Simulation of tomography experiments

This commit is contained in:
Thomas Dehaeze 2025-02-12 17:43:32 +01:00
parent c81cd4fbb6
commit b9a5308fa3
12 changed files with 965 additions and 59 deletions

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Binary file not shown.

View File

@ -15,7 +15,7 @@ function [nano_hexapod] = initializeSimplifiedNanoHexapod(args)
%% Actuators
args.actuator_type char {mustBeMember(args.actuator_type,{'1dof', '2dof', 'flexible'})} = '1dof'
args.actuator_k (1,1) double {mustBeNumeric, mustBePositive} = 1e6
args.actuator_kp (1,1) double {mustBeNumeric, mustBeNonnegative} = 1e4
args.actuator_kp (1,1) double {mustBeNumeric, mustBeNonnegative} = 5e4
args.actuator_ke (1,1) double {mustBeNumeric, mustBePositive} = 4952605
args.actuator_ka (1,1) double {mustBeNumeric, mustBePositive} = 2476302
args.actuator_c (1,1) double {mustBeNumeric, mustBePositive} = 50

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@ -1,4 +1,4 @@
% Created 2025-02-12 Wed 15:35
% Created 2025-02-12 Wed 17:40
% Intended LaTeX compiler: pdflatex
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
@ -97,13 +97,12 @@ Explain how to compute the errors in the frame of the struts (rotating):
\item Say that there are many control strategies.
It will be the topic of chapter 2.3.
Here, we start with something simple: control in the frame of the struts
\item[{$\square$}] block diagram of the complete control architecture
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/nass_control_architecture.png}
\caption{\label{fig:nass_control_architecture}Figure caption}
\caption{\label{fig:nass_control_architecture}The physical systems are shown in blue, the control kinematics in red, the decentralized Integral Force Feedback in yellow and the centralized High Authority Controller in green.}
\end{figure}
\chapter{Decentralized Active Damping}
@ -113,6 +112,7 @@ Here, we start with something simple: control in the frame of the struts
\item Robustness to payload mass
\item Root Locus
\item Damping optimization
\item \textbf{Parallel stiffness?}
\end{itemize}
Explain which samples are tested:
@ -132,17 +132,37 @@ Explain which samples are tested:
\item[{$\square$}] Added parallel stiffness
\end{itemize}
Coupling
Effect of rotation
Effect of payload mass
\section{Controller Design}
Low pass filter needs to be added (because now: DC gain)
\begin{equation}\label{eq:nass_kiff}
\bm{K}_{\text{IFF}}(s) = g \cdot \begin{bmatrix}
K_{\text{IFF}}(s) & & 0 \\
& \ddots & \\
0 & & K_{\text{IFF}}(s)
\end{bmatrix}, \quad K_{\text{IFF}}(s) = \frac{1}{s}
\end{equation}
Loop Gain:
Root Locus => Stability
\begin{itemize}
\item Use Integral controller (with parallel stiffness)
\item Show Root Locus (show that without parallel stiffness => unstable?)
\item Choose optimal gain.
Here in MIMO, cannot have optimal damping for all modes. (there is a paper that tries to optimize that)
\item Show robustness to change of payload (loci?) / Change of rotating velocity ?
\item[{$\square$}] Show robustness to change of payload (loci?) / Change of rotating velocity ?
\item Reference to paper showing stability in MIMO for decentralized IFF
\end{itemize}
\section{Sensitivity to disturbances}
Disturbances:
@ -181,6 +201,13 @@ From control kinematics:
\item[{$\square$}] Compare with undamped plants
\end{itemize}
Effect of rotation:
Effect of IFF:
Effect of payload mass
Advantage of using IFF:
\section{Controller design}
\begin{itemize}
@ -188,6 +215,12 @@ From control kinematics:
\item[{$\square$}] Show robustness with Loci for all masses
\end{itemize}
\begin{equation}\label{eq:nass_robust_hac}
K_{\text{HAC}}(s) = g_0 \cdot \underbrace{\frac{\omega_c}{s}}_{\text{int}} \cdot \underbrace{\frac{1}{\sqrt{\alpha}}\frac{1 + \frac{s}{\omega_c/\sqrt{\alpha}}}{1 + \frac{s}{\omega_c\sqrt{\alpha}}}}_{\text{lead}} \cdot \underbrace{\frac{1}{1 + \frac{s}{\omega_0}}}_{\text{LPF}}, \quad \left( \omega_c = 2\pi5\,\text{rad/s},\ \alpha = 2,\ \omega_0 = 2\pi30\,\text{rad/s} \right)
\end{equation}
``Decentralized'' Loop Gain:
Characteristic Loci for three masses:
\section{Sensitivity to disturbances}
\begin{itemize}
@ -206,6 +239,28 @@ Compare without the NASS, and with just IFF
\item Validation of concept
\end{itemize}
\begin{figure}[htbp]
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/nass_tomography_hac_iff_m1.png}
\end{center}
\subcaption{\label{fig:nass_tomography_hac_iff_m1} $m = 1\,kg$}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/nass_tomography_hac_iff_m25.png}
\end{center}
\subcaption{\label{fig:nass_tomography_hac_iff_m25} $m = 25\,kg$}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/nass_tomography_hac_iff_m50.png}
\end{center}
\subcaption{\label{fig:nass_tomography_hac_iff_m50} $m = 50\,kg$}
\end{subfigure}
\caption{\label{fig:nass_tomography_hac_iff}Simulation of tomography experiments}
\end{figure}
\chapter{Conclusion}
\label{sec:nass_conclusion}