Only keep necessary Matlab scripts
This commit is contained in:
parent
ff8c5783ce
commit
b82ad45fad
@ -1,35 +0,0 @@
|
||||
function [stewart] = computeJacobian(stewart)
|
||||
% computeJacobian -
|
||||
%
|
||||
% Syntax: [stewart] = computeJacobian(stewart)
|
||||
%
|
||||
% Inputs:
|
||||
% - stewart - With at least the following fields:
|
||||
% - geometry.As [3x6] - The 6 unit vectors for each strut expressed in {A}
|
||||
% - geometry.Ab [3x6] - The 6 position of the joints bi expressed in {A}
|
||||
% - actuators.K [6x1] - Total stiffness of the actuators
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - With the 3 added field:
|
||||
% - kinematics.J [6x6] - The Jacobian Matrix
|
||||
% - kinematics.K [6x6] - The Stiffness Matrix
|
||||
% - kinematics.C [6x6] - The Compliance Matrix
|
||||
|
||||
assert(isfield(stewart.geometry, 'As'), 'stewart.geometry should have attribute As')
|
||||
As = stewart.geometry.As;
|
||||
|
||||
assert(isfield(stewart.geometry, 'Ab'), 'stewart.geometry should have attribute Ab')
|
||||
Ab = stewart.geometry.Ab;
|
||||
|
||||
assert(isfield(stewart.actuators, 'K'), 'stewart.actuators should have attribute K')
|
||||
Ki = stewart.actuators.K;
|
||||
|
||||
J = [As' , cross(Ab, As)'];
|
||||
|
||||
K = J'*diag(Ki)*J;
|
||||
|
||||
C = inv(K);
|
||||
|
||||
stewart.kinematics.J = J;
|
||||
stewart.kinematics.K = K;
|
||||
stewart.kinematics.C = C;
|
@ -1,78 +0,0 @@
|
||||
function [stewart] = computeJointsPose(stewart)
|
||||
% computeJointsPose -
|
||||
%
|
||||
% Syntax: [stewart] = computeJointsPose(stewart)
|
||||
%
|
||||
% Inputs:
|
||||
% - stewart - A structure with the following fields
|
||||
% - platform_F.Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
|
||||
% - platform_M.Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}
|
||||
% - platform_F.FO_A [3x1] - Position of {A} with respect to {F}
|
||||
% - platform_M.MO_B [3x1] - Position of {B} with respect to {M}
|
||||
% - geometry.FO_M [3x1] - Position of {M} with respect to {F}
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - A structure with the following added fields
|
||||
% - geometry.Aa [3x6] - The i'th column is the position of ai with respect to {A}
|
||||
% - geometry.Ab [3x6] - The i'th column is the position of bi with respect to {A}
|
||||
% - geometry.Ba [3x6] - The i'th column is the position of ai with respect to {B}
|
||||
% - geometry.Bb [3x6] - The i'th column is the position of bi with respect to {B}
|
||||
% - geometry.l [6x1] - The i'th element is the initial length of strut i
|
||||
% - geometry.As [3x6] - The i'th column is the unit vector of strut i expressed in {A}
|
||||
% - geometry.Bs [3x6] - The i'th column is the unit vector of strut i expressed in {B}
|
||||
% - struts_F.l [6x1] - Length of the Fixed part of the i'th strut
|
||||
% - struts_M.l [6x1] - Length of the Mobile part of the i'th strut
|
||||
% - platform_F.FRa [3x3x6] - The i'th 3x3 array is the rotation matrix to orientate the bottom of the i'th strut from {F}
|
||||
% - platform_M.MRb [3x3x6] - The i'th 3x3 array is the rotation matrix to orientate the top of the i'th strut from {M}
|
||||
|
||||
assert(isfield(stewart.platform_F, 'Fa'), 'stewart.platform_F should have attribute Fa')
|
||||
Fa = stewart.platform_F.Fa;
|
||||
|
||||
assert(isfield(stewart.platform_M, 'Mb'), 'stewart.platform_M should have attribute Mb')
|
||||
Mb = stewart.platform_M.Mb;
|
||||
|
||||
assert(isfield(stewart.platform_F, 'FO_A'), 'stewart.platform_F should have attribute FO_A')
|
||||
FO_A = stewart.platform_F.FO_A;
|
||||
|
||||
assert(isfield(stewart.platform_M, 'MO_B'), 'stewart.platform_M should have attribute MO_B')
|
||||
MO_B = stewart.platform_M.MO_B;
|
||||
|
||||
assert(isfield(stewart.geometry, 'FO_M'), 'stewart.geometry should have attribute FO_M')
|
||||
FO_M = stewart.geometry.FO_M;
|
||||
|
||||
Aa = Fa - repmat(FO_A, [1, 6]);
|
||||
Bb = Mb - repmat(MO_B, [1, 6]);
|
||||
|
||||
Ab = Bb - repmat(-MO_B-FO_M+FO_A, [1, 6]);
|
||||
Ba = Aa - repmat( MO_B+FO_M-FO_A, [1, 6]);
|
||||
|
||||
As = (Ab - Aa)./vecnorm(Ab - Aa); % As_i is the i'th vector of As
|
||||
|
||||
l = vecnorm(Ab - Aa)';
|
||||
|
||||
Bs = (Bb - Ba)./vecnorm(Bb - Ba);
|
||||
|
||||
FRa = zeros(3,3,6);
|
||||
MRb = zeros(3,3,6);
|
||||
|
||||
for i = 1:6
|
||||
FRa(:,:,i) = [cross([0;1;0], As(:,i)) , cross(As(:,i), cross([0;1;0], As(:,i))) , As(:,i)];
|
||||
FRa(:,:,i) = FRa(:,:,i)./vecnorm(FRa(:,:,i));
|
||||
|
||||
MRb(:,:,i) = [cross([0;1;0], Bs(:,i)) , cross(Bs(:,i), cross([0;1;0], Bs(:,i))) , Bs(:,i)];
|
||||
MRb(:,:,i) = MRb(:,:,i)./vecnorm(MRb(:,:,i));
|
||||
end
|
||||
|
||||
stewart.geometry.Aa = Aa;
|
||||
stewart.geometry.Ab = Ab;
|
||||
stewart.geometry.Ba = Ba;
|
||||
stewart.geometry.Bb = Bb;
|
||||
stewart.geometry.As = As;
|
||||
stewart.geometry.Bs = Bs;
|
||||
stewart.geometry.l = l;
|
||||
|
||||
stewart.struts_F.l = l/2;
|
||||
stewart.struts_M.l = l/2;
|
||||
|
||||
stewart.platform_F.FRa = FRa;
|
||||
stewart.platform_M.MRb = MRb;
|
@ -1,77 +0,0 @@
|
||||
function [WTr] = computeReferencePose(Dy, Ry, Rz, Dh, Dn)
|
||||
% computeReferencePose - Compute the homogeneous transformation matrix corresponding to the wanted pose of the sample
|
||||
%
|
||||
% Syntax: [WTr] = computeReferencePose(Dy, Ry, Rz, Dh, Dn)
|
||||
%
|
||||
% Inputs:
|
||||
% - Dy - Reference of the Translation Stage [m]
|
||||
% - Ry - Reference of the Tilt Stage [rad]
|
||||
% - Rz - Reference of the Spindle [rad]
|
||||
% - Dh - Reference of the Micro Hexapod (Pitch, Roll, Yaw angles) [m, m, m, rad, rad, rad]
|
||||
% - Dn - Reference of the Nano Hexapod [m, m, m, rad, rad, rad]
|
||||
%
|
||||
% Outputs:
|
||||
% - WTr -
|
||||
|
||||
%% Translation Stage
|
||||
Rty = [1 0 0 0;
|
||||
0 1 0 Dy;
|
||||
0 0 1 0;
|
||||
0 0 0 1];
|
||||
|
||||
%% Tilt Stage - Pure rotating aligned with Ob
|
||||
Rry = [ cos(Ry) 0 sin(Ry) 0;
|
||||
0 1 0 0;
|
||||
-sin(Ry) 0 cos(Ry) 0;
|
||||
0 0 0 1];
|
||||
|
||||
%% Spindle - Rotation along the Z axis
|
||||
Rrz = [cos(Rz) -sin(Rz) 0 0 ;
|
||||
sin(Rz) cos(Rz) 0 0 ;
|
||||
0 0 1 0 ;
|
||||
0 0 0 1 ];
|
||||
|
||||
|
||||
%% Micro-Hexapod
|
||||
Rhx = [1 0 0;
|
||||
0 cos(Dh(4)) -sin(Dh(4));
|
||||
0 sin(Dh(4)) cos(Dh(4))];
|
||||
|
||||
Rhy = [ cos(Dh(5)) 0 sin(Dh(5));
|
||||
0 1 0;
|
||||
-sin(Dh(5)) 0 cos(Dh(5))];
|
||||
|
||||
Rhz = [cos(Dh(6)) -sin(Dh(6)) 0;
|
||||
sin(Dh(6)) cos(Dh(6)) 0;
|
||||
0 0 1];
|
||||
|
||||
Rh = [1 0 0 Dh(1) ;
|
||||
0 1 0 Dh(2) ;
|
||||
0 0 1 Dh(3) ;
|
||||
0 0 0 1 ];
|
||||
|
||||
Rh(1:3, 1:3) = Rhz*Rhy*Rhx;
|
||||
|
||||
%% Nano-Hexapod
|
||||
Rnx = [1 0 0;
|
||||
0 cos(Dn(4)) -sin(Dn(4));
|
||||
0 sin(Dn(4)) cos(Dn(4))];
|
||||
|
||||
Rny = [ cos(Dn(5)) 0 sin(Dn(5));
|
||||
0 1 0;
|
||||
-sin(Dn(5)) 0 cos(Dn(5))];
|
||||
|
||||
Rnz = [cos(Dn(6)) -sin(Dn(6)) 0;
|
||||
sin(Dn(6)) cos(Dn(6)) 0;
|
||||
0 0 1];
|
||||
|
||||
Rn = [1 0 0 Dn(1) ;
|
||||
0 1 0 Dn(2) ;
|
||||
0 0 1 Dn(3) ;
|
||||
0 0 0 1 ];
|
||||
|
||||
Rn(1:3, 1:3) = Rnz*Rny*Rnx;
|
||||
|
||||
%% Total Homogeneous transformation
|
||||
WTr = Rty*Rry*Rrz*Rh*Rn;
|
||||
end
|
@ -1,20 +0,0 @@
|
||||
function [MTr] = computeSampleError(WTm, WTr)
|
||||
% computeSampleError -
|
||||
%
|
||||
% Syntax: [MTr] = computeSampleError(WTm, WTr)
|
||||
%
|
||||
% Inputs:
|
||||
% - WTm - Homoegeneous transformation that represent the
|
||||
% wanted pose of the sample with respect to the granite
|
||||
% - WTr - Homoegeneous transformation that represent the
|
||||
% measured pose of the sample with respect to the granite
|
||||
%
|
||||
% Outputs:
|
||||
% - MTr - Homoegeneous transformation that represent the
|
||||
% wanted pose of the sample expressed in a frame
|
||||
% attached to the top platform of the nano-hexapod
|
||||
|
||||
MTr = zeros(4,4);
|
||||
|
||||
MTr = [WTm(1:3,1:3)', -WTm(1:3,1:3)'*WTm(1:3,4) ; 0 0 0 1]*WTr;
|
||||
end
|
@ -1,196 +0,0 @@
|
||||
function [] = describeNassSetup()
|
||||
% describeNassSetup -
|
||||
%
|
||||
% Syntax: [] = describeNassSetup()
|
||||
%
|
||||
% Inputs:
|
||||
% - -
|
||||
%
|
||||
% Outputs:
|
||||
% - -
|
||||
|
||||
load('./mat/conf_simscape.mat', 'conf_simscape');
|
||||
|
||||
fprintf('Simscape Configuration:\n');
|
||||
|
||||
if conf_simscape.type == 1
|
||||
fprintf('- Gravity is included\n');
|
||||
else
|
||||
fprintf('- Gravity is not included\n');
|
||||
end
|
||||
|
||||
fprintf('\n');
|
||||
|
||||
load('./mat/nass_disturbances.mat', 'args');
|
||||
|
||||
fprintf('Disturbances:\n');
|
||||
if ~args.enable
|
||||
fprintf('- No disturbance is included\n');
|
||||
else
|
||||
if args.Dwx && args.Dwy && args.Dwz
|
||||
fprintf('- Ground motion\n');
|
||||
end
|
||||
if args.Fty_x && args.Fty_z
|
||||
fprintf('- Vibrations of the Translation Stage\n');
|
||||
end
|
||||
if args.Frz_z
|
||||
fprintf('- Vibrations of the Spindle\n');
|
||||
end
|
||||
end
|
||||
fprintf('\n');
|
||||
|
||||
load('./mat/nass_references.mat', 'args');
|
||||
|
||||
fprintf('Reference Tracking:\n');
|
||||
fprintf('- Translation Stage:\n');
|
||||
switch args.Dy_type
|
||||
case 'constant'
|
||||
fprintf(' - Constant Position\n');
|
||||
fprintf(' - Dy = %.0f [mm]\n', args.Dy_amplitude*1e3);
|
||||
case 'triangular'
|
||||
fprintf(' - Triangular Path\n');
|
||||
fprintf(' - Amplitude = %.0f [mm]\n', args.Dy_amplitude*1e3);
|
||||
fprintf(' - Period = %.0f [s]\n', args.Dy_period);
|
||||
case 'sinusoidal'
|
||||
fprintf(' - Sinusoidal Path\n');
|
||||
fprintf(' - Amplitude = %.0f [mm]\n', args.Dy_amplitude*1e3);
|
||||
fprintf(' - Period = %.0f [s]\n', args.Dy_period);
|
||||
end
|
||||
|
||||
fprintf('- Tilt Stage:\n');
|
||||
switch args.Ry_type
|
||||
case 'constant'
|
||||
fprintf(' - Constant Position\n');
|
||||
fprintf(' - Ry = %.0f [mm]\n', args.Ry_amplitude*1e3);
|
||||
case 'triangular'
|
||||
fprintf(' - Triangular Path\n');
|
||||
fprintf(' - Amplitude = %.0f [mm]\n', args.Ry_amplitude*1e3);
|
||||
fprintf(' - Period = %.0f [s]\n', args.Ry_period);
|
||||
case 'sinusoidal'
|
||||
fprintf(' - Sinusoidal Path\n');
|
||||
fprintf(' - Amplitude = %.0f [mm]\n', args.Ry_amplitude*1e3);
|
||||
fprintf(' - Period = %.0f [s]\n', args.Ry_period);
|
||||
end
|
||||
|
||||
fprintf('- Spindle:\n');
|
||||
switch args.Rz_type
|
||||
case 'constant'
|
||||
fprintf(' - Constant Position\n');
|
||||
fprintf(' - Rz = %.0f [deg]\n', 180/pi*args.Rz_amplitude);
|
||||
case { 'rotating', 'rotating-not-filtered' }
|
||||
fprintf(' - Rotating\n');
|
||||
fprintf(' - Speed = %.0f [rpm]\n', 60/args.Rz_period);
|
||||
end
|
||||
|
||||
|
||||
fprintf('- Micro Hexapod:\n');
|
||||
switch args.Dh_type
|
||||
case 'constant'
|
||||
fprintf(' - Constant Position\n');
|
||||
fprintf(' - Dh = %.0f, %.0f, %.0f [mm]\n', args.Dh_pos(1), args.Dh_pos(2), args.Dh_pos(3));
|
||||
fprintf(' - Rh = %.0f, %.0f, %.0f [deg]\n', args.Dh_pos(4), args.Dh_pos(5), args.Dh_pos(6));
|
||||
end
|
||||
|
||||
fprintf('\n');
|
||||
|
||||
load('./mat/controller.mat', 'controller');
|
||||
|
||||
fprintf('Controller:\n');
|
||||
fprintf('- %s\n', controller.name);
|
||||
fprintf('\n');
|
||||
|
||||
load('./mat/stages.mat', 'ground', 'granite', 'ty', 'ry', 'rz', 'micro_hexapod', 'axisc');
|
||||
|
||||
fprintf('Micro Station:\n');
|
||||
|
||||
if granite.type == 1 && ...
|
||||
ty.type == 1 && ...
|
||||
ry.type == 1 && ...
|
||||
rz.type == 1 && ...
|
||||
micro_hexapod.type == 1;
|
||||
fprintf('- All stages are rigid\n');
|
||||
elseif granite.type == 2 && ...
|
||||
ty.type == 2 && ...
|
||||
ry.type == 2 && ...
|
||||
rz.type == 2 && ...
|
||||
micro_hexapod.type == 2;
|
||||
fprintf('- All stages are flexible\n');
|
||||
else
|
||||
if granite.type == 1 || granite.type == 4
|
||||
fprintf('- Granite is rigid\n');
|
||||
else
|
||||
fprintf('- Granite is flexible\n');
|
||||
end
|
||||
if ty.type == 1 || ty.type == 4
|
||||
fprintf('- Translation Stage is rigid\n');
|
||||
else
|
||||
fprintf('- Translation Stage is flexible\n');
|
||||
end
|
||||
if ry.type == 1 || ry.type == 4
|
||||
fprintf('- Tilt Stage is rigid\n');
|
||||
else
|
||||
fprintf('- Tilt Stage is flexible\n');
|
||||
end
|
||||
if rz.type == 1 || rz.type == 4
|
||||
fprintf('- Spindle is rigid\n');
|
||||
else
|
||||
fprintf('- Spindle is flexible\n');
|
||||
end
|
||||
if micro_hexapod.type == 1 || micro_hexapod.type == 4
|
||||
fprintf('- Micro Hexapod is rigid\n');
|
||||
else
|
||||
fprintf('- Micro Hexapod is flexible\n');
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
fprintf('\n');
|
||||
|
||||
load('./mat/stages.mat', 'mirror');
|
||||
|
||||
fprintf('Reference Mirror:\n');
|
||||
|
||||
if mirror.type == 2;
|
||||
fprintf('- flexible fixation\n');
|
||||
fprintf('- w = %.0f [Hz]\n', mirror.freq(1));
|
||||
else
|
||||
fprintf('- rigidly attached to the nano-hexapod\n');
|
||||
end
|
||||
fprintf('- m = %.0f [kg]\n', mirror.mass);
|
||||
fprintf('\n');
|
||||
|
||||
load('./mat/stages.mat', 'nano_hexapod');
|
||||
|
||||
fprintf('Nano Hexapod:\n');
|
||||
|
||||
if nano_hexapod.type == 0;
|
||||
fprintf('- no included\n');
|
||||
elseif nano_hexapod.type == 1 || nano_hexapod.type == 3;
|
||||
fprintf('- rigid\n');
|
||||
elseif nano_hexapod.type == 2;
|
||||
fprintf('- flexible\n');
|
||||
fprintf('- Ki = %.0g [N/m]\n', nano_hexapod.actuators.K(1));
|
||||
end
|
||||
|
||||
fprintf('\n');
|
||||
|
||||
load('./mat/stages.mat', 'sample');
|
||||
|
||||
fprintf('Sample:\n');
|
||||
|
||||
if sample.type == 0;
|
||||
fprintf('- no included\n');
|
||||
elseif sample.type == 1 || sample.type == 3;
|
||||
fprintf('- rigid\n');
|
||||
fprintf('- mass = %.0f [kg]\n', sample.mass);
|
||||
fprintf('- moment of inertia = %.2f, %.2f, %.2f [kg m2]\n', sample.inertia(1), sample.inertia(2), sample.inertia(3));
|
||||
elseif sample.type == 2;
|
||||
fprintf('- flexible\n');
|
||||
fprintf('- mass = %.0f [kg]\n', sample.mass);
|
||||
fprintf('- moment of inertia = %.2f, %.2f, %.2f [kg m2]\n', sample.inertia(1), sample.inertia(2), sample.inertia(3));
|
||||
% fprintf('- Kt = %.0g, %.0g, %.0g [N/m]\n', sample.K(1), sample.K(2), sample.K(3));
|
||||
% fprintf('- Kr = %.0g, %.0g, %.0g [Nm/rad]\n', sample.K(4), sample.K(5), sample.K(6));
|
||||
fprintf('- wt(x,y,z) = %.0f, %.0f, %.0f [Hz]\n', 1/2/pi*sqrt(sample.K(1)/sample.mass), 1/2/pi*sqrt(sample.K(1)/sample.mass), 1/2/pi*sqrt(sample.K(1)/sample.mass));
|
||||
fprintf('- wr(x,y,z) = %.0f, %.0f, %.0f [Hz]\n', 1/2/pi*sqrt(sample.K(4)/sample.inertia(1)), 1/2/pi*sqrt(sample.K(5)/sample.inertia(2)), 1/2/pi*sqrt(sample.K(6)/sample.inertia(3)));
|
||||
end
|
||||
fprintf('\n');
|
@ -1,83 +0,0 @@
|
||||
function [] = describeStewartPlatform(stewart)
|
||||
% describeStewartPlatform - Display some text describing the current defined Stewart Platform
|
||||
%
|
||||
% Syntax: [] = describeStewartPlatform(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - stewart
|
||||
%
|
||||
% Outputs:
|
||||
|
||||
arguments
|
||||
stewart
|
||||
end
|
||||
|
||||
fprintf('GEOMETRY:\n')
|
||||
fprintf('- The height between the fixed based and the top platform is %.3g [mm].\n', 1e3*stewart.geometry.H)
|
||||
|
||||
if stewart.platform_M.MO_B(3) > 0
|
||||
fprintf('- Frame {A} is located %.3g [mm] above the top platform.\n', 1e3*stewart.platform_M.MO_B(3))
|
||||
else
|
||||
fprintf('- Frame {A} is located %.3g [mm] below the top platform.\n', - 1e3*stewart.platform_M.MO_B(3))
|
||||
end
|
||||
|
||||
fprintf('- The initial length of the struts are:\n')
|
||||
fprintf('\t %.3g, %.3g, %.3g, %.3g, %.3g, %.3g [mm]\n', 1e3*stewart.geometry.l)
|
||||
fprintf('\n')
|
||||
|
||||
fprintf('ACTUATORS:\n')
|
||||
if stewart.actuators.type == 1
|
||||
fprintf('- The actuators are classical.\n')
|
||||
fprintf('- The Stiffness and Damping of each actuators is:\n')
|
||||
fprintf('\t k = %.0e [N/m] \t c = %.0e [N/(m/s)]\n', stewart.actuators.K(1), stewart.actuators.C(1))
|
||||
elseif stewart.actuators.type == 2
|
||||
fprintf('- The actuators are mechanicaly amplified.\n')
|
||||
fprintf('- The vertical stiffness and damping contribution of the piezoelectric stack is:\n')
|
||||
fprintf('\t ka = %.0e [N/m] \t ca = %.0e [N/(m/s)]\n', stewart.actuators.Ka(1), stewart.actuators.Ca(1))
|
||||
fprintf('- Vertical stiffness when the piezoelectric stack is removed is:\n')
|
||||
fprintf('\t kr = %.0e [N/m] \t cr = %.0e [N/(m/s)]\n', stewart.actuators.Kr(1), stewart.actuators.Cr(1))
|
||||
end
|
||||
fprintf('\n')
|
||||
|
||||
fprintf('JOINTS:\n')
|
||||
|
||||
switch stewart.joints_F.type
|
||||
case 1
|
||||
fprintf('- The joints on the fixed based are universal joints\n')
|
||||
case 2
|
||||
fprintf('- The joints on the fixed based are spherical joints\n')
|
||||
case 3
|
||||
fprintf('- The joints on the fixed based are perfect universal joints\n')
|
||||
case 4
|
||||
fprintf('- The joints on the fixed based are perfect spherical joints\n')
|
||||
end
|
||||
|
||||
switch stewart.joints_M.type
|
||||
case 1
|
||||
fprintf('- The joints on the mobile based are universal joints\n')
|
||||
case 2
|
||||
fprintf('- The joints on the mobile based are spherical joints\n')
|
||||
case 3
|
||||
fprintf('- The joints on the mobile based are perfect universal joints\n')
|
||||
case 4
|
||||
fprintf('- The joints on the mobile based are perfect spherical joints\n')
|
||||
end
|
||||
|
||||
fprintf('- The position of the joints on the fixed based with respect to {F} are (in [mm]):\n')
|
||||
fprintf('\t % .3g \t % .3g \t % .3g\n', 1e3*stewart.platform_F.Fa)
|
||||
|
||||
fprintf('- The position of the joints on the mobile based with respect to {M} are (in [mm]):\n')
|
||||
fprintf('\t % .3g \t % .3g \t % .3g\n', 1e3*stewart.platform_M.Mb)
|
||||
fprintf('\n')
|
||||
|
||||
fprintf('KINEMATICS:\n')
|
||||
|
||||
if isfield(stewart.kinematics, 'K')
|
||||
fprintf('- The Stiffness matrix K is (in [N/m]):\n')
|
||||
fprintf('\t % .0e \t % .0e \t % .0e \t % .0e \t % .0e \t % .0e\n', stewart.kinematics.K)
|
||||
end
|
||||
|
||||
if isfield(stewart.kinematics, 'C')
|
||||
fprintf('- The Damping matrix C is (in [m/N]):\n')
|
||||
fprintf('\t % .0e \t % .0e \t % .0e \t % .0e \t % .0e \t % .0e\n', stewart.kinematics.C)
|
||||
end
|
@ -1,240 +0,0 @@
|
||||
function [] = displayArchitecture(stewart, args)
|
||||
% displayArchitecture - 3D plot of the Stewart platform architecture
|
||||
%
|
||||
% Syntax: [] = displayArchitecture(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - stewart
|
||||
% - args - Structure with the following fields:
|
||||
% - AP [3x1] - The wanted position of {B} with respect to {A}
|
||||
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
|
||||
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
|
||||
% - F_color [color] - Color used for the Fixed elements
|
||||
% - M_color [color] - Color used for the Mobile elements
|
||||
% - L_color [color] - Color used for the Legs elements
|
||||
% - frames [true/false] - Display the Frames
|
||||
% - legs [true/false] - Display the Legs
|
||||
% - joints [true/false] - Display the Joints
|
||||
% - labels [true/false] - Display the Labels
|
||||
% - platforms [true/false] - Display the Platforms
|
||||
% - views ['all', 'xy', 'yz', 'xz', 'default'] -
|
||||
%
|
||||
% Outputs:
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
||||
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
||||
args.F_color = [0 0.4470 0.7410]
|
||||
args.M_color = [0.8500 0.3250 0.0980]
|
||||
args.L_color = [0 0 0]
|
||||
args.frames logical {mustBeNumericOrLogical} = true
|
||||
args.legs logical {mustBeNumericOrLogical} = true
|
||||
args.joints logical {mustBeNumericOrLogical} = true
|
||||
args.labels logical {mustBeNumericOrLogical} = true
|
||||
args.platforms logical {mustBeNumericOrLogical} = true
|
||||
args.views char {mustBeMember(args.views,{'all', 'xy', 'xz', 'yz', 'default'})} = 'default'
|
||||
end
|
||||
|
||||
assert(isfield(stewart.platform_F, 'FO_A'), 'stewart.platform_F should have attribute FO_A')
|
||||
FO_A = stewart.platform_F.FO_A;
|
||||
|
||||
assert(isfield(stewart.platform_M, 'MO_B'), 'stewart.platform_M should have attribute MO_B')
|
||||
MO_B = stewart.platform_M.MO_B;
|
||||
|
||||
assert(isfield(stewart.geometry, 'H'), 'stewart.geometry should have attribute H')
|
||||
H = stewart.geometry.H;
|
||||
|
||||
assert(isfield(stewart.platform_F, 'Fa'), 'stewart.platform_F should have attribute Fa')
|
||||
Fa = stewart.platform_F.Fa;
|
||||
|
||||
assert(isfield(stewart.platform_M, 'Mb'), 'stewart.platform_M should have attribute Mb')
|
||||
Mb = stewart.platform_M.Mb;
|
||||
|
||||
if ~strcmp(args.views, 'all')
|
||||
figure;
|
||||
else
|
||||
f = figure('visible', 'off');
|
||||
end
|
||||
|
||||
hold on;
|
||||
|
||||
FTa = [eye(3), FO_A; ...
|
||||
zeros(1,3), 1];
|
||||
ATb = [args.ARB, args.AP; ...
|
||||
zeros(1,3), 1];
|
||||
BTm = [eye(3), -MO_B; ...
|
||||
zeros(1,3), 1];
|
||||
|
||||
FTm = FTa*ATb*BTm;
|
||||
|
||||
d_unit_vector = H/4;
|
||||
|
||||
d_label = H/20;
|
||||
|
||||
Ff = [0, 0, 0];
|
||||
if args.frames
|
||||
quiver3(Ff(1)*ones(1,3), Ff(2)*ones(1,3), Ff(3)*ones(1,3), ...
|
||||
[d_unit_vector 0 0], [0 d_unit_vector 0], [0 0 d_unit_vector], '-', 'Color', args.F_color)
|
||||
|
||||
if args.labels
|
||||
text(Ff(1) + d_label, ...
|
||||
Ff(2) + d_label, ...
|
||||
Ff(3) + d_label, '$\{F\}$', 'Color', args.F_color);
|
||||
end
|
||||
end
|
||||
|
||||
if args.frames
|
||||
quiver3(FO_A(1)*ones(1,3), FO_A(2)*ones(1,3), FO_A(3)*ones(1,3), ...
|
||||
[d_unit_vector 0 0], [0 d_unit_vector 0], [0 0 d_unit_vector], '-', 'Color', args.F_color)
|
||||
|
||||
if args.labels
|
||||
text(FO_A(1) + d_label, ...
|
||||
FO_A(2) + d_label, ...
|
||||
FO_A(3) + d_label, '$\{A\}$', 'Color', args.F_color);
|
||||
end
|
||||
end
|
||||
|
||||
if args.platforms && stewart.platform_F.type == 1
|
||||
theta = [0:0.01:2*pi+0.01]; % Angles [rad]
|
||||
v = null([0; 0; 1]'); % Two vectors that are perpendicular to the circle normal
|
||||
center = [0; 0; 0]; % Center of the circle
|
||||
radius = stewart.platform_F.R; % Radius of the circle [m]
|
||||
|
||||
points = center*ones(1, length(theta)) + radius*(v(:,1)*cos(theta) + v(:,2)*sin(theta));
|
||||
|
||||
plot3(points(1,:), ...
|
||||
points(2,:), ...
|
||||
points(3,:), '-', 'Color', args.F_color);
|
||||
end
|
||||
|
||||
if args.joints
|
||||
scatter3(Fa(1,:), ...
|
||||
Fa(2,:), ...
|
||||
Fa(3,:), 'MarkerEdgeColor', args.F_color);
|
||||
if args.labels
|
||||
for i = 1:size(Fa,2)
|
||||
text(Fa(1,i) + d_label, ...
|
||||
Fa(2,i), ...
|
||||
Fa(3,i), sprintf('$a_{%i}$', i), 'Color', args.F_color);
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
Fm = FTm*[0; 0; 0; 1]; % Get the position of frame {M} w.r.t. {F}
|
||||
|
||||
if args.frames
|
||||
FM_uv = FTm*[d_unit_vector*eye(3); zeros(1,3)]; % Rotated Unit vectors
|
||||
quiver3(Fm(1)*ones(1,3), Fm(2)*ones(1,3), Fm(3)*ones(1,3), ...
|
||||
FM_uv(1,1:3), FM_uv(2,1:3), FM_uv(3,1:3), '-', 'Color', args.M_color)
|
||||
|
||||
if args.labels
|
||||
text(Fm(1) + d_label, ...
|
||||
Fm(2) + d_label, ...
|
||||
Fm(3) + d_label, '$\{M\}$', 'Color', args.M_color);
|
||||
end
|
||||
end
|
||||
|
||||
FB = FO_A + args.AP;
|
||||
|
||||
if args.frames
|
||||
FB_uv = FTm*[d_unit_vector*eye(3); zeros(1,3)]; % Rotated Unit vectors
|
||||
quiver3(FB(1)*ones(1,3), FB(2)*ones(1,3), FB(3)*ones(1,3), ...
|
||||
FB_uv(1,1:3), FB_uv(2,1:3), FB_uv(3,1:3), '-', 'Color', args.M_color)
|
||||
|
||||
if args.labels
|
||||
text(FB(1) - d_label, ...
|
||||
FB(2) + d_label, ...
|
||||
FB(3) + d_label, '$\{B\}$', 'Color', args.M_color);
|
||||
end
|
||||
end
|
||||
|
||||
if args.platforms && stewart.platform_M.type == 1
|
||||
theta = [0:0.01:2*pi+0.01]; % Angles [rad]
|
||||
v = null((FTm(1:3,1:3)*[0;0;1])'); % Two vectors that are perpendicular to the circle normal
|
||||
center = Fm(1:3); % Center of the circle
|
||||
radius = stewart.platform_M.R; % Radius of the circle [m]
|
||||
|
||||
points = center*ones(1, length(theta)) + radius*(v(:,1)*cos(theta) + v(:,2)*sin(theta));
|
||||
|
||||
plot3(points(1,:), ...
|
||||
points(2,:), ...
|
||||
points(3,:), '-', 'Color', args.M_color);
|
||||
end
|
||||
|
||||
if args.joints
|
||||
Fb = FTm*[Mb;ones(1,6)];
|
||||
|
||||
scatter3(Fb(1,:), ...
|
||||
Fb(2,:), ...
|
||||
Fb(3,:), 'MarkerEdgeColor', args.M_color);
|
||||
|
||||
if args.labels
|
||||
for i = 1:size(Fb,2)
|
||||
text(Fb(1,i) + d_label, ...
|
||||
Fb(2,i), ...
|
||||
Fb(3,i), sprintf('$b_{%i}$', i), 'Color', args.M_color);
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
if args.legs
|
||||
for i = 1:6
|
||||
plot3([Fa(1,i), Fb(1,i)], ...
|
||||
[Fa(2,i), Fb(2,i)], ...
|
||||
[Fa(3,i), Fb(3,i)], '-', 'Color', args.L_color);
|
||||
|
||||
if args.labels
|
||||
text((Fa(1,i)+Fb(1,i))/2 + d_label, ...
|
||||
(Fa(2,i)+Fb(2,i))/2, ...
|
||||
(Fa(3,i)+Fb(3,i))/2, sprintf('$%i$', i), 'Color', args.L_color);
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
switch args.views
|
||||
case 'default'
|
||||
view([1 -0.6 0.4]);
|
||||
case 'xy'
|
||||
view([0 0 1]);
|
||||
case 'xz'
|
||||
view([0 -1 0]);
|
||||
case 'yz'
|
||||
view([1 0 0]);
|
||||
end
|
||||
axis equal;
|
||||
axis off;
|
||||
|
||||
if strcmp(args.views, 'all')
|
||||
hAx = findobj('type', 'axes');
|
||||
|
||||
figure;
|
||||
s1 = subplot(2,2,1);
|
||||
copyobj(get(hAx(1), 'Children'), s1);
|
||||
view([0 0 1]);
|
||||
axis equal;
|
||||
axis off;
|
||||
title('Top')
|
||||
|
||||
s2 = subplot(2,2,2);
|
||||
copyobj(get(hAx(1), 'Children'), s2);
|
||||
view([1 -0.6 0.4]);
|
||||
axis equal;
|
||||
axis off;
|
||||
|
||||
s3 = subplot(2,2,3);
|
||||
copyobj(get(hAx(1), 'Children'), s3);
|
||||
view([1 0 0]);
|
||||
axis equal;
|
||||
axis off;
|
||||
title('Front')
|
||||
|
||||
s4 = subplot(2,2,4);
|
||||
copyobj(get(hAx(1), 'Children'), s4);
|
||||
view([0 -1 0]);
|
||||
axis equal;
|
||||
axis off;
|
||||
title('Side')
|
||||
|
||||
close(f);
|
||||
end
|
@ -1,34 +0,0 @@
|
||||
function [P, R] = forwardKinematicsApprox(stewart, args)
|
||||
% forwardKinematicsApprox - Computed the approximate pose of {B} with respect to {A} from the length of each strut and using
|
||||
% the Jacobian Matrix
|
||||
%
|
||||
% Syntax: [P, R] = forwardKinematicsApprox(stewart, args)
|
||||
%
|
||||
% Inputs:
|
||||
% - stewart - A structure with the following fields
|
||||
% - kinematics.J [6x6] - The Jacobian Matrix
|
||||
% - args - Can have the following fields:
|
||||
% - dL [6x1] - Displacement of each strut [m]
|
||||
%
|
||||
% Outputs:
|
||||
% - P [3x1] - The estimated position of {B} with respect to {A}
|
||||
% - R [3x3] - The estimated rotation matrix that gives the orientation of {B} with respect to {A}
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.dL (6,1) double {mustBeNumeric} = zeros(6,1)
|
||||
end
|
||||
|
||||
assert(isfield(stewart.kinematics, 'J'), 'stewart.kinematics should have attribute J')
|
||||
J = stewart.kinematics.J;
|
||||
|
||||
X = J\args.dL;
|
||||
|
||||
P = X(1:3);
|
||||
|
||||
theta = norm(X(4:6));
|
||||
s = X(4:6)/theta;
|
||||
|
||||
R = [s(1)^2*(1-cos(theta)) + cos(theta) , s(1)*s(2)*(1-cos(theta)) - s(3)*sin(theta), s(1)*s(3)*(1-cos(theta)) + s(2)*sin(theta);
|
||||
s(2)*s(1)*(1-cos(theta)) + s(3)*sin(theta), s(2)^2*(1-cos(theta)) + cos(theta), s(2)*s(3)*(1-cos(theta)) - s(1)*sin(theta);
|
||||
s(3)*s(1)*(1-cos(theta)) - s(2)*sin(theta), s(3)*s(2)*(1-cos(theta)) + s(1)*sin(theta), s(3)^2*(1-cos(theta)) + cos(theta)];
|
@ -1,50 +0,0 @@
|
||||
function [stewart] = generateCubicConfiguration(stewart, args)
|
||||
% generateCubicConfiguration - Generate a Cubic Configuration
|
||||
%
|
||||
% Syntax: [stewart] = generateCubicConfiguration(stewart, args)
|
||||
%
|
||||
% Inputs:
|
||||
% - stewart - A structure with the following fields
|
||||
% - geometry.H [1x1] - Total height of the platform [m]
|
||||
% - args - Can have the following fields:
|
||||
% - Hc [1x1] - Height of the "useful" part of the cube [m]
|
||||
% - FOc [1x1] - Height of the center of the cube with respect to {F} [m]
|
||||
% - FHa [1x1] - Height of the plane joining the points ai with respect to the frame {F} [m]
|
||||
% - MHb [1x1] - Height of the plane joining the points bi with respect to the frame {M} [m]
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - updated Stewart structure with the added fields:
|
||||
% - platform_F.Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
|
||||
% - platform_M.Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.Hc (1,1) double {mustBeNumeric, mustBePositive} = 60e-3
|
||||
args.FOc (1,1) double {mustBeNumeric} = 50e-3
|
||||
args.FHa (1,1) double {mustBeNumeric, mustBeNonnegative} = 15e-3
|
||||
args.MHb (1,1) double {mustBeNumeric, mustBeNonnegative} = 15e-3
|
||||
end
|
||||
|
||||
assert(isfield(stewart.geometry, 'H'), 'stewart.geometry should have attribute H')
|
||||
H = stewart.geometry.H;
|
||||
|
||||
sx = [ 2; -1; -1];
|
||||
sy = [ 0; 1; -1];
|
||||
sz = [ 1; 1; 1];
|
||||
|
||||
R = [sx, sy, sz]./vecnorm([sx, sy, sz]);
|
||||
|
||||
L = args.Hc*sqrt(3);
|
||||
|
||||
Cc = R'*[[0;0;L],[L;0;L],[L;0;0],[L;L;0],[0;L;0],[0;L;L]] - [0;0;1.5*args.Hc];
|
||||
|
||||
CCf = [Cc(:,1), Cc(:,3), Cc(:,3), Cc(:,5), Cc(:,5), Cc(:,1)]; % CCf(:,i) corresponds to the bottom cube's vertice corresponding to the i'th leg
|
||||
CCm = [Cc(:,2), Cc(:,2), Cc(:,4), Cc(:,4), Cc(:,6), Cc(:,6)]; % CCm(:,i) corresponds to the top cube's vertice corresponding to the i'th leg
|
||||
|
||||
CSi = (CCm - CCf)./vecnorm(CCm - CCf);
|
||||
|
||||
Fa = CCf + [0; 0; args.FOc] + ((args.FHa-(args.FOc-args.Hc/2))./CSi(3,:)).*CSi;
|
||||
Mb = CCf + [0; 0; args.FOc-H] + ((H-args.MHb-(args.FOc-args.Hc/2))./CSi(3,:)).*CSi;
|
||||
|
||||
stewart.platform_F.Fa = Fa;
|
||||
stewart.platform_M.Mb = Mb;
|
@ -1,18 +0,0 @@
|
||||
function [K] = generateDiagPidControl(G, fs)
|
||||
%%
|
||||
pid_opts = pidtuneOptions(...
|
||||
'PhaseMargin', 50, ...
|
||||
'DesignFocus', 'disturbance-rejection');
|
||||
|
||||
%%
|
||||
K = tf(zeros(6));
|
||||
|
||||
for i = 1:6
|
||||
input_name = G.InputName(i);
|
||||
output_name = G.OutputName(i);
|
||||
K(i, i) = tf(pidtune(minreal(G(output_name, input_name)), 'PIDF', 2*pi*fs, pid_opts));
|
||||
end
|
||||
|
||||
K.InputName = G.OutputName;
|
||||
K.OutputName = G.InputName;
|
||||
end
|
@ -1,39 +0,0 @@
|
||||
function [stewart] = generateGeneralConfiguration(stewart, args)
|
||||
% generateGeneralConfiguration - Generate a Very General Configuration
|
||||
%
|
||||
% Syntax: [stewart] = generateGeneralConfiguration(stewart, args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Can have the following fields:
|
||||
% - FH [1x1] - Height of the position of the fixed joints with respect to the frame {F} [m]
|
||||
% - FR [1x1] - Radius of the position of the fixed joints in the X-Y [m]
|
||||
% - FTh [6x1] - Angles of the fixed joints in the X-Y plane with respect to the X axis [rad]
|
||||
% - MH [1x1] - Height of the position of the mobile joints with respect to the frame {M} [m]
|
||||
% - FR [1x1] - Radius of the position of the mobile joints in the X-Y [m]
|
||||
% - MTh [6x1] - Angles of the mobile joints in the X-Y plane with respect to the X axis [rad]
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - updated Stewart structure with the added fields:
|
||||
% - platform_F.Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
|
||||
% - platform_M.Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.FH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
|
||||
args.FR (1,1) double {mustBeNumeric, mustBePositive} = 115e-3;
|
||||
args.FTh (6,1) double {mustBeNumeric} = [-10, 10, 120-10, 120+10, 240-10, 240+10]*(pi/180);
|
||||
args.MH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
|
||||
args.MR (1,1) double {mustBeNumeric, mustBePositive} = 90e-3;
|
||||
args.MTh (6,1) double {mustBeNumeric} = [-60+10, 60-10, 60+10, 180-10, 180+10, -60-10]*(pi/180);
|
||||
end
|
||||
|
||||
Fa = zeros(3,6);
|
||||
Mb = zeros(3,6);
|
||||
|
||||
for i = 1:6
|
||||
Fa(:,i) = [args.FR*cos(args.FTh(i)); args.FR*sin(args.FTh(i)); args.FH];
|
||||
Mb(:,i) = [args.MR*cos(args.MTh(i)); args.MR*sin(args.MTh(i)); -args.MH];
|
||||
end
|
||||
|
||||
stewart.platform_F.Fa = Fa;
|
||||
stewart.platform_M.Mb = Mb;
|
@ -1,53 +0,0 @@
|
||||
function [U_exc] = generateShapedNoise(args)
|
||||
% generateShapedNoise - Generate a Shaped Noise excitation signal
|
||||
%
|
||||
% Syntax: [U_exc] = generateShapedNoise(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Optinal arguments:
|
||||
% - Ts - Sampling Time - [s]
|
||||
% - V_mean - Mean value of the excitation voltage - [V]
|
||||
% - V_exc - Excitation Amplitude, could be numeric or TF - [V rms]
|
||||
% - t_start - Time at which the noise begins - [s]
|
||||
% - exc_duration - Duration of the noise - [s]
|
||||
% - smooth_ends - 'true' or 'false': smooth transition between 0 and V_mean - [-]
|
||||
|
||||
arguments
|
||||
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-4
|
||||
args.V_mean (1,1) double {mustBeNumeric} = 0
|
||||
args.V_exc = 1
|
||||
args.t_start (1,1) double {mustBeNumeric, mustBePositive} = 5
|
||||
args.exc_duration (1,1) double {mustBeNumeric, mustBePositive} = 10
|
||||
args.smooth_ends logical {mustBeNumericOrLogical} = true
|
||||
end
|
||||
|
||||
t_noise = 0:args.Ts:args.exc_duration;
|
||||
|
||||
if isnumeric(args.V_exc)
|
||||
V_noise = args.V_mean + args.V_exc*sqrt(1/args.Ts/2)*randn(length(t_noise), 1)';
|
||||
elseif isct(args.V_exc)
|
||||
V_noise = args.V_mean + lsim(args.V_exc, sqrt(1/args.Ts/2)*randn(length(t_noise), 1), t_noise)';
|
||||
end
|
||||
|
||||
t_smooth_start = args.Ts:args.Ts:args.t_start;
|
||||
|
||||
V_smooth_start = zeros(size(t_smooth_start));
|
||||
V_smooth_end = zeros(size(t_smooth_start));
|
||||
|
||||
if args.smooth_ends
|
||||
Vd_max = args.V_mean/(0.7*args.t_start);
|
||||
|
||||
V_d = zeros(size(t_smooth_start));
|
||||
V_d(t_smooth_start < 0.2*args.t_start) = t_smooth_start(t_smooth_start < 0.2*args.t_start)*Vd_max/(0.2*args.t_start);
|
||||
V_d(t_smooth_start > 0.2*args.t_start & t_smooth_start < 0.7*args.t_start) = Vd_max;
|
||||
V_d(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) = Vd_max - (t_smooth_start(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) - 0.7*args.t_start)*Vd_max/(0.2*args.t_start);
|
||||
|
||||
V_smooth_start = cumtrapz(V_d)*args.Ts;
|
||||
|
||||
V_smooth_end = args.V_mean - V_smooth_start;
|
||||
end
|
||||
|
||||
V_exc = [V_smooth_start, V_noise, V_smooth_end];
|
||||
t_exc = args.Ts*[0:1:length(V_exc)-1];
|
||||
|
||||
U_exc = [t_exc; V_exc];
|
@ -1,54 +0,0 @@
|
||||
function [U_exc] = generateSinIncreasingAmpl(args)
|
||||
% generateSinIncreasingAmpl - Generate Sinus with increasing amplitude
|
||||
%
|
||||
% Syntax: [U_exc] = generateSinIncreasingAmpl(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Optinal arguments:
|
||||
% - Ts - Sampling Time - [s]
|
||||
% - V_mean - Mean value of the excitation voltage - [V]
|
||||
% - sin_ampls - Excitation Amplitudes - [V]
|
||||
% - sin_freq - Excitation Frequency - [Hz]
|
||||
% - sin_num - Number of period for each amplitude - [-]
|
||||
% - t_start - Time at which the excitation begins - [s]
|
||||
% - smooth_ends - 'true' or 'false': smooth transition between 0 and V_mean - [-]
|
||||
|
||||
arguments
|
||||
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-4
|
||||
args.V_mean (1,1) double {mustBeNumeric} = 0
|
||||
args.sin_ampls double {mustBeNumeric, mustBePositive} = [0.1, 0.2, 0.3]
|
||||
args.sin_period (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
args.sin_num (1,1) double {mustBeNumeric, mustBePositive, mustBeInteger} = 3
|
||||
args.t_start (1,1) double {mustBeNumeric, mustBePositive} = 5
|
||||
args.smooth_ends logical {mustBeNumericOrLogical} = true
|
||||
end
|
||||
|
||||
t_noise = 0:args.Ts:args.sin_period*args.sin_num;
|
||||
sin_exc = [];
|
||||
|
||||
for sin_ampl = args.sin_ampls
|
||||
sin_exc = [sin_exc, args.V_mean + sin_ampl*sin(2*pi/args.sin_period*t_noise)];
|
||||
end
|
||||
|
||||
t_smooth_start = args.Ts:args.Ts:args.t_start;
|
||||
|
||||
V_smooth_start = zeros(size(t_smooth_start));
|
||||
V_smooth_end = zeros(size(t_smooth_start));
|
||||
|
||||
if args.smooth_ends
|
||||
Vd_max = args.V_mean/(0.7*args.t_start);
|
||||
|
||||
V_d = zeros(size(t_smooth_start));
|
||||
V_d(t_smooth_start < 0.2*args.t_start) = t_smooth_start(t_smooth_start < 0.2*args.t_start)*Vd_max/(0.2*args.t_start);
|
||||
V_d(t_smooth_start > 0.2*args.t_start & t_smooth_start < 0.7*args.t_start) = Vd_max;
|
||||
V_d(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) = Vd_max - (t_smooth_start(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) - 0.7*args.t_start)*Vd_max/(0.2*args.t_start);
|
||||
|
||||
V_smooth_start = cumtrapz(V_d)*args.Ts;
|
||||
|
||||
V_smooth_end = args.V_mean - V_smooth_start;
|
||||
end
|
||||
|
||||
V_exc = [V_smooth_start, sin_exc, V_smooth_end];
|
||||
t_exc = args.Ts*[0:1:length(V_exc)-1];
|
||||
|
||||
U_exc = [t_exc; V_exc];
|
@ -1,35 +0,0 @@
|
||||
function [ref] = generateSpiralAngleTrajectory(args)
|
||||
% generateSpiralAngleTrajectory -
|
||||
%
|
||||
% Syntax: [ref] = generateSpiralAngleTrajectory(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args
|
||||
%
|
||||
% Outputs:
|
||||
% - ref - Reference Signal
|
||||
|
||||
arguments
|
||||
args.R_tot (1,1) double {mustBeNumeric, mustBePositive} = 10e-6 % [rad]
|
||||
args.n_turn (1,1) double {mustBeInteger, mustBePositive} = 5 % [-]
|
||||
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % [s]
|
||||
args.t_turn (1,1) double {mustBeNumeric, mustBePositive} = 1 % [s]
|
||||
args.t_end (1,1) double {mustBeNumeric, mustBePositive} = 1 % [s]
|
||||
end
|
||||
|
||||
time_s = 0:args.Ts:args.n_turn*args.t_turn;
|
||||
time_e = 0:args.Ts:args.t_end;
|
||||
|
||||
Rx = sin(2*pi*time_s/args.t_turn).*(args.R_tot*time_s/(args.n_turn*args.t_turn));
|
||||
Ry = cos(2*pi*time_s/args.t_turn).*(args.R_tot*time_s/(args.n_turn*args.t_turn));
|
||||
|
||||
Rx = [Rx, 0*time_e];
|
||||
Ry = [Ry, Ry(end) - Ry(end)*time_e/args.t_end];
|
||||
|
||||
t = 0:args.Ts:args.Ts*(length(Rx) - 1);
|
||||
|
||||
ref = zeros(length(Rx), 7);
|
||||
|
||||
ref(:, 1) = t;
|
||||
ref(:, 5) = Rx;
|
||||
ref(:, 6) = Ry;
|
@ -1,76 +0,0 @@
|
||||
function [U_exc] = generateSweepExc(args)
|
||||
% generateSweepExc - Generate a Sweep Sine excitation signal
|
||||
%
|
||||
% Syntax: [U_exc] = generateSweepExc(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Optinal arguments:
|
||||
% - Ts - Sampling Time - [s]
|
||||
% - f_start - Start frequency of the sweep - [Hz]
|
||||
% - f_end - End frequency of the sweep - [Hz]
|
||||
% - V_mean - Mean value of the excitation voltage - [V]
|
||||
% - V_exc - Excitation Amplitude for the Sweep, could be numeric or TF - [V]
|
||||
% - t_start - Time at which the sweep begins - [s]
|
||||
% - exc_duration - Duration of the sweep - [s]
|
||||
% - sweep_type - 'logarithmic' or 'linear' - [-]
|
||||
% - smooth_ends - 'true' or 'false': smooth transition between 0 and V_mean - [-]
|
||||
|
||||
arguments
|
||||
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-4
|
||||
args.f_start (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
args.f_end (1,1) double {mustBeNumeric, mustBePositive} = 1e3
|
||||
args.V_mean (1,1) double {mustBeNumeric} = 0
|
||||
args.V_exc = 1
|
||||
args.t_start (1,1) double {mustBeNumeric, mustBeNonnegative} = 5
|
||||
args.exc_duration (1,1) double {mustBeNumeric, mustBePositive} = 10
|
||||
args.sweep_type char {mustBeMember(args.sweep_type,{'log', 'lin'})} = 'lin'
|
||||
args.smooth_ends logical {mustBeNumericOrLogical} = true
|
||||
end
|
||||
|
||||
t_sweep = 0:args.Ts:args.exc_duration;
|
||||
|
||||
if strcmp(args.sweep_type, 'log')
|
||||
V_exc = sin(2*pi*args.f_start * args.exc_duration/log(args.f_end/args.f_start) * (exp(log(args.f_end/args.f_start)*t_sweep/args.exc_duration) - 1));
|
||||
elseif strcmp(args.sweep_type, 'lin')
|
||||
V_exc = sin(2*pi*(args.f_start + (args.f_end - args.f_start)/2/args.exc_duration*t_sweep).*t_sweep);
|
||||
else
|
||||
error('sweep_type should either be equal to "log" or to "lin"');
|
||||
end
|
||||
|
||||
if isnumeric(args.V_exc)
|
||||
V_sweep = args.V_mean + args.V_exc*V_exc;
|
||||
elseif isct(args.V_exc)
|
||||
if strcmp(args.sweep_type, 'log')
|
||||
V_sweep = args.V_mean + abs(squeeze(freqresp(args.V_exc, args.f_start*(args.f_end/args.f_start).^(t_sweep/args.exc_duration), 'Hz')))'.*V_exc;
|
||||
elseif strcmp(args.sweep_type, 'lin')
|
||||
V_sweep = args.V_mean + abs(squeeze(freqresp(args.V_exc, args.f_start+(args.f_end-args.f_start)/args.exc_duration*t_sweep, 'Hz')))'.*V_exc;
|
||||
end
|
||||
end
|
||||
|
||||
if args.t_start > 0
|
||||
t_smooth_start = args.Ts:args.Ts:args.t_start;
|
||||
|
||||
V_smooth_start = zeros(size(t_smooth_start));
|
||||
V_smooth_end = zeros(size(t_smooth_start));
|
||||
|
||||
if args.smooth_ends
|
||||
Vd_max = args.V_mean/(0.7*args.t_start);
|
||||
|
||||
V_d = zeros(size(t_smooth_start));
|
||||
V_d(t_smooth_start < 0.2*args.t_start) = t_smooth_start(t_smooth_start < 0.2*args.t_start)*Vd_max/(0.2*args.t_start);
|
||||
V_d(t_smooth_start > 0.2*args.t_start & t_smooth_start < 0.7*args.t_start) = Vd_max;
|
||||
V_d(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) = Vd_max - (t_smooth_start(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) - 0.7*args.t_start)*Vd_max/(0.2*args.t_start);
|
||||
|
||||
V_smooth_start = cumtrapz(V_d)*args.Ts;
|
||||
|
||||
V_smooth_end = args.V_mean - V_smooth_start;
|
||||
end
|
||||
else
|
||||
V_smooth_start = [];
|
||||
V_smooth_end = [];
|
||||
end
|
||||
|
||||
V_exc = [V_smooth_start, V_sweep, V_smooth_end];
|
||||
t_exc = args.Ts*[0:1:length(V_exc)-1];
|
||||
|
||||
U_exc = [t_exc; V_exc];
|
@ -1,48 +0,0 @@
|
||||
function [ref] = generateXYZTrajectory(args)
|
||||
% generateXYZTrajectory -
|
||||
%
|
||||
% Syntax: [ref] = generateXYZTrajectory(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args
|
||||
%
|
||||
% Outputs:
|
||||
% - ref - Reference Signal
|
||||
|
||||
arguments
|
||||
args.points double {mustBeNumeric} = zeros(2, 3) % [m]
|
||||
|
||||
args.ti (1,1) double {mustBeNumeric, mustBeNonnegative} = 1 % Time to go to first point and after last point [s]
|
||||
args.tw (1,1) double {mustBeNumeric, mustBeNonnegative} = 0.5 % Time wait between each point [s]
|
||||
args.tm (1,1) double {mustBeNumeric, mustBeNonnegative} = 1 % Motion time between points [s]
|
||||
|
||||
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % Sampling Time [s]
|
||||
end
|
||||
|
||||
time_i = 0:args.Ts:args.ti;
|
||||
time_w = 0:args.Ts:args.tw;
|
||||
time_m = 0:args.Ts:args.tm;
|
||||
|
||||
% Go to initial position
|
||||
xyz = (args.points(1,:))'*(time_i/args.ti);
|
||||
|
||||
% Wait
|
||||
xyz = [xyz, xyz(:,end).*ones(size(time_w))];
|
||||
|
||||
% Scans
|
||||
for i = 2:size(args.points, 1)
|
||||
% Go to next point
|
||||
xyz = [xyz, xyz(:,end) + (args.points(i,:)' - xyz(:,end))*(time_m/args.tm)];
|
||||
% Wait a litle bit
|
||||
xyz = [xyz, xyz(:,end).*ones(size(time_w))];
|
||||
end
|
||||
|
||||
% End motion
|
||||
xyz = [xyz, xyz(:,end) - xyz(:,end)*(time_i/args.ti)];
|
||||
|
||||
t = 0:args.Ts:args.Ts*(length(xyz) - 1);
|
||||
|
||||
ref = zeros(length(xyz), 7);
|
||||
|
||||
ref(:, 1) = t;
|
||||
ref(:, 2:4) = xyz';
|
@ -1,83 +0,0 @@
|
||||
function [ref] = generateYZScanTrajectory(args)
|
||||
% generateYZScanTrajectory -
|
||||
%
|
||||
% Syntax: [ref] = generateYZScanTrajectory(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args
|
||||
%
|
||||
% Outputs:
|
||||
% - ref - Reference Signal
|
||||
|
||||
arguments
|
||||
args.y_tot (1,1) double {mustBeNumeric, mustBePositive} = 10e-6 % [m]
|
||||
args.z_tot (1,1) double {mustBeNumeric, mustBePositive} = 10e-6 % [m]
|
||||
|
||||
args.n (1,1) double {mustBeInteger, mustBePositive} = 10 % [-]
|
||||
|
||||
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-4 % [s]
|
||||
|
||||
args.ti (1,1) double {mustBeNumeric, mustBeNonnegative} = 1 % [s]
|
||||
args.tw (1,1) double {mustBeNumeric, mustBeNonnegative} = 1 % [s]
|
||||
args.ty (1,1) double {mustBeNumeric, mustBeNonnegative} = 1 % [s]
|
||||
args.tz (1,1) double {mustBeNumeric, mustBeNonnegative} = 1 % [s]
|
||||
end
|
||||
|
||||
time_i = 0:args.Ts:args.ti;
|
||||
time_w = 0:args.Ts:args.tw;
|
||||
time_y = 0:args.Ts:args.ty;
|
||||
time_z = 0:args.Ts:args.tz;
|
||||
|
||||
% Go to initial position
|
||||
y = (time_i/args.ti)*(args.y_tot/2);
|
||||
|
||||
% Wait
|
||||
y = [y, y(end)*ones(size(time_w))];
|
||||
|
||||
% Scans
|
||||
for i = 1:args.n
|
||||
if mod(i,2) == 0
|
||||
y = [y, -(args.y_tot/2) + (time_y/args.ty)*args.y_tot];
|
||||
else
|
||||
y = [y, (args.y_tot/2) - (time_y/args.ty)*args.y_tot];
|
||||
end
|
||||
|
||||
if i < args.n
|
||||
y = [y, y(end)*ones(size(time_z))];
|
||||
end
|
||||
end
|
||||
|
||||
% Wait a litle bit
|
||||
y = [y, y(end)*ones(size(time_w))];
|
||||
|
||||
% End motion
|
||||
y = [y, y(end) - y(end)*time_i/args.ti];
|
||||
|
||||
% Go to initial position
|
||||
z = (time_i/args.ti)*(args.z_tot/2);
|
||||
|
||||
% Wait
|
||||
z = [z, z(end)*ones(size(time_w))];
|
||||
|
||||
% Scans
|
||||
for i = 1:args.n
|
||||
z = [z, z(end)*ones(size(time_y))];
|
||||
|
||||
if i < args.n
|
||||
z = [z, z(end) - (time_z/args.tz)*args.z_tot/(args.n-1)];
|
||||
end
|
||||
end
|
||||
|
||||
% Wait a litle bit
|
||||
z = [z, z(end)*ones(size(time_w))];
|
||||
|
||||
% End motion
|
||||
z = [z, z(end) - z(end)*time_i/args.ti];
|
||||
|
||||
t = 0:args.Ts:args.Ts*(length(y) - 1);
|
||||
|
||||
ref = zeros(length(y), 7);
|
||||
|
||||
ref(:, 1) = t;
|
||||
ref(:, 3) = y;
|
||||
ref(:, 4) = z;
|
@ -1,34 +0,0 @@
|
||||
function [J] = getJacobianNanoHexapod(Hbm)
|
||||
% getJacobianNanoHexapod -
|
||||
%
|
||||
% Syntax: [J] = getJacobianNanoHexapod(Hbm)
|
||||
%
|
||||
% Inputs:
|
||||
% - Hbm - Height of {B} w.r.t. {M} [m]
|
||||
%
|
||||
% Outputs:
|
||||
% - J - Jacobian Matrix
|
||||
|
||||
Fa = [[-86.05, -74.78, 22.49],
|
||||
[ 86.05, -74.78, 22.49],
|
||||
[ 107.79, -37.13, 22.49],
|
||||
[ 21.74, 111.91, 22.49],
|
||||
[-21.74, 111.91, 22.49],
|
||||
[-107.79, -37.13, 22.49]]'*1e-3; % Ai w.r.t. {F} [m]
|
||||
|
||||
Mb = [[-28.47, -106.25, -22.50],
|
||||
[ 28.47, -106.25, -22.50],
|
||||
[ 106.25, 28.47, -22.50],
|
||||
[ 77.78, 77.78, -22.50],
|
||||
[-77.78, 77.78, -22.50],
|
||||
[-106.25, 28.47, -22.50]]'*1e-3; % Bi w.r.t. {M} [m]
|
||||
|
||||
H = 95e-3; % Stewart platform height [m]
|
||||
Fb = Mb + [0; 0; H]; % Bi w.r.t. {F} [m]
|
||||
|
||||
si = Fb - Fa;
|
||||
si = si./vecnorm(si); % Normalize
|
||||
|
||||
Bb = Mb - [0; 0; Hbm];
|
||||
|
||||
J = [si', cross(Bb, si)'];
|
@ -1,23 +0,0 @@
|
||||
function [M] = getTransformationMatrixAcc(Opm, Osm)
|
||||
% getTransformationMatrixAcc -
|
||||
%
|
||||
% Syntax: [M] = getTransformationMatrixAcc(Opm, Osm)
|
||||
%
|
||||
% Inputs:
|
||||
% - Opm - Nx3 (N = number of accelerometer measurements) X,Y,Z position of accelerometers
|
||||
% - Opm - Nx3 (N = number of accelerometer measurements) Unit vectors representing the accelerometer orientation
|
||||
%
|
||||
% Outputs:
|
||||
% - M - Transformation Matrix
|
||||
|
||||
M = zeros(length(Opm), 6);
|
||||
|
||||
for i = 1:length(Opm)
|
||||
Ri = [0, Opm(3,i), -Opm(2,i);
|
||||
-Opm(3,i), 0, Opm(1,i);
|
||||
Opm(2,i), -Opm(1,i), 0];
|
||||
M(i, 1:3) = Osm(:,i)';
|
||||
M(i, 4:6) = Osm(:,i)'*Ri;
|
||||
end
|
||||
|
||||
end
|
@ -1,43 +0,0 @@
|
||||
function [stewart] = initializeAmplifiedStrutDynamics(stewart, args)
|
||||
% initializeAmplifiedStrutDynamics - Add Stiffness and Damping properties of each strut
|
||||
%
|
||||
% Syntax: [stewart] = initializeAmplifiedStrutDynamics(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Structure with the following fields:
|
||||
% - Ka [6x1] - Vertical stiffness contribution of the piezoelectric stack [N/m]
|
||||
% - Ca [6x1] - Vertical damping contribution of the piezoelectric stack [N/(m/s)]
|
||||
% - Kr [6x1] - Vertical (residual) stiffness when the piezoelectric stack is removed [N/m]
|
||||
% - Cr [6x1] - Vertical (residual) damping when the piezoelectric stack is removed [N/(m/s)]
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - updated Stewart structure with the added fields:
|
||||
% - actuators.type = 2
|
||||
% - actuators.K [6x1] - Total Stiffness of each strut [N/m]
|
||||
% - actuators.C [6x1] - Total Damping of each strut [N/(m/s)]
|
||||
% - actuators.Ka [6x1] - Vertical stiffness contribution of the piezoelectric stack [N/m]
|
||||
% - actuators.Ca [6x1] - Vertical damping contribution of the piezoelectric stack [N/(m/s)]
|
||||
% - actuators.Kr [6x1] - Vertical stiffness when the piezoelectric stack is removed [N/m]
|
||||
% - actuators.Cr [6x1] - Vertical damping when the piezoelectric stack is removed [N/(m/s)]
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.Kr (6,1) double {mustBeNumeric, mustBeNonnegative} = 5e6*ones(6,1)
|
||||
args.Cr (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(6,1)
|
||||
args.Ka (6,1) double {mustBeNumeric, mustBeNonnegative} = 15e6*ones(6,1)
|
||||
args.Ca (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(6,1)
|
||||
end
|
||||
|
||||
K = args.Ka + args.Kr;
|
||||
C = args.Ca + args.Cr;
|
||||
|
||||
stewart.actuators.type = 2;
|
||||
|
||||
stewart.actuators.Ka = args.Ka;
|
||||
stewart.actuators.Ca = args.Ca;
|
||||
|
||||
stewart.actuators.Kr = args.Kr;
|
||||
stewart.actuators.Cr = args.Cr;
|
||||
|
||||
stewart.actuators.K = K;
|
||||
stewart.actuators.C = K;
|
@ -1,34 +0,0 @@
|
||||
function [axisc] = initializeAxisc(args)
|
||||
|
||||
arguments
|
||||
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'flexible'
|
||||
end
|
||||
|
||||
axisc = struct();
|
||||
|
||||
switch args.type
|
||||
case 'none'
|
||||
axisc.type = 0;
|
||||
case 'rigid'
|
||||
axisc.type = 1;
|
||||
case 'flexible'
|
||||
axisc.type = 2;
|
||||
end
|
||||
|
||||
% Structure
|
||||
axisc.structure.density = 3400; % [kg/m3]
|
||||
axisc.structure.STEP = './STEPS/axisc/axisc_structure.STEP';
|
||||
|
||||
% Wheel
|
||||
axisc.wheel.density = 2700; % [kg/m3]
|
||||
axisc.wheel.STEP = './STEPS/axisc/axisc_wheel.STEP';
|
||||
|
||||
% Mass
|
||||
axisc.mass.density = 7800; % [kg/m3]
|
||||
axisc.mass.STEP = './STEPS/axisc/axisc_mass.STEP';
|
||||
|
||||
% Gear
|
||||
axisc.gear.density = 7800; % [kg/m3]
|
||||
axisc.gear.STEP = './STEPS/axisc/axisc_gear.STEP';
|
||||
|
||||
save('./mat/stages.mat', 'axisc', '-append');
|
@ -1,17 +0,0 @@
|
||||
function [cedrat] = initializeCedratPiezo()
|
||||
%% Stewart Object
|
||||
cedrat = struct();
|
||||
cedrat.k = 10e7; % Linear Stiffness of each "blade" [N/m]
|
||||
cedrat.ka = 10e7; % Linear Stiffness of the stack [N/m]
|
||||
|
||||
cedrat.c = 0.1*sqrt(1*cedrat.k); % [N/(m/s)]
|
||||
cedrat.ca = 0.1*sqrt(1*cedrat.ka); % [N/(m/s)]
|
||||
|
||||
cedrat.L = 80; % Total Width of the Actuator[mm]
|
||||
cedrat.H = 45; % Total Height of the Actuator [mm]
|
||||
cedrat.L2 = sqrt((cedrat.L/2)^2 + (cedrat.H/2)^2); % Length of the elipsoidal sections [mm]
|
||||
cedrat.alpha = 180/pi*atan2(cedrat.L/2, cedrat.H/2); % [deg]
|
||||
|
||||
%% Save
|
||||
save('./mat/stages.mat', 'cedrat', '-append');
|
||||
end
|
@ -1,39 +0,0 @@
|
||||
function [] = initializeController(args)
|
||||
|
||||
arguments
|
||||
args.type char {mustBeMember(args.type,{'open-loop', 'iff', 'dvf', 'hac-dvf', 'ref-track-L', 'ref-track-iff-L', 'cascade-hac-lac', 'hac-iff', 'stabilizing'})} = 'open-loop'
|
||||
end
|
||||
|
||||
controller = struct();
|
||||
|
||||
switch args.type
|
||||
case 'open-loop'
|
||||
controller.type = 1;
|
||||
controller.name = 'Open-Loop';
|
||||
case 'dvf'
|
||||
controller.type = 2;
|
||||
controller.name = 'Decentralized Direct Velocity Feedback';
|
||||
case 'iff'
|
||||
controller.type = 3;
|
||||
controller.name = 'Decentralized Integral Force Feedback';
|
||||
case 'hac-dvf'
|
||||
controller.type = 4;
|
||||
controller.name = 'HAC-DVF';
|
||||
case 'ref-track-L'
|
||||
controller.type = 5;
|
||||
controller.name = 'Reference Tracking in the frame of the legs';
|
||||
case 'ref-track-iff-L'
|
||||
controller.type = 6;
|
||||
controller.name = 'Reference Tracking in the frame of the legs + IFF';
|
||||
case 'cascade-hac-lac'
|
||||
controller.type = 7;
|
||||
controller.name = 'Cascade Control + HAC-LAC';
|
||||
case 'hac-iff'
|
||||
controller.type = 8;
|
||||
controller.name = 'HAC-IFF';
|
||||
case 'stabilizing'
|
||||
controller.type = 9;
|
||||
controller.name = 'Stabilizing Controller';
|
||||
end
|
||||
|
||||
save('./mat/controller.mat', 'controller');
|
@ -1,59 +0,0 @@
|
||||
function [stewart] = initializeCylindricalPlatforms(stewart, args)
|
||||
% initializeCylindricalPlatforms - Initialize the geometry of the Fixed and Mobile Platforms
|
||||
%
|
||||
% Syntax: [stewart] = initializeCylindricalPlatforms(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Structure with the following fields:
|
||||
% - Fpm [1x1] - Fixed Platform Mass [kg]
|
||||
% - Fph [1x1] - Fixed Platform Height [m]
|
||||
% - Fpr [1x1] - Fixed Platform Radius [m]
|
||||
% - Mpm [1x1] - Mobile Platform Mass [kg]
|
||||
% - Mph [1x1] - Mobile Platform Height [m]
|
||||
% - Mpr [1x1] - Mobile Platform Radius [m]
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - updated Stewart structure with the added fields:
|
||||
% - platform_F [struct] - structure with the following fields:
|
||||
% - type = 1
|
||||
% - M [1x1] - Fixed Platform Mass [kg]
|
||||
% - I [3x3] - Fixed Platform Inertia matrix [kg*m^2]
|
||||
% - H [1x1] - Fixed Platform Height [m]
|
||||
% - R [1x1] - Fixed Platform Radius [m]
|
||||
% - platform_M [struct] - structure with the following fields:
|
||||
% - M [1x1] - Mobile Platform Mass [kg]
|
||||
% - I [3x3] - Mobile Platform Inertia matrix [kg*m^2]
|
||||
% - H [1x1] - Mobile Platform Height [m]
|
||||
% - R [1x1] - Mobile Platform Radius [m]
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.Fpm (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
args.Fph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3
|
||||
args.Fpr (1,1) double {mustBeNumeric, mustBePositive} = 125e-3
|
||||
args.Mpm (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
args.Mph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3
|
||||
args.Mpr (1,1) double {mustBeNumeric, mustBePositive} = 100e-3
|
||||
end
|
||||
|
||||
I_F = diag([1/12*args.Fpm * (3*args.Fpr^2 + args.Fph^2), ...
|
||||
1/12*args.Fpm * (3*args.Fpr^2 + args.Fph^2), ...
|
||||
1/2 *args.Fpm * args.Fpr^2]);
|
||||
|
||||
I_M = diag([1/12*args.Mpm * (3*args.Mpr^2 + args.Mph^2), ...
|
||||
1/12*args.Mpm * (3*args.Mpr^2 + args.Mph^2), ...
|
||||
1/2 *args.Mpm * args.Mpr^2]);
|
||||
|
||||
stewart.platform_F.type = 1;
|
||||
|
||||
stewart.platform_F.I = I_F;
|
||||
stewart.platform_F.M = args.Fpm;
|
||||
stewart.platform_F.R = args.Fpr;
|
||||
stewart.platform_F.H = args.Fph;
|
||||
|
||||
stewart.platform_M.type = 1;
|
||||
|
||||
stewart.platform_M.I = I_M;
|
||||
stewart.platform_M.M = args.Mpm;
|
||||
stewart.platform_M.R = args.Mpr;
|
||||
stewart.platform_M.H = args.Mph;
|
@ -1,71 +0,0 @@
|
||||
function [stewart] = initializeCylindricalStruts(stewart, args)
|
||||
% initializeCylindricalStruts - Define the mass and moment of inertia of cylindrical struts
|
||||
%
|
||||
% Syntax: [stewart] = initializeCylindricalStruts(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Structure with the following fields:
|
||||
% - Fsm [1x1] - Mass of the Fixed part of the struts [kg]
|
||||
% - Fsh [1x1] - Height of cylinder for the Fixed part of the struts [m]
|
||||
% - Fsr [1x1] - Radius of cylinder for the Fixed part of the struts [m]
|
||||
% - Msm [1x1] - Mass of the Mobile part of the struts [kg]
|
||||
% - Msh [1x1] - Height of cylinder for the Mobile part of the struts [m]
|
||||
% - Msr [1x1] - Radius of cylinder for the Mobile part of the struts [m]
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - updated Stewart structure with the added fields:
|
||||
% - struts_F [struct] - structure with the following fields:
|
||||
% - M [6x1] - Mass of the Fixed part of the struts [kg]
|
||||
% - I [3x3x6] - Moment of Inertia for the Fixed part of the struts [kg*m^2]
|
||||
% - H [6x1] - Height of cylinder for the Fixed part of the struts [m]
|
||||
% - R [6x1] - Radius of cylinder for the Fixed part of the struts [m]
|
||||
% - struts_M [struct] - structure with the following fields:
|
||||
% - M [6x1] - Mass of the Mobile part of the struts [kg]
|
||||
% - I [3x3x6] - Moment of Inertia for the Mobile part of the struts [kg*m^2]
|
||||
% - H [6x1] - Height of cylinder for the Mobile part of the struts [m]
|
||||
% - R [6x1] - Radius of cylinder for the Mobile part of the struts [m]
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.Fsm (1,1) double {mustBeNumeric, mustBePositive} = 0.1
|
||||
args.Fsh (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
|
||||
args.Fsr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3
|
||||
args.Msm (1,1) double {mustBeNumeric, mustBePositive} = 0.1
|
||||
args.Msh (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
|
||||
args.Msr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3
|
||||
end
|
||||
|
||||
Fsm = ones(6,1).*args.Fsm;
|
||||
Fsh = ones(6,1).*args.Fsh;
|
||||
Fsr = ones(6,1).*args.Fsr;
|
||||
|
||||
Msm = ones(6,1).*args.Msm;
|
||||
Msh = ones(6,1).*args.Msh;
|
||||
Msr = ones(6,1).*args.Msr;
|
||||
|
||||
I_F = zeros(3, 3, 6); % Inertia of the "fixed" part of the strut
|
||||
I_M = zeros(3, 3, 6); % Inertia of the "mobile" part of the strut
|
||||
|
||||
for i = 1:6
|
||||
I_F(:,:,i) = diag([1/12 * Fsm(i) * (3*Fsr(i)^2 + Fsh(i)^2), ...
|
||||
1/12 * Fsm(i) * (3*Fsr(i)^2 + Fsh(i)^2), ...
|
||||
1/2 * Fsm(i) * Fsr(i)^2]);
|
||||
|
||||
I_M(:,:,i) = diag([1/12 * Msm(i) * (3*Msr(i)^2 + Msh(i)^2), ...
|
||||
1/12 * Msm(i) * (3*Msr(i)^2 + Msh(i)^2), ...
|
||||
1/2 * Msm(i) * Msr(i)^2]);
|
||||
end
|
||||
|
||||
stewart.struts_M.type = 1;
|
||||
|
||||
stewart.struts_M.I = I_M;
|
||||
stewart.struts_M.M = Msm;
|
||||
stewart.struts_M.R = Msr;
|
||||
stewart.struts_M.H = Msh;
|
||||
|
||||
stewart.struts_F.type = 1;
|
||||
|
||||
stewart.struts_F.I = I_F;
|
||||
stewart.struts_F.M = Fsm;
|
||||
stewart.struts_F.R = Fsr;
|
||||
stewart.struts_F.H = Fsh;
|
@ -1,135 +0,0 @@
|
||||
function [] = initializeDisturbances(args)
|
||||
% initializeDisturbances - Initialize the disturbances
|
||||
%
|
||||
% Syntax: [] = initializeDisturbances(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args -
|
||||
|
||||
arguments
|
||||
% Global parameter to enable or disable the disturbances
|
||||
args.enable logical {mustBeNumericOrLogical} = true
|
||||
% Ground Motion - X direction
|
||||
args.Dwx logical {mustBeNumericOrLogical} = true
|
||||
% Ground Motion - Y direction
|
||||
args.Dwy logical {mustBeNumericOrLogical} = true
|
||||
% Ground Motion - Z direction
|
||||
args.Dwz logical {mustBeNumericOrLogical} = true
|
||||
% Translation Stage - X direction
|
||||
args.Fty_x logical {mustBeNumericOrLogical} = true
|
||||
% Translation Stage - Z direction
|
||||
args.Fty_z logical {mustBeNumericOrLogical} = true
|
||||
% Spindle - Z direction
|
||||
args.Frz_z logical {mustBeNumericOrLogical} = true
|
||||
end
|
||||
|
||||
load('./mat/dist_psd.mat', 'dist_f');
|
||||
|
||||
dist_f.f = dist_f.f(2:end);
|
||||
dist_f.psd_gm = dist_f.psd_gm(2:end);
|
||||
dist_f.psd_ty = dist_f.psd_ty(2:end);
|
||||
dist_f.psd_rz = dist_f.psd_rz(2:end);
|
||||
|
||||
Fs = 2*dist_f.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
|
||||
N = 2*length(dist_f.f); % Number of Samples match the one of the wanted PSD
|
||||
T0 = N/Fs; % Signal Duration [s]
|
||||
df = 1/T0; % Frequency resolution of the DFT [Hz]
|
||||
% Also equal to (dist_f.f(2)-dist_f.f(1))
|
||||
t = linspace(0, T0, N+1)'; % Time Vector [s]
|
||||
Ts = 1/Fs; % Sampling Time [s]
|
||||
|
||||
phi = dist_f.psd_gm;
|
||||
C = zeros(N/2,1);
|
||||
for i = 1:N/2
|
||||
C(i) = sqrt(phi(i)*df);
|
||||
end
|
||||
|
||||
if args.Dwx && args.enable
|
||||
rng(111);
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
Dwx = N/sqrt(2)*ifft(Cx); % Ground Motion - x direction [m]
|
||||
else
|
||||
Dwx = zeros(length(t), 1);
|
||||
end
|
||||
|
||||
if args.Dwy && args.enable
|
||||
rng(112);
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
Dwy = N/sqrt(2)*ifft(Cx); % Ground Motion - y direction [m]
|
||||
else
|
||||
Dwy = zeros(length(t), 1);
|
||||
end
|
||||
|
||||
if args.Dwy && args.enable
|
||||
rng(113);
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
Dwz = N/sqrt(2)*ifft(Cx); % Ground Motion - z direction [m]
|
||||
else
|
||||
Dwz = zeros(length(t), 1);
|
||||
end
|
||||
|
||||
if args.Fty_x && args.enable
|
||||
phi = dist_f.psd_ty; % TODO - we take here the vertical direction which is wrong but approximate
|
||||
C = zeros(N/2,1);
|
||||
for i = 1:N/2
|
||||
C(i) = sqrt(phi(i)*df);
|
||||
end
|
||||
rng(121);
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Ty x [N]
|
||||
Fty_x = u;
|
||||
else
|
||||
Fty_x = zeros(length(t), 1);
|
||||
end
|
||||
|
||||
if args.Fty_z && args.enable
|
||||
phi = dist_f.psd_ty;
|
||||
C = zeros(N/2,1);
|
||||
for i = 1:N/2
|
||||
C(i) = sqrt(phi(i)*df);
|
||||
end
|
||||
rng(122);
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Ty z [N]
|
||||
Fty_z = u;
|
||||
else
|
||||
Fty_z = zeros(length(t), 1);
|
||||
end
|
||||
|
||||
if args.Frz_z && args.enable
|
||||
phi = dist_f.psd_rz;
|
||||
C = zeros(N/2,1);
|
||||
for i = 1:N/2
|
||||
C(i) = sqrt(phi(i)*df);
|
||||
end
|
||||
rng(131);
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Rz z [N]
|
||||
Frz_z = u;
|
||||
else
|
||||
Frz_z = zeros(length(t), 1);
|
||||
end
|
||||
|
||||
u = zeros(length(t), 6);
|
||||
Fd = u;
|
||||
|
||||
Dwx = Dwx - Dwx(1);
|
||||
Dwy = Dwy - Dwy(1);
|
||||
Dwz = Dwz - Dwz(1);
|
||||
Fty_x = Fty_x - Fty_x(1);
|
||||
Fty_z = Fty_z - Fty_z(1);
|
||||
Frz_z = Frz_z - Frz_z(1);
|
||||
|
||||
save('./mat/nass_disturbances.mat', 'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_z', 'Fd', 'Ts', 't', 'args');
|
@ -1,35 +0,0 @@
|
||||
function [stewart] = initializeFramesPositions(stewart, args)
|
||||
% initializeFramesPositions - Initialize the positions of frames {A}, {B}, {F} and {M}
|
||||
%
|
||||
% Syntax: [stewart] = initializeFramesPositions(stewart, args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Can have the following fields:
|
||||
% - H [1x1] - Total Height of the Stewart Platform (height from {F} to {M}) [m]
|
||||
% - MO_B [1x1] - Height of the frame {B} with respect to {M} [m]
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - A structure with the following fields:
|
||||
% - geometry.H [1x1] - Total Height of the Stewart Platform [m]
|
||||
% - geometry.FO_M [3x1] - Position of {M} with respect to {F} [m]
|
||||
% - platform_M.MO_B [3x1] - Position of {B} with respect to {M} [m]
|
||||
% - platform_F.FO_A [3x1] - Position of {A} with respect to {F} [m]
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.H (1,1) double {mustBeNumeric, mustBePositive} = 90e-3
|
||||
args.MO_B (1,1) double {mustBeNumeric} = 50e-3
|
||||
end
|
||||
|
||||
H = args.H; % Total Height of the Stewart Platform [m]
|
||||
|
||||
FO_M = [0; 0; H]; % Position of {M} with respect to {F} [m]
|
||||
|
||||
MO_B = [0; 0; args.MO_B]; % Position of {B} with respect to {M} [m]
|
||||
|
||||
FO_A = MO_B + FO_M; % Position of {A} with respect to {F} [m]
|
||||
|
||||
stewart.geometry.H = H;
|
||||
stewart.geometry.FO_M = FO_M;
|
||||
stewart.platform_M.MO_B = MO_B;
|
||||
stewart.platform_F.FO_A = FO_A;
|
@ -1,45 +0,0 @@
|
||||
function [granite] = initializeGranite(args)
|
||||
|
||||
arguments
|
||||
args.type char {mustBeMember(args.type,{'rigid', 'flexible', 'none', 'modal-analysis', 'init'})} = 'flexible'
|
||||
args.Foffset logical {mustBeNumericOrLogical} = false
|
||||
args.density (1,1) double {mustBeNumeric, mustBeNonnegative} = 2800 % Density [kg/m3]
|
||||
args.K (3,1) double {mustBeNumeric, mustBeNonnegative} = [4e9; 3e8; 8e8] % [N/m]
|
||||
args.C (3,1) double {mustBeNumeric, mustBeNonnegative} = [4.0e5; 1.1e5; 9.0e5] % [N/(m/s)]
|
||||
args.x0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the X direction [m]
|
||||
args.y0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the Y direction [m]
|
||||
args.z0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the Z direction [m]
|
||||
args.sample_pos (1,1) double {mustBeNumeric} = 0.8 % Height of the measurment point [m]
|
||||
end
|
||||
|
||||
granite = struct();
|
||||
|
||||
switch args.type
|
||||
case 'none'
|
||||
granite.type = 0;
|
||||
case 'rigid'
|
||||
granite.type = 1;
|
||||
case 'flexible'
|
||||
granite.type = 2;
|
||||
case 'modal-analysis'
|
||||
granite.type = 3;
|
||||
case 'init'
|
||||
granite.type = 4;
|
||||
end
|
||||
|
||||
granite.density = args.density; % [kg/m3]
|
||||
granite.STEP = './STEPS/granite/granite.STEP';
|
||||
|
||||
granite.sample_pos = args.sample_pos; % [m]
|
||||
|
||||
granite.K = args.K; % [N/m]
|
||||
granite.C = args.C; % [N/(m/s)]
|
||||
|
||||
if args.Foffset && ~strcmp(args.type, 'none') && ~strcmp(args.type, 'rigid') && ~strcmp(args.type, 'init')
|
||||
load('mat/Foffset.mat', 'Fgm');
|
||||
granite.Deq = -Fgm'./granite.K;
|
||||
else
|
||||
granite.Deq = zeros(6,1);
|
||||
end
|
||||
|
||||
save('./mat/stages.mat', 'granite', '-append');
|
@ -1,22 +0,0 @@
|
||||
function [ground] = initializeGround(args)
|
||||
|
||||
arguments
|
||||
args.type char {mustBeMember(args.type,{'none', 'rigid'})} = 'rigid'
|
||||
args.rot_point (3,1) double {mustBeNumeric} = zeros(3,1) % Rotation point for the ground motion [m]
|
||||
end
|
||||
|
||||
ground = struct();
|
||||
|
||||
switch args.type
|
||||
case 'none'
|
||||
ground.type = 0;
|
||||
case 'rigid'
|
||||
ground.type = 1;
|
||||
end
|
||||
|
||||
ground.shape = [2, 2, 0.5]; % [m]
|
||||
ground.density = 2800; % [kg/m3]
|
||||
|
||||
ground.rot_point = args.rot_point;
|
||||
|
||||
save('./mat/stages.mat', 'ground', '-append');
|
@ -1,48 +0,0 @@
|
||||
function [stewart] = initializeInertialSensor(stewart, args)
|
||||
% initializeInertialSensor - Initialize the inertial sensor in each strut
|
||||
%
|
||||
% Syntax: [stewart] = initializeInertialSensor(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Structure with the following fields:
|
||||
% - type - 'geophone', 'accelerometer', 'none'
|
||||
% - mass [1x1] - Weight of the inertial mass [kg]
|
||||
% - freq [1x1] - Cutoff frequency [Hz]
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - updated Stewart structure with the added fields:
|
||||
% - stewart.sensors.inertial
|
||||
% - type - 1 (geophone), 2 (accelerometer), 3 (none)
|
||||
% - K [1x1] - Stiffness [N/m]
|
||||
% - C [1x1] - Damping [N/(m/s)]
|
||||
% - M [1x1] - Inertial Mass [kg]
|
||||
% - G [1x1] - Gain
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.type char {mustBeMember(args.type,{'geophone', 'accelerometer', 'none'})} = 'none'
|
||||
args.mass (1,1) double {mustBeNumeric, mustBeNonnegative} = 1e-2
|
||||
args.freq (1,1) double {mustBeNumeric, mustBeNonnegative} = 1e3
|
||||
end
|
||||
|
||||
sensor = struct();
|
||||
|
||||
switch args.type
|
||||
case 'geophone'
|
||||
sensor.type = 1;
|
||||
|
||||
sensor.M = args.mass;
|
||||
sensor.K = sensor.M * (2*pi*args.freq)^2;
|
||||
sensor.C = 2*sqrt(sensor.M * sensor.K);
|
||||
case 'accelerometer'
|
||||
sensor.type = 2;
|
||||
|
||||
sensor.M = args.mass;
|
||||
sensor.K = sensor.M * (2*pi*args.freq)^2;
|
||||
sensor.C = 2*sqrt(sensor.M * sensor.K);
|
||||
sensor.G = -sensor.K/sensor.M;
|
||||
case 'none'
|
||||
sensor.type = 3;
|
||||
end
|
||||
|
||||
stewart.sensors.inertial = sensor;
|
@ -1,131 +0,0 @@
|
||||
function [stewart] = initializeJointDynamics(stewart, args)
|
||||
% initializeJointDynamics - Add Stiffness and Damping properties for the spherical joints
|
||||
%
|
||||
% Syntax: [stewart] = initializeJointDynamics(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Structure with the following fields:
|
||||
% - type_F - 'universal', 'spherical', 'universal_p', 'spherical_p'
|
||||
% - type_M - 'universal', 'spherical', 'universal_p', 'spherical_p'
|
||||
% - Kf_M [6x1] - Bending (Rx, Ry) Stiffness for each top joints [(N.m)/rad]
|
||||
% - Kt_M [6x1] - Torsion (Rz) Stiffness for each top joints [(N.m)/rad]
|
||||
% - Cf_M [6x1] - Bending (Rx, Ry) Damping of each top joint [(N.m)/(rad/s)]
|
||||
% - Ct_M [6x1] - Torsion (Rz) Damping of each top joint [(N.m)/(rad/s)]
|
||||
% - Kf_F [6x1] - Bending (Rx, Ry) Stiffness for each bottom joints [(N.m)/rad]
|
||||
% - Kt_F [6x1] - Torsion (Rz) Stiffness for each bottom joints [(N.m)/rad]
|
||||
% - Cf_F [6x1] - Bending (Rx, Ry) Damping of each bottom joint [(N.m)/(rad/s)]
|
||||
% - Cf_F [6x1] - Torsion (Rz) Damping of each bottom joint [(N.m)/(rad/s)]
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - updated Stewart structure with the added fields:
|
||||
% - stewart.joints_F and stewart.joints_M:
|
||||
% - type - 1 (universal), 2 (spherical), 3 (universal perfect), 4 (spherical perfect)
|
||||
% - Kx, Ky, Kz [6x1] - Translation (Tx, Ty, Tz) Stiffness [N/m]
|
||||
% - Kf [6x1] - Flexion (Rx, Ry) Stiffness [(N.m)/rad]
|
||||
% - Kt [6x1] - Torsion (Rz) Stiffness [(N.m)/rad]
|
||||
% - Cx, Cy, Cz [6x1] - Translation (Rx, Ry) Damping [N/(m/s)]
|
||||
% - Cf [6x1] - Flexion (Rx, Ry) Damping [(N.m)/(rad/s)]
|
||||
% - Cb [6x1] - Torsion (Rz) Damping [(N.m)/(rad/s)]
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.type_F char {mustBeMember(args.type_F,{'universal', 'spherical', 'universal_p', 'spherical_p', 'universal_3dof', 'spherical_3dof', 'flexible'})} = 'universal'
|
||||
args.type_M char {mustBeMember(args.type_M,{'universal', 'spherical', 'universal_p', 'spherical_p', 'universal_3dof', 'spherical_3dof', 'flexible'})} = 'spherical'
|
||||
args.Kf_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 33*ones(6,1)
|
||||
args.Cf_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e-4*ones(6,1)
|
||||
args.Kt_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 236*ones(6,1)
|
||||
args.Ct_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e-3*ones(6,1)
|
||||
args.Kf_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 33*ones(6,1)
|
||||
args.Cf_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e-4*ones(6,1)
|
||||
args.Kt_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 236*ones(6,1)
|
||||
args.Ct_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e-3*ones(6,1)
|
||||
args.Ka_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1.2e8*ones(6,1)
|
||||
args.Ca_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(6,1)
|
||||
args.Kr_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1.1e7*ones(6,1)
|
||||
args.Cr_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(6,1)
|
||||
args.Ka_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1.2e8*ones(6,1)
|
||||
args.Ca_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(6,1)
|
||||
args.Kr_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1.1e7*ones(6,1)
|
||||
args.Cr_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(6,1)
|
||||
args.K_M double {mustBeNumeric} = zeros(6,6)
|
||||
args.M_M double {mustBeNumeric} = zeros(6,6)
|
||||
args.n_xyz_M double {mustBeNumeric} = zeros(2,3)
|
||||
args.xi_M double {mustBeNumeric} = 0.1
|
||||
args.step_file_M char {} = ''
|
||||
args.K_F double {mustBeNumeric} = zeros(6,6)
|
||||
args.M_F double {mustBeNumeric} = zeros(6,6)
|
||||
args.n_xyz_F double {mustBeNumeric} = zeros(2,3)
|
||||
args.xi_F double {mustBeNumeric} = 0.1
|
||||
args.step_file_F char {} = ''
|
||||
end
|
||||
|
||||
switch args.type_F
|
||||
case 'universal'
|
||||
stewart.joints_F.type = 1;
|
||||
case 'spherical'
|
||||
stewart.joints_F.type = 2;
|
||||
case 'universal_p'
|
||||
stewart.joints_F.type = 3;
|
||||
case 'spherical_p'
|
||||
stewart.joints_F.type = 4;
|
||||
case 'flexible'
|
||||
stewart.joints_F.type = 5;
|
||||
case 'universal_3dof'
|
||||
stewart.joints_F.type = 6;
|
||||
case 'spherical_3dof'
|
||||
stewart.joints_F.type = 7;
|
||||
end
|
||||
|
||||
switch args.type_M
|
||||
case 'universal'
|
||||
stewart.joints_M.type = 1;
|
||||
case 'spherical'
|
||||
stewart.joints_M.type = 2;
|
||||
case 'universal_p'
|
||||
stewart.joints_M.type = 3;
|
||||
case 'spherical_p'
|
||||
stewart.joints_M.type = 4;
|
||||
case 'flexible'
|
||||
stewart.joints_M.type = 5;
|
||||
case 'universal_3dof'
|
||||
stewart.joints_M.type = 6;
|
||||
case 'spherical_3dof'
|
||||
stewart.joints_M.type = 7;
|
||||
end
|
||||
|
||||
stewart.joints_M.Ka = args.Ka_M;
|
||||
stewart.joints_M.Kr = args.Kr_M;
|
||||
|
||||
stewart.joints_F.Ka = args.Ka_F;
|
||||
stewart.joints_F.Kr = args.Kr_F;
|
||||
|
||||
stewart.joints_M.Ca = args.Ca_M;
|
||||
stewart.joints_M.Cr = args.Cr_M;
|
||||
|
||||
stewart.joints_F.Ca = args.Ca_F;
|
||||
stewart.joints_F.Cr = args.Cr_F;
|
||||
|
||||
stewart.joints_M.Kf = args.Kf_M;
|
||||
stewart.joints_M.Kt = args.Kt_M;
|
||||
|
||||
stewart.joints_F.Kf = args.Kf_F;
|
||||
stewart.joints_F.Kt = args.Kt_F;
|
||||
|
||||
stewart.joints_M.Cf = args.Cf_M;
|
||||
stewart.joints_M.Ct = args.Ct_M;
|
||||
|
||||
stewart.joints_F.Cf = args.Cf_F;
|
||||
stewart.joints_F.Ct = args.Ct_F;
|
||||
|
||||
stewart.joints_F.M = args.M_F;
|
||||
stewart.joints_F.K = args.K_F;
|
||||
stewart.joints_F.n_xyz = args.n_xyz_F;
|
||||
stewart.joints_F.xi = args.xi_F;
|
||||
stewart.joints_F.xi = args.xi_F;
|
||||
stewart.joints_F.step_file = args.step_file_F;
|
||||
|
||||
stewart.joints_M.M = args.M_M;
|
||||
stewart.joints_M.K = args.K_M;
|
||||
stewart.joints_M.n_xyz = args.n_xyz_M;
|
||||
stewart.joints_M.xi = args.xi_M;
|
||||
stewart.joints_M.step_file = args.step_file_M;
|
@ -1,21 +0,0 @@
|
||||
function [] = initializeLoggingConfiguration(args)
|
||||
|
||||
arguments
|
||||
args.log char {mustBeMember(args.log,{'none', 'all', 'forces'})} = 'none'
|
||||
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3
|
||||
end
|
||||
|
||||
conf_log = struct();
|
||||
|
||||
switch args.log
|
||||
case 'none'
|
||||
conf_log.type = 0;
|
||||
case 'all'
|
||||
conf_log.type = 1;
|
||||
case 'forces'
|
||||
conf_log.type = 2;
|
||||
end
|
||||
|
||||
conf_log.Ts = args.Ts;
|
||||
|
||||
save('./mat/conf_log.mat', 'conf_log');
|
@ -1,110 +0,0 @@
|
||||
function [micro_hexapod] = initializeMicroHexapod(args)
|
||||
|
||||
arguments
|
||||
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible', 'modal-analysis', 'init', 'compliance'})} = 'flexible'
|
||||
% initializeFramesPositions
|
||||
args.H (1,1) double {mustBeNumeric, mustBePositive} = 350e-3
|
||||
args.MO_B (1,1) double {mustBeNumeric} = 270e-3
|
||||
% generateGeneralConfiguration
|
||||
args.FH (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
|
||||
args.FR (1,1) double {mustBeNumeric, mustBePositive} = 175.5e-3
|
||||
args.FTh (6,1) double {mustBeNumeric} = [-10, 10, 120-10, 120+10, 240-10, 240+10]*(pi/180)
|
||||
args.MH (1,1) double {mustBeNumeric, mustBePositive} = 45e-3
|
||||
args.MR (1,1) double {mustBeNumeric, mustBePositive} = 118e-3
|
||||
args.MTh (6,1) double {mustBeNumeric} = [-60+10, 60-10, 60+10, 180-10, 180+10, -60-10]*(pi/180)
|
||||
% initializeStrutDynamics
|
||||
args.Ki (6,1) double {mustBeNumeric, mustBeNonnegative} = 2e7*ones(6,1)
|
||||
args.Ci (6,1) double {mustBeNumeric, mustBeNonnegative} = 1.4e3*ones(6,1)
|
||||
% initializeCylindricalPlatforms
|
||||
args.Fpm (1,1) double {mustBeNumeric, mustBePositive} = 10
|
||||
args.Fph (1,1) double {mustBeNumeric, mustBePositive} = 26e-3
|
||||
args.Fpr (1,1) double {mustBeNumeric, mustBePositive} = 207.5e-3
|
||||
args.Mpm (1,1) double {mustBeNumeric, mustBePositive} = 10
|
||||
args.Mph (1,1) double {mustBeNumeric, mustBePositive} = 26e-3
|
||||
args.Mpr (1,1) double {mustBeNumeric, mustBePositive} = 150e-3
|
||||
% initializeCylindricalStruts
|
||||
args.Fsm (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
args.Fsh (1,1) double {mustBeNumeric, mustBePositive} = 100e-3
|
||||
args.Fsr (1,1) double {mustBeNumeric, mustBePositive} = 25e-3
|
||||
args.Msm (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
args.Msh (1,1) double {mustBeNumeric, mustBePositive} = 100e-3
|
||||
args.Msr (1,1) double {mustBeNumeric, mustBePositive} = 25e-3
|
||||
% inverseKinematics
|
||||
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
||||
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
||||
% Force that stiffness of each joint should apply at t=0
|
||||
args.Foffset logical {mustBeNumericOrLogical} = false
|
||||
end
|
||||
|
||||
stewart = initializeStewartPlatform();
|
||||
|
||||
stewart = initializeFramesPositions(stewart, ...
|
||||
'H', args.H, ...
|
||||
'MO_B', args.MO_B);
|
||||
|
||||
stewart = generateGeneralConfiguration(stewart, ...
|
||||
'FH', args.FH, ...
|
||||
'FR', args.FR, ...
|
||||
'FTh', args.FTh, ...
|
||||
'MH', args.MH, ...
|
||||
'MR', args.MR, ...
|
||||
'MTh', args.MTh);
|
||||
|
||||
stewart = computeJointsPose(stewart);
|
||||
|
||||
stewart = initializeStrutDynamics(stewart, ...
|
||||
'K', args.Ki, ...
|
||||
'C', args.Ci);
|
||||
|
||||
stewart = initializeJointDynamics(stewart, ...
|
||||
'type_F', 'universal_p', ...
|
||||
'type_M', 'spherical_p');
|
||||
|
||||
stewart = initializeCylindricalPlatforms(stewart, ...
|
||||
'Fpm', args.Fpm, ...
|
||||
'Fph', args.Fph, ...
|
||||
'Fpr', args.Fpr, ...
|
||||
'Mpm', args.Mpm, ...
|
||||
'Mph', args.Mph, ...
|
||||
'Mpr', args.Mpr);
|
||||
|
||||
stewart = initializeCylindricalStruts(stewart, ...
|
||||
'Fsm', args.Fsm, ...
|
||||
'Fsh', args.Fsh, ...
|
||||
'Fsr', args.Fsr, ...
|
||||
'Msm', args.Msm, ...
|
||||
'Msh', args.Msh, ...
|
||||
'Msr', args.Msr);
|
||||
|
||||
stewart = computeJacobian(stewart);
|
||||
|
||||
stewart = initializeStewartPose(stewart, ...
|
||||
'AP', args.AP, ...
|
||||
'ARB', args.ARB);
|
||||
|
||||
stewart = initializeInertialSensor(stewart, 'type', 'none');
|
||||
|
||||
if args.Foffset && ~strcmp(args.type, 'none') && ~strcmp(args.type, 'rigid') && ~strcmp(args.type, 'init')
|
||||
load('mat/Foffset.mat', 'Fhm');
|
||||
stewart.actuators.dLeq = -Fhm'./args.Ki;
|
||||
else
|
||||
stewart.actuators.dLeq = zeros(6,1);
|
||||
end
|
||||
|
||||
switch args.type
|
||||
case 'none'
|
||||
stewart.type = 0;
|
||||
case 'rigid'
|
||||
stewart.type = 1;
|
||||
case 'flexible'
|
||||
stewart.type = 2;
|
||||
case 'modal-analysis'
|
||||
stewart.type = 3;
|
||||
case 'init'
|
||||
stewart.type = 4;
|
||||
case 'compliance'
|
||||
stewart.type = 5;
|
||||
end
|
||||
|
||||
micro_hexapod = stewart;
|
||||
save('./mat/stages.mat', 'micro_hexapod', '-append');
|
@ -1,196 +0,0 @@
|
||||
function [micro_hexapod] = initializeMicroHexapod(args)
|
||||
arguments
|
||||
args.rigid logical {mustBeNumericOrLogical} = false
|
||||
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
||||
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
||||
end
|
||||
|
||||
%% Stewart Object
|
||||
micro_hexapod = struct();
|
||||
micro_hexapod.h = 350; % Total height of the platform [mm]
|
||||
micro_hexapod.jacobian = 270; % Distance from the top of the mobile platform to the Jacobian point [mm]
|
||||
|
||||
%% Bottom Plate - Mechanical Design
|
||||
BP = struct();
|
||||
|
||||
BP.rad.int = 110; % Internal Radius [mm]
|
||||
BP.rad.ext = 207.5; % External Radius [mm]
|
||||
BP.thickness = 26; % Thickness [mm]
|
||||
BP.leg.rad = 175.5; % Radius where the legs articulations are positionned [mm]
|
||||
BP.leg.ang = 9.5; % Angle Offset [deg]
|
||||
BP.density = 8000; % Density of the material [kg/m^3]
|
||||
BP.color = [0.6 0.6 0.6]; % Color [rgb]
|
||||
BP.shape = [BP.rad.int BP.thickness; BP.rad.int 0; BP.rad.ext 0; BP.rad.ext BP.thickness];
|
||||
|
||||
%% Top Plate - Mechanical Design
|
||||
TP = struct();
|
||||
|
||||
TP.rad.int = 82; % Internal Radius [mm]
|
||||
TP.rad.ext = 150; % Internal Radius [mm]
|
||||
TP.thickness = 26; % Thickness [mm]
|
||||
TP.leg.rad = 118; % Radius where the legs articulations are positionned [mm]
|
||||
TP.leg.ang = 12.1; % Angle Offset [deg]
|
||||
TP.density = 8000; % Density of the material [kg/m^3]
|
||||
TP.color = [0.6 0.6 0.6]; % Color [rgb]
|
||||
TP.shape = [TP.rad.int TP.thickness; TP.rad.int 0; TP.rad.ext 0; TP.rad.ext TP.thickness];
|
||||
|
||||
%% Struts
|
||||
Leg = struct();
|
||||
|
||||
Leg.stroke = 10e-3; % Maximum Stroke of each leg [m]
|
||||
if args.rigid
|
||||
Leg.k.ax = 1e12; % Stiffness of each leg [N/m]
|
||||
else
|
||||
Leg.k.ax = 2e7; % Stiffness of each leg [N/m]
|
||||
end
|
||||
Leg.ksi.ax = 0.1; % Modal damping ksi = 1/2*c/sqrt(km) []
|
||||
Leg.rad.bottom = 25; % Radius of the cylinder of the bottom part [mm]
|
||||
Leg.rad.top = 17; % Radius of the cylinder of the top part [mm]
|
||||
Leg.density = 8000; % Density of the material [kg/m^3]
|
||||
Leg.color.bottom = [0.5 0.5 0.5]; % Color [rgb]
|
||||
Leg.color.top = [0.5 0.5 0.5]; % Color [rgb]
|
||||
|
||||
Leg.sphere.bottom = Leg.rad.bottom; % Size of the sphere at the end of the leg [mm]
|
||||
Leg.sphere.top = Leg.rad.top; % Size of the sphere at the end of the leg [mm]
|
||||
Leg.m = TP.density*((pi*(TP.rad.ext/1000)^2)*(TP.thickness/1000)-(pi*(TP.rad.int/1000^2))*(TP.thickness/1000))/6; % TODO [kg]
|
||||
Leg = updateDamping(Leg);
|
||||
|
||||
|
||||
%% Sphere
|
||||
SP = struct();
|
||||
|
||||
SP.height.bottom = 27; % [mm]
|
||||
SP.height.top = 27; % [mm]
|
||||
SP.density.bottom = 8000; % [kg/m^3]
|
||||
SP.density.top = 8000; % [kg/m^3]
|
||||
SP.color.bottom = [0.6 0.6 0.6]; % [rgb]
|
||||
SP.color.top = [0.6 0.6 0.6]; % [rgb]
|
||||
SP.k.ax = 0; % [N*m/deg]
|
||||
SP.ksi.ax = 10;
|
||||
|
||||
SP.thickness.bottom = SP.height.bottom-Leg.sphere.bottom; % [mm]
|
||||
SP.thickness.top = SP.height.top-Leg.sphere.top; % [mm]
|
||||
SP.rad.bottom = Leg.sphere.bottom; % [mm]
|
||||
SP.rad.top = Leg.sphere.top; % [mm]
|
||||
SP.m = SP.density.bottom*2*pi*((SP.rad.bottom*1e-3)^2)*(SP.height.bottom*1e-3); % TODO [kg]
|
||||
|
||||
SP = updateDamping(SP);
|
||||
|
||||
%%
|
||||
Leg.support.bottom = [0 SP.thickness.bottom; 0 0; SP.rad.bottom 0; SP.rad.bottom SP.height.bottom];
|
||||
Leg.support.top = [0 SP.thickness.top; 0 0; SP.rad.top 0; SP.rad.top SP.height.top];
|
||||
|
||||
%%
|
||||
micro_hexapod.BP = BP;
|
||||
micro_hexapod.TP = TP;
|
||||
micro_hexapod.Leg = Leg;
|
||||
micro_hexapod.SP = SP;
|
||||
|
||||
%%
|
||||
micro_hexapod = initializeParameters(micro_hexapod);
|
||||
|
||||
%% Setup equilibrium position of each leg
|
||||
micro_hexapod.L0 = inverseKinematicsHexapod(micro_hexapod, args.AP, args.ARB);
|
||||
|
||||
%% Save
|
||||
save('./mat/stages.mat', 'micro_hexapod', '-append');
|
||||
|
||||
%%
|
||||
function [element] = updateDamping(element)
|
||||
field = fieldnames(element.k);
|
||||
for i = 1:length(field)
|
||||
element.c.(field{i}) = 2*element.ksi.(field{i})*sqrt(element.k.(field{i})*element.m);
|
||||
end
|
||||
end
|
||||
|
||||
%%
|
||||
function [stewart] = initializeParameters(stewart)
|
||||
%% Connection points on base and top plate w.r.t. World frame at the center of the base plate
|
||||
stewart.pos_base = zeros(6, 3);
|
||||
stewart.pos_top = zeros(6, 3);
|
||||
|
||||
alpha_b = stewart.BP.leg.ang*pi/180; % angle de décalage par rapport à 120 deg (pour positionner les supports bases)
|
||||
alpha_t = stewart.TP.leg.ang*pi/180; % +- offset angle from 120 degree spacing on top
|
||||
|
||||
height = (stewart.h-stewart.BP.thickness-stewart.TP.thickness-stewart.Leg.sphere.bottom-stewart.Leg.sphere.top-stewart.SP.thickness.bottom-stewart.SP.thickness.top)*0.001; % TODO
|
||||
|
||||
radius_b = stewart.BP.leg.rad*0.001; % rayon emplacement support base
|
||||
radius_t = stewart.TP.leg.rad*0.001; % top radius in meters
|
||||
|
||||
for i = 1:3
|
||||
% base points
|
||||
angle_m_b = (2*pi/3)* (i-1) - alpha_b;
|
||||
angle_p_b = (2*pi/3)* (i-1) + alpha_b;
|
||||
stewart.pos_base(2*i-1,:) = [radius_b*cos(angle_m_b), radius_b*sin(angle_m_b), 0.0];
|
||||
stewart.pos_base(2*i,:) = [radius_b*cos(angle_p_b), radius_b*sin(angle_p_b), 0.0];
|
||||
|
||||
% top points
|
||||
% Top points are 60 degrees offset
|
||||
angle_m_t = (2*pi/3)* (i-1) - alpha_t + 2*pi/6;
|
||||
angle_p_t = (2*pi/3)* (i-1) + alpha_t + 2*pi/6;
|
||||
stewart.pos_top(2*i-1,:) = [radius_t*cos(angle_m_t), radius_t*sin(angle_m_t), height];
|
||||
stewart.pos_top(2*i,:) = [radius_t*cos(angle_p_t), radius_t*sin(angle_p_t), height];
|
||||
end
|
||||
|
||||
% permute pos_top points so that legs are end points of base and top points
|
||||
stewart.pos_top = [stewart.pos_top(6,:); stewart.pos_top(1:5,:)]; %6th point on top connects to 1st on bottom
|
||||
stewart.pos_top_tranform = stewart.pos_top - height*[zeros(6, 2),ones(6, 1)];
|
||||
|
||||
%% leg vectors
|
||||
legs = stewart.pos_top - stewart.pos_base;
|
||||
leg_length = zeros(6, 1);
|
||||
leg_vectors = zeros(6, 3);
|
||||
for i = 1:6
|
||||
leg_length(i) = norm(legs(i,:));
|
||||
leg_vectors(i,:) = legs(i,:) / leg_length(i);
|
||||
end
|
||||
|
||||
stewart.Leg.lenght = 1000*leg_length(1)/1.5;
|
||||
stewart.Leg.shape.bot = [0 0; ...
|
||||
stewart.Leg.rad.bottom 0; ...
|
||||
stewart.Leg.rad.bottom stewart.Leg.lenght; ...
|
||||
stewart.Leg.rad.top stewart.Leg.lenght; ...
|
||||
stewart.Leg.rad.top 0.2*stewart.Leg.lenght; ...
|
||||
0 0.2*stewart.Leg.lenght];
|
||||
|
||||
%% Calculate revolute and cylindrical axes
|
||||
rev1 = zeros(6, 3);
|
||||
rev2 = zeros(6, 3);
|
||||
cyl1 = zeros(6, 3);
|
||||
for i = 1:6
|
||||
rev1(i,:) = cross(leg_vectors(i,:), [0 0 1]);
|
||||
rev1(i,:) = rev1(i,:) / norm(rev1(i,:));
|
||||
|
||||
rev2(i,:) = - cross(rev1(i,:), leg_vectors(i,:));
|
||||
rev2(i,:) = rev2(i,:) / norm(rev2(i,:));
|
||||
|
||||
cyl1(i,:) = leg_vectors(i,:);
|
||||
end
|
||||
|
||||
|
||||
%% Coordinate systems
|
||||
stewart.lower_leg = struct('rotation', eye(3));
|
||||
stewart.upper_leg = struct('rotation', eye(3));
|
||||
|
||||
for i = 1:6
|
||||
stewart.lower_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
|
||||
stewart.upper_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
|
||||
end
|
||||
|
||||
%% Position Matrix
|
||||
stewart.M_pos_base = stewart.pos_base + (height+(stewart.TP.thickness+stewart.Leg.sphere.top+stewart.SP.thickness.top+stewart.jacobian)*1e-3)*[zeros(6, 2),ones(6, 1)];
|
||||
|
||||
%% Compute Jacobian Matrix
|
||||
aa = stewart.pos_top_tranform + (stewart.jacobian - stewart.TP.thickness - stewart.SP.height.top)*1e-3*[zeros(6, 2),ones(6, 1)];
|
||||
stewart.J = getJacobianMatrix(leg_vectors', aa');
|
||||
end
|
||||
|
||||
%%
|
||||
function J = getJacobianMatrix(RM, M_pos_base)
|
||||
% RM: [3x6] unit vector of each leg in the fixed frame
|
||||
% M_pos_base: [3x6] vector of the leg connection at the top platform location in the fixed frame
|
||||
J = zeros(6);
|
||||
J(:, 1:3) = RM';
|
||||
J(:, 4:6) = cross(M_pos_base, RM)';
|
||||
end
|
||||
end
|
@ -1,76 +0,0 @@
|
||||
function [] = initializeMirror(args)
|
||||
|
||||
arguments
|
||||
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'rigid'
|
||||
args.shape char {mustBeMember(args.shape,{'spherical', 'conical'})} = 'spherical'
|
||||
args.angle (1,1) double {mustBeNumeric, mustBePositive} = 45 % [deg]
|
||||
args.mass (1,1) double {mustBeNumeric, mustBePositive} = 10 % [kg]
|
||||
args.freq (6,1) double {mustBeNumeric, mustBeNonnegative} = 200*ones(6,1) % [Hz]
|
||||
end
|
||||
|
||||
mirror = struct();
|
||||
|
||||
switch args.type
|
||||
case 'none'
|
||||
mirror.type = 0;
|
||||
case 'rigid'
|
||||
mirror.type = 1;
|
||||
case 'flexible'
|
||||
mirror.type = 2;
|
||||
end
|
||||
|
||||
mirror.mass = args.mass;
|
||||
mirror.freq = args.freq;
|
||||
|
||||
mirror.K = zeros(6,1);
|
||||
mirror.K(1:3) = mirror.mass * (2*pi*mirror.freq(1:3)).^2;
|
||||
|
||||
mirror.C = zeros(6,1);
|
||||
mirror.C(1:3) = 0.2 * sqrt(mirror.K(1:3).*mirror.mass);
|
||||
|
||||
mirror.Deq = zeros(6,1);
|
||||
|
||||
mirror.h = 0.05; % Height of the mirror [m]
|
||||
|
||||
mirror.thickness = 0.02; % Thickness of the plate supporting the sample [m]
|
||||
|
||||
mirror.hole_rad = 0.125; % radius of the hole in the mirror [m]
|
||||
|
||||
mirror.support_rad = 0.1; % radius of the support plate [m]
|
||||
|
||||
% point of interest offset in z (above the top surfave) [m]
|
||||
switch args.type
|
||||
case 'none'
|
||||
mirror.jacobian = 0.205;
|
||||
case 'rigid'
|
||||
mirror.jacobian = 0.205 - mirror.h;
|
||||
case 'flexible'
|
||||
mirror.jacobian = 0.205 - mirror.h;
|
||||
end
|
||||
|
||||
mirror.rad = 0.180; % radius of the mirror (at the bottom surface) [m]
|
||||
|
||||
mirror.cone_length = mirror.rad*tand(args.angle)+mirror.h+mirror.jacobian; % Distance from Apex point of the cone to jacobian point
|
||||
|
||||
mirror.shape = [...
|
||||
mirror.support_rad+5e-3 mirror.h-mirror.thickness
|
||||
mirror.hole_rad mirror.h-mirror.thickness; ...
|
||||
mirror.hole_rad 0; ...
|
||||
mirror.rad 0 ...
|
||||
];
|
||||
|
||||
if strcmp(args.shape, 'spherical')
|
||||
mirror.sphere_radius = sqrt((mirror.jacobian+mirror.h)^2+mirror.rad^2); % Radius of the sphere [mm]
|
||||
|
||||
for z = linspace(0, mirror.h, 101)
|
||||
mirror.shape = [mirror.shape; sqrt(mirror.sphere_radius^2-(z-mirror.jacobian-mirror.h)^2) z];
|
||||
end
|
||||
elseif strcmp(args.shape, 'conical')
|
||||
mirror.shape = [mirror.shape; mirror.rad+mirror.h/tand(args.angle) mirror.h];
|
||||
else
|
||||
error('Shape should be either conical or spherical');
|
||||
end
|
||||
|
||||
mirror.shape = [mirror.shape; mirror.support_rad+5e-3 mirror.h];
|
||||
|
||||
save('./mat/stages.mat', 'mirror', '-append');
|
@ -1,142 +1,290 @@
|
||||
function [nano_hexapod] = initializeNanoHexapod(args)
|
||||
|
||||
arguments
|
||||
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible', 'init'})} = 'flexible'
|
||||
% initializeFramesPositions
|
||||
args.H (1,1) double {mustBeNumeric, mustBePositive} = 95e-3
|
||||
args.MO_B (1,1) double {mustBeNumeric} = 170e-3
|
||||
% generateGeneralConfiguration
|
||||
args.FH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
|
||||
args.FR (1,1) double {mustBeNumeric, mustBePositive} = 100e-3
|
||||
args.FTh (6,1) double {mustBeNumeric} = [-10, 10, 120-10, 120+10, 240-10, 240+10]*(pi/180)
|
||||
args.MH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
|
||||
args.MR (1,1) double {mustBeNumeric, mustBePositive} = 90e-3
|
||||
args.MTh (6,1) double {mustBeNumeric} = [-60+10, 60-10, 60+10, 180-10, 180+10, -60-10]*(pi/180)
|
||||
% initializeStrutDynamics
|
||||
args.actuator char {mustBeMember(args.actuator,{'piezo', 'lorentz', 'amplified'})} = 'piezo'
|
||||
args.k1 (1,1) double {mustBeNumeric} = 1e6
|
||||
args.ke (1,1) double {mustBeNumeric} = 5e6
|
||||
args.ka (1,1) double {mustBeNumeric} = 60e6
|
||||
args.c1 (1,1) double {mustBeNumeric} = 10
|
||||
args.F_gain (1,1) double {mustBeNumeric} = 1
|
||||
args.k (1,1) double {mustBeNumeric} = -1
|
||||
args.c (1,1) double {mustBeNumeric} = -1
|
||||
% initializeJointDynamics
|
||||
args.type_F char {mustBeMember(args.type_F,{'universal', 'spherical', 'universal_p', 'spherical_p', 'universal_3dof', 'spherical_3dof', 'flexible'})} = 'universal'
|
||||
args.type_M char {mustBeMember(args.type_M,{'universal', 'spherical', 'universal_p', 'spherical_p', 'universal_3dof', 'spherical_3dof', 'flexible'})} = 'spherical'
|
||||
args.Ka_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1.2e8*ones(6,1)
|
||||
args.Ca_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(6,1)
|
||||
args.Kr_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1.1e7*ones(6,1)
|
||||
args.Cr_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(6,1)
|
||||
args.Kf_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 33*ones(6,1)
|
||||
args.Cf_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e-4*ones(6,1)
|
||||
args.Kt_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 236*ones(6,1)
|
||||
args.Ct_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e-3*ones(6,1)
|
||||
args.Kf_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 33*ones(6,1)
|
||||
args.Cf_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e-4*ones(6,1)
|
||||
args.Kt_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 236*ones(6,1)
|
||||
args.Ct_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e-3*ones(6,1)
|
||||
args.Ka_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1.2e8*ones(6,1)
|
||||
args.Ca_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(6,1)
|
||||
args.Kr_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1.1e7*ones(6,1)
|
||||
args.Cr_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(6,1)
|
||||
% initializeCylindricalPlatforms
|
||||
args.Fpm (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
args.Fph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3
|
||||
args.Fpr (1,1) double {mustBeNumeric, mustBePositive} = 150e-3
|
||||
args.Mpm (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
args.Mph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3
|
||||
args.Mpr (1,1) double {mustBeNumeric, mustBePositive} = 120e-3
|
||||
% initializeCylindricalStruts
|
||||
args.Fsm (1,1) double {mustBeNumeric, mustBePositive} = 0.1
|
||||
args.Fsh (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
|
||||
args.Fsr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3
|
||||
args.Msm (1,1) double {mustBeNumeric, mustBePositive} = 0.1
|
||||
args.Msh (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
|
||||
args.Msr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3
|
||||
% inverseKinematics
|
||||
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
||||
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
||||
% Equilibrium position of each leg
|
||||
args.dLeq (6,1) double {mustBeNumeric} = zeros(6,1)
|
||||
% Force that stiffness of each joint should apply at t=0
|
||||
args.Foffset logical {mustBeNumericOrLogical} = false
|
||||
%% Bottom Flexible Joints
|
||||
args.flex_bot_type char {mustBeMember(args.flex_bot_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
|
||||
args.flex_bot_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
|
||||
args.flex_bot_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
|
||||
args.flex_bot_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
|
||||
args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*7e7 % Axial Stiffness [N/m]
|
||||
args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % X bending Damping [Nm/(rad/s)]
|
||||
args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Y bending Damping [Nm/(rad/s)]
|
||||
args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Torsionnal Damping [Nm/(rad/s)]
|
||||
args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Axial Damping [N/(m/s)]
|
||||
|
||||
%% Top Flexible Joints
|
||||
args.flex_top_type char {mustBeMember(args.flex_top_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
|
||||
args.flex_top_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
|
||||
args.flex_top_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
|
||||
args.flex_top_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
|
||||
args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*7e7 % Axial Stiffness [N/m]
|
||||
args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % X bending Damping [Nm/(rad/s)]
|
||||
args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Y bending Damping [Nm/(rad/s)]
|
||||
args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Torsionnal Damping [Nm/(rad/s)]
|
||||
args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Axial Damping [N/(m/s)]
|
||||
|
||||
%% Jacobian - Location of frame {A} and {B}
|
||||
args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m]
|
||||
|
||||
%% Relative Motion Sensor
|
||||
args.motion_sensor_type char {mustBeMember(args.motion_sensor_type,{'struts', 'plates'})} = 'struts'
|
||||
|
||||
%% Top Plate
|
||||
args.top_plate_type char {mustBeMember(args.top_plate_type,{'rigid', 'flexible'})} = 'rigid'
|
||||
args.top_plate_xi (1,1) double {mustBeNumeric} = 0.01 % Damping Ratio
|
||||
|
||||
%% Actuators
|
||||
args.actuator_type char {mustBeMember(args.actuator_type,{'2dof', 'flexible frame', 'flexible'})} = 'flexible'
|
||||
args.actuator_Ga (6,1) double {mustBeNumeric} = zeros(6,1) % Actuator gain [N/V]
|
||||
args.actuator_Gs (6,1) double {mustBeNumeric} = zeros(6,1) % Sensor gain [V/m]
|
||||
% For 2DoF
|
||||
args.actuator_k (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*380000
|
||||
args.actuator_ke (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*4952605
|
||||
args.actuator_ka (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*2476302
|
||||
args.actuator_c (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*5
|
||||
args.actuator_ce (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*100
|
||||
args.actuator_ca (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*50
|
||||
args.actuator_Leq (6,1) double {mustBeNumeric} = ones(6,1)*0.056 % [m]
|
||||
% For Flexible Frame
|
||||
args.actuator_ks (6,1) double {mustBeNumeric} = ones(6,1)*235e6 % Stiffness of one stack [N/m]
|
||||
args.actuator_cs (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % Stiffness of one stack [N/m]
|
||||
% Misalignment
|
||||
args.actuator_d_align (6,3) double {mustBeNumeric} = zeros(6,3) % [m]
|
||||
|
||||
args.actuator_xi (1,1) double {mustBeNumeric} = 0.01 % Damping Ratio
|
||||
|
||||
%% Controller
|
||||
args.controller_type char {mustBeMember(args.controller_type,{'none', 'iff', 'dvf', 'hac-iff-struts'})} = 'none'
|
||||
end
|
||||
|
||||
stewart = initializeStewartPlatform();
|
||||
nano_hexapod = struct();
|
||||
|
||||
stewart = initializeFramesPositions(stewart, 'H', args.H, 'MO_B', args.MO_B);
|
||||
nano_hexapod.flex_bot = struct();
|
||||
|
||||
stewart = generateGeneralConfiguration(stewart, 'FH', args.FH, 'FR', args.FR, 'FTh', args.FTh, 'MH', args.MH, 'MR', args.MR, 'MTh', args.MTh);
|
||||
|
||||
stewart = computeJointsPose(stewart);
|
||||
|
||||
if args.k > 0 && args.c > 0
|
||||
stewart = initializeStrutDynamics(stewart, 'type', 'classical', 'K', args.k*ones(6,1), 'C', args.c*ones(6,1));
|
||||
elseif args.k > 0
|
||||
stewart = initializeStrutDynamics(stewart, 'type', 'classical', 'K', args.k*ones(6,1), 'C', 1.5*sqrt(args.k)*ones(6,1));
|
||||
elseif strcmp(args.actuator, 'piezo')
|
||||
stewart = initializeStrutDynamics(stewart, 'type', 'classical', 'K', 1e7*ones(6,1), 'C', 1e2*ones(6,1));
|
||||
elseif strcmp(args.actuator, 'lorentz')
|
||||
stewart = initializeStrutDynamics(stewart, 'type', 'classical', 'K', 1e4*ones(6,1), 'C', 1e2*ones(6,1));
|
||||
elseif strcmp(args.actuator, 'amplified')
|
||||
stewart = initializeStrutDynamics(stewart, 'type', 'amplified', ...
|
||||
'k1', args.k1*ones(6,1), ...
|
||||
'c1', args.c1*ones(6,1), ...
|
||||
'ka', args.ka*ones(6,1), ...
|
||||
'ke', args.ke*ones(6,1), ...
|
||||
'F_gain', args.F_gain*ones(6,1));
|
||||
else
|
||||
error('args.actuator should be piezo, lorentz or amplified');
|
||||
end
|
||||
|
||||
stewart = initializeJointDynamics(stewart, ...
|
||||
'type_F', args.type_F, ...
|
||||
'type_M', args.type_M, ...
|
||||
'Kf_M', args.Kf_M, ...
|
||||
'Cf_M', args.Cf_M, ...
|
||||
'Kt_M', args.Kt_M, ...
|
||||
'Ct_M', args.Ct_M, ...
|
||||
'Kf_F', args.Kf_F, ...
|
||||
'Cf_F', args.Cf_F, ...
|
||||
'Kt_F', args.Kt_F, ...
|
||||
'Ct_F', args.Ct_F, ...
|
||||
'Ka_F', args.Ka_F, ...
|
||||
'Ca_F', args.Ca_F, ...
|
||||
'Kr_F', args.Kr_F, ...
|
||||
'Cr_F', args.Cr_F, ...
|
||||
'Ka_M', args.Ka_M, ...
|
||||
'Ca_M', args.Ca_M, ...
|
||||
'Kr_M', args.Kr_M, ...
|
||||
'Cr_M', args.Cr_M);
|
||||
|
||||
stewart = initializeCylindricalPlatforms(stewart, 'Fpm', args.Fpm, 'Fph', args.Fph, 'Fpr', args.Fpr, 'Mpm', args.Mpm, 'Mph', args.Mph, 'Mpr', args.Mpr);
|
||||
|
||||
stewart = initializeCylindricalStruts(stewart, 'Fsm', args.Fsm, 'Fsh', args.Fsh, 'Fsr', args.Fsr, 'Msm', args.Msm, 'Msh', args.Msh, 'Msr', args.Msr);
|
||||
|
||||
stewart = computeJacobian(stewart);
|
||||
|
||||
stewart = initializeStewartPose(stewart, 'AP', args.AP, 'ARB', args.ARB);
|
||||
|
||||
stewart = initializeInertialSensor(stewart, 'type', 'accelerometer');
|
||||
|
||||
if args.Foffset && ~strcmp(args.type, 'none') && ~strcmp(args.type, 'rigid') && ~strcmp(args.type, 'init')
|
||||
load('mat/Foffset.mat', 'Fnm');
|
||||
stewart.actuators.dLeq = -Fnm'./stewart.Ki;
|
||||
else
|
||||
stewart.actuators.dLeq = args.dLeq;
|
||||
end
|
||||
|
||||
switch args.type
|
||||
case 'none'
|
||||
stewart.type = 0;
|
||||
case 'rigid'
|
||||
stewart.type = 1;
|
||||
switch args.flex_bot_type
|
||||
case '2dof'
|
||||
nano_hexapod.flex_bot.type = 1;
|
||||
case '3dof'
|
||||
nano_hexapod.flex_bot.type = 2;
|
||||
case '4dof'
|
||||
nano_hexapod.flex_bot.type = 3;
|
||||
case 'flexible'
|
||||
stewart.type = 2;
|
||||
case 'init'
|
||||
stewart.type = 4;
|
||||
nano_hexapod.flex_bot.type = 4;
|
||||
end
|
||||
|
||||
nano_hexapod = stewart;
|
||||
save('./mat/stages.mat', 'nano_hexapod', '-append');
|
||||
nano_hexapod.flex_bot.kRx = args.flex_bot_kRx; % X bending stiffness [Nm/rad]
|
||||
nano_hexapod.flex_bot.kRy = args.flex_bot_kRy; % Y bending stiffness [Nm/rad]
|
||||
nano_hexapod.flex_bot.kRz = args.flex_bot_kRz; % Torsionnal stiffness [Nm/rad]
|
||||
nano_hexapod.flex_bot.kz = args.flex_bot_kz; % Axial stiffness [N/m]
|
||||
|
||||
nano_hexapod.flex_bot.cRx = args.flex_bot_cRx; % [Nm/(rad/s)]
|
||||
nano_hexapod.flex_bot.cRy = args.flex_bot_cRy; % [Nm/(rad/s)]
|
||||
nano_hexapod.flex_bot.cRz = args.flex_bot_cRz; % [Nm/(rad/s)]
|
||||
nano_hexapod.flex_bot.cz = args.flex_bot_cz; %[N/(m/s)]
|
||||
|
||||
nano_hexapod.flex_top = struct();
|
||||
|
||||
switch args.flex_top_type
|
||||
case '2dof'
|
||||
nano_hexapod.flex_top.type = 1;
|
||||
case '3dof'
|
||||
nano_hexapod.flex_top.type = 2;
|
||||
case '4dof'
|
||||
nano_hexapod.flex_top.type = 3;
|
||||
case 'flexible'
|
||||
nano_hexapod.flex_top.type = 4;
|
||||
end
|
||||
|
||||
nano_hexapod.flex_top.kRx = args.flex_top_kRx; % X bending stiffness [Nm/rad]
|
||||
nano_hexapod.flex_top.kRy = args.flex_top_kRy; % Y bending stiffness [Nm/rad]
|
||||
nano_hexapod.flex_top.kRz = args.flex_top_kRz; % Torsionnal stiffness [Nm/rad]
|
||||
nano_hexapod.flex_top.kz = args.flex_top_kz; % Axial stiffness [N/m]
|
||||
|
||||
nano_hexapod.flex_top.cRx = args.flex_top_cRx; % [Nm/(rad/s)]
|
||||
nano_hexapod.flex_top.cRy = args.flex_top_cRy; % [Nm/(rad/s)]
|
||||
nano_hexapod.flex_top.cRz = args.flex_top_cRz; % [Nm/(rad/s)]
|
||||
nano_hexapod.flex_top.cz = args.flex_top_cz; %[N/(m/s)]
|
||||
|
||||
nano_hexapod.motion_sensor = struct();
|
||||
|
||||
switch args.motion_sensor_type
|
||||
case 'struts'
|
||||
nano_hexapod.motion_sensor.type = 1;
|
||||
case 'plates'
|
||||
nano_hexapod.motion_sensor.type = 2;
|
||||
end
|
||||
|
||||
nano_hexapod.actuator = struct();
|
||||
|
||||
switch args.actuator_type
|
||||
case '2dof'
|
||||
nano_hexapod.actuator.type = 1;
|
||||
case 'flexible frame'
|
||||
nano_hexapod.actuator.type = 2;
|
||||
case 'flexible'
|
||||
nano_hexapod.actuator.type = 3;
|
||||
end
|
||||
|
||||
%% Actuator gain [N/V]
|
||||
if all(args.actuator_Ga == 0)
|
||||
switch args.actuator_type
|
||||
case '2dof'
|
||||
nano_hexapod.actuator.Ga = ones(6,1)*(-2.5796);
|
||||
case 'flexible frame'
|
||||
nano_hexapod.actuator.Ga = ones(6,1); % TODO
|
||||
case 'flexible'
|
||||
nano_hexapod.actuator.Ga = ones(6,1)*23.2;
|
||||
end
|
||||
else
|
||||
nano_hexapod.actuator.Ga = args.actuator_Ga; % Actuator gain [N/V]
|
||||
end
|
||||
|
||||
%% Sensor gain [V/m]
|
||||
if all(args.actuator_Gs == 0)
|
||||
switch args.actuator_type
|
||||
case '2dof'
|
||||
nano_hexapod.actuator.Gs = ones(6,1)*466664;
|
||||
case 'flexible frame'
|
||||
nano_hexapod.actuator.Gs = ones(6,1); % TODO
|
||||
case 'flexible'
|
||||
nano_hexapod.actuator.Gs = ones(6,1)*(-4898341);
|
||||
end
|
||||
else
|
||||
nano_hexapod.actuator.Gs = args.actuator_Gs; % Sensor gain [V/m]
|
||||
end
|
||||
|
||||
switch args.actuator_type
|
||||
case '2dof'
|
||||
nano_hexapod.actuator.k = args.actuator_k; % [N/m]
|
||||
nano_hexapod.actuator.ke = args.actuator_ke; % [N/m]
|
||||
nano_hexapod.actuator.ka = args.actuator_ka; % [N/m]
|
||||
|
||||
nano_hexapod.actuator.c = args.actuator_c; % [N/(m/s)]
|
||||
nano_hexapod.actuator.ce = args.actuator_ce; % [N/(m/s)]
|
||||
nano_hexapod.actuator.ca = args.actuator_ca; % [N/(m/s)]
|
||||
|
||||
nano_hexapod.actuator.Leq = args.actuator_Leq; % [m]
|
||||
|
||||
case 'flexible frame'
|
||||
nano_hexapod.actuator.K = readmatrix('APA300ML_b_mat_K.CSV'); % Stiffness Matrix
|
||||
nano_hexapod.actuator.M = readmatrix('APA300ML_b_mat_M.CSV'); % Mass Matrix
|
||||
nano_hexapod.actuator.P = extractNodes('APA300ML_b_out_nodes_3D.txt'); % Node coordinates [m]
|
||||
|
||||
nano_hexapod.actuator.ks = args.actuator_ks; % Stiffness of one stack [N/m]
|
||||
nano_hexapod.actuator.cs = args.actuator_cs; % Damping of one stack [N/m]
|
||||
nano_hexapod.actuator.xi = args.actuator_xi; % Damping ratio
|
||||
|
||||
case 'flexible'
|
||||
nano_hexapod.actuator.K = readmatrix('full_APA300ML_K.CSV'); % Stiffness Matrix
|
||||
nano_hexapod.actuator.M = readmatrix('full_APA300ML_M.CSV'); % Mass Matrix
|
||||
nano_hexapod.actuator.P = extractNodes('full_APA300ML_out_nodes_3D.txt'); % Node coordiantes [m]
|
||||
|
||||
nano_hexapod.actuator.d_align = args.actuator_d_align; % Misalignment
|
||||
nano_hexapod.actuator.xi = args.actuator_xi; % Damping ratio
|
||||
|
||||
end
|
||||
|
||||
nano_hexapod.geometry = struct();
|
||||
|
||||
Fa = [[-86.05, -74.78, 22.49],
|
||||
[ 86.05, -74.78, 22.49],
|
||||
[ 107.79, -37.13, 22.49],
|
||||
[ 21.74, 111.91, 22.49],
|
||||
[-21.74, 111.91, 22.49],
|
||||
[-107.79, -37.13, 22.49]]'*1e-3; % Ai w.r.t. {F} [m]
|
||||
|
||||
Mb = [[-28.47, -106.25, -22.50],
|
||||
[ 28.47, -106.25, -22.50],
|
||||
[ 106.25, 28.47, -22.50],
|
||||
[ 77.78, 77.78, -22.50],
|
||||
[-77.78, 77.78, -22.50],
|
||||
[-106.25, 28.47, -22.50]]'*1e-3; % Bi w.r.t. {M} [m]
|
||||
|
||||
Fb = Mb + [0; 0; 95e-3]; % Bi w.r.t. {F} [m]
|
||||
|
||||
si = Fb - Fa;
|
||||
si = si./vecnorm(si); % Normalize
|
||||
|
||||
Fc = [[-29.362, -105.765, 52.605]
|
||||
[ 29.362, -105.765, 52.605]
|
||||
[ 106.276, 27.454, 52.605]
|
||||
[ 76.914, 78.31, 52.605]
|
||||
[-76.914, 78.31, 52.605]
|
||||
[-106.276, 27.454, 52.605]]'*1e-3; % Meas pos w.r.t. {F}
|
||||
Mc = Fc - [0; 0; 95e-3]; % Meas pos w.r.t. {M}
|
||||
|
||||
nano_hexapod.geometry.Fa = Fa;
|
||||
nano_hexapod.geometry.Fb = Fb;
|
||||
nano_hexapod.geometry.Fc = Fc;
|
||||
nano_hexapod.geometry.Mb = Mb;
|
||||
nano_hexapod.geometry.Mc = Mc;
|
||||
nano_hexapod.geometry.si = si;
|
||||
nano_hexapod.geometry.MO_B = args.MO_B;
|
||||
|
||||
Bb = Mb - [0; 0; args.MO_B];
|
||||
|
||||
nano_hexapod.geometry.J = [nano_hexapod.geometry.si', cross(Bb, nano_hexapod.geometry.si)'];
|
||||
|
||||
switch args.motion_sensor_type
|
||||
case 'struts'
|
||||
nano_hexapod.geometry.Js = nano_hexapod.geometry.J;
|
||||
case 'plates'
|
||||
Bc = Mc - [0; 0; args.MO_B];
|
||||
nano_hexapod.geometry.Js = [nano_hexapod.geometry.si', cross(Bc, nano_hexapod.geometry.si)'];
|
||||
end
|
||||
|
||||
nano_hexapod.top_plate = struct();
|
||||
|
||||
switch args.top_plate_type
|
||||
case 'rigid'
|
||||
nano_hexapod.top_plate.type = 1;
|
||||
case 'flexible'
|
||||
nano_hexapod.top_plate.type = 2;
|
||||
|
||||
nano_hexapod.top_plate.R_flex = ...
|
||||
{[ 0.53191886726305 0.4795690716524 0.69790817745892
|
||||
-0.29070157897799 0.8775041341865 -0.38141720787774
|
||||
-0.79533320729697 0 0.60617249143351 ],
|
||||
[ 0.53191886726305 -0.4795690716524 -0.69790817745892
|
||||
0.29070157897799 0.8775041341865 -0.38141720787774
|
||||
0.79533320729697 0 0.60617249143351 ],
|
||||
[-0.01420448131633 -0.9997254079576 -0.01863709726680
|
||||
0.60600604129104 -0.0234330681729 0.79511481512719
|
||||
-0.79533320729697 0 0.60617249143351 ],
|
||||
[-0.51771438594672 -0.5201563363051 0.67927108019212
|
||||
0.31530446231304 -0.8540710660135 -0.41369760724945
|
||||
0.79533320729697 0 0.60617249143351 ],
|
||||
[-0.51771438594671 0.5201563363052 -0.67927108019211
|
||||
-0.31530446231304 -0.8540710660135 -0.41369760724945
|
||||
-0.79533320729697 0 0.60617249143351 ],
|
||||
[-0.01420448131632 0.9997254079576 0.01863709726679
|
||||
-0.60600604129104 -0.0234330681729 0.79511481512719
|
||||
0.79533320729697 0 0.60617249143351 ] };
|
||||
|
||||
|
||||
nano_hexapod.top_plate.R_enc = ...
|
||||
{ [-0.877504134186525 -0.479569071652412 0
|
||||
0.479569071652412 -0.877504134186525 0
|
||||
0 0 1 ],
|
||||
[ 0.877504134186525 -0.479569071652413 0
|
||||
0.479569071652413 0.877504134186525 0
|
||||
0 0 1 ],
|
||||
[ 0.023433068172945 0.999725407957606 0
|
||||
-0.999725407957606 0.023433068172945 0
|
||||
0 0 1 ],
|
||||
[-0.854071066013566 -0.520156336305202 0
|
||||
0.520156336305202 -0.854071066013566 0
|
||||
0 0 1 ],
|
||||
[ 0.854071066013574 -0.520156336305191 0
|
||||
0.520156336305191 0.854071066013574 0
|
||||
0 0 1 ],
|
||||
[-0.023433068172958 0.999725407957606 0
|
||||
-0.999725407957606 -0.023433068172958 0
|
||||
0 0 1 ] };
|
||||
|
||||
nano_hexapod.top_plate.K = readmatrix('top_plate_K_6.CSV'); % Stiffness Matrix
|
||||
nano_hexapod.top_plate.M = readmatrix('top_plate_M_6.CSV'); % Mass Matrix
|
||||
nano_hexapod.top_plate.P = extractNodes('top_plate_out_nodes_3D_qua.txt'); % Node coordiantes [m]
|
||||
nano_hexapod.top_plate.xi = args.top_plate_xi; % Damping ratio
|
||||
|
||||
end
|
||||
|
@ -1,305 +0,0 @@
|
||||
function [nano_hexapod] = initializeNanoHexapodFinal(args)
|
||||
|
||||
arguments
|
||||
%% Bottom Flexible Joints
|
||||
args.flex_bot_type char {mustBeMember(args.flex_bot_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
|
||||
args.flex_bot_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
|
||||
args.flex_bot_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
|
||||
args.flex_bot_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
|
||||
args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*7e7 % Axial Stiffness [N/m]
|
||||
args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % X bending Damping [Nm/(rad/s)]
|
||||
args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Y bending Damping [Nm/(rad/s)]
|
||||
args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Torsionnal Damping [Nm/(rad/s)]
|
||||
args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Axial Damping [N/(m/s)]
|
||||
|
||||
%% Top Flexible Joints
|
||||
args.flex_top_type char {mustBeMember(args.flex_top_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
|
||||
args.flex_top_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
|
||||
args.flex_top_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
|
||||
args.flex_top_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
|
||||
args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*7e7 % Axial Stiffness [N/m]
|
||||
args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % X bending Damping [Nm/(rad/s)]
|
||||
args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Y bending Damping [Nm/(rad/s)]
|
||||
args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Torsionnal Damping [Nm/(rad/s)]
|
||||
args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Axial Damping [N/(m/s)]
|
||||
|
||||
%% Jacobian - Location of frame {A} and {B}
|
||||
args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m]
|
||||
|
||||
%% Relative Motion Sensor
|
||||
args.motion_sensor_type char {mustBeMember(args.motion_sensor_type,{'struts', 'plates'})} = 'struts'
|
||||
|
||||
%% Top Plate
|
||||
args.top_plate_type char {mustBeMember(args.top_plate_type,{'rigid', 'flexible'})} = 'rigid'
|
||||
args.top_plate_xi (1,1) double {mustBeNumeric} = 0.01 % Damping Ratio
|
||||
|
||||
%% Actuators
|
||||
args.actuator_type char {mustBeMember(args.actuator_type,{'2dof', 'flexible frame', 'flexible'})} = 'flexible'
|
||||
args.actuator_Ga (6,1) double {mustBeNumeric} = zeros(6,1) % Actuator gain [N/V]
|
||||
args.actuator_Gs (6,1) double {mustBeNumeric} = zeros(6,1) % Sensor gain [V/m]
|
||||
% For 2DoF
|
||||
args.actuator_k (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*380000
|
||||
args.actuator_ke (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*4952605
|
||||
args.actuator_ka (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*2476302
|
||||
args.actuator_c (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*5
|
||||
args.actuator_ce (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*100
|
||||
args.actuator_ca (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*50
|
||||
args.actuator_Leq (6,1) double {mustBeNumeric} = ones(6,1)*0.056 % [m]
|
||||
% For Flexible Frame
|
||||
args.actuator_ks (6,1) double {mustBeNumeric} = ones(6,1)*235e6 % Stiffness of one stack [N/m]
|
||||
args.actuator_cs (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % Stiffness of one stack [N/m]
|
||||
% Misalignment
|
||||
args.actuator_d_align (6,3) double {mustBeNumeric} = zeros(6,3) % [m]
|
||||
|
||||
args.actuator_xi (1,1) double {mustBeNumeric} = 0.01 % Damping Ratio
|
||||
|
||||
%% Controller
|
||||
args.controller_type char {mustBeMember(args.controller_type,{'none', 'iff', 'dvf', 'hac-iff-struts'})} = 'none'
|
||||
end
|
||||
|
||||
nano_hexapod = struct();
|
||||
|
||||
nano_hexapod.flex_bot = struct();
|
||||
|
||||
switch args.flex_bot_type
|
||||
case '2dof'
|
||||
nano_hexapod.flex_bot.type = 1;
|
||||
case '3dof'
|
||||
nano_hexapod.flex_bot.type = 2;
|
||||
case '4dof'
|
||||
nano_hexapod.flex_bot.type = 3;
|
||||
case 'flexible'
|
||||
nano_hexapod.flex_bot.type = 4;
|
||||
end
|
||||
|
||||
nano_hexapod.flex_bot.kRx = args.flex_bot_kRx; % X bending stiffness [Nm/rad]
|
||||
nano_hexapod.flex_bot.kRy = args.flex_bot_kRy; % Y bending stiffness [Nm/rad]
|
||||
nano_hexapod.flex_bot.kRz = args.flex_bot_kRz; % Torsionnal stiffness [Nm/rad]
|
||||
nano_hexapod.flex_bot.kz = args.flex_bot_kz; % Axial stiffness [N/m]
|
||||
|
||||
nano_hexapod.flex_bot.cRx = args.flex_bot_cRx; % [Nm/(rad/s)]
|
||||
nano_hexapod.flex_bot.cRy = args.flex_bot_cRy; % [Nm/(rad/s)]
|
||||
nano_hexapod.flex_bot.cRz = args.flex_bot_cRz; % [Nm/(rad/s)]
|
||||
nano_hexapod.flex_bot.cz = args.flex_bot_cz; %[N/(m/s)]
|
||||
|
||||
nano_hexapod.flex_top = struct();
|
||||
|
||||
switch args.flex_top_type
|
||||
case '2dof'
|
||||
nano_hexapod.flex_top.type = 1;
|
||||
case '3dof'
|
||||
nano_hexapod.flex_top.type = 2;
|
||||
case '4dof'
|
||||
nano_hexapod.flex_top.type = 3;
|
||||
case 'flexible'
|
||||
nano_hexapod.flex_top.type = 4;
|
||||
end
|
||||
|
||||
nano_hexapod.flex_top.kRx = args.flex_top_kRx; % X bending stiffness [Nm/rad]
|
||||
nano_hexapod.flex_top.kRy = args.flex_top_kRy; % Y bending stiffness [Nm/rad]
|
||||
nano_hexapod.flex_top.kRz = args.flex_top_kRz; % Torsionnal stiffness [Nm/rad]
|
||||
nano_hexapod.flex_top.kz = args.flex_top_kz; % Axial stiffness [N/m]
|
||||
|
||||
nano_hexapod.flex_top.cRx = args.flex_top_cRx; % [Nm/(rad/s)]
|
||||
nano_hexapod.flex_top.cRy = args.flex_top_cRy; % [Nm/(rad/s)]
|
||||
nano_hexapod.flex_top.cRz = args.flex_top_cRz; % [Nm/(rad/s)]
|
||||
nano_hexapod.flex_top.cz = args.flex_top_cz; %[N/(m/s)]
|
||||
|
||||
nano_hexapod.motion_sensor = struct();
|
||||
|
||||
switch args.motion_sensor_type
|
||||
case 'struts'
|
||||
nano_hexapod.motion_sensor.type = 1;
|
||||
case 'plates'
|
||||
nano_hexapod.motion_sensor.type = 2;
|
||||
end
|
||||
|
||||
nano_hexapod.actuator = struct();
|
||||
|
||||
switch args.actuator_type
|
||||
case '2dof'
|
||||
nano_hexapod.actuator.type = 1;
|
||||
case 'flexible frame'
|
||||
nano_hexapod.actuator.type = 2;
|
||||
case 'flexible'
|
||||
nano_hexapod.actuator.type = 3;
|
||||
end
|
||||
|
||||
%% Actuator gain [N/V]
|
||||
if all(args.actuator_Ga == 0)
|
||||
switch args.actuator_type
|
||||
case '2dof'
|
||||
nano_hexapod.actuator.Ga = ones(6,1)*(-2.5796);
|
||||
case 'flexible frame'
|
||||
nano_hexapod.actuator.Ga = ones(6,1); % TODO
|
||||
case 'flexible'
|
||||
nano_hexapod.actuator.Ga = ones(6,1)*23.2;
|
||||
end
|
||||
else
|
||||
nano_hexapod.actuator.Ga = args.actuator_Ga; % Actuator gain [N/V]
|
||||
end
|
||||
|
||||
%% Sensor gain [V/m]
|
||||
if all(args.actuator_Gs == 0)
|
||||
switch args.actuator_type
|
||||
case '2dof'
|
||||
nano_hexapod.actuator.Gs = ones(6,1)*466664;
|
||||
case 'flexible frame'
|
||||
nano_hexapod.actuator.Gs = ones(6,1); % TODO
|
||||
case 'flexible'
|
||||
nano_hexapod.actuator.Gs = ones(6,1)*(-4898341);
|
||||
end
|
||||
else
|
||||
nano_hexapod.actuator.Gs = args.actuator_Gs; % Sensor gain [V/m]
|
||||
end
|
||||
|
||||
switch args.actuator_type
|
||||
case '2dof'
|
||||
nano_hexapod.actuator.k = args.actuator_k; % [N/m]
|
||||
nano_hexapod.actuator.ke = args.actuator_ke; % [N/m]
|
||||
nano_hexapod.actuator.ka = args.actuator_ka; % [N/m]
|
||||
|
||||
nano_hexapod.actuator.c = args.actuator_c; % [N/(m/s)]
|
||||
nano_hexapod.actuator.ce = args.actuator_ce; % [N/(m/s)]
|
||||
nano_hexapod.actuator.ca = args.actuator_ca; % [N/(m/s)]
|
||||
|
||||
nano_hexapod.actuator.Leq = args.actuator_Leq; % [m]
|
||||
|
||||
case 'flexible frame'
|
||||
nano_hexapod.actuator.K = readmatrix('APA300ML_b_mat_K.CSV'); % Stiffness Matrix
|
||||
nano_hexapod.actuator.M = readmatrix('APA300ML_b_mat_M.CSV'); % Mass Matrix
|
||||
nano_hexapod.actuator.P = extractNodes('APA300ML_b_out_nodes_3D.txt'); % Node coordinates [m]
|
||||
|
||||
nano_hexapod.actuator.ks = args.actuator_ks; % Stiffness of one stack [N/m]
|
||||
nano_hexapod.actuator.cs = args.actuator_cs; % Damping of one stack [N/m]
|
||||
nano_hexapod.actuator.xi = args.actuator_xi; % Damping ratio
|
||||
|
||||
case 'flexible'
|
||||
nano_hexapod.actuator.K = readmatrix('full_APA300ML_K.CSV'); % Stiffness Matrix
|
||||
nano_hexapod.actuator.M = readmatrix('full_APA300ML_M.CSV'); % Mass Matrix
|
||||
nano_hexapod.actuator.P = extractNodes('full_APA300ML_out_nodes_3D.txt'); % Node coordiantes [m]
|
||||
|
||||
nano_hexapod.actuator.d_align = args.actuator_d_align; % Misalignment
|
||||
nano_hexapod.actuator.xi = args.actuator_xi; % Damping ratio
|
||||
|
||||
end
|
||||
|
||||
nano_hexapod.geometry = struct();
|
||||
|
||||
Fa = [[-86.05, -74.78, 22.49],
|
||||
[ 86.05, -74.78, 22.49],
|
||||
[ 107.79, -37.13, 22.49],
|
||||
[ 21.74, 111.91, 22.49],
|
||||
[-21.74, 111.91, 22.49],
|
||||
[-107.79, -37.13, 22.49]]'*1e-3; % Ai w.r.t. {F} [m]
|
||||
|
||||
Mb = [[-28.47, -106.25, -22.50],
|
||||
[ 28.47, -106.25, -22.50],
|
||||
[ 106.25, 28.47, -22.50],
|
||||
[ 77.78, 77.78, -22.50],
|
||||
[-77.78, 77.78, -22.50],
|
||||
[-106.25, 28.47, -22.50]]'*1e-3; % Bi w.r.t. {M} [m]
|
||||
|
||||
Fb = Mb + [0; 0; 95e-3]; % Bi w.r.t. {F} [m]
|
||||
|
||||
si = Fb - Fa;
|
||||
si = si./vecnorm(si); % Normalize
|
||||
|
||||
Fc = [[-29.362, -105.765, 52.605]
|
||||
[ 29.362, -105.765, 52.605]
|
||||
[ 106.276, 27.454, 52.605]
|
||||
[ 76.914, 78.31, 52.605]
|
||||
[-76.914, 78.31, 52.605]
|
||||
[-106.276, 27.454, 52.605]]'*1e-3; % Meas pos w.r.t. {F}
|
||||
Mc = Fc - [0; 0; 95e-3]; % Meas pos w.r.t. {M}
|
||||
|
||||
nano_hexapod.geometry.Fa = Fa;
|
||||
nano_hexapod.geometry.Fb = Fb;
|
||||
nano_hexapod.geometry.Fc = Fc;
|
||||
nano_hexapod.geometry.Mb = Mb;
|
||||
nano_hexapod.geometry.Mc = Mc;
|
||||
nano_hexapod.geometry.si = si;
|
||||
nano_hexapod.geometry.MO_B = args.MO_B;
|
||||
|
||||
Bb = Mb - [0; 0; args.MO_B];
|
||||
|
||||
nano_hexapod.geometry.J = [nano_hexapod.geometry.si', cross(Bb, nano_hexapod.geometry.si)'];
|
||||
|
||||
switch args.motion_sensor_type
|
||||
case 'struts'
|
||||
nano_hexapod.geometry.Js = nano_hexapod.geometry.J;
|
||||
case 'plates'
|
||||
Bc = Mc - [0; 0; args.MO_B];
|
||||
nano_hexapod.geometry.Js = [nano_hexapod.geometry.si', cross(Bc, nano_hexapod.geometry.si)'];
|
||||
end
|
||||
|
||||
nano_hexapod.top_plate = struct();
|
||||
|
||||
switch args.top_plate_type
|
||||
case 'rigid'
|
||||
nano_hexapod.top_plate.type = 1;
|
||||
case 'flexible'
|
||||
nano_hexapod.top_plate.type = 2;
|
||||
|
||||
nano_hexapod.top_plate.R_flex = ...
|
||||
{[ 0.53191886726305 0.4795690716524 0.69790817745892
|
||||
-0.29070157897799 0.8775041341865 -0.38141720787774
|
||||
-0.79533320729697 0 0.60617249143351 ],
|
||||
[ 0.53191886726305 -0.4795690716524 -0.69790817745892
|
||||
0.29070157897799 0.8775041341865 -0.38141720787774
|
||||
0.79533320729697 0 0.60617249143351 ],
|
||||
[-0.01420448131633 -0.9997254079576 -0.01863709726680
|
||||
0.60600604129104 -0.0234330681729 0.79511481512719
|
||||
-0.79533320729697 0 0.60617249143351 ],
|
||||
[-0.51771438594672 -0.5201563363051 0.67927108019212
|
||||
0.31530446231304 -0.8540710660135 -0.41369760724945
|
||||
0.79533320729697 0 0.60617249143351 ],
|
||||
[-0.51771438594671 0.5201563363052 -0.67927108019211
|
||||
-0.31530446231304 -0.8540710660135 -0.41369760724945
|
||||
-0.79533320729697 0 0.60617249143351 ],
|
||||
[-0.01420448131632 0.9997254079576 0.01863709726679
|
||||
-0.60600604129104 -0.0234330681729 0.79511481512719
|
||||
0.79533320729697 0 0.60617249143351 ] };
|
||||
|
||||
|
||||
nano_hexapod.top_plate.R_enc = ...
|
||||
{ [-0.877504134186525 -0.479569071652412 0
|
||||
0.479569071652412 -0.877504134186525 0
|
||||
0 0 1 ],
|
||||
[ 0.877504134186525 -0.479569071652413 0
|
||||
0.479569071652413 0.877504134186525 0
|
||||
0 0 1 ],
|
||||
[ 0.023433068172945 0.999725407957606 0
|
||||
-0.999725407957606 0.023433068172945 0
|
||||
0 0 1 ],
|
||||
[-0.854071066013566 -0.520156336305202 0
|
||||
0.520156336305202 -0.854071066013566 0
|
||||
0 0 1 ],
|
||||
[ 0.854071066013574 -0.520156336305191 0
|
||||
0.520156336305191 0.854071066013574 0
|
||||
0 0 1 ],
|
||||
[-0.023433068172958 0.999725407957606 0
|
||||
-0.999725407957606 -0.023433068172958 0
|
||||
0 0 1 ] };
|
||||
|
||||
nano_hexapod.top_plate.K = readmatrix('top_plate_K_6.CSV'); % Stiffness Matrix
|
||||
nano_hexapod.top_plate.M = readmatrix('top_plate_M_6.CSV'); % Mass Matrix
|
||||
nano_hexapod.top_plate.P = extractNodes('top_plate_out_nodes_3D_qua.txt'); % Node coordiantes [m]
|
||||
nano_hexapod.top_plate.xi = args.top_plate_xi; % Damping ratio
|
||||
|
||||
end
|
||||
|
||||
switch args.controller_type
|
||||
case 'none'
|
||||
nano_hexapod.controller.type = 1;
|
||||
case 'iff'
|
||||
nano_hexapod.controller.type = 2;
|
||||
case 'dvf'
|
||||
nano_hexapod.controller.type = 3;
|
||||
case 'hac-iff-struts'
|
||||
nano_hexapod.controller.type = 4;
|
||||
end
|
||||
|
||||
if nargout == 0
|
||||
save('./mat/stages.mat', 'nano_hexapod', '-append');
|
||||
end
|
@ -1,28 +0,0 @@
|
||||
function [] = initializePosError(args)
|
||||
% initializePosError - Initialize the position errors
|
||||
%
|
||||
% Syntax: [] = initializePosError(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args -
|
||||
|
||||
arguments
|
||||
args.error logical {mustBeNumericOrLogical} = false
|
||||
args.Dy (1,1) double {mustBeNumeric} = 0 % [m]
|
||||
args.Ry (1,1) double {mustBeNumeric} = 0 % [m]
|
||||
args.Rz (1,1) double {mustBeNumeric} = 0 % [m]
|
||||
end
|
||||
|
||||
pos_error = struct();
|
||||
|
||||
if args.error
|
||||
pos_error.type = 1;
|
||||
else
|
||||
pos_error.type = 0;
|
||||
end
|
||||
|
||||
pos_error.Dy = args.Dy;
|
||||
pos_error.Ry = args.Ry;
|
||||
pos_error.Rz = args.Rz;
|
||||
|
||||
save('./mat/pos_error.mat', 'pos_error');
|
@ -1,230 +0,0 @@
|
||||
function [ref] = initializeReferences(args)
|
||||
|
||||
arguments
|
||||
% Sampling Frequency [s]
|
||||
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3
|
||||
% Maximum simulation time [s]
|
||||
args.Tmax (1,1) double {mustBeNumeric, mustBePositive} = 100
|
||||
% Either "constant" / "triangular" / "sinusoidal"
|
||||
args.Dy_type char {mustBeMember(args.Dy_type,{'constant', 'triangular', 'sinusoidal'})} = 'constant'
|
||||
% Amplitude of the displacement [m]
|
||||
args.Dy_amplitude (1,1) double {mustBeNumeric} = 0
|
||||
% Period of the displacement [s]
|
||||
args.Dy_period (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
% Either "constant" / "triangular" / "sinusoidal"
|
||||
args.Ry_type char {mustBeMember(args.Ry_type,{'constant', 'triangular', 'sinusoidal'})} = 'constant'
|
||||
% Amplitude [rad]
|
||||
args.Ry_amplitude (1,1) double {mustBeNumeric} = 0
|
||||
% Period of the displacement [s]
|
||||
args.Ry_period (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
% Either "constant" / "rotating"
|
||||
args.Rz_type char {mustBeMember(args.Rz_type,{'constant', 'rotating', 'rotating-not-filtered'})} = 'constant'
|
||||
% Initial angle [rad]
|
||||
args.Rz_amplitude (1,1) double {mustBeNumeric} = 0
|
||||
% Period of the rotating [s]
|
||||
args.Rz_period (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
% For now, only constant is implemented
|
||||
args.Dh_type char {mustBeMember(args.Dh_type,{'constant'})} = 'constant'
|
||||
% Initial position [m,m,m,rad,rad,rad] of the top platform (Pitch-Roll-Yaw Euler angles)
|
||||
args.Dh_pos (6,1) double {mustBeNumeric} = zeros(6, 1), ...
|
||||
% For now, only constant is implemented
|
||||
args.Rm_type char {mustBeMember(args.Rm_type,{'constant'})} = 'constant'
|
||||
% Initial position of the two masses
|
||||
args.Rm_pos (2,1) double {mustBeNumeric} = [0; pi]
|
||||
% For now, only constant is implemented
|
||||
args.Dn_type char {mustBeMember(args.Dn_type,{'constant'})} = 'constant'
|
||||
% Initial position [m,m,m,rad,rad,rad] of the top platform
|
||||
args.Dn_pos (6,1) double {mustBeNumeric} = zeros(6,1)
|
||||
end
|
||||
|
||||
%% Set Sampling Time
|
||||
Ts = args.Ts;
|
||||
Tmax = args.Tmax;
|
||||
|
||||
%% Low Pass Filter to filter out the references
|
||||
s = zpk('s');
|
||||
w0 = 2*pi*10;
|
||||
xi = 1;
|
||||
H_lpf = 1/(1 + 2*xi/w0*s + s^2/w0^2);
|
||||
|
||||
%% Translation stage - Dy
|
||||
t = 0:Ts:Tmax; % Time Vector [s]
|
||||
Dy = zeros(length(t), 1);
|
||||
Dyd = zeros(length(t), 1);
|
||||
Dydd = zeros(length(t), 1);
|
||||
switch args.Dy_type
|
||||
case 'constant'
|
||||
Dy(:) = args.Dy_amplitude;
|
||||
Dyd(:) = 0;
|
||||
Dydd(:) = 0;
|
||||
case 'triangular'
|
||||
% This is done to unsure that we start with no displacement
|
||||
Dy_raw = args.Dy_amplitude*sawtooth(2*pi*t/args.Dy_period,1/2);
|
||||
i0 = find(t>=args.Dy_period/4,1);
|
||||
Dy(1:end-i0+1) = Dy_raw(i0:end);
|
||||
Dy(end-i0+2:end) = Dy_raw(end); % we fix the last value
|
||||
|
||||
% The signal is filtered out
|
||||
Dy = lsim(H_lpf, Dy, t);
|
||||
Dyd = lsim(H_lpf*s, Dy, t);
|
||||
Dydd = lsim(H_lpf*s^2, Dy, t);
|
||||
case 'sinusoidal'
|
||||
Dy(:) = args.Dy_amplitude*sin(2*pi/args.Dy_period*t);
|
||||
Dyd = args.Dy_amplitude*2*pi/args.Dy_period*cos(2*pi/args.Dy_period*t);
|
||||
Dydd = -args.Dy_amplitude*(2*pi/args.Dy_period)^2*sin(2*pi/args.Dy_period*t);
|
||||
otherwise
|
||||
warning('Dy_type is not set correctly');
|
||||
end
|
||||
|
||||
Dy = struct('time', t, 'signals', struct('values', Dy), 'deriv', Dyd, 'dderiv', Dydd);
|
||||
|
||||
%% Tilt Stage - Ry
|
||||
t = 0:Ts:Tmax; % Time Vector [s]
|
||||
Ry = zeros(length(t), 1);
|
||||
Ryd = zeros(length(t), 1);
|
||||
Rydd = zeros(length(t), 1);
|
||||
|
||||
switch args.Ry_type
|
||||
case 'constant'
|
||||
Ry(:) = args.Ry_amplitude;
|
||||
Ryd(:) = 0;
|
||||
Rydd(:) = 0;
|
||||
case 'triangular'
|
||||
Ry_raw = args.Ry_amplitude*sawtooth(2*pi*t/args.Ry_period,1/2);
|
||||
i0 = find(t>=args.Ry_period/4,1);
|
||||
Ry(1:end-i0+1) = Ry_raw(i0:end);
|
||||
Ry(end-i0+2:end) = Ry_raw(end); % we fix the last value
|
||||
|
||||
% The signal is filtered out
|
||||
Ry = lsim(H_lpf, Ry, t);
|
||||
Ryd = lsim(H_lpf*s, Ry, t);
|
||||
Rydd = lsim(H_lpf*s^2, Ry, t);
|
||||
case 'sinusoidal'
|
||||
Ry(:) = args.Ry_amplitude*sin(2*pi/args.Ry_period*t);
|
||||
|
||||
Ryd = args.Ry_amplitude*2*pi/args.Ry_period*cos(2*pi/args.Ry_period*t);
|
||||
Rydd = -args.Ry_amplitude*(2*pi/args.Ry_period)^2*sin(2*pi/args.Ry_period*t);
|
||||
otherwise
|
||||
warning('Ry_type is not set correctly');
|
||||
end
|
||||
|
||||
Ry = struct('time', t, 'signals', struct('values', Ry), 'deriv', Ryd, 'dderiv', Rydd);
|
||||
|
||||
%% Spindle - Rz
|
||||
t = 0:Ts:Tmax; % Time Vector [s]
|
||||
Rz = zeros(length(t), 1);
|
||||
Rzd = zeros(length(t), 1);
|
||||
Rzdd = zeros(length(t), 1);
|
||||
|
||||
switch args.Rz_type
|
||||
case 'constant'
|
||||
Rz(:) = args.Rz_amplitude;
|
||||
Rzd(:) = 0;
|
||||
Rzdd(:) = 0;
|
||||
case 'rotating-not-filtered'
|
||||
Rz(:) = 2*pi/args.Rz_period*t;
|
||||
|
||||
% The signal is filtered out
|
||||
Rz(:) = 2*pi/args.Rz_period*t;
|
||||
Rzd(:) = 2*pi/args.Rz_period;
|
||||
Rzdd(:) = 0;
|
||||
|
||||
% We add the angle offset
|
||||
Rz = Rz + args.Rz_amplitude;
|
||||
|
||||
case 'rotating'
|
||||
Rz(:) = 2*pi/args.Rz_period*t;
|
||||
|
||||
% The signal is filtered out
|
||||
Rz = lsim(H_lpf, Rz, t);
|
||||
Rzd = lsim(H_lpf*s, Rz, t);
|
||||
Rzdd = lsim(H_lpf*s^2, Rz, t);
|
||||
|
||||
% We add the angle offset
|
||||
Rz = Rz + args.Rz_amplitude;
|
||||
otherwise
|
||||
warning('Rz_type is not set correctly');
|
||||
end
|
||||
|
||||
Rz = struct('time', t, 'signals', struct('values', Rz), 'deriv', Rzd, 'dderiv', Rzdd);
|
||||
|
||||
%% Micro-Hexapod
|
||||
t = [0, Ts];
|
||||
Dh = zeros(length(t), 6);
|
||||
Dhl = zeros(length(t), 6);
|
||||
|
||||
switch args.Dh_type
|
||||
case 'constant'
|
||||
Dh = [args.Dh_pos, args.Dh_pos];
|
||||
|
||||
load('mat/stages.mat', 'micro_hexapod');
|
||||
|
||||
AP = [args.Dh_pos(1) ; args.Dh_pos(2) ; args.Dh_pos(3)];
|
||||
|
||||
tx = args.Dh_pos(4);
|
||||
ty = args.Dh_pos(5);
|
||||
tz = args.Dh_pos(6);
|
||||
|
||||
ARB = [cos(tz) -sin(tz) 0;
|
||||
sin(tz) cos(tz) 0;
|
||||
0 0 1]*...
|
||||
[ cos(ty) 0 sin(ty);
|
||||
0 1 0;
|
||||
-sin(ty) 0 cos(ty)]*...
|
||||
[1 0 0;
|
||||
0 cos(tx) -sin(tx);
|
||||
0 sin(tx) cos(tx)];
|
||||
|
||||
[~, Dhl] = inverseKinematics(micro_hexapod, 'AP', AP, 'ARB', ARB);
|
||||
Dhl = [Dhl, Dhl];
|
||||
otherwise
|
||||
warning('Dh_type is not set correctly');
|
||||
end
|
||||
|
||||
Dh = struct('time', t, 'signals', struct('values', Dh));
|
||||
Dhl = struct('time', t, 'signals', struct('values', Dhl));
|
||||
|
||||
%% Axis Compensation - Rm
|
||||
t = [0, Ts];
|
||||
|
||||
Rm = [args.Rm_pos, args.Rm_pos];
|
||||
Rm = struct('time', t, 'signals', struct('values', Rm));
|
||||
|
||||
%% Nano-Hexapod
|
||||
t = [0, Ts];
|
||||
Dn = zeros(length(t), 6);
|
||||
|
||||
switch args.Dn_type
|
||||
case 'constant'
|
||||
Dn = [args.Dn_pos, args.Dn_pos];
|
||||
|
||||
load('mat/stages.mat', 'nano_hexapod');
|
||||
|
||||
AP = [args.Dn_pos(1) ; args.Dn_pos(2) ; args.Dn_pos(3)];
|
||||
|
||||
tx = args.Dn_pos(4);
|
||||
ty = args.Dn_pos(5);
|
||||
tz = args.Dn_pos(6);
|
||||
|
||||
ARB = [cos(tz) -sin(tz) 0;
|
||||
sin(tz) cos(tz) 0;
|
||||
0 0 1]*...
|
||||
[ cos(ty) 0 sin(ty);
|
||||
0 1 0;
|
||||
-sin(ty) 0 cos(ty)]*...
|
||||
[1 0 0;
|
||||
0 cos(tx) -sin(tx);
|
||||
0 sin(tx) cos(tx)];
|
||||
|
||||
[~, Dnl] = inverseKinematics(nano_hexapod, 'AP', AP, 'ARB', ARB);
|
||||
Dnl = [Dnl, Dnl];
|
||||
otherwise
|
||||
warning('Dn_type is not set correctly');
|
||||
end
|
||||
|
||||
Dn = struct('time', t, 'signals', struct('values', Dn));
|
||||
Dnl = struct('time', t, 'signals', struct('values', Dnl));
|
||||
|
||||
%% Save
|
||||
save('./mat/nass_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'Rm', 'Dn', 'Dnl', 'args', 'Ts');
|
||||
end
|
@ -1,54 +0,0 @@
|
||||
function [ry] = initializeRy(args)
|
||||
|
||||
arguments
|
||||
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible', 'modal-analysis', 'init'})} = 'flexible'
|
||||
args.Foffset logical {mustBeNumericOrLogical} = false
|
||||
args.Ry_init (1,1) double {mustBeNumeric} = 0
|
||||
end
|
||||
|
||||
ry = struct();
|
||||
|
||||
switch args.type
|
||||
case 'none'
|
||||
ry.type = 0;
|
||||
case 'rigid'
|
||||
ry.type = 1;
|
||||
case 'flexible'
|
||||
ry.type = 2;
|
||||
case 'modal-analysis'
|
||||
ry.type = 3;
|
||||
case 'init'
|
||||
ry.type = 4;
|
||||
end
|
||||
|
||||
% Ry - Guide for the tilt stage
|
||||
ry.guide.density = 7800; % [kg/m3]
|
||||
ry.guide.STEP = './STEPS/ry/Tilt_Guide.STEP';
|
||||
|
||||
% Ry - Rotor of the motor
|
||||
ry.rotor.density = 2400; % [kg/m3]
|
||||
ry.rotor.STEP = './STEPS/ry/Tilt_Motor_Axis.STEP';
|
||||
|
||||
% Ry - Motor
|
||||
ry.motor.density = 3200; % [kg/m3]
|
||||
ry.motor.STEP = './STEPS/ry/Tilt_Motor.STEP';
|
||||
|
||||
% Ry - Plateau Tilt
|
||||
ry.stage.density = 7800; % [kg/m3]
|
||||
ry.stage.STEP = './STEPS/ry/Tilt_Stage.STEP';
|
||||
|
||||
ry.z_offset = 0.58178; % [m]
|
||||
|
||||
ry.Ry_init = args.Ry_init; % [rad]
|
||||
|
||||
ry.K = [3.8e8; 4e8; 3.8e8; 1.2e8; 6e4; 1.2e8];
|
||||
ry.C = [1e5; 1e5; 1e5; 3e4; 1e3; 3e4];
|
||||
|
||||
if args.Foffset && ~strcmp(args.type, 'none') && ~strcmp(args.type, 'rigid') && ~strcmp(args.type, 'init')
|
||||
load('mat/Foffset.mat', 'Fym');
|
||||
ry.Deq = -Fym'./ry.K;
|
||||
else
|
||||
ry.Deq = zeros(6,1);
|
||||
end
|
||||
|
||||
save('./mat/stages.mat', 'ry', '-append');
|
@ -1,45 +0,0 @@
|
||||
function [rz] = initializeRz(args)
|
||||
|
||||
arguments
|
||||
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible', 'modal-analysis', 'init'})} = 'flexible'
|
||||
args.Foffset logical {mustBeNumericOrLogical} = false
|
||||
end
|
||||
|
||||
rz = struct();
|
||||
|
||||
switch args.type
|
||||
case 'none'
|
||||
rz.type = 0;
|
||||
case 'rigid'
|
||||
rz.type = 1;
|
||||
case 'flexible'
|
||||
rz.type = 2;
|
||||
case 'modal-analysis'
|
||||
rz.type = 3;
|
||||
case 'init'
|
||||
rz.type = 4;
|
||||
end
|
||||
|
||||
% Spindle - Slip Ring
|
||||
rz.slipring.density = 7800; % [kg/m3]
|
||||
rz.slipring.STEP = './STEPS/rz/Spindle_Slip_Ring.STEP';
|
||||
|
||||
% Spindle - Rotor
|
||||
rz.rotor.density = 7800; % [kg/m3]
|
||||
rz.rotor.STEP = './STEPS/rz/Spindle_Rotor.STEP';
|
||||
|
||||
% Spindle - Stator
|
||||
rz.stator.density = 7800; % [kg/m3]
|
||||
rz.stator.STEP = './STEPS/rz/Spindle_Stator.STEP';
|
||||
|
||||
rz.K = [7e8; 7e8; 2e9; 1e7; 1e7; 1e7];
|
||||
rz.C = [4e4; 4e4; 7e4; 1e4; 1e4; 1e4];
|
||||
|
||||
if args.Foffset && ~strcmp(args.type, 'none') && ~strcmp(args.type, 'rigid') && ~strcmp(args.type, 'init')
|
||||
load('mat/Foffset.mat', 'Fzm');
|
||||
rz.Deq = -Fzm'./rz.K;
|
||||
else
|
||||
rz.Deq = zeros(6,1);
|
||||
end
|
||||
|
||||
save('./mat/stages.mat', 'rz', '-append');
|
@ -1,51 +0,0 @@
|
||||
function [sample] = initializeSample(args)
|
||||
|
||||
arguments
|
||||
args.type char {mustBeMember(args.type,{'rigid', 'flexible', 'none', 'init'})} = 'flexible'
|
||||
args.radius (1,1) double {mustBeNumeric, mustBePositive} = 0.1 % [m]
|
||||
args.height (1,1) double {mustBeNumeric, mustBePositive} = 0.3 % [m]
|
||||
args.mass (1,1) double {mustBeNumeric, mustBePositive} = 50 % [kg]
|
||||
args.freq (6,1) double {mustBeNumeric, mustBePositive} = 100*ones(6,1) % [Hz]
|
||||
args.offset (1,1) double {mustBeNumeric} = 0 % [m]
|
||||
args.Foffset logical {mustBeNumericOrLogical} = false
|
||||
end
|
||||
|
||||
sample = struct();
|
||||
|
||||
switch args.type
|
||||
case 'none'
|
||||
sample.type = 0;
|
||||
case 'rigid'
|
||||
sample.type = 1;
|
||||
case 'flexible'
|
||||
sample.type = 2;
|
||||
case 'init'
|
||||
sample.type = 3;
|
||||
end
|
||||
|
||||
sample.radius = args.radius; % [m]
|
||||
sample.height = args.height; % [m]
|
||||
sample.mass = args.mass; % [kg]
|
||||
sample.offset = args.offset; % [m]
|
||||
|
||||
sample.inertia = [1/12 * sample.mass * (3*sample.radius^2 + sample.height^2); ...
|
||||
1/12 * sample.mass * (3*sample.radius^2 + sample.height^2); ...
|
||||
1/2 * sample.mass * sample.radius^2];
|
||||
|
||||
sample.K = zeros(6, 1);
|
||||
sample.C = zeros(6, 1);
|
||||
|
||||
sample.K(1:3) = sample.mass .* (2*pi * args.freq(1:3)).^2; % [N/m]
|
||||
sample.C(1:3) = 0.1 * sqrt(sample.K(1:3)*sample.mass); % [N/(m/s)]
|
||||
|
||||
sample.K(4:6) = sample.inertia .* (2*pi * args.freq(4:6)).^2; % [N/m]
|
||||
sample.C(4:6) = 0.1 * sqrt(sample.K(4:6).*sample.inertia); % [N/(m/s)]
|
||||
|
||||
if args.Foffset && ~strcmp(args.type, 'none') && ~strcmp(args.type, 'rigid') && ~strcmp(args.type, 'init')
|
||||
load('mat/Foffset.mat', 'Fsm');
|
||||
sample.Deq = -Fsm'./sample.K;
|
||||
else
|
||||
sample.Deq = zeros(6,1);
|
||||
end
|
||||
|
||||
save('./mat/stages.mat', 'sample', '-append');
|
@ -1,15 +0,0 @@
|
||||
function [] = initializeSimscapeConfiguration(args)
|
||||
|
||||
arguments
|
||||
args.gravity logical {mustBeNumericOrLogical} = true
|
||||
end
|
||||
|
||||
conf_simscape = struct();
|
||||
|
||||
if args.gravity
|
||||
conf_simscape.type = 1;
|
||||
else
|
||||
conf_simscape.type = 2;
|
||||
end
|
||||
|
||||
save('./mat/conf_simscape.mat', 'conf_simscape');
|
@ -1,31 +0,0 @@
|
||||
function [stewart] = initializeStewartPlatform()
|
||||
% initializeStewartPlatform - Initialize the stewart structure
|
||||
%
|
||||
% Syntax: [stewart] = initializeStewartPlatform(args)
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - A structure with the following sub-structures:
|
||||
% - platform_F -
|
||||
% - platform_M -
|
||||
% - joints_F -
|
||||
% - joints_M -
|
||||
% - struts_F -
|
||||
% - struts_M -
|
||||
% - actuators -
|
||||
% - geometry -
|
||||
% - properties -
|
||||
|
||||
stewart = struct();
|
||||
stewart.platform_F = struct();
|
||||
stewart.platform_M = struct();
|
||||
stewart.joints_F = struct();
|
||||
stewart.joints_M = struct();
|
||||
stewart.struts_F = struct();
|
||||
stewart.struts_M = struct();
|
||||
stewart.actuators = struct();
|
||||
stewart.sensors = struct();
|
||||
stewart.sensors.inertial = struct();
|
||||
stewart.sensors.force = struct();
|
||||
stewart.sensors.relative = struct();
|
||||
stewart.geometry = struct();
|
||||
stewart.kinematics = struct();
|
@ -1,27 +0,0 @@
|
||||
function [stewart] = initializeStewartPose(stewart, args)
|
||||
% initializeStewartPose - Determine the initial stroke in each leg to have the wanted pose
|
||||
% It uses the inverse kinematic
|
||||
%
|
||||
% Syntax: [stewart] = initializeStewartPose(stewart, args)
|
||||
%
|
||||
% Inputs:
|
||||
% - stewart - A structure with the following fields
|
||||
% - Aa [3x6] - The positions ai expressed in {A}
|
||||
% - Bb [3x6] - The positions bi expressed in {B}
|
||||
% - args - Can have the following fields:
|
||||
% - AP [3x1] - The wanted position of {B} with respect to {A}
|
||||
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - updated Stewart structure with the added fields:
|
||||
% - actuators.Leq [6x1] - The 6 needed displacement of the struts from the initial position in [m] to have the wanted pose of {B} w.r.t. {A}
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
||||
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
||||
end
|
||||
|
||||
[Li, dLi] = inverseKinematics(stewart, 'AP', args.AP, 'ARB', args.ARB);
|
||||
|
||||
stewart.actuators.Leq = dLi;
|
@ -1,49 +0,0 @@
|
||||
function [stewart] = initializeStrutDynamics(stewart, args)
|
||||
% initializeStrutDynamics - Add Stiffness and Damping properties of each strut
|
||||
%
|
||||
% Syntax: [stewart] = initializeStrutDynamics(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Structure with the following fields:
|
||||
% - K [6x1] - Stiffness of each strut [N/m]
|
||||
% - C [6x1] - Damping of each strut [N/(m/s)]
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - updated Stewart structure with the added fields:
|
||||
% - actuators.type = 1
|
||||
% - actuators.K [6x1] - Stiffness of each strut [N/m]
|
||||
% - actuators.C [6x1] - Damping of each strut [N/(m/s)]
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.type char {mustBeMember(args.type,{'classical', 'amplified'})} = 'classical'
|
||||
args.K (6,1) double {mustBeNumeric, mustBeNonnegative} = 20e6*ones(6,1)
|
||||
args.C (6,1) double {mustBeNumeric, mustBeNonnegative} = 2e1*ones(6,1)
|
||||
args.k1 (6,1) double {mustBeNumeric} = 1e6*ones(6,1)
|
||||
args.ke (6,1) double {mustBeNumeric} = 5e6*ones(6,1)
|
||||
args.ka (6,1) double {mustBeNumeric} = 60e6*ones(6,1)
|
||||
args.c1 (6,1) double {mustBeNumeric} = 10*ones(6,1)
|
||||
args.F_gain (6,1) double {mustBeNumeric} = 1*ones(6,1)
|
||||
args.me (6,1) double {mustBeNumeric} = 0.01*ones(6,1)
|
||||
args.ma (6,1) double {mustBeNumeric} = 0.01*ones(6,1)
|
||||
end
|
||||
|
||||
if strcmp(args.type, 'classical')
|
||||
stewart.actuators.type = 1;
|
||||
elseif strcmp(args.type, 'amplified')
|
||||
stewart.actuators.type = 2;
|
||||
end
|
||||
|
||||
stewart.actuators.K = args.K;
|
||||
stewart.actuators.C = args.C;
|
||||
|
||||
stewart.actuators.k1 = args.k1;
|
||||
stewart.actuators.c1 = args.c1;
|
||||
|
||||
stewart.actuators.ka = args.ka;
|
||||
stewart.actuators.ke = args.ke;
|
||||
|
||||
stewart.actuators.F_gain = args.F_gain;
|
||||
|
||||
stewart.actuators.ma = args.ma;
|
||||
stewart.actuators.me = args.me;
|
@ -1,69 +0,0 @@
|
||||
function [ty] = initializeTy(args)
|
||||
|
||||
arguments
|
||||
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible', 'modal-analysis', 'init'})} = 'flexible'
|
||||
args.Foffset logical {mustBeNumericOrLogical} = false
|
||||
end
|
||||
|
||||
ty = struct();
|
||||
|
||||
switch args.type
|
||||
case 'none'
|
||||
ty.type = 0;
|
||||
case 'rigid'
|
||||
ty.type = 1;
|
||||
case 'flexible'
|
||||
ty.type = 2;
|
||||
case 'modal-analysis'
|
||||
ty.type = 3;
|
||||
case 'init'
|
||||
ty.type = 4;
|
||||
end
|
||||
|
||||
% Ty Granite frame
|
||||
ty.granite_frame.density = 7800; % [kg/m3] => 43kg
|
||||
ty.granite_frame.STEP = './STEPS/Ty/Ty_Granite_Frame.STEP';
|
||||
|
||||
% Guide Translation Ty
|
||||
ty.guide.density = 7800; % [kg/m3] => 76kg
|
||||
ty.guide.STEP = './STEPS/ty/Ty_Guide.STEP';
|
||||
|
||||
% Ty - Guide_Translation12
|
||||
ty.guide12.density = 7800; % [kg/m3]
|
||||
ty.guide12.STEP = './STEPS/Ty/Ty_Guide_12.STEP';
|
||||
|
||||
% Ty - Guide_Translation11
|
||||
ty.guide11.density = 7800; % [kg/m3]
|
||||
ty.guide11.STEP = './STEPS/ty/Ty_Guide_11.STEP';
|
||||
|
||||
% Ty - Guide_Translation22
|
||||
ty.guide22.density = 7800; % [kg/m3]
|
||||
ty.guide22.STEP = './STEPS/ty/Ty_Guide_22.STEP';
|
||||
|
||||
% Ty - Guide_Translation21
|
||||
ty.guide21.density = 7800; % [kg/m3]
|
||||
ty.guide21.STEP = './STEPS/Ty/Ty_Guide_21.STEP';
|
||||
|
||||
% Ty - Plateau translation
|
||||
ty.frame.density = 7800; % [kg/m3]
|
||||
ty.frame.STEP = './STEPS/ty/Ty_Stage.STEP';
|
||||
|
||||
% Ty Stator Part
|
||||
ty.stator.density = 5400; % [kg/m3]
|
||||
ty.stator.STEP = './STEPS/ty/Ty_Motor_Stator.STEP';
|
||||
|
||||
% Ty Rotor Part
|
||||
ty.rotor.density = 5400; % [kg/m3]
|
||||
ty.rotor.STEP = './STEPS/ty/Ty_Motor_Rotor.STEP';
|
||||
|
||||
ty.K = [2e8; 1e8; 2e8; 6e7; 9e7; 6e7]; % [N/m, N*m/rad]
|
||||
ty.C = [8e4; 5e4; 8e4; 2e4; 3e4; 2e4]; % [N/(m/s), N*m/(rad/s)]
|
||||
|
||||
if args.Foffset && ~strcmp(args.type, 'none') && ~strcmp(args.type, 'rigid') && ~strcmp(args.type, 'init')
|
||||
load('mat/Foffset.mat', 'Ftym');
|
||||
ty.Deq = -Ftym'./ty.K;
|
||||
else
|
||||
ty.Deq = zeros(6,1);
|
||||
end
|
||||
|
||||
save('./mat/stages.mat', 'ty', '-append');
|
@ -1,21 +0,0 @@
|
||||
function [accelerometer] = initializeZAxisAccelerometer(args)
|
||||
arguments
|
||||
args.mass (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % [kg]
|
||||
args.freq (1,1) double {mustBeNumeric, mustBePositive} = 5e3 % [Hz]
|
||||
end
|
||||
|
||||
%%
|
||||
accelerometer.m = args.mass;
|
||||
|
||||
%% The Stiffness is set to have the damping resonance frequency
|
||||
accelerometer.k = accelerometer.m * (2*pi*args.freq)^2;
|
||||
|
||||
%% We set the damping value to have critical damping
|
||||
accelerometer.c = 2*sqrt(accelerometer.m * accelerometer.k);
|
||||
|
||||
%% Gain correction of the accelerometer to have a unity gain until the resonance
|
||||
accelerometer.gain = -accelerometer.k/accelerometer.m;
|
||||
|
||||
%% Save
|
||||
save('./mat/accelerometer_z_axis.mat', 'accelerometer');
|
||||
end
|
@ -1,18 +0,0 @@
|
||||
function [geophone] = initializeZAxisGeophone(args)
|
||||
arguments
|
||||
args.mass (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % [kg]
|
||||
args.freq (1,1) double {mustBeNumeric, mustBePositive} = 1 % [Hz]
|
||||
end
|
||||
|
||||
%%
|
||||
geophone.m = args.mass;
|
||||
|
||||
%% The Stiffness is set to have the damping resonance frequency
|
||||
geophone.k = geophone.m * (2*pi*args.freq)^2;
|
||||
|
||||
%% We set the damping value to have critical damping
|
||||
geophone.c = 2*sqrt(geophone.m * geophone.k);
|
||||
|
||||
%% Save
|
||||
save('./mat/geophone_z_axis.mat', 'geophone');
|
||||
end
|
@ -1,36 +0,0 @@
|
||||
function [Li, dLi] = inverseKinematics(stewart, args)
|
||||
% inverseKinematics - Compute the needed length of each strut to have the wanted position and orientation of {B} with respect to {A}
|
||||
%
|
||||
% Syntax: [stewart] = inverseKinematics(stewart)
|
||||
%
|
||||
% Inputs:
|
||||
% - stewart - A structure with the following fields
|
||||
% - geometry.Aa [3x6] - The positions ai expressed in {A}
|
||||
% - geometry.Bb [3x6] - The positions bi expressed in {B}
|
||||
% - geometry.l [6x1] - Length of each strut
|
||||
% - args - Can have the following fields:
|
||||
% - AP [3x1] - The wanted position of {B} with respect to {A}
|
||||
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
|
||||
%
|
||||
% Outputs:
|
||||
% - Li [6x1] - The 6 needed length of the struts in [m] to have the wanted pose of {B} w.r.t. {A}
|
||||
% - dLi [6x1] - The 6 needed displacement of the struts from the initial position in [m] to have the wanted pose of {B} w.r.t. {A}
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
||||
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
||||
end
|
||||
|
||||
assert(isfield(stewart.geometry, 'Aa'), 'stewart.geometry should have attribute Aa')
|
||||
Aa = stewart.geometry.Aa;
|
||||
|
||||
assert(isfield(stewart.geometry, 'Bb'), 'stewart.geometry should have attribute Bb')
|
||||
Bb = stewart.geometry.Bb;
|
||||
|
||||
assert(isfield(stewart.geometry, 'l'), 'stewart.geometry should have attribute l')
|
||||
l = stewart.geometry.l;
|
||||
|
||||
Li = sqrt(args.AP'*args.AP + diag(Bb'*Bb) + diag(Aa'*Aa) - (2*args.AP'*Aa)' + (2*args.AP'*(args.ARB*Bb))' - diag(2*(args.ARB*Bb)'*Aa));
|
||||
|
||||
dLi = Li-l;
|
@ -1,27 +0,0 @@
|
||||
function [] = prepareLinearizeIdentification(args)
|
||||
|
||||
arguments
|
||||
args.nass_actuator char {mustBeMember(args.nass_actuator,{'piezo', 'lorentz'})} = 'piezo'
|
||||
args.sample_mass (1,1) double {mustBeNumeric, mustBePositive} = 50 % [kg]
|
||||
end
|
||||
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
initializeRy();
|
||||
initializeRz();
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
|
||||
initializeNanoHexapod('actuator', args.nass_actuator);
|
||||
initializeSample('mass', args.sample_mass);
|
||||
|
||||
initializeReferences();
|
||||
initializeDisturbances('enable', false);
|
||||
|
||||
initializeController('type', 'open-loop');
|
||||
|
||||
initializeSimscapeConfiguration('gravity', true);
|
||||
|
||||
initializeLoggingConfiguration('log', 'none');
|
@ -1,29 +0,0 @@
|
||||
function [] = prepareTomographyExperiment(args)
|
||||
|
||||
arguments
|
||||
args.nass_actuator char {mustBeMember(args.nass_actuator,{'piezo', 'lorentz'})} = 'piezo'
|
||||
args.sample_mass (1,1) double {mustBeNumeric, mustBePositive} = 50 % [kg]
|
||||
args.Rz_period (1,1) double {mustBeNumeric, mustBePositive} = 1 % [s]
|
||||
end
|
||||
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
initializeRy();
|
||||
initializeRz();
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
|
||||
initializeNanoHexapod('actuator', args.nass_actuator);
|
||||
initializeSample('mass', args.sample_mass);
|
||||
|
||||
initializeReferences('Rz_type', 'rotating', 'Rz_period', args.Rz_period);
|
||||
|
||||
initializeDisturbances();
|
||||
|
||||
initializeController('type', 'open-loop');
|
||||
|
||||
initializeSimscapeConfiguration('gravity', true);
|
||||
|
||||
initializeLoggingConfiguration('log', 'all');
|
@ -1,5 +0,0 @@
|
||||
|
||||
|
||||
% When the project closes, it runs the =project_shutdown.m= script defined below.
|
||||
|
||||
Simulink.fileGenControl('reset');
|
@ -1,18 +0,0 @@
|
||||
|
||||
|
||||
% When the project opens, a startup script is ran.
|
||||
% The startup script is defined below and is exported to the =project_startup.m= script.
|
||||
|
||||
project = simulinkproject;
|
||||
projectRoot = project.RootFolder;
|
||||
|
||||
myCacheFolder = fullfile(projectRoot, '.SimulinkCache');
|
||||
myCodeFolder = fullfile(projectRoot, '.SimulinkCode');
|
||||
|
||||
Simulink.fileGenControl('set',...
|
||||
'CacheFolder', myCacheFolder,...
|
||||
'CodeGenFolder', myCodeFolder,...
|
||||
'createDir', true);
|
||||
|
||||
%% Load the Simscape Configuration
|
||||
load('mat/conf_simulink.mat');
|
@ -20,7 +20,7 @@ device_type = 'None'; % On top of vibration table
|
||||
payload_num = 0; % No Payload
|
||||
|
||||
% Simulink Model name
|
||||
mdl = 'test_bench_nano_hexapod';
|
||||
mdl = 'test_nhexa_simscape';
|
||||
|
||||
%% Colors for the figures
|
||||
colors = colororder;
|
||||
|
@ -21,7 +21,7 @@ device_type = 'None'; % On top of vibration table
|
||||
payload_num = 0; % No Payload
|
||||
|
||||
% Simulink Model name
|
||||
mdl = 'test_bench_nano_hexapod';
|
||||
mdl = 'test_nhexa_simscape';
|
||||
|
||||
%% Colors for the figures
|
||||
colors = colororder;
|
||||
@ -31,66 +31,73 @@ freqs = logspace(log10(10), log10(2e3), 1000);
|
||||
|
||||
% Extract transfer function matrices from the Simscape Model :noexport:
|
||||
|
||||
%% Extract the transfer function matrix from the Simscape model
|
||||
% Initialization of the Simscape model
|
||||
table_type = 'Suspended'; % On top of vibration table
|
||||
device_type = 'Hexapod'; % Nano-Hexapod
|
||||
payload_num = 0; % No Payload
|
||||
%% Set to true only if all the dynamics should again computed
|
||||
% from the simscape model
|
||||
extract_simscape_dynamics = false
|
||||
if extract_simscape_dynamics
|
||||
|
||||
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
||||
'flex_top_type', '4dof', ...
|
||||
'motion_sensor_type', 'plates', ...
|
||||
'actuator_type', '2dof');
|
||||
%% Extract the transfer function matrix from the Simscape model
|
||||
% Initialization of the Simscape model
|
||||
table_type = 'Suspended'; % On top of vibration table
|
||||
device_type = 'Hexapod'; % Nano-Hexapod
|
||||
payload_num = 0; % No Payload
|
||||
|
||||
% Identify the FRF matrix from u to [de,Vs]
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
||||
io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoders
|
||||
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Encoders
|
||||
n_hexapod = initializeNanoHexapod('flex_bot_type', '4dof', ...
|
||||
'flex_top_type', '4dof', ...
|
||||
'motion_sensor_type', 'plates', ...
|
||||
'actuator_type', '2dof');
|
||||
|
||||
G_de = {};
|
||||
G_Vs = {};
|
||||
% Identify the FRF matrix from u to [de,Vs]
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
||||
io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoders
|
||||
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Encoders
|
||||
|
||||
G_de = {};
|
||||
G_Vs = {};
|
||||
|
||||
for i = [0:3]
|
||||
payload_num = i; % Change the payload on the nano-hexapod
|
||||
G = exp(-s*1e-4)*linearize(mdl, io, 0.0);
|
||||
G.InputName = {'u1', 'u2', 'u3', 'u4', 'u5', 'u6'};
|
||||
G.OutputName = {'de1', 'de2', 'de3', 'de4', 'de5', 'de6', ...
|
||||
'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'};
|
||||
G_de(i+1) = {G({'de1', 'de2', 'de3', 'de4', 'de5', 'de6'},:)};
|
||||
G_Vs(i+1) = {G({'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'},:)};
|
||||
end
|
||||
|
||||
% Save the identified plants
|
||||
save('./mat/test_nhexa_simscape_masses.mat', 'G_Vs', 'G_de')
|
||||
|
||||
%% The same identification is performed, but this time with
|
||||
% "flexible" model of the APA
|
||||
table_type = 'Suspended'; % On top of vibration table
|
||||
device_type = 'Hexapod'; % Nano-Hexapod
|
||||
payload_num = 0; % No Payload
|
||||
|
||||
n_hexapod = initializeNanoHexapod('flex_bot_type', '4dof', ...
|
||||
'flex_top_type', '4dof', ...
|
||||
'motion_sensor_type', 'plates', ...
|
||||
'actuator_type', 'flexible');
|
||||
|
||||
G_de = {};
|
||||
G_Vs = {};
|
||||
|
||||
for i = [0:3]
|
||||
payload_num = i; % Change the payload on the nano-hexapod
|
||||
G = exp(-s*1e-4)*linearize(mdl, io, 0.0);
|
||||
G.InputName = {'u1', 'u2', 'u3', 'u4', 'u5', 'u6'};
|
||||
G.OutputName = {'de1', 'de2', 'de3', 'de4', 'de5', 'de6', ...
|
||||
'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'};
|
||||
G_de(i+1) = {G({'de1', 'de2', 'de3', 'de4', 'de5', 'de6'},:)};
|
||||
G_Vs(i+1) = {G({'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'},:)};
|
||||
end
|
||||
|
||||
% Save the identified plants
|
||||
save('./mat/test_nhexa_simscape_flexible_masses.mat', 'G_Vs', 'G_de')
|
||||
|
||||
for i = [0:3]
|
||||
payload_num = i; % Change the payload on the nano-hexapod
|
||||
G = exp(-s*1e-4)*linearize(mdl, io, 0.0);
|
||||
G.InputName = {'u1', 'u2', 'u3', 'u4', 'u5', 'u6'};
|
||||
G.OutputName = {'de1', 'de2', 'de3', 'de4', 'de5', 'de6', ...
|
||||
'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'};
|
||||
G_de(i+1) = {G({'de1', 'de2', 'de3', 'de4', 'de5', 'de6'},:)};
|
||||
G_Vs(i+1) = {G({'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'},:)};
|
||||
end
|
||||
|
||||
% Save the identified plants
|
||||
save('./mat/test_nhexa_simscape_masses.mat', 'G_Vs', 'G_de')
|
||||
|
||||
%% The same identification is performed, but this time with
|
||||
% "flexible" model of the APA
|
||||
table_type = 'Suspended'; % On top of vibration table
|
||||
device_type = 'Hexapod'; % Nano-Hexapod
|
||||
payload_num = 0; % No Payload
|
||||
|
||||
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
||||
'flex_top_type', '4dof', ...
|
||||
'motion_sensor_type', 'plates', ...
|
||||
'actuator_type', 'flexible');
|
||||
|
||||
G_de = {};
|
||||
G_Vs = {};
|
||||
|
||||
for i = [0:3]
|
||||
payload_num = i; % Change the payload on the nano-hexapod
|
||||
G = exp(-s*1e-4)*linearize(mdl, io, 0.0);
|
||||
G.InputName = {'u1', 'u2', 'u3', 'u4', 'u5', 'u6'};
|
||||
G.OutputName = {'de1', 'de2', 'de3', 'de4', 'de5', 'de6', ...
|
||||
'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'};
|
||||
G_de(i+1) = {G({'de1', 'de2', 'de3', 'de4', 'de5', 'de6'},:)};
|
||||
G_Vs(i+1) = {G({'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'},:)};
|
||||
end
|
||||
|
||||
% Save the identified plants
|
||||
save('./mat/test_nhexa_simscape_flexible_masses.mat', 'G_Vs', 'G_de')
|
||||
|
||||
% Nano-Hexapod model dynamics
|
||||
% <<ssec:test_nhexa_comp_model>>
|
||||
|
||||
|
@ -1109,82 +1109,93 @@ This is checked in Section ref:ssec:test_nhexa_comp_model_masses.
|
||||
#+end_src
|
||||
|
||||
** Extract transfer function matrices from the Simscape Model :noexport:
|
||||
#+begin_src matlab
|
||||
%% Extract the transfer function matrix from the Simscape model
|
||||
% Initialization of the Simscape model
|
||||
table_type = 'Suspended'; % On top of vibration table
|
||||
device_type = 'Hexapod'; % Nano-Hexapod
|
||||
payload_num = 0; % No Payload
|
||||
|
||||
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
||||
'flex_top_type', '4dof', ...
|
||||
'motion_sensor_type', 'plates', ...
|
||||
'actuator_type', '2dof');
|
||||
|
||||
% Identify the FRF matrix from u to [de,Vs]
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
||||
io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoders
|
||||
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Encoders
|
||||
|
||||
G_de = {};
|
||||
G_Vs = {};
|
||||
|
||||
for i = [0:3]
|
||||
payload_num = i; % Change the payload on the nano-hexapod
|
||||
G = exp(-s*1e-4)*linearize(mdl, io, 0.0);
|
||||
G.InputName = {'u1', 'u2', 'u3', 'u4', 'u5', 'u6'};
|
||||
G.OutputName = {'de1', 'de2', 'de3', 'de4', 'de5', 'de6', ...
|
||||
'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'};
|
||||
G_de(i+1) = {G({'de1', 'de2', 'de3', 'de4', 'de5', 'de6'},:)};
|
||||
G_Vs(i+1) = {G({'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'},:)};
|
||||
end
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :tangle no
|
||||
% Save the identified plants
|
||||
save('matlab/mat/test_nhexa_simscape_masses.mat', 'G_Vs', 'G_de')
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :eval no
|
||||
% Save the identified plants
|
||||
save('./mat/test_nhexa_simscape_masses.mat', 'G_Vs', 'G_de')
|
||||
%% Set to true only if all the dynamics should again computed
|
||||
% from the simscape model
|
||||
extract_simscape_dynamics = false;
|
||||
if extract_simscape_dynamics
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
%% The same identification is performed, but this time with
|
||||
% "flexible" model of the APA
|
||||
table_type = 'Suspended'; % On top of vibration table
|
||||
device_type = 'Hexapod'; % Nano-Hexapod
|
||||
payload_num = 0; % No Payload
|
||||
%% Extract the transfer function matrix from the Simscape model
|
||||
% Initialization of the Simscape model
|
||||
table_type = 'Suspended'; % On top of vibration table
|
||||
device_type = 'Hexapod'; % Nano-Hexapod
|
||||
payload_num = 0; % No Payload
|
||||
|
||||
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
||||
'flex_top_type', '4dof', ...
|
||||
'motion_sensor_type', 'plates', ...
|
||||
'actuator_type', 'flexible');
|
||||
n_hexapod = initializeNanoHexapod('flex_bot_type', '4dof', ...
|
||||
'flex_top_type', '4dof', ...
|
||||
'motion_sensor_type', 'plates', ...
|
||||
'actuator_type', '2dof');
|
||||
|
||||
G_de = {};
|
||||
G_Vs = {};
|
||||
% Identify the FRF matrix from u to [de,Vs]
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
||||
io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoders
|
||||
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Encoders
|
||||
|
||||
for i = [0:3]
|
||||
payload_num = i; % Change the payload on the nano-hexapod
|
||||
G = exp(-s*1e-4)*linearize(mdl, io, 0.0);
|
||||
G.InputName = {'u1', 'u2', 'u3', 'u4', 'u5', 'u6'};
|
||||
G.OutputName = {'de1', 'de2', 'de3', 'de4', 'de5', 'de6', ...
|
||||
'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'};
|
||||
G_de(i+1) = {G({'de1', 'de2', 'de3', 'de4', 'de5', 'de6'},:)};
|
||||
G_Vs(i+1) = {G({'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'},:)};
|
||||
end
|
||||
G_de = {};
|
||||
G_Vs = {};
|
||||
|
||||
for i = [0:3]
|
||||
payload_num = i; % Change the payload on the nano-hexapod
|
||||
G = exp(-s*1e-4)*linearize(mdl, io, 0.0);
|
||||
G.InputName = {'u1', 'u2', 'u3', 'u4', 'u5', 'u6'};
|
||||
G.OutputName = {'de1', 'de2', 'de3', 'de4', 'de5', 'de6', ...
|
||||
'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'};
|
||||
G_de(i+1) = {G({'de1', 'de2', 'de3', 'de4', 'de5', 'de6'},:)};
|
||||
G_Vs(i+1) = {G({'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'},:)};
|
||||
end
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :tangle no
|
||||
% Save the identified plants
|
||||
save('matlab/mat/test_nhexa_simscape_flexible_masses.mat', 'G_Vs', 'G_de')
|
||||
% Save the identified plants
|
||||
save('matlab/mat/test_nhexa_simscape_masses.mat', 'G_Vs', 'G_de')
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :eval no
|
||||
% Save the identified plants
|
||||
save('./mat/test_nhexa_simscape_flexible_masses.mat', 'G_Vs', 'G_de')
|
||||
% Save the identified plants
|
||||
save('./mat/test_nhexa_simscape_masses.mat', 'G_Vs', 'G_de')
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
%% The same identification is performed, but this time with
|
||||
% "flexible" model of the APA
|
||||
table_type = 'Suspended'; % On top of vibration table
|
||||
device_type = 'Hexapod'; % Nano-Hexapod
|
||||
payload_num = 0; % No Payload
|
||||
|
||||
n_hexapod = initializeNanoHexapod('flex_bot_type', '4dof', ...
|
||||
'flex_top_type', '4dof', ...
|
||||
'motion_sensor_type', 'plates', ...
|
||||
'actuator_type', 'flexible');
|
||||
|
||||
G_de = {};
|
||||
G_Vs = {};
|
||||
|
||||
for i = [0:3]
|
||||
payload_num = i; % Change the payload on the nano-hexapod
|
||||
G = exp(-s*1e-4)*linearize(mdl, io, 0.0);
|
||||
G.InputName = {'u1', 'u2', 'u3', 'u4', 'u5', 'u6'};
|
||||
G.OutputName = {'de1', 'de2', 'de3', 'de4', 'de5', 'de6', ...
|
||||
'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'};
|
||||
G_de(i+1) = {G({'de1', 'de2', 'de3', 'de4', 'de5', 'de6'},:)};
|
||||
G_Vs(i+1) = {G({'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'},:)};
|
||||
end
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :tangle no
|
||||
% Save the identified plants
|
||||
save('matlab/mat/test_nhexa_simscape_flexible_masses.mat', 'G_Vs', 'G_de')
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :eval no
|
||||
% Save the identified plants
|
||||
save('./mat/test_nhexa_simscape_flexible_masses.mat', 'G_Vs', 'G_de')
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :eval no
|
||||
end
|
||||
#+end_src
|
||||
|
||||
** Nano-Hexapod model dynamics
|
||||
@ -1773,7 +1784,7 @@ device_type = 'None'; % On top of vibration table
|
||||
payload_num = 0; % No Payload
|
||||
|
||||
% Simulink Model name
|
||||
mdl = 'test_bench_nano_hexapod';
|
||||
mdl = 'test_nhexa_simscape';
|
||||
#+end_src
|
||||
|
||||
** Initialize other elements
|
||||
@ -1786,6 +1797,394 @@ colors = colororder;
|
||||
freqs = logspace(log10(10), log10(2e3), 1000);
|
||||
#+END_SRC
|
||||
|
||||
** =initializeNanoHexapod=
|
||||
#+begin_src matlab :tangle matlab/src/initializeNanoHexapod.m :comments none :mkdirp yes :eval no
|
||||
function [nano_hexapod] = initializeNanoHexapod(args)
|
||||
|
||||
arguments
|
||||
%% Bottom Flexible Joints
|
||||
args.flex_bot_type char {mustBeMember(args.flex_bot_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
|
||||
args.flex_bot_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
|
||||
args.flex_bot_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
|
||||
args.flex_bot_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
|
||||
args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*7e7 % Axial Stiffness [N/m]
|
||||
args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % X bending Damping [Nm/(rad/s)]
|
||||
args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Y bending Damping [Nm/(rad/s)]
|
||||
args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Torsionnal Damping [Nm/(rad/s)]
|
||||
args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Axial Damping [N/(m/s)]
|
||||
|
||||
%% Top Flexible Joints
|
||||
args.flex_top_type char {mustBeMember(args.flex_top_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
|
||||
args.flex_top_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
|
||||
args.flex_top_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
|
||||
args.flex_top_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
|
||||
args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*7e7 % Axial Stiffness [N/m]
|
||||
args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % X bending Damping [Nm/(rad/s)]
|
||||
args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Y bending Damping [Nm/(rad/s)]
|
||||
args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Torsionnal Damping [Nm/(rad/s)]
|
||||
args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Axial Damping [N/(m/s)]
|
||||
|
||||
%% Jacobian - Location of frame {A} and {B}
|
||||
args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m]
|
||||
|
||||
%% Relative Motion Sensor
|
||||
args.motion_sensor_type char {mustBeMember(args.motion_sensor_type,{'struts', 'plates'})} = 'struts'
|
||||
|
||||
%% Top Plate
|
||||
args.top_plate_type char {mustBeMember(args.top_plate_type,{'rigid', 'flexible'})} = 'rigid'
|
||||
args.top_plate_xi (1,1) double {mustBeNumeric} = 0.01 % Damping Ratio
|
||||
|
||||
%% Actuators
|
||||
args.actuator_type char {mustBeMember(args.actuator_type,{'2dof', 'flexible frame', 'flexible'})} = 'flexible'
|
||||
args.actuator_Ga (6,1) double {mustBeNumeric} = zeros(6,1) % Actuator gain [N/V]
|
||||
args.actuator_Gs (6,1) double {mustBeNumeric} = zeros(6,1) % Sensor gain [V/m]
|
||||
% For 2DoF
|
||||
args.actuator_k (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*380000
|
||||
args.actuator_ke (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*4952605
|
||||
args.actuator_ka (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*2476302
|
||||
args.actuator_c (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*5
|
||||
args.actuator_ce (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*100
|
||||
args.actuator_ca (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*50
|
||||
args.actuator_Leq (6,1) double {mustBeNumeric} = ones(6,1)*0.056 % [m]
|
||||
% For Flexible Frame
|
||||
args.actuator_ks (6,1) double {mustBeNumeric} = ones(6,1)*235e6 % Stiffness of one stack [N/m]
|
||||
args.actuator_cs (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % Stiffness of one stack [N/m]
|
||||
% Misalignment
|
||||
args.actuator_d_align (6,3) double {mustBeNumeric} = zeros(6,3) % [m]
|
||||
|
||||
args.actuator_xi (1,1) double {mustBeNumeric} = 0.01 % Damping Ratio
|
||||
|
||||
%% Controller
|
||||
args.controller_type char {mustBeMember(args.controller_type,{'none', 'iff', 'dvf', 'hac-iff-struts'})} = 'none'
|
||||
end
|
||||
|
||||
nano_hexapod = struct();
|
||||
|
||||
nano_hexapod.flex_bot = struct();
|
||||
|
||||
switch args.flex_bot_type
|
||||
case '2dof'
|
||||
nano_hexapod.flex_bot.type = 1;
|
||||
case '3dof'
|
||||
nano_hexapod.flex_bot.type = 2;
|
||||
case '4dof'
|
||||
nano_hexapod.flex_bot.type = 3;
|
||||
case 'flexible'
|
||||
nano_hexapod.flex_bot.type = 4;
|
||||
end
|
||||
|
||||
nano_hexapod.flex_bot.kRx = args.flex_bot_kRx; % X bending stiffness [Nm/rad]
|
||||
nano_hexapod.flex_bot.kRy = args.flex_bot_kRy; % Y bending stiffness [Nm/rad]
|
||||
nano_hexapod.flex_bot.kRz = args.flex_bot_kRz; % Torsionnal stiffness [Nm/rad]
|
||||
nano_hexapod.flex_bot.kz = args.flex_bot_kz; % Axial stiffness [N/m]
|
||||
|
||||
nano_hexapod.flex_bot.cRx = args.flex_bot_cRx; % [Nm/(rad/s)]
|
||||
nano_hexapod.flex_bot.cRy = args.flex_bot_cRy; % [Nm/(rad/s)]
|
||||
nano_hexapod.flex_bot.cRz = args.flex_bot_cRz; % [Nm/(rad/s)]
|
||||
nano_hexapod.flex_bot.cz = args.flex_bot_cz; %[N/(m/s)]
|
||||
|
||||
nano_hexapod.flex_top = struct();
|
||||
|
||||
switch args.flex_top_type
|
||||
case '2dof'
|
||||
nano_hexapod.flex_top.type = 1;
|
||||
case '3dof'
|
||||
nano_hexapod.flex_top.type = 2;
|
||||
case '4dof'
|
||||
nano_hexapod.flex_top.type = 3;
|
||||
case 'flexible'
|
||||
nano_hexapod.flex_top.type = 4;
|
||||
end
|
||||
|
||||
nano_hexapod.flex_top.kRx = args.flex_top_kRx; % X bending stiffness [Nm/rad]
|
||||
nano_hexapod.flex_top.kRy = args.flex_top_kRy; % Y bending stiffness [Nm/rad]
|
||||
nano_hexapod.flex_top.kRz = args.flex_top_kRz; % Torsionnal stiffness [Nm/rad]
|
||||
nano_hexapod.flex_top.kz = args.flex_top_kz; % Axial stiffness [N/m]
|
||||
|
||||
nano_hexapod.flex_top.cRx = args.flex_top_cRx; % [Nm/(rad/s)]
|
||||
nano_hexapod.flex_top.cRy = args.flex_top_cRy; % [Nm/(rad/s)]
|
||||
nano_hexapod.flex_top.cRz = args.flex_top_cRz; % [Nm/(rad/s)]
|
||||
nano_hexapod.flex_top.cz = args.flex_top_cz; %[N/(m/s)]
|
||||
|
||||
nano_hexapod.motion_sensor = struct();
|
||||
|
||||
switch args.motion_sensor_type
|
||||
case 'struts'
|
||||
nano_hexapod.motion_sensor.type = 1;
|
||||
case 'plates'
|
||||
nano_hexapod.motion_sensor.type = 2;
|
||||
end
|
||||
|
||||
nano_hexapod.actuator = struct();
|
||||
|
||||
switch args.actuator_type
|
||||
case '2dof'
|
||||
nano_hexapod.actuator.type = 1;
|
||||
case 'flexible frame'
|
||||
nano_hexapod.actuator.type = 2;
|
||||
case 'flexible'
|
||||
nano_hexapod.actuator.type = 3;
|
||||
end
|
||||
|
||||
%% Actuator gain [N/V]
|
||||
if all(args.actuator_Ga == 0)
|
||||
switch args.actuator_type
|
||||
case '2dof'
|
||||
nano_hexapod.actuator.Ga = ones(6,1)*(-2.5796);
|
||||
case 'flexible frame'
|
||||
nano_hexapod.actuator.Ga = ones(6,1); % TODO
|
||||
case 'flexible'
|
||||
nano_hexapod.actuator.Ga = ones(6,1)*23.2;
|
||||
end
|
||||
else
|
||||
nano_hexapod.actuator.Ga = args.actuator_Ga; % Actuator gain [N/V]
|
||||
end
|
||||
|
||||
%% Sensor gain [V/m]
|
||||
if all(args.actuator_Gs == 0)
|
||||
switch args.actuator_type
|
||||
case '2dof'
|
||||
nano_hexapod.actuator.Gs = ones(6,1)*466664;
|
||||
case 'flexible frame'
|
||||
nano_hexapod.actuator.Gs = ones(6,1); % TODO
|
||||
case 'flexible'
|
||||
nano_hexapod.actuator.Gs = ones(6,1)*(-4898341);
|
||||
end
|
||||
else
|
||||
nano_hexapod.actuator.Gs = args.actuator_Gs; % Sensor gain [V/m]
|
||||
end
|
||||
|
||||
switch args.actuator_type
|
||||
case '2dof'
|
||||
nano_hexapod.actuator.k = args.actuator_k; % [N/m]
|
||||
nano_hexapod.actuator.ke = args.actuator_ke; % [N/m]
|
||||
nano_hexapod.actuator.ka = args.actuator_ka; % [N/m]
|
||||
|
||||
nano_hexapod.actuator.c = args.actuator_c; % [N/(m/s)]
|
||||
nano_hexapod.actuator.ce = args.actuator_ce; % [N/(m/s)]
|
||||
nano_hexapod.actuator.ca = args.actuator_ca; % [N/(m/s)]
|
||||
|
||||
nano_hexapod.actuator.Leq = args.actuator_Leq; % [m]
|
||||
|
||||
case 'flexible frame'
|
||||
nano_hexapod.actuator.K = readmatrix('APA300ML_b_mat_K.CSV'); % Stiffness Matrix
|
||||
nano_hexapod.actuator.M = readmatrix('APA300ML_b_mat_M.CSV'); % Mass Matrix
|
||||
nano_hexapod.actuator.P = extractNodes('APA300ML_b_out_nodes_3D.txt'); % Node coordinates [m]
|
||||
|
||||
nano_hexapod.actuator.ks = args.actuator_ks; % Stiffness of one stack [N/m]
|
||||
nano_hexapod.actuator.cs = args.actuator_cs; % Damping of one stack [N/m]
|
||||
nano_hexapod.actuator.xi = args.actuator_xi; % Damping ratio
|
||||
|
||||
case 'flexible'
|
||||
nano_hexapod.actuator.K = readmatrix('full_APA300ML_K.CSV'); % Stiffness Matrix
|
||||
nano_hexapod.actuator.M = readmatrix('full_APA300ML_M.CSV'); % Mass Matrix
|
||||
nano_hexapod.actuator.P = extractNodes('full_APA300ML_out_nodes_3D.txt'); % Node coordiantes [m]
|
||||
|
||||
nano_hexapod.actuator.d_align = args.actuator_d_align; % Misalignment
|
||||
nano_hexapod.actuator.xi = args.actuator_xi; % Damping ratio
|
||||
|
||||
end
|
||||
|
||||
nano_hexapod.geometry = struct();
|
||||
|
||||
Fa = [[-86.05, -74.78, 22.49],
|
||||
[ 86.05, -74.78, 22.49],
|
||||
[ 107.79, -37.13, 22.49],
|
||||
[ 21.74, 111.91, 22.49],
|
||||
[-21.74, 111.91, 22.49],
|
||||
[-107.79, -37.13, 22.49]]'*1e-3; % Ai w.r.t. {F} [m]
|
||||
|
||||
Mb = [[-28.47, -106.25, -22.50],
|
||||
[ 28.47, -106.25, -22.50],
|
||||
[ 106.25, 28.47, -22.50],
|
||||
[ 77.78, 77.78, -22.50],
|
||||
[-77.78, 77.78, -22.50],
|
||||
[-106.25, 28.47, -22.50]]'*1e-3; % Bi w.r.t. {M} [m]
|
||||
|
||||
Fb = Mb + [0; 0; 95e-3]; % Bi w.r.t. {F} [m]
|
||||
|
||||
si = Fb - Fa;
|
||||
si = si./vecnorm(si); % Normalize
|
||||
|
||||
Fc = [[-29.362, -105.765, 52.605]
|
||||
[ 29.362, -105.765, 52.605]
|
||||
[ 106.276, 27.454, 52.605]
|
||||
[ 76.914, 78.31, 52.605]
|
||||
[-76.914, 78.31, 52.605]
|
||||
[-106.276, 27.454, 52.605]]'*1e-3; % Meas pos w.r.t. {F}
|
||||
Mc = Fc - [0; 0; 95e-3]; % Meas pos w.r.t. {M}
|
||||
|
||||
nano_hexapod.geometry.Fa = Fa;
|
||||
nano_hexapod.geometry.Fb = Fb;
|
||||
nano_hexapod.geometry.Fc = Fc;
|
||||
nano_hexapod.geometry.Mb = Mb;
|
||||
nano_hexapod.geometry.Mc = Mc;
|
||||
nano_hexapod.geometry.si = si;
|
||||
nano_hexapod.geometry.MO_B = args.MO_B;
|
||||
|
||||
Bb = Mb - [0; 0; args.MO_B];
|
||||
|
||||
nano_hexapod.geometry.J = [nano_hexapod.geometry.si', cross(Bb, nano_hexapod.geometry.si)'];
|
||||
|
||||
switch args.motion_sensor_type
|
||||
case 'struts'
|
||||
nano_hexapod.geometry.Js = nano_hexapod.geometry.J;
|
||||
case 'plates'
|
||||
Bc = Mc - [0; 0; args.MO_B];
|
||||
nano_hexapod.geometry.Js = [nano_hexapod.geometry.si', cross(Bc, nano_hexapod.geometry.si)'];
|
||||
end
|
||||
|
||||
nano_hexapod.top_plate = struct();
|
||||
|
||||
switch args.top_plate_type
|
||||
case 'rigid'
|
||||
nano_hexapod.top_plate.type = 1;
|
||||
case 'flexible'
|
||||
nano_hexapod.top_plate.type = 2;
|
||||
|
||||
nano_hexapod.top_plate.R_flex = ...
|
||||
{[ 0.53191886726305 0.4795690716524 0.69790817745892
|
||||
-0.29070157897799 0.8775041341865 -0.38141720787774
|
||||
-0.79533320729697 0 0.60617249143351 ],
|
||||
[ 0.53191886726305 -0.4795690716524 -0.69790817745892
|
||||
0.29070157897799 0.8775041341865 -0.38141720787774
|
||||
0.79533320729697 0 0.60617249143351 ],
|
||||
[-0.01420448131633 -0.9997254079576 -0.01863709726680
|
||||
0.60600604129104 -0.0234330681729 0.79511481512719
|
||||
-0.79533320729697 0 0.60617249143351 ],
|
||||
[-0.51771438594672 -0.5201563363051 0.67927108019212
|
||||
0.31530446231304 -0.8540710660135 -0.41369760724945
|
||||
0.79533320729697 0 0.60617249143351 ],
|
||||
[-0.51771438594671 0.5201563363052 -0.67927108019211
|
||||
-0.31530446231304 -0.8540710660135 -0.41369760724945
|
||||
-0.79533320729697 0 0.60617249143351 ],
|
||||
[-0.01420448131632 0.9997254079576 0.01863709726679
|
||||
-0.60600604129104 -0.0234330681729 0.79511481512719
|
||||
0.79533320729697 0 0.60617249143351 ] };
|
||||
|
||||
|
||||
nano_hexapod.top_plate.R_enc = ...
|
||||
{ [-0.877504134186525 -0.479569071652412 0
|
||||
0.479569071652412 -0.877504134186525 0
|
||||
0 0 1 ],
|
||||
[ 0.877504134186525 -0.479569071652413 0
|
||||
0.479569071652413 0.877504134186525 0
|
||||
0 0 1 ],
|
||||
[ 0.023433068172945 0.999725407957606 0
|
||||
-0.999725407957606 0.023433068172945 0
|
||||
0 0 1 ],
|
||||
[-0.854071066013566 -0.520156336305202 0
|
||||
0.520156336305202 -0.854071066013566 0
|
||||
0 0 1 ],
|
||||
[ 0.854071066013574 -0.520156336305191 0
|
||||
0.520156336305191 0.854071066013574 0
|
||||
0 0 1 ],
|
||||
[-0.023433068172958 0.999725407957606 0
|
||||
-0.999725407957606 -0.023433068172958 0
|
||||
0 0 1 ] };
|
||||
|
||||
nano_hexapod.top_plate.K = readmatrix('top_plate_K_6.CSV'); % Stiffness Matrix
|
||||
nano_hexapod.top_plate.M = readmatrix('top_plate_M_6.CSV'); % Mass Matrix
|
||||
nano_hexapod.top_plate.P = extractNodes('top_plate_out_nodes_3D_qua.txt'); % Node coordiantes [m]
|
||||
nano_hexapod.top_plate.xi = args.top_plate_xi; % Damping ratio
|
||||
|
||||
end
|
||||
#+end_src
|
||||
|
||||
** =extractNodes=
|
||||
#+begin_src matlab :tangle matlab/src/extractNodes.m :comments none :mkdirp yes :eval no
|
||||
function [int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes(filename)
|
||||
% extractNodes -
|
||||
%
|
||||
% Syntax: [n_xyz, nodes] = extractNodes(filename)
|
||||
%
|
||||
% Inputs:
|
||||
% - filename - relative or absolute path of the file that contains the Matrix
|
||||
%
|
||||
% Outputs:
|
||||
% - n_xyz -
|
||||
% - nodes - table containing the node numbers and corresponding dof of the interfaced DoFs
|
||||
|
||||
arguments
|
||||
filename
|
||||
end
|
||||
|
||||
fid = fopen(filename,'rt');
|
||||
|
||||
if fid == -1
|
||||
error('Error opening the file');
|
||||
end
|
||||
|
||||
n_xyz = []; % Contains nodes coordinates
|
||||
n_i = []; % Contains nodes indices
|
||||
|
||||
n_num = []; % Contains node numbers
|
||||
n_dof = {}; % Contains node directions
|
||||
|
||||
while 1
|
||||
% Read a line
|
||||
nextline = fgetl(fid);
|
||||
|
||||
% End of the file
|
||||
if ~isstr(nextline), break, end
|
||||
|
||||
% Line just before the list of nodes coordinates
|
||||
if contains(nextline, 'NODE') && ...
|
||||
contains(nextline, 'X') && ...
|
||||
contains(nextline, 'Y') && ...
|
||||
contains(nextline, 'Z')
|
||||
|
||||
while 1
|
||||
nextline = fgetl(fid);
|
||||
|
||||
if nextline < 0, break, end
|
||||
|
||||
c = sscanf(nextline, ' %f');
|
||||
|
||||
if isempty(c), break, end
|
||||
|
||||
n_xyz = [n_xyz; c(2:4)'];
|
||||
n_i = [n_i; c(1)];
|
||||
end
|
||||
end
|
||||
|
||||
if nextline < 0, break, end
|
||||
|
||||
% Line just before the list of node DOF
|
||||
if contains(nextline, 'NODE LABEL')
|
||||
|
||||
while 1
|
||||
nextline = fgetl(fid);
|
||||
|
||||
if nextline < 0, break, end
|
||||
|
||||
c = sscanf(nextline, ' %d %s');
|
||||
|
||||
if isempty(c), break, end
|
||||
|
||||
n_num = [n_num; c(1)];
|
||||
|
||||
n_dof{length(n_dof)+1} = char(c(2:end)');
|
||||
end
|
||||
|
||||
nodes = table(n_num, string(n_dof'), 'VariableNames', {'node_i', 'node_dof'});
|
||||
end
|
||||
|
||||
if nextline < 0, break, end
|
||||
end
|
||||
|
||||
fclose(fid);
|
||||
|
||||
int_i = unique(nodes.('node_i')); % indices of interface nodes
|
||||
|
||||
% Extract XYZ coordinates of only the interface nodes
|
||||
if length(n_xyz) > 0 && length(n_i) > 0
|
||||
int_xyz = n_xyz(logical(sum(n_i.*ones(1, length(int_i)) == int_i', 2)), :);
|
||||
else
|
||||
int_xyz = n_xyz;
|
||||
end
|
||||
#+end_src
|
||||
|
||||
* Footnotes
|
||||
|
||||
[fn:7]PCB 356B18. Sensitivity is $1\,V/g$, measurement range is $\pm 5\,g$ and bandwidth is $0.5$ to $5\,\text{kHz}$.
|
||||
|
Loading…
Reference in New Issue
Block a user