Compare commits
	
		
			1 Commits
		
	
	
		
			6930beb9bb
			...
			printed
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 60950797a2 | 
@@ -26,6 +26,8 @@
 | 
				
			|||||||
\usepackage{floatrow}
 | 
					\usepackage{floatrow}
 | 
				
			||||||
\floatsetup[table]{font={footnotesize,sf},capposition=top}
 | 
					\floatsetup[table]{font={footnotesize,sf},capposition=top}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 % \usepackage[bottom=2.5cm]{geometry}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
\clubpenalty         = 10000
 | 
					\clubpenalty         = 10000
 | 
				
			||||||
\widowpenalty        = 10000
 | 
					\widowpenalty        = 10000
 | 
				
			||||||
\displaywidowpenalty = 10000
 | 
					\displaywidowpenalty = 10000
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -10,8 +10,9 @@
 | 
				
			|||||||
#+DATE: {{{time(%Y-%m-%d)}}}
 | 
					#+DATE: {{{time(%Y-%m-%d)}}}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#+LATEX_CLASS: scrreprt
 | 
					#+LATEX_CLASS: scrreprt
 | 
				
			||||||
#+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]
 | 
					# #+LaTeX_CLASS_OPTIONS: [a4paper, twoside, headings=openright, 10pt, DIV=12, BCOR=1cm, parskip=full, bibliography=totoc, usegeometry]
 | 
				
			||||||
# #+LATEX_CLASS_OPTIONS: [a4paper, twoside, 11pt, onecolumn, bibliography=totoc, openright, appendixprefix=true]
 | 
					#+LaTeX_CLASS_OPTIONS: [a4paper, twoside, headings=openright, 10pt, DIV=13, BCOR=1cm, parskip=full, bibliography=totoc]
 | 
				
			||||||
 | 
					# #+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#+OPTIONS: num:t toc:nil ':t *:t -:t ::t <:nil author:t date:t tags:nil todo:nil |:t H:5 title:nil
 | 
					#+OPTIONS: num:t toc:nil ':t *:t -:t ::t <:nil author:t date:t tags:nil todo:nil |:t H:5 title:nil
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -276,12 +277,16 @@ This approach represents a modest contribution towards a more open, reliable, an
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
* Grants                                                              :ignore:
 | 
					* Grants                                                              :ignore:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#+begin_export latex
 | 
					#+latex: \vspace*{\fill}
 | 
				
			||||||
\newpage
 | 
					
 | 
				
			||||||
\thispagestyle{empty}
 | 
					 | 
				
			||||||
\vspace*{\fill}
 | 
					 | 
				
			||||||
The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
 | 
					The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
 | 
				
			||||||
\vspace*{\fill}
 | 
					
 | 
				
			||||||
 | 
					#+begin_export latex
 | 
				
			||||||
 | 
					% \newpage
 | 
				
			||||||
 | 
					% \thispagestyle{empty}
 | 
				
			||||||
 | 
					% \vspace*{\fill}
 | 
				
			||||||
 | 
					% The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
 | 
				
			||||||
 | 
					% \vspace*{\fill}
 | 
				
			||||||
#+end_export
 | 
					#+end_export
 | 
				
			||||||
 | 
					
 | 
				
			||||||
* Table of Contents                                                   :ignore:
 | 
					* Table of Contents                                                   :ignore:
 | 
				
			||||||
@@ -649,7 +654,7 @@ A more comprehensive review of actively controlled end-stations is provided in S
 | 
				
			|||||||
#+attr_latex: :width 0.95\linewidth
 | 
					#+attr_latex: :width 0.95\linewidth
 | 
				
			||||||
[[file:figs/introduction_stages_villar.jpg]]
 | 
					[[file:figs/introduction_stages_villar.jpg]]
 | 
				
			||||||
#+end_subfigure
 | 
					#+end_subfigure
 | 
				
			||||||
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN - Microscope. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}}
 | 
					#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}}
 | 
				
			||||||
#+attr_latex: :options {0.48\textwidth}
 | 
					#+attr_latex: :options {0.48\textwidth}
 | 
				
			||||||
#+begin_subfigure
 | 
					#+begin_subfigure
 | 
				
			||||||
#+attr_latex: :scale 0.9
 | 
					#+attr_latex: :scale 0.9
 | 
				
			||||||
@@ -1535,7 +1540,7 @@ The cumulative amplitude spectrum of the distance $d$ with all three active damp
 | 
				
			|||||||
All three active damping methods give similar results.
 | 
					All three active damping methods give similar results.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#+name: fig:uniaxial_cas_active_damping
 | 
					#+name: fig:uniaxial_cas_active_damping
 | 
				
			||||||
#+caption: Comparison of the acrlong:cas of the distance $d$ for all three active damping techniques.
 | 
					#+caption: Comparison of the Cumulative Amplitude Spectrum of the distance $d$ for all three active damping techniques.
 | 
				
			||||||
#+attr_latex: :options [htbp]
 | 
					#+attr_latex: :options [htbp]
 | 
				
			||||||
#+begin_figure
 | 
					#+begin_figure
 | 
				
			||||||
#+attr_latex: :caption \subcaption{\label{fig:uniaxial_cas_active_damping_soft}$k_n = 0.01\,\text{N}/\upmu\text{m}$}
 | 
					#+attr_latex: :caption \subcaption{\label{fig:uniaxial_cas_active_damping_soft}$k_n = 0.01\,\text{N}/\upmu\text{m}$}
 | 
				
			||||||
@@ -2487,7 +2492,7 @@ For small values of $\omega_i$, the added damping is limited by the maximum allo
 | 
				
			|||||||
For larger values of $\omega_i$, the attainable damping ratio decreases as a function of $\omega_i$ as was predicted from the root locus plot of Figure\nbsp{}ref:fig:rotating_iff_root_locus_hpf_large.
 | 
					For larger values of $\omega_i$, the attainable damping ratio decreases as a function of $\omega_i$ as was predicted from the root locus plot of Figure\nbsp{}ref:fig:rotating_iff_root_locus_hpf_large.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#+name: fig:rotating_iff_modified_effect_wi
 | 
					#+name: fig:rotating_iff_modified_effect_wi
 | 
				
			||||||
#+caption: Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). The achievable damping ratio decreases as $\omega_i$ increases (\subref{fig:rotating_iff_hpf_optimal_gain}).
 | 
					#+caption: Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). Achievable damping ratio decreases as $\omega_i$ increases (\subref{fig:rotating_iff_hpf_optimal_gain}).
 | 
				
			||||||
#+attr_latex: :options [htbp]
 | 
					#+attr_latex: :options [htbp]
 | 
				
			||||||
#+begin_figure
 | 
					#+begin_figure
 | 
				
			||||||
#+attr_latex: :caption \subcaption{\label{fig:rotating_root_locus_iff_modified_effect_wi}Root locus}
 | 
					#+attr_latex: :caption \subcaption{\label{fig:rotating_root_locus_iff_modified_effect_wi}Root locus}
 | 
				
			||||||
@@ -2727,7 +2732,7 @@ It does not increase the low-frequency coupling as compared to the Integral Forc
 | 
				
			|||||||
#+attr_latex: :caption \subcaption{\label{fig:rotating_rdc_root_locus}Root locus for Relative Damping Control}
 | 
					#+attr_latex: :caption \subcaption{\label{fig:rotating_rdc_root_locus}Root locus for Relative Damping Control}
 | 
				
			||||||
#+attr_latex: :options {0.49\linewidth}
 | 
					#+attr_latex: :options {0.49\linewidth}
 | 
				
			||||||
#+begin_subfigure
 | 
					#+begin_subfigure
 | 
				
			||||||
#+attr_latex: :scale 0.8
 | 
					#+attr_latex: :scale 0.9
 | 
				
			||||||
[[file:figs/rotating_rdc_root_locus.png]]
 | 
					[[file:figs/rotating_rdc_root_locus.png]]
 | 
				
			||||||
#+end_subfigure
 | 
					#+end_subfigure
 | 
				
			||||||
#+attr_latex: :caption \subcaption{\label{fig:rotating_rdc_damped_plant}Damped plant using Relative Damping Control}
 | 
					#+attr_latex: :caption \subcaption{\label{fig:rotating_rdc_damped_plant}Damped plant using Relative Damping Control}
 | 
				
			||||||
@@ -2949,7 +2954,7 @@ The gain is chosen such that 99% of modal damping is obtained (obtained gains ar
 | 
				
			|||||||
| $0.01\,\text{N}/\upmu\text{m}$ |  1600 |               0.99 |
 | 
					| $0.01\,\text{N}/\upmu\text{m}$ |  1600 |               0.99 |
 | 
				
			||||||
| $1\,\text{N}/\upmu\text{m}$  |  8200 |               0.99 |
 | 
					| $1\,\text{N}/\upmu\text{m}$  |  8200 |               0.99 |
 | 
				
			||||||
| $100\,\text{N}/\upmu\text{m}$ | 80000 |               0.99 |
 | 
					| $100\,\text{N}/\upmu\text{m}$ | 80000 |               0.99 |
 | 
				
			||||||
#+latex: \captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the acrlong:rdc}
 | 
					#+latex: \captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the RDC}
 | 
				
			||||||
#+end_minipage
 | 
					#+end_minipage
 | 
				
			||||||
 | 
					
 | 
				
			||||||
***** Comparison of the Obtained Damped Plants
 | 
					***** Comparison of the Obtained Damped Plants
 | 
				
			||||||
@@ -8055,7 +8060,7 @@ The sensor dynamics estimate $\hat{G}_i(s)$ may be a simple gain or a more compl
 | 
				
			|||||||
#+caption: Sensor models with and without normalization.
 | 
					#+caption: Sensor models with and without normalization.
 | 
				
			||||||
#+attr_latex: :options [htbp]
 | 
					#+attr_latex: :options [htbp]
 | 
				
			||||||
#+begin_figure
 | 
					#+begin_figure
 | 
				
			||||||
#+attr_latex: :caption \subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and acrshort:lti transfer function $G_i(s)$}
 | 
					#+attr_latex: :caption \subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and LTI transfer function $G_i(s)$}
 | 
				
			||||||
#+attr_latex: :options {0.48\textwidth}
 | 
					#+attr_latex: :options {0.48\textwidth}
 | 
				
			||||||
#+begin_subfigure
 | 
					#+begin_subfigure
 | 
				
			||||||
#+attr_latex: :scale 1
 | 
					#+attr_latex: :scale 1
 | 
				
			||||||
 
 | 
				
			|||||||
							
								
								
									
										
											BIN
										
									
								
								phd-thesis.pdf
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								phd-thesis.pdf
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							@@ -1,6 +1,6 @@
 | 
				
			|||||||
% Created 2025-07-09 Wed 19:41
 | 
					% Created 2025-07-15 Tue 13:58
 | 
				
			||||||
% Intended LaTeX compiler: pdflatex
 | 
					% Intended LaTeX compiler: pdflatex
 | 
				
			||||||
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
 | 
					\documentclass[a4paper, twoside, headings=openright, 10pt, DIV=13, BCOR=1cm, parskip=full, bibliography=totoc]{scrreprt}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
\input{config.tex}
 | 
					\input{config.tex}
 | 
				
			||||||
\newacronym{adc}{ADC}{Analog to Digital Converter}
 | 
					\newacronym{adc}{ADC}{Analog to Digital Converter}
 | 
				
			||||||
@@ -55,7 +55,7 @@
 | 
				
			|||||||
\addbibresource{ref.bib}
 | 
					\addbibresource{ref.bib}
 | 
				
			||||||
\addbibresource{phd-thesis.bib}
 | 
					\addbibresource{phd-thesis.bib}
 | 
				
			||||||
\author{Dehaeze Thomas}
 | 
					\author{Dehaeze Thomas}
 | 
				
			||||||
\date{2025-07-09}
 | 
					\date{2025-07-15}
 | 
				
			||||||
\title{Nano Active Stabilization of samples for tomography experiments: A mechatronic design approach}
 | 
					\title{Nano Active Stabilization of samples for tomography experiments: A mechatronic design approach}
 | 
				
			||||||
\subtitle{PhD Thesis}
 | 
					\subtitle{PhD Thesis}
 | 
				
			||||||
\hypersetup{
 | 
					\hypersetup{
 | 
				
			||||||
@@ -193,11 +193,15 @@ The organization of the code mirrors that of the manuscript, with corresponding
 | 
				
			|||||||
All materials have been made available under the MIT License, permitting free reuse.
 | 
					All materials have been made available under the MIT License, permitting free reuse.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This approach represents a modest contribution towards a more open, reliable, and collaborative scientific ecosystem.
 | 
					This approach represents a modest contribution towards a more open, reliable, and collaborative scientific ecosystem.
 | 
				
			||||||
\newpage
 | 
					 | 
				
			||||||
\thispagestyle{empty}
 | 
					 | 
				
			||||||
\vspace*{\fill}
 | 
					\vspace*{\fill}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
 | 
					The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
 | 
				
			||||||
\vspace*{\fill}
 | 
					
 | 
				
			||||||
 | 
					% \newpage
 | 
				
			||||||
 | 
					% \thispagestyle{empty}
 | 
				
			||||||
 | 
					% \vspace*{\fill}
 | 
				
			||||||
 | 
					% The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
 | 
				
			||||||
 | 
					% \vspace*{\fill}
 | 
				
			||||||
\clearpage
 | 
					\clearpage
 | 
				
			||||||
\dominitoc
 | 
					\dominitoc
 | 
				
			||||||
\tableofcontents
 | 
					\tableofcontents
 | 
				
			||||||
@@ -523,7 +527,7 @@ A more comprehensive review of actively controlled end-stations is provided in S
 | 
				
			|||||||
\begin{center}
 | 
					\begin{center}
 | 
				
			||||||
\includegraphics[scale=1,scale=0.9]{figs/introduction_stages_nazaretski.png}
 | 
					\includegraphics[scale=1,scale=0.9]{figs/introduction_stages_nazaretski.png}
 | 
				
			||||||
\end{center}
 | 
					\end{center}
 | 
				
			||||||
\subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN - Microscope. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}}
 | 
					\subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}}
 | 
				
			||||||
\end{subfigure}
 | 
					\end{subfigure}
 | 
				
			||||||
\caption{\label{fig:introduction_active_stations}Example of two end-stations with real-time position feedback based on an online metrology.}
 | 
					\caption{\label{fig:introduction_active_stations}Example of two end-stations with real-time position feedback based on an online metrology.}
 | 
				
			||||||
\end{figure}
 | 
					\end{figure}
 | 
				
			||||||
@@ -1346,7 +1350,7 @@ All three active damping methods give similar results.
 | 
				
			|||||||
\end{center}
 | 
					\end{center}
 | 
				
			||||||
\subcaption{\label{fig:uniaxial_cas_active_damping_stiff}$k_n = 100\,\text{N}/\upmu\text{m}$}
 | 
					\subcaption{\label{fig:uniaxial_cas_active_damping_stiff}$k_n = 100\,\text{N}/\upmu\text{m}$}
 | 
				
			||||||
\end{subfigure}
 | 
					\end{subfigure}
 | 
				
			||||||
\caption{\label{fig:uniaxial_cas_active_damping}Comparison of the \acrlong{cas} of the distance \(d\) for all three active damping techniques.}
 | 
					\caption{\label{fig:uniaxial_cas_active_damping}Comparison of the Cumulative Amplitude Spectrum of the distance \(d\) for all three active damping techniques.}
 | 
				
			||||||
\end{figure}
 | 
					\end{figure}
 | 
				
			||||||
\paragraph{Conclusion}
 | 
					\paragraph{Conclusion}
 | 
				
			||||||
Three active damping strategies have been studied for the \acrfull{nass}.
 | 
					Three active damping strategies have been studied for the \acrfull{nass}.
 | 
				
			||||||
@@ -2233,7 +2237,7 @@ For larger values of \(\omega_i\), the attainable damping ratio decreases as a f
 | 
				
			|||||||
\end{center}
 | 
					\end{center}
 | 
				
			||||||
\subcaption{\label{fig:rotating_iff_hpf_optimal_gain}Attainable damping ratio as a function of $\omega_i/\omega_0$. Maximum and optical control gains are also shown}
 | 
					\subcaption{\label{fig:rotating_iff_hpf_optimal_gain}Attainable damping ratio as a function of $\omega_i/\omega_0$. Maximum and optical control gains are also shown}
 | 
				
			||||||
\end{subfigure}
 | 
					\end{subfigure}
 | 
				
			||||||
\caption{\label{fig:rotating_iff_modified_effect_wi}Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). The achievable damping ratio decreases as \(\omega_i\) increases (\subref{fig:rotating_iff_hpf_optimal_gain}).}
 | 
					\caption{\label{fig:rotating_iff_modified_effect_wi}Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). Achievable damping ratio decreases as \(\omega_i\) increases (\subref{fig:rotating_iff_hpf_optimal_gain}).}
 | 
				
			||||||
\end{figure}
 | 
					\end{figure}
 | 
				
			||||||
\paragraph{Obtained Damped Plant}
 | 
					\paragraph{Obtained Damped Plant}
 | 
				
			||||||
To study how the parameter \(\omega_i\) affects the damped plant, the obtained damped plants for several \(\omega_i\) are compared in Figure~\ref{fig:rotating_iff_hpf_damped_plant_effect_wi_plant}.
 | 
					To study how the parameter \(\omega_i\) affects the damped plant, the obtained damped plants for several \(\omega_i\) are compared in Figure~\ref{fig:rotating_iff_hpf_damped_plant_effect_wi_plant}.
 | 
				
			||||||
@@ -2438,7 +2442,7 @@ It does not increase the low-frequency coupling as compared to the Integral Forc
 | 
				
			|||||||
\begin{figure}[htbp]
 | 
					\begin{figure}[htbp]
 | 
				
			||||||
\begin{subfigure}{0.49\linewidth}
 | 
					\begin{subfigure}{0.49\linewidth}
 | 
				
			||||||
\begin{center}
 | 
					\begin{center}
 | 
				
			||||||
\includegraphics[scale=1,scale=0.8]{figs/rotating_rdc_root_locus.png}
 | 
					\includegraphics[scale=1,scale=0.9]{figs/rotating_rdc_root_locus.png}
 | 
				
			||||||
\end{center}
 | 
					\end{center}
 | 
				
			||||||
\subcaption{\label{fig:rotating_rdc_root_locus}Root locus for Relative Damping Control}
 | 
					\subcaption{\label{fig:rotating_rdc_root_locus}Root locus for Relative Damping Control}
 | 
				
			||||||
\end{subfigure}
 | 
					\end{subfigure}
 | 
				
			||||||
@@ -2651,7 +2655,7 @@ The gain is chosen such that 99\% of modal damping is obtained (obtained gains a
 | 
				
			|||||||
\(100\,\text{N}/\upmu\text{m}\) & 80000 & 0.99\\
 | 
					\(100\,\text{N}/\upmu\text{m}\) & 80000 & 0.99\\
 | 
				
			||||||
\bottomrule
 | 
					\bottomrule
 | 
				
			||||||
\end{tabularx}}
 | 
					\end{tabularx}}
 | 
				
			||||||
\captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the acrlong:rdc}
 | 
					\captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the RDC}
 | 
				
			||||||
\end{minipage}
 | 
					\end{minipage}
 | 
				
			||||||
\paragraph{Comparison of the Obtained Damped Plants}
 | 
					\paragraph{Comparison of the Obtained Damped Plants}
 | 
				
			||||||
Now that the optimal parameters for the three considered active damping techniques have been determined, the obtained damped plants are computed and compared in Figure~\ref{fig:rotating_nass_damped_plant_comp}.
 | 
					Now that the optimal parameters for the three considered active damping techniques have been determined, the obtained damped plants are computed and compared in Figure~\ref{fig:rotating_nass_damped_plant_comp}.
 | 
				
			||||||
@@ -7451,7 +7455,7 @@ The sensor dynamics estimate \(\hat{G}_i(s)\) may be a simple gain or a more com
 | 
				
			|||||||
\begin{center}
 | 
					\begin{center}
 | 
				
			||||||
\includegraphics[scale=1,scale=1]{figs/detail_control_sensor_model.png}
 | 
					\includegraphics[scale=1,scale=1]{figs/detail_control_sensor_model.png}
 | 
				
			||||||
\end{center}
 | 
					\end{center}
 | 
				
			||||||
\subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and acrshort:lti transfer function $G_i(s)$}
 | 
					\subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and LTI transfer function $G_i(s)$}
 | 
				
			||||||
\end{subfigure}
 | 
					\end{subfigure}
 | 
				
			||||||
\begin{subfigure}{0.48\textwidth}
 | 
					\begin{subfigure}{0.48\textwidth}
 | 
				
			||||||
\begin{center}
 | 
					\begin{center}
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -125,6 +125,9 @@ I reduce the size of tables so that longer tables can still fit into an A4 (redu
 | 
				
			|||||||
** Geometry
 | 
					** Geometry
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# \usepackage[paperheight=24.41cm,paperwidth=17.21cm,bottom=3cm,left=1.4cm,right=2cm,heightrounded]{geometry}
 | 
					# \usepackage[paperheight=24.41cm,paperwidth=17.21cm,bottom=3cm,left=1.4cm,right=2cm,heightrounded]{geometry}
 | 
				
			||||||
 | 
					#+begin_src latex
 | 
				
			||||||
 | 
					 % \usepackage[bottom=2.5cm]{geometry}
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
** Penalties
 | 
					** Penalties
 | 
				
			||||||
#+begin_src latex
 | 
					#+begin_src latex
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user