178 lines
6.0 KiB
Mathematica
178 lines
6.0 KiB
Mathematica
|
%% Clear Workspace and Close figures
|
||
|
clear; close all; clc;
|
||
|
|
||
|
%% Intialize Laplace variable
|
||
|
s = zpk('s');
|
||
|
|
||
|
%% Path for functions, data and scripts
|
||
|
addpath('./src/'); % Path for scripts
|
||
|
addpath('./mat/'); % Path for data
|
||
|
|
||
|
addpath('./STEPS/'); % Path for Simscape Model
|
||
|
|
||
|
%% Linearization options
|
||
|
opts = linearizeOptions;
|
||
|
opts.SampleTime = 0;
|
||
|
|
||
|
%% Open Simscape Model
|
||
|
mdl = 'test_apa_simscape'; % Name of the Simulink File
|
||
|
open(mdl); % Open Simscape Model
|
||
|
|
||
|
%% Colors for the figures
|
||
|
colors = colororder;
|
||
|
|
||
|
%% Input/Output definition of the Model
|
||
|
clear io; io_i = 1;
|
||
|
io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; % DAC Voltage
|
||
|
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage
|
||
|
io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder
|
||
|
|
||
|
% Tuning of the APA model
|
||
|
% <<ssec:test_apa_2dof_model_tuning>>
|
||
|
|
||
|
% 9 parameters ($m$, $k_1$, $c_1$, $k_e$, $c_e$, $k_a$, $c_a$, $g_s$ and $g_a$) have to be tuned such that the dynamics of the model (Figure ref:fig:test_apa_2dof_model_simscape) well represents the identified dynamics in Section ref:sec:test_apa_dynamics.
|
||
|
|
||
|
% #+name: fig:test_apa_2dof_model_simscape
|
||
|
% #+caption: Schematic of the two degrees of freedom model of the APA300ML with input $V_a$ and outputs $d_e$ and $V_s$
|
||
|
% [[file:figs/test_apa_2dof_model_simscape.png]]
|
||
|
|
||
|
|
||
|
%% Stiffness values for the 2DoF APA model
|
||
|
k1 = 0.38e6; % Estimated Shell Stiffness [N/m]
|
||
|
|
||
|
w0 = 2*pi*95; % Resonance frequency [rad/s]
|
||
|
m = 5.7; % Suspended mass [kg]
|
||
|
ktot = m*(w0)^2; % Total Axial Stiffness to have to wanted resonance frequency [N/m]
|
||
|
|
||
|
ka = 1.5*(ktot-k1); % Stiffness of the (two) actuator stacks [N/m]
|
||
|
ke = 2*ka; % Stiffness of the Sensor stack [N/m]
|
||
|
|
||
|
%% Damping values for the 2DoF APA model
|
||
|
c1 = 20; % Damping for the Shell [N/(m/s)]
|
||
|
ca = 100; % Damping of the actuators stacks [N/(m/s)]
|
||
|
ce = 2*ca; % Damping of the sensor stack [N/(m/s)]
|
||
|
|
||
|
%% Estimation ot the sensor and actuator gains
|
||
|
% Initialize the structure with unitary sensor and actuator "gains"
|
||
|
n_hexapod = struct();
|
||
|
n_hexapod.actuator = initializeAPA(...
|
||
|
'type', '2dof', ...
|
||
|
'k', k1, ...
|
||
|
'ka', ka, ...
|
||
|
'ke', ke, ...
|
||
|
'c', c1, ...
|
||
|
'ca', ca, ...
|
||
|
'ce', ce, ...
|
||
|
'Ga', 1, ... % Actuator constant [N/V]
|
||
|
'Gs', 1 ... % Sensor constant [V/m]
|
||
|
);
|
||
|
|
||
|
c_granite = 0; % Do not take into account damping added by the air bearing
|
||
|
|
||
|
% Run the linearization
|
||
|
G_norm = linearize(mdl, io, 0.0, opts);
|
||
|
G_norm.InputName = {'u'};
|
||
|
G_norm.OutputName = {'Vs', 'de'};
|
||
|
|
||
|
% Load Identification Data to estimate the two gains
|
||
|
load('meas_apa_frf.mat', 'f', 'Ts', 'enc_frf', 'iff_frf', 'apa_nums');
|
||
|
|
||
|
% Estimation ot the Actuator Gain
|
||
|
fa = 10; % Frequency where the two FRF should match [Hz]
|
||
|
[~, i_f] = min(abs(f - fa));
|
||
|
ga = -abs(enc_frf(i_f,1))./abs(evalfr(G_norm('de', 'u'), 1i*2*pi*fa));
|
||
|
|
||
|
% Estimation ot the Sensor Gain
|
||
|
fs = 600; % Frequency where the two FRF should match [Hz]
|
||
|
[~, i_f] = min(abs(f - fs))
|
||
|
gs = -abs(iff_frf(i_f,1))./abs(evalfr(G_norm('Vs', 'u'), 1i*2*pi*fs))/ga;
|
||
|
|
||
|
% Obtained Dynamics
|
||
|
% <<ssec:test_apa_2dof_model_result>>
|
||
|
|
||
|
% The dynamics of the 2DoF APA300ML model is now extracted using optimized parameters (listed in Table ref:tab:test_apa_2dof_parameters) from the Simscape model.
|
||
|
% It is compared with the experimental data in Figure ref:fig:test_apa_2dof_comp_frf.
|
||
|
|
||
|
% A good match can be observed between the model and the experimental data, both for the encoder and for the force sensor.
|
||
|
% This indicates that this model represents well the axial dynamics of the APA300ML.
|
||
|
|
||
|
|
||
|
%% 2DoF APA300ML with optimized parameters
|
||
|
n_hexapod = struct();
|
||
|
n_hexapod.actuator = initializeAPA(...
|
||
|
'type', '2dof', ...
|
||
|
'k', k1, ...
|
||
|
'ka', ka, ...
|
||
|
'ke', ke, ...
|
||
|
'c', c1, ...
|
||
|
'ca', ca, ...
|
||
|
'ce', ce, ...
|
||
|
'Ga', ga, ...
|
||
|
'Gs', gs ...
|
||
|
);
|
||
|
|
||
|
%% Identification of the APA300ML with optimized parameters
|
||
|
G_2dof = exp(-s*Ts)*linearize(mdl, io, 0.0, opts);
|
||
|
G_2dof.InputName = {'u'};
|
||
|
G_2dof.OutputName = {'Vs', 'de'};
|
||
|
|
||
|
%% Comparison of the measured FRF and the optimized 2DoF model of the APA300ML
|
||
|
freqs = 5*logspace(0, 3, 1000);
|
||
|
figure;
|
||
|
tiledlayout(3, 2, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||
|
|
||
|
ax1 = nexttile([2,1]);
|
||
|
hold on;
|
||
|
plot(f, abs(enc_frf(:, 1)), 'color', [0,0,0,0.2], 'DisplayName', 'Identified');
|
||
|
for i = 1:length(apa_nums)
|
||
|
plot(f, abs(enc_frf(:, i)), 'color', [0,0,0,0.2], 'HandleVisibility', 'off');
|
||
|
end
|
||
|
plot(freqs, abs(squeeze(freqresp(G_2dof('de', 'u'), freqs, 'Hz'))), '--', 'color', colors(2,:), 'DisplayName', '2DoF Model')
|
||
|
hold off;
|
||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
|
ylabel('Amplitude $d_e/u$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||
|
hold off;
|
||
|
ylim([1e-8, 1e-3]);
|
||
|
legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1);
|
||
|
|
||
|
ax1b = nexttile([2,1]);
|
||
|
hold on;
|
||
|
plot(f, abs(iff_frf(:, 1)), 'color', [0,0,0,0.2], 'DisplayName', 'Identified');
|
||
|
for i = 2:length(apa_nums)
|
||
|
plot(f, abs(iff_frf(:, i)), 'color', [0,0,0,0.2], 'HandleVisibility', 'off');
|
||
|
end
|
||
|
plot(freqs, abs(squeeze(freqresp(G_2dof('Vs', 'u'), freqs, 'Hz'))), '--', 'color', colors(2,:), 'DisplayName', '2DoF Model')
|
||
|
hold off;
|
||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
|
ylabel('Amplitude $V_s/u$ [V/V]'); set(gca, 'XTickLabel',[]);
|
||
|
hold off;
|
||
|
ylim([1e-2, 1e2]);
|
||
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1);
|
||
|
|
||
|
ax2 = nexttile;
|
||
|
hold on;
|
||
|
for i = 1:length(apa_nums)
|
||
|
plot(f, 180/pi*angle(enc_frf(:, i)), 'color', [0,0,0,0.2]);
|
||
|
end
|
||
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G_2dof('de', 'u'), freqs, 'Hz'))), '--', 'color', colors(2,:))
|
||
|
hold off;
|
||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||
|
hold off;
|
||
|
yticks(-360:90:360); ylim([-180, 180]);
|
||
|
|
||
|
ax2b = nexttile;
|
||
|
hold on;
|
||
|
for i = 1:length(apa_nums)
|
||
|
plot(f, 180/pi*angle(iff_frf(:, i)), 'color', [0,0,0,0.2]);
|
||
|
end
|
||
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G_2dof('Vs', 'u'), freqs, 'Hz'))), '--', 'color', colors(2,:))
|
||
|
hold off;
|
||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||
|
hold off;
|
||
|
yticks(-360:90:360); ylim([-180, 180]);
|
||
|
|
||
|
linkaxes([ax1,ax2,ax1b,ax2b],'x');
|
||
|
xlim([10, 2e3]);
|