%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./src/'); % Path for scripts addpath('./mat/'); % Path for data addpath('./STEPS/'); % Path for Simscape Model %% Linearization options opts = linearizeOptions; opts.SampleTime = 0; %% Open Simscape Model mdl = 'test_apa_simscape'; % Name of the Simulink File open(mdl); % Open Simscape Model %% Colors for the figures colors = colororder; %% Input/Output definition of the Model clear io; io_i = 1; io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; % DAC Voltage io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder % Tuning of the APA model % <> % 9 parameters ($m$, $k_1$, $c_1$, $k_e$, $c_e$, $k_a$, $c_a$, $g_s$ and $g_a$) have to be tuned such that the dynamics of the model (Figure ref:fig:test_apa_2dof_model_simscape) well represents the identified dynamics in Section ref:sec:test_apa_dynamics. % #+name: fig:test_apa_2dof_model_simscape % #+caption: Schematic of the two degrees of freedom model of the APA300ML with input $V_a$ and outputs $d_e$ and $V_s$ % [[file:figs/test_apa_2dof_model_simscape.png]] %% Stiffness values for the 2DoF APA model k1 = 0.38e6; % Estimated Shell Stiffness [N/m] w0 = 2*pi*95; % Resonance frequency [rad/s] m = 5.7; % Suspended mass [kg] ktot = m*(w0)^2; % Total Axial Stiffness to have to wanted resonance frequency [N/m] ka = 1.5*(ktot-k1); % Stiffness of the (two) actuator stacks [N/m] ke = 2*ka; % Stiffness of the Sensor stack [N/m] %% Damping values for the 2DoF APA model c1 = 20; % Damping for the Shell [N/(m/s)] ca = 100; % Damping of the actuators stacks [N/(m/s)] ce = 2*ca; % Damping of the sensor stack [N/(m/s)] %% Estimation ot the sensor and actuator gains % Initialize the structure with unitary sensor and actuator "gains" n_hexapod = struct(); n_hexapod.actuator = initializeAPA(... 'type', '2dof', ... 'k', k1, ... 'ka', ka, ... 'ke', ke, ... 'c', c1, ... 'ca', ca, ... 'ce', ce, ... 'Ga', 1, ... % Actuator constant [N/V] 'Gs', 1 ... % Sensor constant [V/m] ); c_granite = 0; % Do not take into account damping added by the air bearing % Run the linearization G_norm = linearize(mdl, io, 0.0, opts); G_norm.InputName = {'u'}; G_norm.OutputName = {'Vs', 'de'}; % Load Identification Data to estimate the two gains load('meas_apa_frf.mat', 'f', 'Ts', 'enc_frf', 'iff_frf', 'apa_nums'); % Estimation ot the Actuator Gain fa = 10; % Frequency where the two FRF should match [Hz] [~, i_f] = min(abs(f - fa)); ga = -abs(enc_frf(i_f,1))./abs(evalfr(G_norm('de', 'u'), 1i*2*pi*fa)); % Estimation ot the Sensor Gain fs = 600; % Frequency where the two FRF should match [Hz] [~, i_f] = min(abs(f - fs)) gs = -abs(iff_frf(i_f,1))./abs(evalfr(G_norm('Vs', 'u'), 1i*2*pi*fs))/ga; % Obtained Dynamics % <> % The dynamics of the 2DoF APA300ML model is now extracted using optimized parameters (listed in Table ref:tab:test_apa_2dof_parameters) from the Simscape model. % It is compared with the experimental data in Figure ref:fig:test_apa_2dof_comp_frf. % A good match can be observed between the model and the experimental data, both for the encoder and for the force sensor. % This indicates that this model represents well the axial dynamics of the APA300ML. %% 2DoF APA300ML with optimized parameters n_hexapod = struct(); n_hexapod.actuator = initializeAPA(... 'type', '2dof', ... 'k', k1, ... 'ka', ka, ... 'ke', ke, ... 'c', c1, ... 'ca', ca, ... 'ce', ce, ... 'Ga', ga, ... 'Gs', gs ... ); %% Identification of the APA300ML with optimized parameters G_2dof = exp(-s*Ts)*linearize(mdl, io, 0.0, opts); G_2dof.InputName = {'u'}; G_2dof.OutputName = {'Vs', 'de'}; %% Comparison of the measured FRF and the optimized 2DoF model of the APA300ML freqs = 5*logspace(0, 3, 1000); figure; tiledlayout(3, 2, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(enc_frf(:, 1)), 'color', [0,0,0,0.2], 'DisplayName', 'Identified'); for i = 1:length(apa_nums) plot(f, abs(enc_frf(:, i)), 'color', [0,0,0,0.2], 'HandleVisibility', 'off'); end plot(freqs, abs(squeeze(freqresp(G_2dof('de', 'u'), freqs, 'Hz'))), '--', 'color', colors(2,:), 'DisplayName', '2DoF Model') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d_e/u$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-8, 1e-3]); legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); ax1b = nexttile([2,1]); hold on; plot(f, abs(iff_frf(:, 1)), 'color', [0,0,0,0.2], 'DisplayName', 'Identified'); for i = 2:length(apa_nums) plot(f, abs(iff_frf(:, i)), 'color', [0,0,0,0.2], 'HandleVisibility', 'off'); end plot(freqs, abs(squeeze(freqresp(G_2dof('Vs', 'u'), freqs, 'Hz'))), '--', 'color', colors(2,:), 'DisplayName', '2DoF Model') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $V_s/u$ [V/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-2, 1e2]); legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); ax2 = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(enc_frf(:, i)), 'color', [0,0,0,0.2]); end plot(freqs, 180/pi*angle(squeeze(freqresp(G_2dof('de', 'u'), freqs, 'Hz'))), '--', 'color', colors(2,:)) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); ax2b = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(iff_frf(:, i)), 'color', [0,0,0,0.2]); end plot(freqs, 180/pi*angle(squeeze(freqresp(G_2dof('Vs', 'u'), freqs, 'Hz'))), '--', 'color', colors(2,:)) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2,ax1b,ax2b],'x'); xlim([10, 2e3]);