\end{center} \end{center}
\subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and acrshort:lti transfer function $G_i(s)$} \subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and LTI transfer function $G_i(s)$}
\end{subfigure} \end{subfigure}
\begin{subfigure}{0.48\textwidth} \begin{subfigure}{0.48\textwidth}
\begin{center} \begin{center}

View File

@@ -125,6 +125,9 @@ I reduce the size of tables so that longer tables can still fit into an A4 (redu
** Geometry ** Geometry
# \usepackage[paperheight=24.41cm,paperwidth=17.21cm,bottom=3cm,left=1.4cm,right=2cm,heightrounded]{geometry} # \usepackage[paperheight=24.41cm,paperwidth=17.21cm,bottom=3cm,left=1.4cm,right=2cm,heightrounded]{geometry}
#+begin_src latex
% \usepackage[bottom=2.5cm]{geometry}
#+end_src
** Penalties ** Penalties
#+begin_src latex #+begin_src latex