Merged micro-station and nano-hexapod models

This commit is contained in:
Thomas Dehaeze 2025-02-12 12:09:29 +01:00
parent 0046a091f6
commit 85635d4087
61 changed files with 920654 additions and 39 deletions

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

12306
matlab/STEPS/Tilt_Guide.STEP Normal file

File diff suppressed because it is too large Load Diff

39764
matlab/STEPS/Tilt_Motor.STEP Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

79980
matlab/STEPS/Tilt_Stage.STEP Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

36208
matlab/STEPS/Ty_Guide.STEP Normal file

File diff suppressed because it is too large Load Diff

10326
matlab/STEPS/Ty_Guide_11.STEP Normal file

File diff suppressed because it is too large Load Diff

17057
matlab/STEPS/Ty_Guide_12.STEP Normal file

File diff suppressed because it is too large Load Diff

10326
matlab/STEPS/Ty_Guide_21.STEP Normal file

File diff suppressed because it is too large Load Diff

17057
matlab/STEPS/Ty_Guide_22.STEP Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

77974
matlab/STEPS/Ty_Stage.STEP Normal file

File diff suppressed because it is too large Load Diff

23602
matlab/STEPS/granite.STEP Normal file

File diff suppressed because it is too large Load Diff

BIN
matlab/nass_model.slx Normal file

Binary file not shown.

21
matlab/src/circlefit.m Normal file
View File

@ -0,0 +1,21 @@
function [xc,yc,R,a] = circlefit(x,y)
%
% [xc yx R] = circfit(x,y)
%
% fits a circle in x,y plane in a more accurate
% (less prone to ill condition )
% procedure than circfit2 but using more memory
% x,y are column vector where (x(i),y(i)) is a measured point
%
% result is center point (yc,xc) and radius R
% an optional output is the vector of coeficient a
% describing the circle's equation
%
% x^2+y^2+a(1)*x+a(2)*y+a(3)=0
%
% By: Izhak bucher 25/oct /1991,
x=x(:); y=y(:);
a=[x y ones(size(x))]\[-(x.^2+y.^2)];
xc = -.5*a(1);
yc = -.5*a(2);
R = sqrt((a(1)^2+a(2)^2)/4-a(3));

View File

@ -0,0 +1,37 @@
function [stewart] = computeJacobian(stewart)
% computeJacobian -
%
% Syntax: [stewart] = computeJacobian(stewart)
%
% Inputs:
% - stewart - With at least the following fields:
% - geometry.As [3x6] - The 6 unit vectors for each strut expressed in {A}
% - geometry.Ab [3x6] - The 6 position of the joints bi expressed in {A}
% - actuators.K [6x1] - Total stiffness of the actuators
%
% Outputs:
% - stewart - With the 3 added field:
% - geometry.J [6x6] - The Jacobian Matrix
% - geometry.K [6x6] - The Stiffness Matrix
% - geometry.C [6x6] - The Compliance Matrix
assert(isfield(stewart.geometry, 'As'), 'stewart.geometry should have attribute As')
As = stewart.geometry.As;
assert(isfield(stewart.geometry, 'Ab'), 'stewart.geometry should have attribute Ab')
Ab = stewart.geometry.Ab;
assert(isfield(stewart.actuators, 'k'), 'stewart.actuators should have attribute k')
Ki = stewart.actuators.k;
J = [As' , cross(Ab, As)'];
K = J'*diag(Ki)*J;
C = inv(K);
stewart.geometry.J = J;
stewart.geometry.K = K;
stewart.geometry.C = C;
end

View File

@ -0,0 +1,80 @@
function [stewart] = computeJointsPose(stewart)
% computeJointsPose -
%
% Syntax: [stewart] = computeJointsPose(stewart)
%
% Inputs:
% - stewart - A structure with the following fields
% - platform_F.Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
% - platform_M.Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}
% - platform_F.FO_A [3x1] - Position of {A} with respect to {F}
% - platform_M.MO_B [3x1] - Position of {B} with respect to {M}
% - geometry.FO_M [3x1] - Position of {M} with respect to {F}
%
% Outputs:
% - stewart - A structure with the following added fields
% - geometry.Aa [3x6] - The i'th column is the position of ai with respect to {A}
% - geometry.Ab [3x6] - The i'th column is the position of bi with respect to {A}
% - geometry.Ba [3x6] - The i'th column is the position of ai with respect to {B}
% - geometry.Bb [3x6] - The i'th column is the position of bi with respect to {B}
% - geometry.l [6x1] - The i'th element is the initial length of strut i
% - geometry.As [3x6] - The i'th column is the unit vector of strut i expressed in {A}
% - geometry.Bs [3x6] - The i'th column is the unit vector of strut i expressed in {B}
% - struts_F.l [6x1] - Length of the Fixed part of the i'th strut
% - struts_M.l [6x1] - Length of the Mobile part of the i'th strut
% - platform_F.FRa [3x3x6] - The i'th 3x3 array is the rotation matrix to orientate the bottom of the i'th strut from {F}
% - platform_M.MRb [3x3x6] - The i'th 3x3 array is the rotation matrix to orientate the top of the i'th strut from {M}
assert(isfield(stewart.platform_F, 'Fa'), 'stewart.platform_F should have attribute Fa')
Fa = stewart.platform_F.Fa;
assert(isfield(stewart.platform_M, 'Mb'), 'stewart.platform_M should have attribute Mb')
Mb = stewart.platform_M.Mb;
assert(isfield(stewart.platform_F, 'FO_A'), 'stewart.platform_F should have attribute FO_A')
FO_A = stewart.platform_F.FO_A;
assert(isfield(stewart.platform_M, 'MO_B'), 'stewart.platform_M should have attribute MO_B')
MO_B = stewart.platform_M.MO_B;
assert(isfield(stewart.geometry, 'FO_M'), 'stewart.geometry should have attribute FO_M')
FO_M = stewart.geometry.FO_M;
Aa = Fa - repmat(FO_A, [1, 6]);
Bb = Mb - repmat(MO_B, [1, 6]);
Ab = Bb - repmat(-MO_B-FO_M+FO_A, [1, 6]);
Ba = Aa - repmat( MO_B+FO_M-FO_A, [1, 6]);
As = (Ab - Aa)./vecnorm(Ab - Aa); % As_i is the i'th vector of As
l = vecnorm(Ab - Aa)';
Bs = (Bb - Ba)./vecnorm(Bb - Ba);
FRa = zeros(3,3,6);
MRb = zeros(3,3,6);
for i = 1:6
FRa(:,:,i) = [cross([0;1;0], As(:,i)) , cross(As(:,i), cross([0;1;0], As(:,i))) , As(:,i)];
FRa(:,:,i) = FRa(:,:,i)./vecnorm(FRa(:,:,i));
MRb(:,:,i) = [cross([0;1;0], Bs(:,i)) , cross(Bs(:,i), cross([0;1;0], Bs(:,i))) , Bs(:,i)];
MRb(:,:,i) = MRb(:,:,i)./vecnorm(MRb(:,:,i));
end
stewart.geometry.Aa = Aa;
stewart.geometry.Ab = Ab;
stewart.geometry.Ba = Ba;
stewart.geometry.Bb = Bb;
stewart.geometry.As = As;
stewart.geometry.Bs = Bs;
stewart.geometry.l = l;
stewart.struts_F.l = l/2;
stewart.struts_M.l = l/2;
stewart.platform_F.FRa = FRa;
stewart.platform_M.MRb = MRb;
end

View File

@ -0,0 +1,77 @@
function [WTr] = computeReferencePose(Dy, Ry, Rz, Dh, Dn)
% computeReferencePose - Compute the homogeneous transformation matrix corresponding to the wanted pose of the sample
%
% Syntax: [WTr] = computeReferencePose(Dy, Ry, Rz, Dh, Dn)
%
% Inputs:
% - Dy - Reference of the Translation Stage [m]
% - Ry - Reference of the Tilt Stage [rad]
% - Rz - Reference of the Spindle [rad]
% - Dh - Reference of the Micro Hexapod (Pitch, Roll, Yaw angles) [m, m, m, rad, rad, rad]
% - Dn - Reference of the Nano Hexapod [m, m, m, rad, rad, rad]
%
% Outputs:
% - WTr -
%% Translation Stage
Rty = [1 0 0 0;
0 1 0 Dy;
0 0 1 0;
0 0 0 1];
%% Tilt Stage - Pure rotating aligned with Ob
Rry = [ cos(Ry) 0 sin(Ry) 0;
0 1 0 0;
-sin(Ry) 0 cos(Ry) 0;
0 0 0 1];
%% Spindle - Rotation along the Z axis
Rrz = [cos(Rz) -sin(Rz) 0 0 ;
sin(Rz) cos(Rz) 0 0 ;
0 0 1 0 ;
0 0 0 1 ];
%% Micro-Hexapod
Rhx = [1 0 0;
0 cos(Dh(4)) -sin(Dh(4));
0 sin(Dh(4)) cos(Dh(4))];
Rhy = [ cos(Dh(5)) 0 sin(Dh(5));
0 1 0;
-sin(Dh(5)) 0 cos(Dh(5))];
Rhz = [cos(Dh(6)) -sin(Dh(6)) 0;
sin(Dh(6)) cos(Dh(6)) 0;
0 0 1];
Rh = [1 0 0 Dh(1) ;
0 1 0 Dh(2) ;
0 0 1 Dh(3) ;
0 0 0 1 ];
Rh(1:3, 1:3) = Rhz*Rhy*Rhx;
%% Nano-Hexapod
Rnx = [1 0 0;
0 cos(Dn(4)) -sin(Dn(4));
0 sin(Dn(4)) cos(Dn(4))];
Rny = [ cos(Dn(5)) 0 sin(Dn(5));
0 1 0;
-sin(Dn(5)) 0 cos(Dn(5))];
Rnz = [cos(Dn(6)) -sin(Dn(6)) 0;
sin(Dn(6)) cos(Dn(6)) 0;
0 0 1];
Rn = [1 0 0 Dn(1) ;
0 1 0 Dn(2) ;
0 0 1 Dn(3) ;
0 0 0 1 ];
Rn(1:3, 1:3) = Rnz*Rny*Rnx;
%% Total Homogeneous transformation
WTr = Rty*Rry*Rrz*Rh*Rn;
end

View File

@ -0,0 +1,141 @@
function [] = describeMicroStationSetup()
% describeMicroStationSetup -
%
% Syntax: [] = describeMicroStationSetup()
%
% Inputs:
% - -
%
% Outputs:
% - -
load('./mat/nass_model_conf_simscape.mat', 'conf_simscape');
fprintf('Simscape Configuration:\n');
if conf_simscape.type == 1
fprintf('- Gravity is included\n');
else
fprintf('- Gravity is not included\n');
end
fprintf('\n');
load('./mat/nass_model_disturbances.mat', 'args');
fprintf('Disturbances:\n');
if ~args.enable
fprintf('- No disturbance is included\n');
else
if args.Dwx && args.Dwy && args.Dwz
fprintf('- Ground motion\n');
end
if args.Fdy_x && args.Fdy_z
fprintf('- Vibrations of the Translation Stage\n');
end
if args.Frz_z
fprintf('- Vibrations of the Spindle\n');
end
end
fprintf('\n');
load('./mat/nass_model_references.mat', 'args');
fprintf('Reference Tracking:\n');
fprintf('- Translation Stage:\n');
switch args.Dy_type
case 'constant'
fprintf(' - Constant Position\n');
fprintf(' - Dy = %.0f [mm]\n', args.Dy_amplitude*1e3);
case 'triangular'
fprintf(' - Triangular Path\n');
fprintf(' - Amplitude = %.0f [mm]\n', args.Dy_amplitude*1e3);
fprintf(' - Period = %.0f [s]\n', args.Dy_period);
case 'sinusoidal'
fprintf(' - Sinusoidal Path\n');
fprintf(' - Amplitude = %.0f [mm]\n', args.Dy_amplitude*1e3);
fprintf(' - Period = %.0f [s]\n', args.Dy_period);
end
fprintf('- Tilt Stage:\n');
switch args.Ry_type
case 'constant'
fprintf(' - Constant Position\n');
fprintf(' - Ry = %.0f [mm]\n', args.Ry_amplitude*1e3);
case 'triangular'
fprintf(' - Triangular Path\n');
fprintf(' - Amplitude = %.0f [mm]\n', args.Ry_amplitude*1e3);
fprintf(' - Period = %.0f [s]\n', args.Ry_period);
case 'sinusoidal'
fprintf(' - Sinusoidal Path\n');
fprintf(' - Amplitude = %.0f [mm]\n', args.Ry_amplitude*1e3);
fprintf(' - Period = %.0f [s]\n', args.Ry_period);
end
fprintf('- Spindle:\n');
switch args.Rz_type
case 'constant'
fprintf(' - Constant Position\n');
fprintf(' - Rz = %.0f [deg]\n', 180/pi*args.Rz_amplitude);
case { 'rotating', 'rotating-not-filtered' }
fprintf(' - Rotating\n');
fprintf(' - Speed = %.0f [rpm]\n', 60/args.Rz_period);
end
fprintf('- Micro Hexapod:\n');
switch args.Dh_type
case 'constant'
fprintf(' - Constant Position\n');
fprintf(' - Dh = %.0f, %.0f, %.0f [mm]\n', args.Dh_pos(1), args.Dh_pos(2), args.Dh_pos(3));
fprintf(' - Rh = %.0f, %.0f, %.0f [deg]\n', args.Dh_pos(4), args.Dh_pos(5), args.Dh_pos(6));
end
fprintf('\n');
load('./mat/nass_model_stages.mat', 'ground', 'granite', 'ty', 'ry', 'rz', 'micro_hexapod', 'axisc');
fprintf('Micro Station:\n');
if granite.type == 1 && ...
ty.type == 1 && ...
ry.type == 1 && ...
rz.type == 1 && ...
micro_hexapod.type == 1;
fprintf('- All stages are rigid\n');
elseif granite.type == 2 && ...
ty.type == 2 && ...
ry.type == 2 && ...
rz.type == 2 && ...
micro_hexapod.type == 2;
fprintf('- All stages are flexible\n');
else
if granite.type == 1 || granite.type == 4
fprintf('- Granite is rigid\n');
else
fprintf('- Granite is flexible\n');
end
if ty.type == 1 || ty.type == 4
fprintf('- Translation Stage is rigid\n');
else
fprintf('- Translation Stage is flexible\n');
end
if ry.type == 1 || ry.type == 4
fprintf('- Tilt Stage is rigid\n');
else
fprintf('- Tilt Stage is flexible\n');
end
if rz.type == 1 || rz.type == 4
fprintf('- Spindle is rigid\n');
else
fprintf('- Spindle is flexible\n');
end
if micro_hexapod.type == 1 || micro_hexapod.type == 4
fprintf('- Micro Hexapod is rigid\n');
else
fprintf('- Micro Hexapod is flexible\n');
end
end
fprintf('\n');

View File

@ -0,0 +1,80 @@
function [] = describeStewartPlatform(stewart)
% describeStewartPlatform - Display some text describing the current defined Stewart Platform
%
% Syntax: [] = describeStewartPlatform(args)
%
% Inputs:
% - stewart
%
% Outputs:
arguments
stewart
end
fprintf('GEOMETRY:\n')
fprintf('- The height between the fixed based and the top platform is %.3g [mm].\n', 1e3*stewart.geometry.H)
if stewart.platform_M.MO_B(3) > 0
fprintf('- Frame {A} is located %.3g [mm] above the top platform.\n', 1e3*stewart.platform_M.MO_B(3))
else
fprintf('- Frame {A} is located %.3g [mm] below the top platform.\n', - 1e3*stewart.platform_M.MO_B(3))
end
fprintf('- The initial length of the struts are:\n')
fprintf('\t %.3g, %.3g, %.3g, %.3g, %.3g, %.3g [mm]\n', 1e3*stewart.geometry.l)
fprintf('\n')
fprintf('ACTUATORS:\n')
if stewart.actuators.type == 1
fprintf('- The actuators are modelled as 1DoF.\n')
fprintf('- The Stiffness and Damping of each actuators is:\n')
fprintf('\t k = %.0e [N/m] \t c = %.0e [N/(m/s)]\n', stewart.actuators.k(1), stewart.actuators.c(1))
if stewart.actuators.kp > 0
fprintf('\t Added parallel stiffness: kp = %.0e [N/m] \t c = %.0e [N/(m/s)]\n', stewart.actuators.kp(1))
end
elseif stewart.actuators.type == 2
fprintf('- The actuators are modelled as 2DoF (APA).\n')
fprintf('- The vertical stiffness and damping contribution of the piezoelectric stack is:\n')
fprintf('\t ka = %.0e [N/m] \t ca = %.0e [N/(m/s)]\n', stewart.actuators.ka(1), stewart.actuators.ca(1))
fprintf('- Vertical stiffness when the piezoelectric stack is removed is:\n')
fprintf('\t kr = %.0e [N/m] \t cr = %.0e [N/(m/s)]\n', stewart.actuators.kr(1), stewart.actuators.cr(1))
elseif stewart.actuators.type == 3
fprintf('- The actuators are modelled with a flexible element (FEM).\n')
end
fprintf('\n')
fprintf('JOINTS:\n')
switch stewart.joints_F.type
case 1
fprintf('- The joints on the fixed based are universal joints (2DoF)\n')
case 2
fprintf('- The joints on the fixed based are spherical joints (3DoF)\n')
end
switch stewart.joints_M.type
case 1
fprintf('- The joints on the mobile based are universal joints (2DoF)\n')
case 2
fprintf('- The joints on the mobile based are spherical joints (3DoF)\n')
end
fprintf('- The position of the joints on the fixed based with respect to {F} are (in [mm]):\n')
fprintf('\t % .3g \t % .3g \t % .3g\n', 1e3*stewart.platform_F.Fa)
fprintf('- The position of the joints on the mobile based with respect to {M} are (in [mm]):\n')
fprintf('\t % .3g \t % .3g \t % .3g\n', 1e3*stewart.platform_M.Mb)
fprintf('\n')
fprintf('KINEMATICS:\n')
if isfield(stewart.kinematics, 'K')
fprintf('- The Stiffness matrix K is (in [N/m]):\n')
fprintf('\t % .0e \t % .0e \t % .0e \t % .0e \t % .0e \t % .0e\n', stewart.kinematics.K)
end
if isfield(stewart.kinematics, 'C')
fprintf('- The Damping matrix C is (in [m/N]):\n')
fprintf('\t % .0e \t % .0e \t % .0e \t % .0e \t % .0e \t % .0e\n', stewart.kinematics.C)
end

View File

@ -0,0 +1,240 @@
function [] = displayArchitecture(stewart, args)
% displayArchitecture - 3D plot of the Stewart platform architecture
%
% Syntax: [] = displayArchitecture(args)
%
% Inputs:
% - stewart
% - args - Structure with the following fields:
% - AP [3x1] - The wanted position of {B} with respect to {A}
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
% - F_color [color] - Color used for the Fixed elements
% - M_color [color] - Color used for the Mobile elements
% - L_color [color] - Color used for the Legs elements
% - frames [true/false] - Display the Frames
% - legs [true/false] - Display the Legs
% - joints [true/false] - Display the Joints
% - labels [true/false] - Display the Labels
% - platforms [true/false] - Display the Platforms
% - views ['all', 'xy', 'yz', 'xz', 'default'] -
%
% Outputs:
arguments
stewart
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
args.ARB (3,3) double {mustBeNumeric} = eye(3)
args.F_color = [0 0.4470 0.7410]
args.M_color = [0.8500 0.3250 0.0980]
args.L_color = [0 0 0]
args.frames logical {mustBeNumericOrLogical} = true
args.legs logical {mustBeNumericOrLogical} = true
args.joints logical {mustBeNumericOrLogical} = true
args.labels logical {mustBeNumericOrLogical} = true
args.platforms logical {mustBeNumericOrLogical} = true
args.views char {mustBeMember(args.views,{'all', 'xy', 'xz', 'yz', 'default'})} = 'default'
end
assert(isfield(stewart.platform_F, 'FO_A'), 'stewart.platform_F should have attribute FO_A')
FO_A = stewart.platform_F.FO_A;
assert(isfield(stewart.platform_M, 'MO_B'), 'stewart.platform_M should have attribute MO_B')
MO_B = stewart.platform_M.MO_B;
assert(isfield(stewart.geometry, 'H'), 'stewart.geometry should have attribute H')
H = stewart.geometry.H;
assert(isfield(stewart.platform_F, 'Fa'), 'stewart.platform_F should have attribute Fa')
Fa = stewart.platform_F.Fa;
assert(isfield(stewart.platform_M, 'Mb'), 'stewart.platform_M should have attribute Mb')
Mb = stewart.platform_M.Mb;
if ~strcmp(args.views, 'all')
figure;
else
f = figure('visible', 'off');
end
hold on;
FTa = [eye(3), FO_A; ...
zeros(1,3), 1];
ATb = [args.ARB, args.AP; ...
zeros(1,3), 1];
BTm = [eye(3), -MO_B; ...
zeros(1,3), 1];
FTm = FTa*ATb*BTm;
d_unit_vector = H/4;
d_label = H/20;
Ff = [0, 0, 0];
if args.frames
quiver3(Ff(1)*ones(1,3), Ff(2)*ones(1,3), Ff(3)*ones(1,3), ...
[d_unit_vector 0 0], [0 d_unit_vector 0], [0 0 d_unit_vector], '-', 'Color', args.F_color)
if args.labels
text(Ff(1) + d_label, ...
Ff(2) + d_label, ...
Ff(3) + d_label, '$\{F\}$', 'Color', args.F_color);
end
end
if args.frames
quiver3(FO_A(1)*ones(1,3), FO_A(2)*ones(1,3), FO_A(3)*ones(1,3), ...
[d_unit_vector 0 0], [0 d_unit_vector 0], [0 0 d_unit_vector], '-', 'Color', args.F_color)
if args.labels
text(FO_A(1) + d_label, ...
FO_A(2) + d_label, ...
FO_A(3) + d_label, '$\{A\}$', 'Color', args.F_color);
end
end
if args.platforms && stewart.platform_F.type == 1
theta = [0:0.01:2*pi+0.01]; % Angles [rad]
v = null([0; 0; 1]'); % Two vectors that are perpendicular to the circle normal
center = [0; 0; 0]; % Center of the circle
radius = stewart.platform_F.R; % Radius of the circle [m]
points = center*ones(1, length(theta)) + radius*(v(:,1)*cos(theta) + v(:,2)*sin(theta));
plot3(points(1,:), ...
points(2,:), ...
points(3,:), '-', 'Color', args.F_color);
end
if args.joints
scatter3(Fa(1,:), ...
Fa(2,:), ...
Fa(3,:), 'MarkerEdgeColor', args.F_color);
if args.labels
for i = 1:size(Fa,2)
text(Fa(1,i) + d_label, ...
Fa(2,i), ...
Fa(3,i), sprintf('$a_{%i}$', i), 'Color', args.F_color);
end
end
end
Fm = FTm*[0; 0; 0; 1]; % Get the position of frame {M} w.r.t. {F}
if args.frames
FM_uv = FTm*[d_unit_vector*eye(3); zeros(1,3)]; % Rotated Unit vectors
quiver3(Fm(1)*ones(1,3), Fm(2)*ones(1,3), Fm(3)*ones(1,3), ...
FM_uv(1,1:3), FM_uv(2,1:3), FM_uv(3,1:3), '-', 'Color', args.M_color)
if args.labels
text(Fm(1) + d_label, ...
Fm(2) + d_label, ...
Fm(3) + d_label, '$\{M\}$', 'Color', args.M_color);
end
end
FB = FO_A + args.AP;
if args.frames
FB_uv = FTm*[d_unit_vector*eye(3); zeros(1,3)]; % Rotated Unit vectors
quiver3(FB(1)*ones(1,3), FB(2)*ones(1,3), FB(3)*ones(1,3), ...
FB_uv(1,1:3), FB_uv(2,1:3), FB_uv(3,1:3), '-', 'Color', args.M_color)
if args.labels
text(FB(1) - d_label, ...
FB(2) + d_label, ...
FB(3) + d_label, '$\{B\}$', 'Color', args.M_color);
end
end
if args.platforms && stewart.platform_M.type == 1
theta = [0:0.01:2*pi+0.01]; % Angles [rad]
v = null((FTm(1:3,1:3)*[0;0;1])'); % Two vectors that are perpendicular to the circle normal
center = Fm(1:3); % Center of the circle
radius = stewart.platform_M.R; % Radius of the circle [m]
points = center*ones(1, length(theta)) + radius*(v(:,1)*cos(theta) + v(:,2)*sin(theta));
plot3(points(1,:), ...
points(2,:), ...
points(3,:), '-', 'Color', args.M_color);
end
if args.joints
Fb = FTm*[Mb;ones(1,6)];
scatter3(Fb(1,:), ...
Fb(2,:), ...
Fb(3,:), 'MarkerEdgeColor', args.M_color);
if args.labels
for i = 1:size(Fb,2)
text(Fb(1,i) + d_label, ...
Fb(2,i), ...
Fb(3,i), sprintf('$b_{%i}$', i), 'Color', args.M_color);
end
end
end
if args.legs
for i = 1:6
plot3([Fa(1,i), Fb(1,i)], ...
[Fa(2,i), Fb(2,i)], ...
[Fa(3,i), Fb(3,i)], '-', 'Color', args.L_color);
if args.labels
text((Fa(1,i)+Fb(1,i))/2 + d_label, ...
(Fa(2,i)+Fb(2,i))/2, ...
(Fa(3,i)+Fb(3,i))/2, sprintf('$%i$', i), 'Color', args.L_color);
end
end
end
switch args.views
case 'default'
view([1 -0.6 0.4]);
case 'xy'
view([0 0 1]);
case 'xz'
view([0 -1 0]);
case 'yz'
view([1 0 0]);
end
axis equal;
axis off;
if strcmp(args.views, 'all')
hAx = findobj('type', 'axes');
figure;
s1 = subplot(2,2,1);
copyobj(get(hAx(1), 'Children'), s1);
view([0 0 1]);
axis equal;
axis off;
title('Top')
s2 = subplot(2,2,2);
copyobj(get(hAx(1), 'Children'), s2);
view([1 -0.6 0.4]);
axis equal;
axis off;
s3 = subplot(2,2,3);
copyobj(get(hAx(1), 'Children'), s3);
view([1 0 0]);
axis equal;
axis off;
title('Front')
s4 = subplot(2,2,4);
copyobj(get(hAx(1), 'Children'), s4);
view([0 -1 0]);
axis equal;
axis off;
title('Side')
close(f);
end

View File

@ -0,0 +1,41 @@
function [stewart] = generateGeneralConfiguration(stewart, args)
% generateGeneralConfiguration - Generate a Very General Configuration
%
% Syntax: [stewart] = generateGeneralConfiguration(stewart, args)
%
% Inputs:
% - args - Can have the following fields:
% - FH [1x1] - Height of the position of the fixed joints with respect to the frame {F} [m]
% - FR [1x1] - Radius of the position of the fixed joints in the X-Y [m]
% - FTh [6x1] - Angles of the fixed joints in the X-Y plane with respect to the X axis [rad]
% - MH [1x1] - Height of the position of the mobile joints with respect to the frame {M} [m]
% - FR [1x1] - Radius of the position of the mobile joints in the X-Y [m]
% - MTh [6x1] - Angles of the mobile joints in the X-Y plane with respect to the X axis [rad]
%
% Outputs:
% - stewart - updated Stewart structure with the added fields:
% - platform_F.Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
% - platform_M.Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}
arguments
stewart
args.FH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
args.FR (1,1) double {mustBeNumeric, mustBePositive} = 115e-3;
args.FTh (6,1) double {mustBeNumeric} = [-10, 10, 120-10, 120+10, 240-10, 240+10]*(pi/180);
args.MH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
args.MR (1,1) double {mustBeNumeric, mustBePositive} = 90e-3;
args.MTh (6,1) double {mustBeNumeric} = [-60+10, 60-10, 60+10, 180-10, 180+10, -60-10]*(pi/180);
end
Fa = zeros(3,6);
Mb = zeros(3,6);
for i = 1:6
Fa(:,i) = [args.FR*cos(args.FTh(i)); args.FR*sin(args.FTh(i)); args.FH];
Mb(:,i) = [args.MR*cos(args.MTh(i)); args.MR*sin(args.MTh(i)); -args.MH];
end
stewart.platform_F.Fa = Fa;
stewart.platform_M.Mb = Mb;
end

View File

@ -0,0 +1,45 @@
function [] = initializeController(args)
arguments
args.type char {mustBeMember(args.type,{'open-loop', 'iff', 'dvf', 'hac-dvf', 'ref-track-L', 'ref-track-iff-L', 'cascade-hac-lac', 'hac-iff', 'stabilizing'})} = 'open-loop'
end
controller = struct();
switch args.type
case 'open-loop'
controller.type = 1;
controller.name = 'Open-Loop';
case 'dvf'
controller.type = 2;
controller.name = 'Decentralized Direct Velocity Feedback';
case 'iff'
controller.type = 3;
controller.name = 'Decentralized Integral Force Feedback';
case 'hac-dvf'
controller.type = 4;
controller.name = 'HAC-DVF';
case 'ref-track-L'
controller.type = 5;
controller.name = 'Reference Tracking in the frame of the legs';
case 'ref-track-iff-L'
controller.type = 6;
controller.name = 'Reference Tracking in the frame of the legs + IFF';
case 'cascade-hac-lac'
controller.type = 7;
controller.name = 'Cascade Control + HAC-LAC';
case 'hac-iff'
controller.type = 8;
controller.name = 'HAC-IFF';
case 'stabilizing'
controller.type = 9;
controller.name = 'Stabilizing Controller';
end
if exist('./mat', 'dir')
save('mat/nass_model_controller.mat', 'controller');
elseif exist('./matlab', 'dir')
save('matlab/mat/nass_model_controller.mat', 'controller');
end
end

View File

@ -0,0 +1,61 @@
function [stewart] = initializeCylindricalPlatforms(stewart, args)
% initializeCylindricalPlatforms - Initialize the geometry of the Fixed and Mobile Platforms
%
% Syntax: [stewart] = initializeCylindricalPlatforms(args)
%
% Inputs:
% - args - Structure with the following fields:
% - Fpm [1x1] - Fixed Platform Mass [kg]
% - Fph [1x1] - Fixed Platform Height [m]
% - Fpr [1x1] - Fixed Platform Radius [m]
% - Mpm [1x1] - Mobile Platform Mass [kg]
% - Mph [1x1] - Mobile Platform Height [m]
% - Mpr [1x1] - Mobile Platform Radius [m]
%
% Outputs:
% - stewart - updated Stewart structure with the added fields:
% - platform_F [struct] - structure with the following fields:
% - type = 1
% - M [1x1] - Fixed Platform Mass [kg]
% - I [3x3] - Fixed Platform Inertia matrix [kg*m^2]
% - H [1x1] - Fixed Platform Height [m]
% - R [1x1] - Fixed Platform Radius [m]
% - platform_M [struct] - structure with the following fields:
% - M [1x1] - Mobile Platform Mass [kg]
% - I [3x3] - Mobile Platform Inertia matrix [kg*m^2]
% - H [1x1] - Mobile Platform Height [m]
% - R [1x1] - Mobile Platform Radius [m]
arguments
stewart
args.Fpm (1,1) double {mustBeNumeric, mustBePositive} = 1
args.Fph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3
args.Fpr (1,1) double {mustBeNumeric, mustBePositive} = 125e-3
args.Mpm (1,1) double {mustBeNumeric, mustBePositive} = 1
args.Mph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3
args.Mpr (1,1) double {mustBeNumeric, mustBePositive} = 100e-3
end
I_F = diag([1/12*args.Fpm * (3*args.Fpr^2 + args.Fph^2), ...
1/12*args.Fpm * (3*args.Fpr^2 + args.Fph^2), ...
1/2 *args.Fpm * args.Fpr^2]);
I_M = diag([1/12*args.Mpm * (3*args.Mpr^2 + args.Mph^2), ...
1/12*args.Mpm * (3*args.Mpr^2 + args.Mph^2), ...
1/2 *args.Mpm * args.Mpr^2]);
stewart.platform_F.type = 1;
stewart.platform_F.I = I_F;
stewart.platform_F.M = args.Fpm;
stewart.platform_F.R = args.Fpr;
stewart.platform_F.H = args.Fph;
stewart.platform_M.type = 1;
stewart.platform_M.I = I_M;
stewart.platform_M.M = args.Mpm;
stewart.platform_M.R = args.Mpr;
stewart.platform_M.H = args.Mph;
end

View File

@ -0,0 +1,69 @@
function [stewart] = initializeCylindricalStruts(stewart, args)
% initializeCylindricalStruts - Define the mass and moment of inertia of cylindrical struts
%
% Syntax: [stewart] = initializeCylindricalStruts(args)
%
% Inputs:
% - args - Structure with the following fields:
% - Fsm [1x1] - Mass of the Fixed part of the struts [kg]
% - Fsh [1x1] - Height of cylinder for the Fixed part of the struts [m]
% - Fsr [1x1] - Radius of cylinder for the Fixed part of the struts [m]
% - Msm [1x1] - Mass of the Mobile part of the struts [kg]
% - Msh [1x1] - Height of cylinder for the Mobile part of the struts [m]
% - Msr [1x1] - Radius of cylinder for the Mobile part of the struts [m]
%
% Outputs:
% - stewart - updated Stewart structure with the added fields:
% - struts_F [struct] - structure with the following fields:
% - M [6x1] - Mass of the Fixed part of the struts [kg]
% - I [3x3x6] - Moment of Inertia for the Fixed part of the struts [kg*m^2]
% - H [6x1] - Height of cylinder for the Fixed part of the struts [m]
% - R [6x1] - Radius of cylinder for the Fixed part of the struts [m]
% - struts_M [struct] - structure with the following fields:
% - M [6x1] - Mass of the Mobile part of the struts [kg]
% - I [3x3x6] - Moment of Inertia for the Mobile part of the struts [kg*m^2]
% - H [6x1] - Height of cylinder for the Mobile part of the struts [m]
% - R [6x1] - Radius of cylinder for the Mobile part of the struts [m]
arguments
stewart
args.Fsm (1,1) double {mustBeNumeric, mustBePositive} = 0.1
args.Fsh (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
args.Fsr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3
args.Msm (1,1) double {mustBeNumeric, mustBePositive} = 0.1
args.Msh (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
args.Msr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3
end
stewart.struts_M.type = 1;
%% Compute the properties of the cylindrical struts
Fsm = args.Fsm;
Fsh = args.Fsh;
Fsr = args.Fsr;
Msm = args.Msm;
Msh = args.Msh;
Msr = args.Msr;
I_F = [1/12 * Fsm * (3*Fsr^2 + Fsh^2), ...
1/12 * Fsm * (3*Fsr^2 + Fsh^2), ...
1/2 * Fsm * Fsr^2];
I_M = [1/12 * Msm * (3*Msr^2 + Msh^2), ...
1/12 * Msm * (3*Msr^2 + Msh^2), ...
1/2 * Msm * Msr^2];
stewart.struts_M.I = I_M;
stewart.struts_F.I = I_F;
stewart.struts_M.M = args.Msm;
stewart.struts_M.R = args.Msr;
stewart.struts_M.H = args.Msh;
stewart.struts_F.type = 1;
stewart.struts_F.M = args.Fsm;
stewart.struts_F.R = args.Fsr;
stewart.struts_F.H = args.Fsh;
end

View File

@ -0,0 +1,211 @@
function [] = initializeDisturbances(args)
% initializeDisturbances - Initialize the disturbances
%
% Syntax: [] = initializeDisturbances(args)
%
% Inputs:
% - args -
arguments
% Global parameter to enable or disable the disturbances
args.enable logical {mustBeNumericOrLogical} = true
% Ground Motion - X direction
args.Dw_x logical {mustBeNumericOrLogical} = true
% Ground Motion - Y direction
args.Dw_y logical {mustBeNumericOrLogical} = true
% Ground Motion - Z direction
args.Dw_z logical {mustBeNumericOrLogical} = true
% Translation Stage - X direction
args.Fdy_x logical {mustBeNumericOrLogical} = true
% Translation Stage - Z direction
args.Fdy_z logical {mustBeNumericOrLogical} = true
% Spindle - X direction
args.Frz_x logical {mustBeNumericOrLogical} = true
% Spindle - Y direction
args.Frz_y logical {mustBeNumericOrLogical} = true
% Spindle - Z direction
args.Frz_z logical {mustBeNumericOrLogical} = true
end
% Initialization of random numbers
rng("shuffle");
%% Ground Motion
if args.enable
% Load the PSD of disturbance
load('ustation_disturbance_psd.mat', 'gm_dist')
% Frequency Data
Dw.f = gm_dist.f;
Dw.psd_x = gm_dist.pxx_x;
Dw.psd_y = gm_dist.pxx_y;
Dw.psd_z = gm_dist.pxx_z;
% Time data
Fs = 2*Dw.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
N = 2*length(Dw.f); % Number of Samples match the one of the wanted PSD
T0 = N/Fs; % Signal Duration [s]
Dw.t = linspace(0, T0, N+1)'; % Time Vector [s]
% ASD representation of the ground motion
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(Dw.psd_x(i)/T0);
end
if args.Dw_x
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dw.x = N/sqrt(2)*ifft(Cx); % Ground Motion - x direction [m]
else
Dw.x = zeros(length(Dw.t), 1);
end
if args.Dw_y
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dw.y = N/sqrt(2)*ifft(Cx); % Ground Motion - y direction [m]
else
Dw.y = zeros(length(Dw.t), 1);
end
if args.Dw_y
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dw.z = N/sqrt(2)*ifft(Cx); % Ground Motion - z direction [m]
else
Dw.z = zeros(length(Dw.t), 1);
end
else
Dw.t = [0,1]; % Time Vector [s]
Dw.x = [0,0]; % Ground Motion - X [m]
Dw.y = [0,0]; % Ground Motion - Y [m]
Dw.z = [0,0]; % Ground Motion - Z [m]
end
%% Translation stage
if args.enable
% Load the PSD of disturbance
load('ustation_disturbance_psd.mat', 'dy_dist')
% Frequency Data
Dy.f = dy_dist.f;
Dy.psd_x = dy_dist.pxx_fx;
Dy.psd_z = dy_dist.pxx_fz;
% Time data
Fs = 2*Dy.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
N = 2*length(Dy.f); % Number of Samples match the one of the wanted PSD
T0 = N/Fs; % Signal Duration [s]
Dy.t = linspace(0, T0, N+1)'; % Time Vector [s]
% ASD representation of the disturbance voice
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(Dy.psd_x(i)/T0);
end
if args.Fdy_x
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dy.x = N/sqrt(2)*ifft(Cx); % Translation stage disturbances - X direction [N]
else
Dy.x = zeros(length(Dy.t), 1);
end
if args.Fdy_z
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dy.z = N/sqrt(2)*ifft(Cx); % Translation stage disturbances - Z direction [N]
else
Dy.z = zeros(length(Dy.t), 1);
end
else
Dy.t = [0,1]; % Time Vector [s]
Dy.x = [0,0]; % Translation Stage disturbances - X [N]
Dy.z = [0,0]; % Translation Stage disturbances - Z [N]
end
%% Spindle
if args.enable
% Load the PSD of disturbance
load('ustation_disturbance_psd.mat', 'rz_dist')
% Frequency Data
Rz.f = rz_dist.f;
Rz.psd_x = rz_dist.pxx_fx;
Rz.psd_y = rz_dist.pxx_fy;
Rz.psd_z = rz_dist.pxx_fz;
% Time data
Fs = 2*Rz.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
N = 2*length(Rz.f); % Number of Samples match the one of the wanted PSD
T0 = N/Fs; % Signal Duration [s]
Rz.t = linspace(0, T0, N+1)'; % Time Vector [s]
% ASD representation of the disturbance voice
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(Rz.psd_x(i)/T0);
end
if args.Frz_x
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Rz.x = N/sqrt(2)*ifft(Cx); % spindle disturbances - X direction [N]
else
Rz.x = zeros(length(Rz.t), 1);
end
if args.Frz_y
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Rz.y = N/sqrt(2)*ifft(Cx); % spindle disturbances - Y direction [N]
else
Rz.y = zeros(length(Rz.t), 1);
end
if args.Frz_z
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Rz.z = N/sqrt(2)*ifft(Cx); % spindle disturbances - Z direction [N]
else
Rz.z = zeros(length(Rz.t), 1);
end
else
Rz.t = [0,1]; % Time Vector [s]
Rz.x = [0,0]; % Spindle disturbances - X [N]
Rz.y = [0,0]; % Spindle disturbances - X [N]
Rz.z = [0,0]; % Spindle disturbances - Z [N]
end
u = zeros(100, 6);
Fd = u;
Dw.x = Dw.x - Dw.x(1);
Dw.y = Dw.y - Dw.y(1);
Dw.z = Dw.z - Dw.z(1);
Dy.x = Dy.x - Dy.x(1);
Dy.z = Dy.z - Dy.z(1);
Rz.x = Rz.x - Rz.x(1);
Rz.y = Rz.y - Rz.y(1);
Rz.z = Rz.z - Rz.z(1);
if exist('./mat', 'dir')
save('mat/nass_model_disturbances.mat', 'Dw', 'Dy', 'Rz', 'Fd', 'args');
elseif exist('./matlab', 'dir')
save('matlab/mat/nass_model_disturbances.mat', 'Dw', 'Dy', 'Rz', 'Fd', 'args');
end

View File

@ -0,0 +1,37 @@
function [stewart] = initializeFramesPositions(stewart, args)
% initializeFramesPositions - Initialize the positions of frames {A}, {B}, {F} and {M}
%
% Syntax: [stewart] = initializeFramesPositions(stewart, args)
%
% Inputs:
% - args - Can have the following fields:
% - H [1x1] - Total Height of the Stewart Platform (height from {F} to {M}) [m]
% - MO_B [1x1] - Height of the frame {B} with respect to {M} [m]
%
% Outputs:
% - stewart - A structure with the following fields:
% - geometry.H [1x1] - Total Height of the Stewart Platform [m]
% - geometry.FO_M [3x1] - Position of {M} with respect to {F} [m]
% - platform_M.MO_B [3x1] - Position of {B} with respect to {M} [m]
% - platform_F.FO_A [3x1] - Position of {A} with respect to {F} [m]
arguments
stewart
args.H (1,1) double {mustBeNumeric, mustBePositive} = 90e-3
args.MO_B (1,1) double {mustBeNumeric} = 50e-3
end
H = args.H; % Total Height of the Stewart Platform [m]
FO_M = [0; 0; H]; % Position of {M} with respect to {F} [m]
MO_B = [0; 0; args.MO_B]; % Position of {B} with respect to {M} [m]
FO_A = MO_B + FO_M; % Position of {A} with respect to {F} [m]
stewart.geometry.H = H;
stewart.geometry.FO_M = FO_M;
stewart.platform_M.MO_B = MO_B;
stewart.platform_F.FO_A = FO_A;
end

View File

@ -0,0 +1,48 @@
function [granite] = initializeGranite(args)
arguments
args.type char {mustBeMember(args.type,{'rigid', 'flexible', 'none'})} = 'flexible'
args.density (1,1) double {mustBeNumeric, mustBeNonnegative} = 2800 % Density [kg/m3]
args.K (6,1) double {mustBeNumeric, mustBeNonnegative} = [5e9; 5e9; 5e9; 2.5e7; 2.5e7; 1e7] % [N/m]
args.C (6,1) double {mustBeNumeric, mustBeNonnegative} = [4.0e5; 1.1e5; 9.0e5; 2e4; 2e4; 1e4] % [N/(m/s)]
args.x0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the X direction [m]
args.y0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the Y direction [m]
args.z0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the Z direction [m]
args.sample_pos (1,1) double {mustBeNumeric} = 0.775 % Height of the measurment point [m]
end
granite = struct();
switch args.type
case 'none'
granite.type = 0;
case 'rigid'
granite.type = 1;
case 'flexible'
granite.type = 2;
end
granite.density = args.density; % [kg/m3]
granite.STEP = 'granite.STEP';
% Z-offset for the initial position of the sample with respect to the granite top surface.
granite.sample_pos = args.sample_pos; % [m]
granite.K = args.K; % [N/m]
granite.C = args.C; % [N/(m/s)]
if exist('./mat', 'dir')
if exist('./mat/nass_model_stages.mat', 'file')
save('mat/nass_model_stages.mat', 'granite', '-append');
else
save('mat/nass_model_stages.mat', 'granite');
end
elseif exist('./matlab', 'dir')
if exist('./matlab/mat/nass_model_stages.mat', 'file')
save('matlab/mat/nass_model_stages.mat', 'granite', '-append');
else
save('matlab/mat/nass_model_stages.mat', 'granite');
end
end
end

View File

@ -0,0 +1,35 @@
function [ground] = initializeGround(args)
arguments
args.type char {mustBeMember(args.type,{'none', 'rigid'})} = 'rigid'
args.rot_point (3,1) double {mustBeNumeric} = zeros(3,1) % Rotation point for the ground motion [m]
end
ground = struct();
switch args.type
case 'none'
ground.type = 0;
case 'rigid'
ground.type = 1;
end
ground.shape = [2, 2, 0.5]; % [m]
ground.density = 2800; % [kg/m3]
ground.rot_point = args.rot_point;
if exist('./mat', 'dir')
if exist('./mat/nass_model_stages.mat', 'file')
save('mat/nass_model_stages.mat', 'ground', '-append');
else
save('mat/nass_model_stages.mat', 'ground');
end
elseif exist('./matlab', 'dir')
if exist('./matlab/mat/nass_model_stages.mat', 'file')
save('matlab/mat/nass_model_stages.mat', 'ground', '-append');
else
save('matlab/mat/nass_model_stages.mat', 'ground');
end
end
end

View File

@ -0,0 +1,48 @@
function [stewart] = initializeInertialSensor(stewart, args)
% initializeInertialSensor - Initialize the inertial sensor in each strut
%
% Syntax: [stewart] = initializeInertialSensor(args)
%
% Inputs:
% - args - Structure with the following fields:
% - type - 'geophone', 'accelerometer', 'none'
% - mass [1x1] - Weight of the inertial mass [kg]
% - freq [1x1] - Cutoff frequency [Hz]
%
% Outputs:
% - stewart - updated Stewart structure with the added fields:
% - stewart.sensors.inertial
% - type - 1 (geophone), 2 (accelerometer), 3 (none)
% - K [1x1] - Stiffness [N/m]
% - C [1x1] - Damping [N/(m/s)]
% - M [1x1] - Inertial Mass [kg]
% - G [1x1] - Gain
arguments
stewart
args.type char {mustBeMember(args.type,{'geophone', 'accelerometer', 'none'})} = 'none'
args.mass (1,1) double {mustBeNumeric, mustBeNonnegative} = 1e-2
args.freq (1,1) double {mustBeNumeric, mustBeNonnegative} = 1e3
end
sensor = struct();
switch args.type
case 'geophone'
sensor.type = 1;
sensor.M = args.mass;
sensor.K = sensor.M * (2*pi*args.freq)^2;
sensor.C = 2*sqrt(sensor.M * sensor.K);
case 'accelerometer'
sensor.type = 2;
sensor.M = args.mass;
sensor.K = sensor.M * (2*pi*args.freq)^2;
sensor.C = 2*sqrt(sensor.M * sensor.K);
sensor.G = -sensor.K/sensor.M;
case 'none'
sensor.type = 3;
end
stewart.sensors.inertial = sensor;

View File

@ -0,0 +1,129 @@
function [stewart] = initializeJointDynamics(stewart, args)
% initializeJointDynamics - Add Stiffness and Damping properties for the spherical joints
%
% Syntax: [stewart] = initializeJointDynamics(args)
%
% Inputs:
% - args - Structure with the following fields:
% - type_F - 'universal', 'spherical', 'universal_p', 'spherical_p'
% - type_M - 'universal', 'spherical', 'universal_p', 'spherical_p'
% - Kf_M [6x1] - Bending (Rx, Ry) Stiffness for each top joints [(N.m)/rad]
% - Kt_M [6x1] - Torsion (Rz) Stiffness for each top joints [(N.m)/rad]
% - Cf_M [6x1] - Bending (Rx, Ry) Damping of each top joint [(N.m)/(rad/s)]
% - Ct_M [6x1] - Torsion (Rz) Damping of each top joint [(N.m)/(rad/s)]
% - Kf_F [6x1] - Bending (Rx, Ry) Stiffness for each bottom joints [(N.m)/rad]
% - Kt_F [6x1] - Torsion (Rz) Stiffness for each bottom joints [(N.m)/rad]
% - Cf_F [6x1] - Bending (Rx, Ry) Damping of each bottom joint [(N.m)/(rad/s)]
% - Cf_F [6x1] - Torsion (Rz) Damping of each bottom joint [(N.m)/(rad/s)]
%
% Outputs:
% - stewart - updated Stewart structure with the added fields:
% - stewart.joints_F and stewart.joints_M:
% - type - 1 (universal), 2 (spherical), 3 (universal perfect), 4 (spherical perfect)
% - Kx, Ky, Kz [6x1] - Translation (Tx, Ty, Tz) Stiffness [N/m]
% - Kf [6x1] - Flexion (Rx, Ry) Stiffness [(N.m)/rad]
% - Kt [6x1] - Torsion (Rz) Stiffness [(N.m)/rad]
% - Cx, Cy, Cz [6x1] - Translation (Rx, Ry) Damping [N/(m/s)]
% - Cf [6x1] - Flexion (Rx, Ry) Damping [(N.m)/(rad/s)]
% - Cb [6x1] - Torsion (Rz) Damping [(N.m)/(rad/s)]
arguments
stewart
args.type_F char {mustBeMember(args.type_F,{'2dof', '3dof', '4dof', '6dof', 'flexible'})} = '2dof'
args.type_M char {mustBeMember(args.type_M,{'2dof', '3dof', '4dof', '6dof', 'flexible'})} = '3dof'
args.Kf_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Cf_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Kt_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Ct_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Kf_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Cf_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Kt_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Ct_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Ka_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Ca_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Kr_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Cr_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Ka_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Ca_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Kr_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Cr_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.K_M double {mustBeNumeric} = zeros(6,6)
args.M_M double {mustBeNumeric} = zeros(6,6)
args.n_xyz_M double {mustBeNumeric} = zeros(2,3)
args.xi_M double {mustBeNumeric} = 0.1
args.step_file_M char {} = ''
args.K_F double {mustBeNumeric} = zeros(6,6)
args.M_F double {mustBeNumeric} = zeros(6,6)
args.n_xyz_F double {mustBeNumeric} = zeros(2,3)
args.xi_F double {mustBeNumeric} = 0.1
args.step_file_F char {} = ''
end
switch args.type_F
case '2dof'
stewart.joints_F.type = 1;
case '3dof'
stewart.joints_F.type = 2;
case '4dof'
stewart.joints_F.type = 3;
case '6dof'
stewart.joints_F.type = 4;
case 'flexible'
stewart.joints_F.type = 5;
otherwise
error("joints_F are not correctly defined")
end
switch args.type_M
case '2dof'
stewart.joints_M.type = 1;
case '3dof'
stewart.joints_M.type = 2;
case '4dof'
stewart.joints_M.type = 3;
case '6dof'
stewart.joints_M.type = 4;
case 'flexible'
stewart.joints_M.type = 5;
otherwise
error("joints_M are not correctly defined")
end
stewart.joints_M.Ka = args.Ka_M;
stewart.joints_M.Kr = args.Kr_M;
stewart.joints_F.Ka = args.Ka_F;
stewart.joints_F.Kr = args.Kr_F;
stewart.joints_M.Ca = args.Ca_M;
stewart.joints_M.Cr = args.Cr_M;
stewart.joints_F.Ca = args.Ca_F;
stewart.joints_F.Cr = args.Cr_F;
stewart.joints_M.Kf = args.Kf_M;
stewart.joints_M.Kt = args.Kt_M;
stewart.joints_F.Kf = args.Kf_F;
stewart.joints_F.Kt = args.Kt_F;
stewart.joints_M.Cf = args.Cf_M;
stewart.joints_M.Ct = args.Ct_M;
stewart.joints_F.Cf = args.Cf_F;
stewart.joints_F.Ct = args.Ct_F;
stewart.joints_F.M = args.M_F;
stewart.joints_F.K = args.K_F;
stewart.joints_F.n_xyz = args.n_xyz_F;
stewart.joints_F.xi = args.xi_F;
stewart.joints_F.xi = args.xi_F;
stewart.joints_F.step_file = args.step_file_F;
stewart.joints_M.M = args.M_M;
stewart.joints_M.K = args.K_M;
stewart.joints_M.n_xyz = args.n_xyz_M;
stewart.joints_M.xi = args.xi_M;
stewart.joints_M.step_file = args.step_file_M;
end

View File

@ -0,0 +1,33 @@
function [] = initializeLoggingConfiguration(args)
arguments
args.log char {mustBeMember(args.log,{'none', 'all', 'forces'})} = 'none'
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3
end
conf_log = struct();
switch args.log
case 'none'
conf_log.type = 0;
case 'all'
conf_log.type = 1;
case 'forces'
conf_log.type = 2;
end
conf_log.Ts = args.Ts;
if exist('./mat', 'dir')
if exist('./mat/nass_model_conf_log.mat', 'file')
save('mat/nass_model_conf_log.mat', 'conf_log', '-append');
else
save('mat/nass_model_conf_log.mat', 'conf_log');
end
elseif exist('./matlab', 'dir')
if exist('./matlab/mat/nass_model_conf_log.mat', 'file')
save('matlab/mat/nass_model_conf_log.mat', 'conf_log', '-append');
else
save('matlab/mat/nass_model_conf_log.mat', 'conf_log');
end
end

View File

@ -0,0 +1,108 @@
function [micro_hexapod] = initializeMicroHexapod(args)
arguments
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'flexible'
% initializeFramesPositions
args.H (1,1) double {mustBeNumeric, mustBePositive} = 350e-3
args.MO_B (1,1) double {mustBeNumeric} = 270e-3
% generateGeneralConfiguration
args.FH (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
args.FR (1,1) double {mustBeNumeric, mustBePositive} = 175.5e-3
args.FTh (6,1) double {mustBeNumeric} = [-10, 10, 120-10, 120+10, 240-10, 240+10]*(pi/180)
args.MH (1,1) double {mustBeNumeric, mustBePositive} = 45e-3
args.MR (1,1) double {mustBeNumeric, mustBePositive} = 118e-3
args.MTh (6,1) double {mustBeNumeric} = [-60+10, 60-10, 60+10, 180-10, 180+10, -60-10]*(pi/180)
% initializeStrutDynamics
args.Ki (1,1) double {mustBeNumeric, mustBeNonnegative} = 2e7
args.Ci (1,1) double {mustBeNumeric, mustBeNonnegative} = 1.4e3
% initializeCylindricalPlatforms
args.Fpm (1,1) double {mustBeNumeric, mustBePositive} = 10
args.Fph (1,1) double {mustBeNumeric, mustBePositive} = 26e-3
args.Fpr (1,1) double {mustBeNumeric, mustBePositive} = 207.5e-3
args.Mpm (1,1) double {mustBeNumeric, mustBePositive} = 10
args.Mph (1,1) double {mustBeNumeric, mustBePositive} = 26e-3
args.Mpr (1,1) double {mustBeNumeric, mustBePositive} = 150e-3
% initializeCylindricalStruts
args.Fsm (1,1) double {mustBeNumeric, mustBePositive} = 1
args.Fsh (1,1) double {mustBeNumeric, mustBePositive} = 100e-3
args.Fsr (1,1) double {mustBeNumeric, mustBePositive} = 25e-3
args.Msm (1,1) double {mustBeNumeric, mustBePositive} = 1
args.Msh (1,1) double {mustBeNumeric, mustBePositive} = 100e-3
args.Msr (1,1) double {mustBeNumeric, mustBePositive} = 25e-3
% inverseKinematics
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
args.ARB (3,3) double {mustBeNumeric} = eye(3)
end
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, ...
'H', args.H, ...
'MO_B', args.MO_B);
stewart = generateGeneralConfiguration(stewart, ...
'FH', args.FH, ...
'FR', args.FR, ...
'FTh', args.FTh, ...
'MH', args.MH, ...
'MR', args.MR, ...
'MTh', args.MTh);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, ...
'k', args.Ki, ...
'c', args.Ci);
stewart = initializeJointDynamics(stewart, ...
'type_F', '2dof', ...
'type_M', '3dof');
stewart = initializeCylindricalPlatforms(stewart, ...
'Fpm', args.Fpm, ...
'Fph', args.Fph, ...
'Fpr', args.Fpr, ...
'Mpm', args.Mpm, ...
'Mph', args.Mph, ...
'Mpr', args.Mpr);
stewart = initializeCylindricalStruts(stewart, ...
'Fsm', args.Fsm, ...
'Fsh', args.Fsh, ...
'Fsr', args.Fsr, ...
'Msm', args.Msm, ...
'Msh', args.Msh, ...
'Msr', args.Msr);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart, ...
'AP', args.AP, ...
'ARB', args.ARB);
stewart = initializeInertialSensor(stewart, 'type', 'none');
switch args.type
case 'none'
stewart.type = 0;
case 'rigid'
stewart.type = 1;
case 'flexible'
stewart.type = 2;
end
micro_hexapod = stewart;
if exist('./mat', 'dir')
if exist('./mat/nass_model_stages.mat', 'file')
save('mat/nass_model_stages.mat', 'micro_hexapod', '-append');
else
save('mat/nass_model_stages.mat', 'micro_hexapod');
end
elseif exist('./matlab', 'dir')
if exist('./matlab/mat/nass_model_stages.mat', 'file')
save('matlab/mat/nass_model_stages.mat', 'micro_hexapod', '-append');
else
save('matlab/mat/nass_model_stages.mat', 'micro_hexapod');
end
end
end

View File

@ -0,0 +1,199 @@
function [ref] = initializeReferences(args)
arguments
% Sampling Frequency [s]
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3
% Maximum simulation time [s]
args.Tmax (1,1) double {mustBeNumeric, mustBePositive} = 100
% Either "constant" / "triangular" / "sinusoidal"
args.Dy_type char {mustBeMember(args.Dy_type,{'constant', 'triangular', 'sinusoidal'})} = 'constant'
% Amplitude of the displacement [m]
args.Dy_amplitude (1,1) double {mustBeNumeric} = 0
% Period of the displacement [s]
args.Dy_period (1,1) double {mustBeNumeric, mustBePositive} = 1
% Either "constant" / "triangular" / "sinusoidal"
args.Ry_type char {mustBeMember(args.Ry_type,{'constant', 'triangular', 'sinusoidal'})} = 'constant'
% Amplitude [rad]
args.Ry_amplitude (1,1) double {mustBeNumeric} = 0
% Period of the displacement [s]
args.Ry_period (1,1) double {mustBeNumeric, mustBePositive} = 1
% Either "constant" / "rotating"
args.Rz_type char {mustBeMember(args.Rz_type,{'constant', 'rotating', 'rotating-not-filtered'})} = 'constant'
% Initial angle [rad]
args.Rz_amplitude (1,1) double {mustBeNumeric} = 0
% Period of the rotating [s]
args.Rz_period (1,1) double {mustBeNumeric, mustBePositive} = 1
% For now, only constant is implemented
args.Dh_type char {mustBeMember(args.Dh_type,{'constant'})} = 'constant'
% Initial position [m,m,m,rad,rad,rad] of the top platform (Pitch-Roll-Yaw Euler angles)
args.Dh_pos (6,1) double {mustBeNumeric} = zeros(6, 1), ...
% For now, only constant is implemented
args.Rm_type char {mustBeMember(args.Rm_type,{'constant'})} = 'constant'
% Initial position of the two masses
args.Rm_pos (2,1) double {mustBeNumeric} = [0; pi]
% For now, only constant is implemented
args.Dn_type char {mustBeMember(args.Dn_type,{'constant'})} = 'constant'
% Initial position [m,m,m,rad,rad,rad] of the top platform
args.Dn_pos (6,1) double {mustBeNumeric} = zeros(6,1)
end
%% Set Sampling Time
Ts = args.Ts;
Tmax = args.Tmax;
%% Low Pass Filter to filter out the references
s = zpk('s');
w0 = 2*pi*10;
xi = 1;
H_lpf = 1/(1 + 2*xi/w0*s + s^2/w0^2);
%% Translation stage - Dy
t = 0:Ts:Tmax; % Time Vector [s]
Dy = zeros(length(t), 1);
Dyd = zeros(length(t), 1);
Dydd = zeros(length(t), 1);
switch args.Dy_type
case 'constant'
Dy(:) = args.Dy_amplitude;
Dyd(:) = 0;
Dydd(:) = 0;
case 'triangular'
% This is done to unsure that we start with no displacement
Dy_raw = args.Dy_amplitude*sawtooth(2*pi*t/args.Dy_period,1/2);
i0 = find(t>=args.Dy_period/4,1);
Dy(1:end-i0+1) = Dy_raw(i0:end);
Dy(end-i0+2:end) = Dy_raw(end); % we fix the last value
% The signal is filtered out
Dy = lsim(H_lpf, Dy, t);
Dyd = lsim(H_lpf*s, Dy, t);
Dydd = lsim(H_lpf*s^2, Dy, t);
case 'sinusoidal'
Dy(:) = args.Dy_amplitude*sin(2*pi/args.Dy_period*t);
Dyd = args.Dy_amplitude*2*pi/args.Dy_period*cos(2*pi/args.Dy_period*t);
Dydd = -args.Dy_amplitude*(2*pi/args.Dy_period)^2*sin(2*pi/args.Dy_period*t);
otherwise
warning('Dy_type is not set correctly');
end
Dy = struct('time', t, 'signals', struct('values', Dy), 'deriv', Dyd, 'dderiv', Dydd);
%% Tilt Stage - Ry
t = 0:Ts:Tmax; % Time Vector [s]
Ry = zeros(length(t), 1);
Ryd = zeros(length(t), 1);
Rydd = zeros(length(t), 1);
switch args.Ry_type
case 'constant'
Ry(:) = args.Ry_amplitude;
Ryd(:) = 0;
Rydd(:) = 0;
case 'triangular'
Ry_raw = args.Ry_amplitude*sawtooth(2*pi*t/args.Ry_period,1/2);
i0 = find(t>=args.Ry_period/4,1);
Ry(1:end-i0+1) = Ry_raw(i0:end);
Ry(end-i0+2:end) = Ry_raw(end); % we fix the last value
% The signal is filtered out
Ry = lsim(H_lpf, Ry, t);
Ryd = lsim(H_lpf*s, Ry, t);
Rydd = lsim(H_lpf*s^2, Ry, t);
case 'sinusoidal'
Ry(:) = args.Ry_amplitude*sin(2*pi/args.Ry_period*t);
Ryd = args.Ry_amplitude*2*pi/args.Ry_period*cos(2*pi/args.Ry_period*t);
Rydd = -args.Ry_amplitude*(2*pi/args.Ry_period)^2*sin(2*pi/args.Ry_period*t);
otherwise
warning('Ry_type is not set correctly');
end
Ry = struct('time', t, 'signals', struct('values', Ry), 'deriv', Ryd, 'dderiv', Rydd);
%% Spindle - Rz
t = 0:Ts:Tmax; % Time Vector [s]
Rz = zeros(length(t), 1);
Rzd = zeros(length(t), 1);
Rzdd = zeros(length(t), 1);
switch args.Rz_type
case 'constant'
Rz(:) = args.Rz_amplitude;
Rzd(:) = 0;
Rzdd(:) = 0;
case 'rotating-not-filtered'
Rz(:) = 2*pi/args.Rz_period*t;
% The signal is filtered out
Rz(:) = 2*pi/args.Rz_period*t;
Rzd(:) = 2*pi/args.Rz_period;
Rzdd(:) = 0;
% We add the angle offset
Rz = Rz + args.Rz_amplitude;
case 'rotating'
Rz(:) = 2*pi/args.Rz_period*t;
% The signal is filtered out
Rz = lsim(H_lpf, Rz, t);
Rzd = lsim(H_lpf*s, Rz, t);
Rzdd = lsim(H_lpf*s^2, Rz, t);
% We add the angle offset
Rz = Rz + args.Rz_amplitude;
otherwise
warning('Rz_type is not set correctly');
end
Rz = struct('time', t, 'signals', struct('values', Rz), 'deriv', Rzd, 'dderiv', Rzdd);
%% Micro-Hexapod
t = [0, Ts];
Dh = zeros(length(t), 6);
Dhl = zeros(length(t), 6);
switch args.Dh_type
case 'constant'
Dh = [args.Dh_pos, args.Dh_pos];
load('nass_model_stages.mat', 'micro_hexapod');
AP = [args.Dh_pos(1) ; args.Dh_pos(2) ; args.Dh_pos(3)];
tx = args.Dh_pos(4);
ty = args.Dh_pos(5);
tz = args.Dh_pos(6);
ARB = [cos(tz) -sin(tz) 0;
sin(tz) cos(tz) 0;
0 0 1]*...
[ cos(ty) 0 sin(ty);
0 1 0;
-sin(ty) 0 cos(ty)]*...
[1 0 0;
0 cos(tx) -sin(tx);
0 sin(tx) cos(tx)];
[~, Dhl] = inverseKinematics(micro_hexapod, 'AP', AP, 'ARB', ARB);
Dhl = [Dhl, Dhl];
otherwise
warning('Dh_type is not set correctly');
end
Dh = struct('time', t, 'signals', struct('values', Dh));
Dhl = struct('time', t, 'signals', struct('values', Dhl));
if exist('./mat', 'dir')
if exist('./mat/nass_model_references.mat', 'file')
save('mat/nass_model_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'args', 'Ts', '-append');
else
save('mat/nass_model_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'args', 'Ts');
end
elseif exist('./matlab', 'dir')
if exist('./matlab/mat/nass_model_references.mat', 'file')
save('matlab/mat/nass_model_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'args', 'Ts', '-append');
else
save('matlab/mat/nass_model_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'args', 'Ts');
end
end

57
matlab/src/initializeRy.m Normal file
View File

@ -0,0 +1,57 @@
function [ry] = initializeRy(args)
arguments
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'flexible'
args.Ry_init (1,1) double {mustBeNumeric} = 0
end
ry = struct();
switch args.type
case 'none'
ry.type = 0;
case 'rigid'
ry.type = 1;
case 'flexible'
ry.type = 2;
end
% Ry - Guide for the tilt stage
ry.guide.density = 7800; % [kg/m3]
ry.guide.STEP = 'Tilt_Guide.STEP';
% Ry - Rotor of the motor
ry.rotor.density = 2400; % [kg/m3]
ry.rotor.STEP = 'Tilt_Motor_Axis.STEP';
% Ry - Motor
ry.motor.density = 3200; % [kg/m3]
ry.motor.STEP = 'Tilt_Motor.STEP';
% Ry - Plateau Tilt
ry.stage.density = 7800; % [kg/m3]
ry.stage.STEP = 'Tilt_Stage.STEP';
% Z-Offset so that the center of rotation matches the sample center;
ry.z_offset = 0.58178; % [m]
ry.Ry_init = args.Ry_init; % [rad]
ry.K = [3.8e8; 4e8; 3.8e8; 1.2e8; 6e4; 1.2e8];
ry.C = [1e5; 1e5; 1e5; 3e4; 1e3; 3e4];
if exist('./mat', 'dir')
if exist('./mat/nass_model_stages.mat', 'file')
save('mat/nass_model_stages.mat', 'ry', '-append');
else
save('mat/nass_model_stages.mat', 'ry');
end
elseif exist('./matlab', 'dir')
if exist('./matlab/mat/nass_model_stages.mat', 'file')
save('matlab/mat/nass_model_stages.mat', 'ry', '-append');
else
save('matlab/mat/nass_model_stages.mat', 'ry');
end
end
end

47
matlab/src/initializeRz.m Normal file
View File

@ -0,0 +1,47 @@
function [rz] = initializeRz(args)
arguments
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'flexible'
end
rz = struct();
switch args.type
case 'none'
rz.type = 0;
case 'rigid'
rz.type = 1;
case 'flexible'
rz.type = 2;
end
% Spindle - Slip Ring
rz.slipring.density = 7800; % [kg/m3]
rz.slipring.STEP = 'Spindle_Slip_Ring.STEP';
% Spindle - Rotor
rz.rotor.density = 7800; % [kg/m3]
rz.rotor.STEP = 'Spindle_Rotor.STEP';
% Spindle - Stator
rz.stator.density = 7800; % [kg/m3]
rz.stator.STEP = 'Spindle_Stator.STEP';
rz.K = [7e8; 7e8; 2e9; 1e7; 1e7; 1e7];
rz.C = [4e4; 4e4; 7e4; 1e4; 1e4; 1e4];
if exist('./mat', 'dir')
if exist('./mat/nass_model_stages.mat', 'file')
save('mat/nass_model_stages.mat', 'rz', '-append');
else
save('mat/nass_model_stages.mat', 'rz');
end
elseif exist('./matlab', 'dir')
if exist('./matlab/mat/nass_model_stages.mat', 'file')
save('matlab/mat/nass_model_stages.mat', 'rz', '-append');
else
save('matlab/mat/nass_model_stages.mat', 'rz');
end
end
end

View File

@ -0,0 +1,36 @@
function [sample] = initializeSample(args)
arguments
args.H (1,1) double {mustBeNumeric, mustBePositive} = 350e-3 % Height [m]
args.R (1,1) double {mustBeNumeric, mustBePositive} = 350e-3 % Radius [m]
args.m (1,1) double {mustBeNumeric, mustBePositive} = 1 % Mass [kg]
end
sample = struct();
switch args.type
case '0'
sample.type = 0;
case '1'
sample.type = 1;
case '2'
sample.type = 2;
case '3'
sample.type = 3;
end
if exist('./mat', 'dir')
if exist('./mat/nass_model_stages.mat', 'file')
save('mat/nass_model_stages.mat', 'sample', '-append');
else
save('mat/nass_model_stages.mat', 'sample');
end
elseif exist('./matlab', 'dir')
if exist('./matlab/mat/nass_model_stages.mat', 'file')
save('matlab/mat/nass_model_stages.mat', 'sample', '-append');
else
save('matlab/mat/nass_model_stages.mat', 'sample');
end
end
end

View File

@ -0,0 +1,145 @@
function [nano_hexapod] = initializeSimplifiedNanoHexapod(args)
arguments
%% initializeFramesPositions
args.H (1,1) double {mustBeNumeric, mustBePositive} = 95e-3 % Height of the nano-hexapod [m]
args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m]
%% generateGeneralConfiguration
args.FH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3 % Height of fixed joints [m]
args.FR (1,1) double {mustBeNumeric, mustBePositive} = 120e-3 % Radius of fixed joints [m]
args.FTh (6,1) double {mustBeNumeric} = [220, 320, 340, 80, 100, 200]*(pi/180) % Angles of fixed joints [rad]
args.MH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3 % Height of mobile joints [m]
args.MR (1,1) double {mustBeNumeric, mustBePositive} = 110e-3 % Radius of mobile joints [m]
args.MTh (6,1) double {mustBeNumeric} = [255, 285, 15, 45, 135, 165]*(pi/180) % Angles of fixed joints [rad]
%% Actuators
args.actuator_type char {mustBeMember(args.actuator_type,{'1dof', '2dof', 'flexible'})} = '1dof'
args.actuator_k (1,1) double {mustBeNumeric, mustBePositive} = 1e6
args.actuator_kp (1,1) double {mustBeNumeric, mustBeNonnegative} = 1e4
args.actuator_ke (1,1) double {mustBeNumeric, mustBePositive} = 4952605
args.actuator_ka (1,1) double {mustBeNumeric, mustBePositive} = 2476302
args.actuator_c (1,1) double {mustBeNumeric, mustBePositive} = 50
args.actuator_cp (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.actuator_ce (1,1) double {mustBeNumeric, mustBePositive} = 100
args.actuator_ca (1,1) double {mustBeNumeric, mustBePositive} = 50
%% initializeCylindricalPlatforms
args.Fpm (1,1) double {mustBeNumeric, mustBePositive} = 5 % Mass of the fixed plate [kg]
args.Fph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3 % Thickness of the fixed plate [m]
args.Fpr (1,1) double {mustBeNumeric, mustBePositive} = 150e-3 % Radius of the fixed plate [m]
args.Mpm (1,1) double {mustBeNumeric, mustBePositive} = 5 % Mass of the mobile plate [kg]
args.Mph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3 % Thickness of the mobile plate [m]
args.Mpr (1,1) double {mustBeNumeric, mustBePositive} = 150e-3 % Radius of the mobile plate [m]
%% initializeCylindricalStruts
args.Fsm (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % Mass of the fixed part of the strut [kg]
args.Fsh (1,1) double {mustBeNumeric, mustBePositive} = 60e-3 % Length of the fixed part of the struts [m]
args.Fsr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3 % Radius of the fixed part of the struts [m]
args.Msm (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % Mass of the mobile part of the strut [kg]
args.Msh (1,1) double {mustBeNumeric, mustBePositive} = 60e-3 % Length of the mobile part of the struts [m]
args.Msr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3 % Radius of the fixed part of the struts [m]
%% Bottom and Top Flexible Joints
args.flex_type_F char {mustBeMember(args.flex_type_F,{'2dof', '3dof', '4dof', '6dof', 'flexible'})} = '2dof'
args.flex_type_M char {mustBeMember(args.flex_type_M,{'2dof', '3dof', '4dof', '6dof', 'flexible'})} = '3dof'
args.Kf_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Cf_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Kt_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Ct_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Kf_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Cf_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Kt_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Ct_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Ka_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Ca_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Kr_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Cr_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Ka_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Ca_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Kr_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.Cr_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
%% inverseKinematics
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
args.ARB (3,3) double {mustBeNumeric} = eye(3)
end
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, ...
'H', args.H, ...
'MO_B', args.MO_B);
stewart = generateGeneralConfiguration(stewart, ...
'FH', args.FH, ...
'FR', args.FR, ...
'FTh', args.FTh, ...
'MH', args.MH, ...
'MR', args.MR, ...
'MTh', args.MTh);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, ...
'type', args.actuator_type, ...
'k', args.actuator_k, ...
'kp', args.actuator_kp, ...
'ke', args.actuator_ke, ...
'ka', args.actuator_ka, ...
'c', args.actuator_c, ...
'cp', args.actuator_cp, ...
'ce', args.actuator_ce, ...
'ca', args.actuator_ca);
stewart = initializeJointDynamics(stewart, ...
'type_F', args.flex_type_F, ...
'type_M', args.flex_type_M, ...
'Kf_M', args.Kf_M, ...
'Cf_M', args.Cf_M, ...
'Kt_M', args.Kt_M, ...
'Ct_M', args.Ct_M, ...
'Kf_F', args.Kf_F, ...
'Cf_F', args.Cf_F, ...
'Kt_F', args.Kt_F, ...
'Ct_F', args.Ct_F, ...
'Ka_F', args.Ka_F, ...
'Ca_F', args.Ca_F, ...
'Kr_F', args.Kr_F, ...
'Cr_F', args.Cr_F, ...
'Ka_M', args.Ka_M, ...
'Ca_M', args.Ca_M, ...
'Kr_M', args.Kr_M, ...
'Cr_M', args.Cr_M);
stewart = initializeCylindricalPlatforms(stewart, ...
'Fpm', args.Fpm, ...
'Fph', args.Fph, ...
'Fpr', args.Fpr, ...
'Mpm', args.Mpm, ...
'Mph', args.Mph, ...
'Mpr', args.Mpr);
stewart = initializeCylindricalStruts(stewart, ...
'Fsm', args.Fsm, ...
'Fsh', args.Fsh, ...
'Fsr', args.Fsr, ...
'Msm', args.Msm, ...
'Msh', args.Msh, ...
'Msr', args.Msr);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart, ...
'AP', args.AP, ...
'ARB', args.ARB);
nano_hexapod = stewart;
if exist('./mat', 'dir')
if exist('./mat/nass_model_stages.mat', 'file')
save('mat/nass_model_stages.mat', 'nano_hexapod', '-append');
else
save('mat/nass_model_stages.mat', 'nano_hexapod');
end
elseif exist('./matlab', 'dir')
if exist('./matlab/mat/nass_model_stages.mat', 'file')
save('matlab/mat/nass_model_stages.mat', 'nano_hexapod', '-append');
else
save('matlab/mat/nass_model_stages.mat', 'nano_hexapod');
end
end
end

View File

@ -0,0 +1,27 @@
function [] = initializeSimscapeConfiguration(args)
arguments
args.gravity logical {mustBeNumericOrLogical} = true
end
conf_simscape = struct();
if args.gravity
conf_simscape.type = 1;
else
conf_simscape.type = 2;
end
if exist('./mat', 'dir')
if exist('./mat/nass_model_conf_simscape.mat', 'file')
save('mat/nass_model_conf_simscape.mat', 'conf_simscape', '-append');
else
save('mat/nass_model_conf_simscape.mat', 'conf_simscape');
end
elseif exist('./matlab', 'dir')
if exist('./matlab/mat/nass_model_conf_simscape.mat', 'file')
save('matlab/mat/nass_model_conf_simscape.mat', 'conf_simscape', '-append');
else
save('matlab/mat/nass_model_conf_simscape.mat', 'conf_simscape');
end
end

View File

@ -0,0 +1,33 @@
function [stewart] = initializeStewartPlatform()
% initializeStewartPlatform - Initialize the stewart structure
%
% Syntax: [stewart] = initializeStewartPlatform(args)
%
% Outputs:
% - stewart - A structure with the following sub-structures:
% - platform_F -
% - platform_M -
% - joints_F -
% - joints_M -
% - struts_F -
% - struts_M -
% - actuators -
% - geometry -
% - properties -
stewart = struct();
stewart.platform_F = struct();
stewart.platform_M = struct();
stewart.joints_F = struct();
stewart.joints_M = struct();
stewart.struts_F = struct();
stewart.struts_M = struct();
stewart.actuators = struct();
stewart.sensors = struct();
stewart.sensors.inertial = struct();
stewart.sensors.force = struct();
stewart.sensors.relative = struct();
stewart.geometry = struct();
stewart.kinematics = struct();
end

View File

@ -0,0 +1,29 @@
function [stewart] = initializeStewartPose(stewart, args)
% initializeStewartPose - Determine the initial stroke in each leg to have the wanted pose
% It uses the inverse kinematic
%
% Syntax: [stewart] = initializeStewartPose(stewart, args)
%
% Inputs:
% - stewart - A structure with the following fields
% - Aa [3x6] - The positions ai expressed in {A}
% - Bb [3x6] - The positions bi expressed in {B}
% - args - Can have the following fields:
% - AP [3x1] - The wanted position of {B} with respect to {A}
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
%
% Outputs:
% - stewart - updated Stewart structure with the added fields:
% - actuators.Leq [6x1] - The 6 needed displacement of the struts from the initial position in [m] to have the wanted pose of {B} w.r.t. {A}
arguments
stewart
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
args.ARB (3,3) double {mustBeNumeric} = eye(3)
end
[Li, dLi] = inverseKinematics(stewart, 'AP', args.AP, 'ARB', args.ARB);
stewart.actuators.Leq = dLi;
end

View File

@ -0,0 +1,60 @@
function [stewart] = initializeStrutDynamics(stewart, args)
% initializeStrutDynamics - Add Stiffness and Damping properties of each strut
%
% Syntax: [stewart] = initializeStrutDynamics(args)
%
% Inputs:
% - args - Structure with the following fields:
% - K [6x1] - Stiffness of each strut [N/m]
% - C [6x1] - Damping of each strut [N/(m/s)]
%
% Outputs:
% - stewart - updated Stewart structure with the added fields:
% - actuators.type = 1
% - actuators.K [6x1] - Stiffness of each strut [N/m]
% - actuators.C [6x1] - Damping of each strut [N/(m/s)]
arguments
stewart
args.type char {mustBeMember(args.type,{'1dof', '2dof', 'flexible'})} = '1dof'
args.k (1,1) double {mustBeNumeric, mustBeNonnegative} = 20e6
args.kp (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.ke (1,1) double {mustBeNumeric, mustBeNonnegative} = 5e6
args.ka (1,1) double {mustBeNumeric, mustBeNonnegative} = 60e6
args.c (1,1) double {mustBeNumeric, mustBeNonnegative} = 2e1
args.cp (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
args.ce (1,1) double {mustBeNumeric, mustBeNonnegative} = 1e6
args.ca (1,1) double {mustBeNumeric, mustBeNonnegative} = 10
args.F_gain (1,1) double {mustBeNumeric} = 1
args.me (1,1) double {mustBeNumeric} = 0.01
args.ma (1,1) double {mustBeNumeric} = 0.01
end
if strcmp(args.type, '1dof')
stewart.actuators.type = 1;
elseif strcmp(args.type, '2dof')
stewart.actuators.type = 2;
elseif strcmp(args.type, 'flexible')
stewart.actuators.type = 3;
end
stewart.actuators.k = args.k;
stewart.actuators.c = args.c;
% Parallel stiffness
stewart.actuators.kp = args.kp;
stewart.actuators.cp = args.cp;
stewart.actuators.ka = args.ka;
stewart.actuators.ca = args.ca;
stewart.actuators.ke = args.ke;
stewart.actuators.ce = args.ce;
stewart.actuators.F_gain = args.F_gain;
stewart.actuators.ma = args.ma;
stewart.actuators.me = args.me;
end

71
matlab/src/initializeTy.m Normal file
View File

@ -0,0 +1,71 @@
function [ty] = initializeTy(args)
arguments
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'flexible'
end
ty = struct();
switch args.type
case 'none'
ty.type = 0;
case 'rigid'
ty.type = 1;
case 'flexible'
ty.type = 2;
end
% Ty Granite frame
ty.granite_frame.density = 7800; % [kg/m3] => 43kg
ty.granite_frame.STEP = 'Ty_Granite_Frame.STEP';
% Guide Translation Ty
ty.guide.density = 7800; % [kg/m3] => 76kg
ty.guide.STEP = 'Ty_Guide.STEP';
% Ty - Guide_Translation12
ty.guide12.density = 7800; % [kg/m3]
ty.guide12.STEP = 'Ty_Guide_12.STEP';
% Ty - Guide_Translation11
ty.guide11.density = 7800; % [kg/m3]
ty.guide11.STEP = 'Ty_Guide_11.STEP';
% Ty - Guide_Translation22
ty.guide22.density = 7800; % [kg/m3]
ty.guide22.STEP = 'Ty_Guide_22.STEP';
% Ty - Guide_Translation21
ty.guide21.density = 7800; % [kg/m3]
ty.guide21.STEP = 'Ty_Guide_21.STEP';
% Ty - Plateau translation
ty.frame.density = 7800; % [kg/m3]
ty.frame.STEP = 'Ty_Stage.STEP';
% Ty Stator Part
ty.stator.density = 5400; % [kg/m3]
ty.stator.STEP = 'Ty_Motor_Stator.STEP';
% Ty Rotor Part
ty.rotor.density = 5400; % [kg/m3]
ty.rotor.STEP = 'Ty_Motor_Rotor.STEP';
ty.K = [2e8; 1e8; 2e8; 6e7; 9e7; 6e7]; % [N/m, N*m/rad]
ty.C = [8e4; 5e4; 8e4; 2e4; 3e4; 1e4]; % [N/(m/s), N*m/(rad/s)]
if exist('./mat', 'dir')
if exist('./mat/nass_model_stages.mat', 'file')
save('mat/nass_model_stages.mat', 'ty', '-append');
else
save('mat/nass_model_stages.mat', 'ty');
end
elseif exist('./matlab', 'dir')
if exist('./matlab/mat/nass_model_stages.mat', 'file')
save('matlab/mat/nass_model_stages.mat', 'ty', '-append');
else
save('matlab/mat/nass_model_stages.mat', 'ty');
end
end
end

View File

@ -0,0 +1,38 @@
function [Li, dLi] = inverseKinematics(stewart, args)
% inverseKinematics - Compute the needed length of each strut to have the wanted position and orientation of {B} with respect to {A}
%
% Syntax: [stewart] = inverseKinematics(stewart)
%
% Inputs:
% - stewart - A structure with the following fields
% - geometry.Aa [3x6] - The positions ai expressed in {A}
% - geometry.Bb [3x6] - The positions bi expressed in {B}
% - geometry.l [6x1] - Length of each strut
% - args - Can have the following fields:
% - AP [3x1] - The wanted position of {B} with respect to {A}
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
%
% Outputs:
% - Li [6x1] - The 6 needed length of the struts in [m] to have the wanted pose of {B} w.r.t. {A}
% - dLi [6x1] - The 6 needed displacement of the struts from the initial position in [m] to have the wanted pose of {B} w.r.t. {A}
arguments
stewart
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
args.ARB (3,3) double {mustBeNumeric} = eye(3)
end
assert(isfield(stewart.geometry, 'Aa'), 'stewart.geometry should have attribute Aa')
Aa = stewart.geometry.Aa;
assert(isfield(stewart.geometry, 'Bb'), 'stewart.geometry should have attribute Bb')
Bb = stewart.geometry.Bb;
assert(isfield(stewart.geometry, 'l'), 'stewart.geometry should have attribute l')
l = stewart.geometry.l;
Li = sqrt(args.AP'*args.AP + diag(Bb'*Bb) + diag(Aa'*Aa) - (2*args.AP'*Aa)' + (2*args.AP'*(args.ARB*Bb))' - diag(2*(args.ARB*Bb)'*Aa));
dLi = Li-l;
end

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@ -1,8 +1,9 @@
% Created 2024-03-19 Tue 11:06
% Created 2025-02-12 Wed 11:34
% Intended LaTeX compiler: pdflatex
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
\input{preamble.tex}
\input{preamble_extra.tex}
\bibliography{simscape-nass.bib}
\author{Dehaeze Thomas}
\date{\today}
@ -12,7 +13,7 @@
pdftitle={Simscape Model - Nano Active Stabilization System},
pdfkeywords={},
pdfsubject={},
pdfcreator={Emacs 29.2 (Org mode 9.7)},
pdfcreator={Emacs 29.4 (Org mode 9.6)},
pdflang={English}}
\usepackage{biblatex}
@ -22,20 +23,158 @@
\tableofcontents
\clearpage
From last sections:
\begin{itemize}
\item Uniaxial: No stiff nano-hexapod (should also demonstrate that here)
\item Rotating: No soft nano-hexapod, Decentralized IFF can be used robustly by adding parallel stiffness
\end{itemize}
In this section:
\begin{itemize}
\item Take the model of the nano-hexapod with stiffness 1um/N
\item Apply decentralized IFF
\item Apply HAC-LAC
\item Check robustness to payload change
\item Simulation of experiments
\end{itemize}
\begin{table}[htbp]
\caption{\label{tab:simscape_nass_section_matlab_code}Report sections and corresponding Matlab files}
\centering
\begin{tabularx}{0.6\linewidth}{lX}
\toprule
\textbf{Sections} & \textbf{Matlab File}\\
\midrule
Section \ref{sec:simscape_nass_1_a} & \texttt{simscape\_nass\_1\_.m}\\
Section \ref{sec:nass_1_a} & \texttt{nass\_1\_.m}\\
\bottomrule
\end{tabularx}
\caption{\label{tab:nass_section_matlab_code}Report sections and corresponding Matlab files}
\end{table}
\chapter{Section 1}
\label{sec:simscape_nass_1_a}
\chapter{Control Kinematics}
\label{sec:nass_kinematics}
\begin{itemize}
\item Explain how the position error can be expressed in the frame of the nano-hexapod
\item[{$\square$}] \href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/positioning\_error.org}{positioning\_error}: Explain how the NASS control is made (computation of the wanted position, measurement of the sample position, computation of the errors)
\item Control architecture, block diagram
\item Schematic with micro-station + nass + metrology + control system
\item Zoom in the control system with blocs
\item Then explain all the blocs
\item Say that there are many control strategies.
It will be the topic of chapter 2.3.
Here, we start with something simple: control in the frame of the struts
\end{itemize}
\section{Micro Station Kinematics}
\begin{itemize}
\item from \ref{ssec:ustation_kinematics}, computation of the wanted sample pose from the setpoint of each stage.
\end{itemize}
\section{Computation of the sample's pose error}
From metrology (here supposed to be perfect 6-DoF), compute the sample's pose error.
Has to invert the homogeneous transformation.
\section{Position error in the frame of the nano-hexapod}
Explain how to compute the errors in the frame of the struts (rotating)
\chapter{Decentralized Active Damping}
\label{sec:nass_active_damping}
\begin{itemize}
\item How to apply/optimize IFF on an hexapod? ()
\item Robustness to payload mass
\item Root Locus
\item Damping optimization
\item\relax [ ]\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/control\_active\_damping.org}{control\_active\_damping}
\item\relax [ ]\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/control-active-damping.org}{active damping for stewart platforms}
\item\relax [ ]\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org}{Vibration Control and Active Damping}
\end{itemize}
\section{IFF Plant}
\begin{itemize}
\item Show how it changes with the payload mass (1, 25, 50)
\item Effect of rotation (1rpm, 60rpm)
\end{itemize}
\section{Controller Design}
\begin{itemize}
\item Apply IFF
\item Show Root Locus
\item Choose optimal gain.
Here in MIMO, cannot have optimal damping for all modes. (there is a paper that tries to optimize that)
\item Show robustness to change of payload (loci?)
\item Reference to paper showing stability in MIMO for decentralized IFF
\end{itemize}
\section{Sensitivity to disturbances}
\begin{itemize}
\item Compute transfer functions from spindle vertical error to sample vertical error with IFF (and compare without the NASS)
\item Same for horizontal
\item Maybe noise budgeting, but may be complex in MIMO\ldots{}
\end{itemize}
\chapter{Centralized Active Vibration Control}
\label{sec:nass_hac}
\begin{itemize}
\item[{$\square$}] \href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty\_experiment.org}{uncertainty\_experiment}: Effect of experimental conditions on the plant (payload mass, Ry position, Rz position, Rz velocity, etc\ldots{})
\item Effect of micro-station compliance
\item Effect of IFF
\item Effect of payload mass
\item Decoupled plant
\item Controller design
\end{itemize}
From control kinematics:
\begin{itemize}
\item Talk about issue of not estimating Rz from external metrology? (maybe could be nice to discuss that during the experiments!)
\item Show what happens is Rz is not estimated (for instance supposed equaled to zero => increased coupling)
\end{itemize}
\section{HAC Plant}
\begin{itemize}
\item Compute transfer function from u to dL (with IFF applied)
\end{itemize}
\section{Effect of Payload mass}
\begin{itemize}
\item Show effect of payload mass + rotation
\end{itemize}
\section{Controller design}
\begin{itemize}
\item Show robustness with Loci
\end{itemize}
\section{Sensitivity to disturbances}
\begin{itemize}
\item Compute transfer functions from spindle vertical error to sample vertical error with HAC-IFF
Compare without the NASS, and with just IFF
\item Same for horizontal
\item Maybe noise budgeting, but may be complex in MIMO\ldots{}
\end{itemize}
\section{Tomography experiment}
\begin{itemize}
\item With HAC-IFF, perform tomography experiment, and compare with open-loop
\item Take into account disturbances, metrology sensor noise. Maybe say here that we don't take in account other noise sources as they will be optimized latter (detail design phase)
\item Tomography + lateral scans (same as what was done in open loop \href{file:///home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A4-simscape-micro-station/simscape-micro-station.org}{here})
\item Validation of concept
\end{itemize}
\chapter{Conclusion}
\label{sec:simscape_nass_conclusion}
\label{sec:nass_conclusion}
\printbibliography[heading=bibintoc,title={Bibliography}]
\end{document}