Compiled to pdf
This commit is contained in:
parent
7fd07bc155
commit
e674edaa2c
@ -0,0 +1,54 @@
|
||||
@book{taghirad13_paral,
|
||||
author = {Taghirad, Hamid},
|
||||
title = {Parallel robots : mechanics and control},
|
||||
year = 2013,
|
||||
publisher = {CRC Press},
|
||||
address = {Boca Raton, FL},
|
||||
isbn = 9781466555778,
|
||||
keywords = {favorite, parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{preumont07_six_axis_singl_stage_activ,
|
||||
author = {A. Preumont and M. Horodinca and I. Romanescu and B. de
|
||||
Marneffe and M. Avraam and A. Deraemaeker and F. Bossens and
|
||||
A. Abu Hanieh},
|
||||
title = {A Six-Axis Single-Stage Active Vibration Isolator Based on
|
||||
Stewart Platform},
|
||||
journal = {Journal of Sound and Vibration},
|
||||
volume = 300,
|
||||
number = {3-5},
|
||||
pages = {644-661},
|
||||
year = 2007,
|
||||
doi = {10.1016/j.jsv.2006.07.050},
|
||||
url = {https://doi.org/10.1016/j.jsv.2006.07.050},
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@book{skogestad07_multiv_feedb_contr,
|
||||
author = {Skogestad, Sigurd and Postlethwaite, Ian},
|
||||
title = {Multivariable Feedback Control: Analysis and Design -
|
||||
Second Edition},
|
||||
year = 2007,
|
||||
publisher = {John Wiley},
|
||||
isbn = 978-0470011683,
|
||||
keywords = {favorite},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{preumont08_trans_zeros_struc_contr_with,
|
||||
author = {Preumont, Andr{\'e} and De Marneffe, Bruno and Krenk,
|
||||
Steen},
|
||||
title = {Transmission Zeros in Structural Control With Collocated
|
||||
Multi-Input/multi-Output Pairs},
|
||||
journal = {Journal of guidance, control, and dynamics},
|
||||
volume = 31,
|
||||
number = 2,
|
||||
pages = {428--432},
|
||||
year = 2008,
|
||||
}
|
||||
|
@ -365,16 +365,16 @@ Make well defined notations.
|
||||
|
||||
** Kinematic Analysis
|
||||
<<ssec:nhexa_stewart_platform_kinematics>>
|
||||
*** Inverse Kinematics
|
||||
**** Inverse Kinematics
|
||||
|
||||
*** Forward Kinematics
|
||||
**** Forward Kinematics
|
||||
|
||||
*** Jacobian Matrix
|
||||
**** Jacobian Matrix
|
||||
|
||||
- Velocity Loop Closure
|
||||
- Static Forces
|
||||
|
||||
*** Singularities
|
||||
**** Singularities
|
||||
|
||||
- Briefly mention singularities, and say that for small stroke, it is not an issue, the Jacobian matrix may be considered constant
|
||||
|
||||
|
Binary file not shown.
@ -1,8 +1,9 @@
|
||||
% Created 2024-03-19 Tue 11:06
|
||||
% Created 2025-02-05 Wed 17:49
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
|
||||
|
||||
\input{preamble.tex}
|
||||
\input{preamble_extra.tex}
|
||||
\bibliography{simscape-nano-hexapod.bib}
|
||||
\author{Dehaeze Thomas}
|
||||
\date{\today}
|
||||
@ -12,7 +13,7 @@
|
||||
pdftitle={Simscape Model - Nano Hexapod},
|
||||
pdfkeywords={},
|
||||
pdfsubject={},
|
||||
pdfcreator={Emacs 29.2 (Org mode 9.7)},
|
||||
pdfcreator={Emacs 29.4 (Org mode 9.6)},
|
||||
pdflang={English}}
|
||||
\usepackage{biblatex}
|
||||
|
||||
@ -22,27 +23,311 @@
|
||||
\tableofcontents
|
||||
|
||||
\clearpage
|
||||
Goal of this report is:
|
||||
|
||||
|
||||
Introduction:
|
||||
\begin{itemize}
|
||||
\item show what is an hexapod, how we can define its geometry, stiffness, etc\ldots{}
|
||||
\item Some kinematics: stiffness matrix, mass matrix, etc\ldots{}
|
||||
\item talk about cubic architecture?
|
||||
\item Choice of architecture to do 5DoF control (Section \ref{sec:nhexa_platform_review})
|
||||
\item Stewart platform (Section \ref{sec:nhexa_stewart_platform})
|
||||
Show what is an hexapod, how we can define its geometry, stiffness, etc\ldots{}
|
||||
Some kinematics: stiffness matrix, mass matrix, etc\ldots{}
|
||||
\item Need to model the active vibration platform: multi-body model (Section \ref{sec:nhexa_model})
|
||||
Explain what we want to capture with this model
|
||||
Key elements (plates, joints, struts): for now simplistic model (rigid body elements, perfect joints, \ldots{}), but in next section, FEM will be used
|
||||
\item Control (Section \ref{sec:nhexa_control})
|
||||
\end{itemize}
|
||||
|
||||
\chapter{Active Vibration Platforms}
|
||||
\label{sec:nhexa_platform_review}
|
||||
\textbf{Goals}:
|
||||
\begin{itemize}
|
||||
\item Explain why Stewart platform architecture is chosen
|
||||
\item Explain what is a Stewart platform (quickly as it will be shown in details in the next section)
|
||||
\item Quick review of active vibration platforms (5 or 6DoF)
|
||||
\end{itemize}
|
||||
|
||||
Active vibration platform with 5DoF or 6DoF?
|
||||
Synchrotron applications?
|
||||
|
||||
|
||||
\begin{itemize}
|
||||
\item Literature review? (\textbf{maybe more suited for chapter 2})
|
||||
\begin{itemize}
|
||||
\item \url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org}
|
||||
\item Talk about flexible joint? Maybe not so much as it should be topic of second chapter.
|
||||
Just say that we must of flexible joints that can be defined as 3 to 6DoF joints, and it will be optimize in chapter 2.
|
||||
\end{itemize}
|
||||
\item \cite{taghirad13_paral}
|
||||
\item For some systems, just XYZ control (stack stages), example: holler
|
||||
\item For other systems, Stewart platform (ID16a), piezo based
|
||||
\item Examples of Stewart platforms for general vibration control, some with Piezo, other with Voice coil. IFF, \ldots{}
|
||||
Show different geometry configuration
|
||||
\item DCM: tripod?
|
||||
\end{itemize}
|
||||
\section{Active vibration control of sample stages}
|
||||
|
||||
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A0-nass-introduction/nass-introduction.org}{Review of stages with online metrology for Synchrotrons}
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Talk about external metrology?
|
||||
\item[{$\square$}] Talk about control architecture?
|
||||
\item[{$\square$}] Comparison with the micro-station / NASS
|
||||
\end{itemize}
|
||||
|
||||
\section{Serial and Parallel Manipulators}
|
||||
|
||||
\textbf{Goal}:
|
||||
\begin{itemize}
|
||||
\item Explain why a parallel manipulator is here preferred
|
||||
\item Compact, 6DoF, higher control bandwidth, linear, simpler
|
||||
|
||||
\item Show some example of serial and parallel manipulators
|
||||
|
||||
\item A review of Stewart platform will be given in Chapter related to the detailed design of the Nano-Hexapod
|
||||
\end{itemize}
|
||||
|
||||
\chapter{The Stewart platform}
|
||||
\label{sec:nhexa_stewart_platform}
|
||||
\begin{itemize}
|
||||
\item Some history about Stewart platforms
|
||||
\item What is so special and why it is so used in different fields: give examples
|
||||
Explain advantages compared to serial architecture
|
||||
\item Little review (very quick: two extreme sizes, piezo + voice coil)
|
||||
Complete review of Stewart platforms will be made in Chapter 2
|
||||
\item Presentation of tools used to analyze the properties of the Stewart platform => useful for design and control
|
||||
\end{itemize}
|
||||
\section{Mechanical Architecture}
|
||||
\label{ssec:nhexa_stewart_platform_architecture}
|
||||
|
||||
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/stewart-architecture.org}
|
||||
|
||||
Presentation of the typical architecture
|
||||
\begin{itemize}
|
||||
\item Explain the different frames, etc\ldots{}
|
||||
\item explain key elements:
|
||||
\begin{itemize}
|
||||
\item two plates
|
||||
\item joints
|
||||
\item actuators
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
||||
Make well defined notations.
|
||||
\begin{itemize}
|
||||
\item \{F\}, \{M\}
|
||||
\item si, li, ai, bi, etc.
|
||||
|
||||
\item[{$\square$}] Make figure with defined frames, joints, etc\ldots{}
|
||||
Maybe can use this figure as an example:
|
||||
\begin{center}
|
||||
\includesvg[scale=1]{/home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A0-nass-introduction/figs/introduction_stewart_du14}
|
||||
\end{center}
|
||||
\end{itemize}
|
||||
|
||||
\section{Kinematic Analysis}
|
||||
\label{ssec:nhexa_stewart_platform_kinematics}
|
||||
\paragraph{Inverse Kinematics}
|
||||
|
||||
\paragraph{Forward Kinematics}
|
||||
|
||||
\paragraph{Jacobian Matrix}
|
||||
|
||||
\begin{itemize}
|
||||
\item Velocity Loop Closure
|
||||
\item Static Forces
|
||||
\end{itemize}
|
||||
|
||||
\paragraph{Singularities}
|
||||
|
||||
\begin{itemize}
|
||||
\item Briefly mention singularities, and say that for small stroke, it is not an issue, the Jacobian matrix may be considered constant
|
||||
\end{itemize}
|
||||
|
||||
\section{Static Analysis}
|
||||
\label{ssec:nhexa_stewart_platform_static}
|
||||
|
||||
How stiffness varies with orientation of struts.
|
||||
Same with stroke?
|
||||
Or maybe in the detailed chapter?
|
||||
|
||||
\section{Dynamic Analysis}
|
||||
\label{ssec:nhexa_stewart_platform_dynamics}
|
||||
|
||||
Very complex => multi-body model
|
||||
For instance, compute the plant for massless struts and perfect joints (will be compared with Simscape model).
|
||||
But say that if we want to model more complex cases, it becomes impractical (cite papers).
|
||||
|
||||
\section*{Conclusion}
|
||||
All depends on the geometry.
|
||||
Reasonable choice of geometry is made in chapter 1.
|
||||
Optimization of the geometry will be made in chapter 2.
|
||||
|
||||
\chapter{Multi-Body Model}
|
||||
\label{sec:nhexa_model}
|
||||
\textbf{Goal}:
|
||||
\begin{itemize}
|
||||
\item Study the dynamics of Stewart platform
|
||||
\item Instead of working with complex analytical models: a multi-body model is used.
|
||||
Complex because has to model the inertia of the struts.
|
||||
Cite papers that tries to model the stewart platform analytically
|
||||
Advantage: it will be easily included in the model of the NASS
|
||||
|
||||
\item Mention the Toolbox (maybe make a DOI for that)
|
||||
|
||||
\item[{$\square$}] Have a table somewhere that summarizes the main characteristics of the nano-hexapod model
|
||||
\begin{itemize}
|
||||
\item location of joints
|
||||
\item size / mass of platforms, etc\ldots{}
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\section{Model Definition}
|
||||
\label{ssec:nhexa_model_def}
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Make a schematic of the definition process (for instance knowing the ai, bi points + \{A\} and \{B\} allows to compute Jacobian, etc\ldots{})
|
||||
|
||||
\item What is important for the model:
|
||||
\begin{itemize}
|
||||
\item Inertia of plates and struts
|
||||
\item Positions of joints / Orientation of struts
|
||||
\item Definition of frames (for Jacobian, stiffness analysis, etc\ldots{})
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
||||
Then, several things can be computed:
|
||||
\begin{itemize}
|
||||
\item Kinematics, stiffness, platform mobility, dynamics, etc\ldots{}
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\begin{itemize}
|
||||
\item Joints: can be 2dof to 6dof
|
||||
\item Actuators: can be modelled as wanted
|
||||
\end{itemize}
|
||||
|
||||
\section{Nano Hexapod}
|
||||
\label{ssec:nhexa_model_nano_hexapod}
|
||||
|
||||
Start simple:
|
||||
\begin{itemize}
|
||||
\item Perfect joints, massless actuators
|
||||
\end{itemize}
|
||||
|
||||
Joints: perfect 2dof/3dof (+ mass-less)
|
||||
Actuators: APA + Encoder (mass-less)
|
||||
\begin{itemize}
|
||||
\item k = 1N/um
|
||||
\item Force sensor
|
||||
\end{itemize}
|
||||
|
||||
Definition of each part + Plant with defined inputs/outputs (force sensor, relative displacement sensor, etc\ldots{})
|
||||
|
||||
\section{Model Dynamics}
|
||||
\label{ssec:nhexa_model_dynamics}
|
||||
|
||||
\begin{itemize}
|
||||
\item If all is perfect (mass-less struts, perfect joints, etc\ldots{}), maybe compare analytical model with simscape model?
|
||||
\item Say something about the model order
|
||||
Model order is 12, and that we can compute modes from matrices M and K, compare with the Simscape model
|
||||
\item Compare with analytical formulas (see number of states)
|
||||
\end{itemize}
|
||||
|
||||
\section*{Conclusion}
|
||||
\begin{itemize}
|
||||
\item Validation of multi-body model in a simple case
|
||||
\item Possible to increase the model complexity when required
|
||||
\begin{itemize}
|
||||
\item If considered 6dof joint stiffness, model order increases
|
||||
\item Can have an effect on IFF performances: \cite{preumont07_six_axis_singl_stage_activ}
|
||||
\item Conclusion: during the conceptual design, we consider a perfect, but will be taken into account later
|
||||
\item Optimization of the Flexible joint will be performed in Chapter 2.2
|
||||
\end{itemize}
|
||||
\item MIMO system: how to control? => next section
|
||||
\end{itemize}
|
||||
|
||||
\chapter{Control of Stewart Platforms}
|
||||
\label{sec:nhexa_control}
|
||||
MIMO control: much more complex than SISO control because of interaction.
|
||||
Possible to ignore interaction when good decoupling is achieved.
|
||||
Important to have tools to study interaction
|
||||
Different ways to try to decouple a MIMO plant.
|
||||
|
||||
Reference book: \cite{skogestad07_multiv_feedb_contr}
|
||||
\section{Centralized and Decentralized Control}
|
||||
\label{ssec:nhexa_control_centralized_decentralized}
|
||||
|
||||
\begin{itemize}
|
||||
\item Explain what is centralized and decentralized:
|
||||
\begin{itemize}
|
||||
\item linked to the sensor position relative to the actuators
|
||||
\item linked to the fact that sensors and actuators pairs are ``independent'' or each other (related to the control architecture, not because there is no coupling)
|
||||
\end{itemize}
|
||||
\item When can decentralized control be used and when centralized control is necessary?
|
||||
Study of interaction: RGA
|
||||
\end{itemize}
|
||||
|
||||
\section{Choice of the control space}
|
||||
\label{ssec:nhexa_control_space}
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] \url{file:///home/thomas/Cloud/research/matlab/decoupling-strategies/svd-control.org}
|
||||
|
||||
\item Jacobian matrices, CoK, CoM, control in the frame of the struts, SVD, Modal, \ldots{}
|
||||
\item Combined CoM and CoK => Discussion of cubic architecture ? (quick, as it is going to be in detailed in chapter 2)
|
||||
\item Explain also the link with the setpoint: it is interesting to have the controller in the frame of the performance variables
|
||||
Also speak about disturbances? (and how disturbances can be mixed to different outputs due to control and interaction)
|
||||
\item Table that summarizes the trade-off for each strategy
|
||||
\item Say that in this study, we will do the control in the frame of the struts for simplicity (even though control in the cartesian frame was also tested)
|
||||
\end{itemize}
|
||||
|
||||
\section{Active Damping with Decentralized IFF}
|
||||
\label{ssec:nhexa_control_iff}
|
||||
|
||||
Guaranteed stability: \cite{preumont08_trans_zeros_struc_contr_with}
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] I think there is another paper about that
|
||||
\end{itemize}
|
||||
|
||||
For decentralized control: ``MIMO root locus'' can be used to estimate the damping / optimal gain
|
||||
Poles and converging towards \emph{transmission zeros}
|
||||
|
||||
How to optimize the added damping to all modes?
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Add some papers citations
|
||||
\end{itemize}
|
||||
|
||||
Compute:
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Plant dynamics
|
||||
\item[{$\square$}] Root Locus
|
||||
\end{itemize}
|
||||
|
||||
\section{MIMO High-Authority Control - Low-Authority Control}
|
||||
\label{ssec:nhexa_control_hac_lac}
|
||||
|
||||
Compute:
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] compare open-loop and damped plant (outputs are the encoders)
|
||||
\item[{$\square$}] Implement decentralized control?
|
||||
\item[{$\square$}] Check stability:
|
||||
\begin{itemize}
|
||||
\item Characteristic Loci: Eigenvalues of \(G(j\omega)\) plotted in the complex plane
|
||||
\item Generalized Nyquist Criterion: If \(G(s)\) has \(p_0\) unstable poles, then the closed-loop system with return ratio \(kG(s)\) is stable if and only if the characteristic loci of \(kG(s)\), taken together, encircle the point \(-1\), \(p_0\) times anti-clockwise, assuming there are no hidden modes
|
||||
\end{itemize}
|
||||
\item[{$\square$}] Show some performance metric? For instance compliance?
|
||||
\end{itemize}
|
||||
|
||||
\section*{Conclusion}
|
||||
|
||||
|
||||
\chapter*{Conclusion}
|
||||
\label{sec:nhexa_conclusion}
|
||||
|
||||
\begin{itemize}
|
||||
\item Configurable Stewart platform model
|
||||
\item Will be included in the multi-body model of the micro-station => nass multi body model
|
||||
\item Control: complex problem, try to use simplest architecture
|
||||
\end{itemize}
|
||||
|
||||
\begin{table}[htbp]
|
||||
\caption{\label{tab:simscape_nhexapod_section_matlab_code}Report sections and corresponding Matlab files}
|
||||
\centering
|
||||
\begin{tabularx}{0.6\linewidth}{lX}
|
||||
\toprule
|
||||
\textbf{Sections} & \textbf{Matlab File}\\
|
||||
\midrule
|
||||
Section \ref{sec}: & \texttt{simscape\_nhexapod\_1\_.m}\\
|
||||
\bottomrule
|
||||
\end{tabularx}
|
||||
\end{table}
|
||||
\chapter{Nano-Hexapod Kinematics}
|
||||
\label{sec:simscape_nhexapod_kinematics}
|
||||
\chapter{Conclusion}
|
||||
\label{sec:simscape_nhexapod_conclusion}
|
||||
\printbibliography[heading=bibintoc,title={Bibliography}]
|
||||
\end{document}
|
||||
|
Loading…
x
Reference in New Issue
Block a user