Made sure all Matlab scripts are working fine

This commit is contained in:
Thomas Dehaeze 2024-11-06 18:55:05 +01:00
parent 1e02d981b2
commit c8d1525a34
16 changed files with 20 additions and 578 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -126,9 +126,9 @@ Ttot = Rty*Rry*Rrz;
ustation_dx = Ttot(1,4);
ustation_dy = Ttot(2,4);
ustation_dz = Ttot(3,4);
ustation_ry = atan2( Ttot(1, 3), sqrt(Ttot(1, 1)^2 + Ttot(1, 2)^2));
ustation_rx = atan2(-Ttot(2, 3)/cos(Ery), Ttot(3, 3)/cos(Ery));
ustation_rz = atan2(-Ttot(1, 2)/cos(Ery), Ttot(1, 1)/cos(Ery));
ustation_ry = atan2( Ttot(1, 3), sqrt(Ttot(1, 1)^2 + Ttot(1, 2)^2));
ustation_rx = atan2(-Ttot(2, 3)/cos(ustation_ry), Ttot(3, 3)/cos(ustation_ry));
ustation_rz = atan2(-Ttot(1, 2)/cos(ustation_ry), Ttot(1, 1)/cos(ustation_ry));
%% Verification using the Simscape model
% All stages are initialized as rigid bodies to avoid any guiding error
@ -157,6 +157,6 @@ T_sim = [simout.y.R.Data(:,:,end), [simout.y.x.Data(end); simout.y.y.Data(end);
sim_dx = T_sim(1,4);
sim_dy = T_sim(2,4);
sim_dz = T_sim(3,4);
sim_ry = atan2( T_sim(1, 3), sqrt(T_sim(1, 1)^2 + T_sim(1, 2)^2));
sim_rx = atan2(-T_sim(2, 3)/cos(Ery), T_sim(3, 3)/cos(Ery));
sim_rz = atan2(-T_sim(1, 2)/cos(Ery), T_sim(1, 1)/cos(Ery));
sim_ry = atan2( T_sim(1, 3), sqrt(T_sim(1, 1)^2 + T_sim(1, 2)^2));
sim_rx = atan2(-T_sim(2, 3)/cos(sim_ry), T_sim(3, 3)/cos(sim_ry));
sim_rz = atan2(-T_sim(1, 2)/cos(sim_ry), T_sim(1, 1)/cos(sim_ry));

View File

@ -77,7 +77,7 @@ load('ustation_frf_com.mat', 'frfs_CoM');
% Initialization of some variables to the figures
dirs = {'x', 'y', 'z', 'rx', 'ry', 'rz'};
stages = {'gbot', 'gtop', 'ty', 'ry', 'rz', 'hexa'}
stages = {'gbot', 'gtop', 'ty', 'ry', 'rz', 'hexa'};
f = logspace(log10(10), log10(500), 1000);
%% Spindle - X response

View File

@ -139,7 +139,7 @@ xlim([-5, 5]); ylim([-0.4, 0.4]);
delta_ty = (ty_errors.setpoint(end) - ty_errors.setpoint(1))/(length(ty_errors.setpoint) - 1); % [mm]
ty_vel = 8*1.125; % [mm/s]
Ts = delta_ty/ty_vel;
Fs = 1/Ts
Fs = 1/Ts;
% Frequency Analysis
Nfft = floor(length(ty_errors.setpoint)); % Number of frequency points
@ -259,7 +259,7 @@ yticks([-30, -15, 0, 15, 30]);
% Search the best angular match
fun = @(theta)rms((spindle_errors.Dx - (x0 + R*cos(pi/180*spindle_errors.deg+theta(1)))).^2 + (spindle_errors.Dy - (y0 - R*sin(pi/180*spindle_errors.deg+theta(1)))).^2);
x0 = [0];
delta_theta = fminsearch(fun, 0)
delta_theta = fminsearch(fun, 0);
% Compute the remaining error after removing the best circular fit
spindle_errors.Dx_err = spindle_errors.Dx - (x0 + R*cos(pi/180*spindle_errors.deg+delta_theta));
@ -496,6 +496,6 @@ plot(Dw.t, 1e6*Dw.x, 'DisplayName', '$D_{xf}$');
plot(Dw.t, 1e6*Dw.y, 'DisplayName', '$D_{yf}$');
plot(Dw.t, 1e6*Dw.z, 'DisplayName', '$D_{zf}$');
xlabel('Time [s]'); ylabel('Amplitude [$\mu$m]')
xlim([0, 1]); ylim([-0.15, 0.15])
xlim([0, 1]); ylim([-0.6, 0.6])
leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1);
leg.ItemTokenSize(1) = 15;

Binary file not shown.

View File

@ -322,564 +322,6 @@ CLOSED: [2024-11-06 Wed 16:29]
PoI | Point of interest
** Backup - Kinematics
*** Micro-Station DoF table
#+name: tab:ustation_dof_summary
#+caption: Summary of the micro-station degrees-of-freedom
#+attr_latex: :environment tabularx :width \linewidth :align lX
#+attr_latex: :center t :booktabs t
| *Stage* | *Degrees of Freedom* |
|-------------------+-------------------------------------------------------|
| Translation stage | $D_y = \pm 10\,mm$ |
| Tilt stage | $R_y = \pm 3\,\text{deg}$ |
| Spindle | $R_z = 360\,\text{deg}$ |
| Micro Hexapod | $D_{xyz} = \pm 10\,mm$, $R_{xyz} = \pm 3\,\text{deg}$ |
*** Stage specifications
Translation Stage
| Axial Motion ($y$) | Radial Motion ($y-z$) | Rotation motion ($\theta-z$) |
|--------------------+-----------------------+------------------------------|
| $40nm$ repeat | $20nm$ | $< 1.7 \mu rad$ |
Tilt stage
| Axial Error ($y$) | Radial Error ($z$) | Tilt error ($R_y$) |
|-------------------+--------------------+--------------------|
| $0.5\mu m$ | $10nm$ | $5 \mu rad$ repeat |
Spindle
| Radial Error ($x$-$y$) | Vertical Error ($z$) | Rz |
|------------------------+----------------------+----------------------------|
| $0.33\mu m$ | $0.07\mu m$ | $5\,\mu \text{rad}$ repeat |
Micro Hexapod
| Motion | Stroke | Repetability | MIM | Stiffness |
|------------------+--------------+----------------+--------------+---------------|
| $T_{\mu_x}$ | $\pm10mm$ | $\pm1\mu m$ | $0.5\mu m$ | $>12N/\mu m$ |
| $T_{\mu_y}$ | $\pm10mm$ | $\pm1\mu m$ | $0.5\mu m$ | $>12N/\mu m$ |
| $T_{\mu_z}$ | $\pm10mm$ | $\pm1\mu m$ | $0.5\mu m$ | $>135N/\mu m$ |
| $\theta_{\mu_x}$ | $\pm3 deg$ | $\pm5 \mu rad$ | $2.5\mu rad$ | |
| $\theta_{\mu_y}$ | $\pm3 deg$ | $\pm5 \mu rad$ | $2.5\mu rad$ | |
| $\theta_{\mu_z}$ | $\pm0.5 deg$ | $\pm5 \mu rad$ | $2.5\mu rad$ | |
*** Frames
Let's define the following frames:
- $\{W\}$ the frame that is *fixed to the granite* and its origin at the theoretical meeting point between the X-ray and the spindle axis.
- $\{S\}$ the frame *attached to the sample* (in reality attached to the top platform of the nano-hexapod) with its origin at 175mm above the top platform of the nano-hexapod.
Its origin is $O_S$.
- $\{T\}$ the theoretical wanted frame that correspond to the wanted pose of the frame $\{S\}$.
$\{T\}$ is computed from the wanted position of each stage. It is thus theoretical and does not correspond to a real position.
The origin of $T$ is $O_T$ and is the wanted position of the sample.
Thus:
- the *measurement* of the position of the sample corresponds to ${}^W O_S = \begin{bmatrix} {}^WP_{x,m} & {}^WP_{y,m} & {}^WP_{z,m} \end{bmatrix}^T$ in translation and to $\theta_m {}^W\mathbf{s}_m = \theta_m \cdot \begin{bmatrix} {}^Ws_{x,m} & {}^Ws_{y,m} & {}^Ws_{z,m} \end{bmatrix}^T$ in rotations
- the *wanted position* of the sample expressed w.r.t. the granite is ${}^W O_T = \begin{bmatrix} {}^WP_{x,r} & {}^WP_{y,r} & {}^WP_{z,r} \end{bmatrix}^T$ in translation and to $\theta_r {}^W\mathbf{s}_r = \theta_r \cdot \begin{bmatrix} {}^Ws_{x,r} & {}^Ws_{y,r} & {}^Ws_{z,r} \end{bmatrix}^T$ in rotations
*** Positioning Error with respect to the Granite
The wanted position expressed with respect to the granite is ${}^WO_T$ and the measured position with respect to the granite is ${}^WO_S$, thus the *position error* expressed in $\{W\}$ is
\[ {}^W E = {}^W O_T - {}^W O_S \]
The same is true for rotations:
\[ \theta_\epsilon {}^W\mathbf{s}_\epsilon = \theta_r {}^W\mathbf{s}_r - \theta_m {}^W\mathbf{s}_m \]
#+begin_src matlab
WPe = WPr - WPm;
#+end_src
#+begin_quote
Now we want to express this error in a frame attached to the *base of the nano-hexapod* with its origin at the same point where the Jacobian of the nano-hexapod is computed (175mm above the top platform + 90mm of total height of the nano-hexapod).
Or maybe should we want to express this error with respect to the *top platform of the nano-hexapod*?
We are measuring the position of the top-platform, and we don't know exactly the position of the bottom platform.
We could compute the position of the bottom platform in two ways:
- from the encoders of each stage
- from the measurement of the nano-hexapod top platform + the internal metrology in the nano-hexapod (capacitive sensors e.g)
A third option is to say that the maximum stroke of the nano-hexapod is so small that the error should no change to much by the change of base.
#+end_quote
*** Position Error Expressed in the Nano-Hexapod Frame
We now want the position error to be expressed in $\{S\}$ (the frame attach to the sample) for control:
\[ {}^S E = {}^S T_W \cdot {}^W E \]
Thus we need to compute the homogeneous transformation ${}^ST_W$.
Fortunately, this homogeneous transformation can be computed from the measurement of the sample position and orientation with respect to the granite.
#+begin_src matlab
Trxm = [1 0 0;
0 cos(Rxm) -sin(Rxm);
0 sin(Rxm) cos(Rxm)];
Trym = [ cos(Rym) 0 sin(Rym);
0 1 0;
-sin(Rym) 0 cos(Rym)];
Trzm = [cos(Rzm) -sin(Rzm) 0;
sin(Rzm) cos(Rzm) 0;
0 0 1];
STw = [[ Trym*Trxm*Trzm , [Dxm; Dym; Dzm]]; 0 0 0 1];
#+end_src
Translation Error.
#+begin_src matlab
SEm = STw * [WPe(1:3); 0];
SEm = SEm(1:3);
#+end_src
Rotation Error.
#+begin_src matlab
SEr = STw * [WPe(4:6); 0];
SEr = SEr(1:3);
#+end_src
#+begin_src matlab
Etot = [SEm ; SEr]
#+end_src
*** Another try
Let's denote:
- $\{W\}$ the initial fixed frame
- $\{R\}$ the reference frame corresponding to the wanted pose of the sample
- $\{M\}$ the frame corresponding to the measured pose of the sample
We have then computed:
- ${}^WT_R$
- ${}^WT_M$
We have:
\begin{align}
{}^MT_R &= {}^MT_W {}^WT_R \\
&= {}^WT_M^t {}^WT_R
\end{align}
#+begin_src matlab
MTr = STw'*Ttot;
#+end_src
Position error:
#+begin_src matlab
MTr(1:3, 1:4)*[0; 0; 0; 1]
#+end_src
Orientation error:
#+begin_src matlab
MTr(1:3, 1:3)
#+end_src
*** Measured Position of the Sample with respect to the Granite
The measurement of the position of the sample using the metrology system gives the position and orientation of the sample with respect to the granite.
#+begin_src matlab
% Measurements: Xm, Ym, Zm, Rx, Ry, Rz
Dxm = 0; % [m]
Dym = 0; % [m]
Dzm = 0; % [m]
Rxm = 0*pi/180; % [rad]
Rym = 0*pi/180; % [rad]
Rzm = 180*pi/180; % [rad]
#+end_src
Let's compute the corresponding orientation using screw axis.
#+begin_src matlab
Trxm = [1 0 0;
0 cos(Rxm) -sin(Rxm);
0 sin(Rxm) cos(Rxm)];
Trym = [ cos(Rym) 0 sin(Rym);
0 1 0;
-sin(Rym) 0 cos(Rym)];
Trzm = [cos(Rzm) -sin(Rzm) 0;
sin(Rzm) cos(Rzm) 0;
0 0 1];
STw = [[ Trym*Trxm*Trzm , [Dxm; Dym; Dzm]]; 0 0 0 1];
#+end_src
We then obtain the orientation measurement in the form of screw coordinate $\theta_m ({}^Ws_{x,m},\ {}^Ws_{y,m},\ {}^Ws_{z,m})^T$ where:
- $\theta_m = \cos^{-1} \frac{\text{Tr}(R) - 1}{2}$
- ${}^W\mathbf{s}_m$ is the eigen vector of the rotation matrix $R$ corresponding to the eigen value $\lambda = 1$
#+begin_src matlab
thetam = acos((trace(STw(1:3, 1:3))-1)/2); % [rad]
if thetam == 0
WSm = [0; 0; 0];
else
[V, D] = eig(STw(1:3, 1:3));
WSm = thetam*V(:, abs(diag(D) - 1) < eps(1));
end
#+end_src
#+begin_src matlab
WPm = [Dxm ; Dym ; Dzm ; WSm];
#+end_src
*** Get resonance frequencies
#+begin_src matlab
%% Initialize simulation with default parameters (flexible elements)
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeReferences();
initializeDisturbances();
initializeSimscapeConfiguration();
initializeLoggingConfiguration();
#+end_src
And we identify the dynamics from forces/torques applied on the micro-hexapod top platform to the motion of the micro-hexapod top platform at the same point.
#+begin_src matlab
%% Identification of the compliance
% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Micro-Station/Micro Hexapod/Flexible/Fm'], 1, 'openinput'); io_i = io_i + 1; % Direct Forces/Torques applied on the micro-hexapod top platform
io(io_i) = linio([mdl, '/Micro-Station/Micro Hexapod/Flexible/Dm'], 1, 'output'); io_i = io_i + 1; % Absolute displacement of the top platform
% Run the linearization
Gm = linearize(mdl, io, 0);
Gm.InputName = {'Fmx', 'Fmy', 'Fmz', 'Mmx', 'Mmy', 'Mmz'};
Gm.OutputName = {'Dx', 'Dy', 'Dz', 'Drx', 'Dry', 'Drz'};
#+end_src
#+begin_src matlab
modes_freq = imag(eig(Gm))/2/pi;
modes_freq = sort(modes_freq(modes_freq>0));
#+end_src
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
data2orgtable([modes_freq(1:16), [11.9, 18.6, 37.8, 39.1, 56.3, 69.8, 72.5, 84.8, 91.3, 105.5, 106.6, 112.7, 124.2, 145.3, 150.5, 165.4]'], {'1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16'}, {'Mode', 'Simscape', 'Modal analysis'}, ' %.1f ');
#+end_src
#+RESULTS:
| Mode | Simscape | Modal analysis |
|------+----------+----------------|
| 1 | 11.7 | 11.9 |
| 2 | 21.3 | 18.6 |
| 3 | 26.1 | 37.8 |
| 4 | 57.5 | 39.1 |
| 5 | 60.6 | 56.3 |
| 6 | 73.0 | 69.8 |
| 7 | 97.9 | 72.5 |
| 8 | 120.2 | 84.8 |
| 9 | 126.2 | 91.3 |
| 10 | 142.4 | 105.5 |
| 11 | 155.9 | 106.6 |
| 12 | 178.5 | 112.7 |
| 13 | 179.3 | 124.2 |
| 14 | 182.6 | 145.3 |
| 15 | 223.6 | 150.5 |
| 16 | 226.4 | 165.4 |
*** Noise Budget
<<ssec:ustation_disturbances_results>>
- [ ] Compare the PSD of the Z relative motion of the sample due to all disturbances
- [ ] Is it relevant here as it should be more relevant when doing control / with the nano-hexapod, here we just want to make sure that we have a good model!
From the obtained spectral density of the disturbance sources, we can compute the resulting relative motion of the Hexapod with respect to the granite using the model.
This is equivalent as doing the inverse that was done in the previous section.
This is done in order to verify that this is coherent with the measurements.
The power spectral density of the relative motion is computed below and the result is shown in Figure ref:fig:psd_effect_dist_verif.
We can see that this is exactly the same as the Figure ref:fig:dist_effect_relative_motion.
#+begin_src matlab
psd_gm_d = gm.psd_gm.*abs(squeeze(freqresp(G('Dz', 'Dw')/s, gm.f, 'Hz'))).^2;
psd_ty_d = tyz.psd_f.*abs(squeeze(freqresp(G('Dz', 'Fdy')/s, tyz.f, 'Hz'))).^2;
psd_rz_d = rz.psd_f.*abs(squeeze(freqresp(G('Dz', 'Frz')/s, rz.f, 'Hz'))).^2;
#+end_src
#+begin_src matlab :exports none
figure;
hold on;
plot(gm.f, sqrt(psd_gm_d), 'DisplayName', 'Ground Motion');
plot(tyz.f, sqrt(psd_ty_d), 'DisplayName', 'Ty');
plot(rz.f, sqrt(psd_rz_d), 'DisplayName', 'Rz');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the relative motion $\left[\frac{m}{\sqrt{Hz}}\right]$')
legend('Location', 'southwest');
xlim([2, 500]);
#+end_src
*** Time Domain Disturbances
Let's initialize the time domain disturbances and load them.
#+begin_src matlab
initializeDisturbances();
dist = load('nass_disturbances.mat');
#+end_src
The time domain disturbance signals are shown in Figure ref:fig:disturbances_time_domain.
#+begin_src matlab :exports none
figure;
ax1 = subplot(2, 2, 1);
hold on;
plot(dist.t, dist.Dwx, 'DisplayName', '$D_{w,x}$')
plot(dist.t, dist.Dwy, 'DisplayName', '$D_{w,y}$')
plot(dist.t, dist.Dwz, 'DisplayName', '$D_{w,z}$')
hold off;
xlabel('Time [s]');
ylabel('Ground Motion [m]');
legend();
ax2 = subplot(2, 2, 2);
hold on;
plot(dist.t, dist.Fdy_x, 'DisplayName', '$F_{ty,x}$')
hold off;
xlabel('Time [s]');
ylabel('Ty Forces [N]');
legend();
ax3 = subplot(2, 2, 3);
hold on;
plot(dist.t, dist.Fdy_z, 'DisplayName', '$F_{ty,z}$')
hold off;
xlabel('Time [s]');
ylabel('Ty Forces [N]');
legend();
ax4 = subplot(2, 2, 4);
hold on;
plot(dist.t, dist.Frz_z, 'DisplayName', '$F_{rz,z}$')
hold off;
xlabel('Time [s]');
ylabel('Rz Forces [N]');
legend();
linkaxes([ax1,ax2,ax3,ax4], 'x');
xlim([0, dist.t(end)]);
#+end_src
*** Time Domain Effect of Disturbances
**** Initialization of the Experiment
We initialize all the stages with the default parameters.
#+begin_src matlab
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
#+end_src
The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
#+begin_src matlab
initializeNanoHexapod('type', 'rigid');
initializeSample('mass', 1);
#+end_src
#+begin_src matlab
initializeReferences();
initializeController('type', 'open-loop');
initializeSimscapeConfiguration('gravity', false);
initializeLoggingConfiguration('log', 'all');
#+end_src
#+begin_src matlab
load('mat/conf_simulink.mat');
set_param(conf_simulink, 'StopTime', '2');
#+end_src
**** Simulations
No disturbances:
#+begin_src matlab
initializeDisturbances('enable', false);
sim('nass_model');
sim_no = simout;
#+end_src
Ground Motion:
#+begin_src matlab
initializeDisturbances('Fdy_x', false, 'Fdy_z', false, 'Frz_x', false, 'Frz_y', false, 'Frz_z', false);
sim('nass_model');
sim_gm = simout;
#+end_src
Translation Stage Vibrations:
#+begin_src matlab
initializeDisturbances('Dwx', false, 'Dwy', false, 'Dwz', false, 'Frz_z', false);
sim('nass_model');
sim_ty = simout;
#+end_src
Rotation Stage Vibrations:
#+begin_src matlab
initializeDisturbances('Dwx', false, 'Dwy', false, 'Dwz', false, 'Fdy_x', false, 'Fdy_z', false);
sim('nass_model');
sim_rz = simout;
#+end_src
**** Comparison
Let's now compare the effect of those perturbations on the position error of the sample (Figure ref:fig:effect_disturbances_position_error)
#+begin_src matlab :exports none
figure;
ax1 = subplot(2, 3, 1);
hold on;
plot(sim_no.Em.En.Time, sim_no.Em.En.Data(:, 1))
plot(sim_gm.Em.En.Time, sim_gm.Em.En.Data(:, 1))
plot(sim_ty.Em.En.Time, sim_ty.Em.En.Data(:, 1))
plot(sim_rz.Em.En.Time, sim_rz.Em.En.Data(:, 1))
hold off;
xlabel('Time [s]');
ylabel('Dx [m]');
ax2 = subplot(2, 3, 2);
hold on;
plot(sim_no.Em.En.Time, sim_no.Em.En.Data(:, 2))
plot(sim_gm.Em.En.Time, sim_gm.Em.En.Data(:, 2))
plot(sim_ty.Em.En.Time, sim_ty.Em.En.Data(:, 2))
plot(sim_rz.Em.En.Time, sim_rz.Em.En.Data(:, 2))
hold off;
xlabel('Time [s]');
ylabel('Dy [m]');
ax3 = subplot(2, 3, 3);
hold on;
plot(sim_no.Em.En.Time, sim_no.Em.En.Data(:, 3))
plot(sim_gm.Em.En.Time, sim_gm.Em.En.Data(:, 3))
plot(sim_ty.Em.En.Time, sim_ty.Em.En.Data(:, 3))
plot(sim_rz.Em.En.Time, sim_rz.Em.En.Data(:, 3))
hold off;
xlabel('Time [s]');
ylabel('Dz [m]');
ax4 = subplot(2, 3, 4);
hold on;
plot(sim_no.Em.En.Time, sim_no.Em.En.Data(:, 4))
plot(sim_gm.Em.En.Time, sim_gm.Em.En.Data(:, 4))
plot(sim_ty.Em.En.Time, sim_ty.Em.En.Data(:, 4))
plot(sim_rz.Em.En.Time, sim_rz.Em.En.Data(:, 4))
hold off;
xlabel('Time [s]');
ylabel('Rx [rad]');
ax5 = subplot(2, 3, 5);
hold on;
plot(sim_no.Em.En.Time, sim_no.Em.En.Data(:, 5))
plot(sim_gm.Em.En.Time, sim_gm.Em.En.Data(:, 5))
plot(sim_ty.Em.En.Time, sim_ty.Em.En.Data(:, 5))
plot(sim_rz.Em.En.Time, sim_rz.Em.En.Data(:, 5))
hold off;
xlabel('Time [s]');
ylabel('Ry [rad]');
ax6 = subplot(2, 3, 6);
hold on;
plot(sim_no.Em.En.Time, sim_no.Em.En.Data(:, 6), 'DisplayName', 'No')
plot(sim_gm.Em.En.Time, sim_gm.Em.En.Data(:, 6), 'DisplayName', 'Dw')
plot(sim_ty.Em.En.Time, sim_ty.Em.En.Data(:, 6), 'DisplayName', 'Ty')
plot(sim_rz.Em.En.Time, sim_rz.Em.En.Data(:, 6), 'DisplayName', 'Rz')
hold off;
xlabel('Time [s]');
ylabel('Rz [rad]');
legend();
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/effect_disturbances_position_error.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:effect_disturbances_position_error
#+caption: Effect of Perturbations on the position error ([[./figs/effect_disturbances_position_error.png][png]], [[./figs/effect_disturbances_position_error.pdf][pdf]])
[[file:figs/effect_disturbances_position_error.png]]
*** Power Spectral Density of the effect of the disturbances
#+begin_src matlab
figure;
hold on;
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD $\left[\frac{\mu m}{\sqrt{Hz}}\right]$')
#+end_src
#+begin_src matlab
figure;
hold on;
plot(f_rz, sqrt(pxx_rz_dx), 'DisplayName', '$D_x$')
plot(f_rz, sqrt(pxx_rz_dy), 'DisplayName', '$D_y$')
plot(f_rz, sqrt(pxx_rz_dz), 'DisplayName', '$D_z$')
plot(f_dy, sqrt(pxx_dy_dz))
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD $\left[\frac{m}{\sqrt{Hz}}\right]$')
xlim([1, 200]);
legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1);
#+end_src
#+begin_src matlab :results none :exports results
figure;
hold on;
plot(f_rz(f_rz>1&f_rz<200), 1e9*sqrt(flip(-cumtrapz(flip(f_rz(f_rz>1&f_rz<200)),flip(pxx_rz_dx(f_rz>1&f_rz<200))))), 'DisplayName', 'Spindle - $D_x$');
plot(f_rz(f_rz>1&f_rz<200), 1e9*sqrt(flip(-cumtrapz(flip(f_rz(f_rz>1&f_rz<200)),flip(pxx_rz_dy(f_rz>1&f_rz<200))))), 'DisplayName', 'Spindle - $D_y$');
plot(f_rz(f_rz>1&f_rz<200), 1e9*sqrt(flip(-cumtrapz(flip(f_rz(f_rz>1&f_rz<200)),flip(pxx_rz_dz(f_rz>1&f_rz<200))))), 'DisplayName', 'Spindle - $D_z$');
plot(f_dy(f_dy>1&f_dy<200), 1e9*sqrt(flip(-cumtrapz(flip(f_dy(f_dy>1&f_dy<200)),flip(pxx_dy_dz(f_dy>1&f_dy<200))))), 'DisplayName', 'Spindle - $D_z$');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('CAS [nm RMS]')
legend('Location', 'southwest');
xlim([1, 200]);
#+end_src
#+begin_src matlab
gm = load('matlab/mat/dist/psd_gm.mat', 'f', 'psd_gm');
rz = load('matlab/mat/dist/pxsp_r.mat', 'f', 'pxsp_r');
tyz = load('matlab/mat/dist/pxz_ty_r.mat', 'f', 'pxz_ty_r');
tyx = load('matlab/mat/dist/pxe_ty_r.mat', 'f', 'pxe_ty_r');
#+end_src
#+begin_src matlab :exports none
gm.f = gm.f(2:end);
rz.f = rz.f(2:end);
tyz.f = tyz.f(2:end);
tyx.f = tyx.f(2:end);
gm.psd_gm = gm.psd_gm(2:end); % PSD of Ground Motion [m^2/Hz]
rz.pxsp_r = rz.pxsp_r(2:end); % PSD of Relative Velocity [(m/s)^2/Hz]
tyz.pxz_ty_r = tyz.pxz_ty_r(2:end); % PSD of Relative Velocity [(m/s)^2/Hz]
tyx.pxe_ty_r = tyx.pxe_ty_r(2:end); % PSD of Relative Velocity [(m/s)^2/Hz]
#+end_src
Because some 50Hz and harmonics were present in the ground motion measurement, we remove these peaks with the following code:
#+begin_src matlab
f0s = [50, 100, 150, 200, 250, 350, 450];
for f0 = f0s
i = find(gm.f > f0-0.5 & gm.f < f0+0.5);
gm.psd_gm(i) = linspace(gm.psd_gm(i(1)), gm.psd_gm(i(end)), length(i));
end
#+end_src
We now compute the relative velocity between the hexapod and the granite due to ground motion.
#+begin_src matlab
gm.psd_rv = gm.psd_gm.*abs(squeeze(freqresp(G('Dz', 'Dw'), gm.f, 'Hz'))).^2;
#+end_src
#+begin_src matlab :exports none
figure;
hold on;
plot(gm.f, sqrt(gm.psd_rv), 'DisplayName', 'Ground Motion');
plot(tyz.f, sqrt(tyz.pxz_ty_r), 'DisplayName', 'Ty');
plot(rz.f, sqrt(rz.pxsp_r), 'DisplayName', 'Rz');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the measured velocity $\left[\frac{m/s}{\sqrt{Hz}}\right]$')
legend('Location', 'southwest');
xlim([2, 500]);
#+end_src
* Introduction :ignore:
From the start of this work, it became increasingly clear that an accurate micro-station model was necessary.
@ -1309,9 +751,9 @@ Ttot = Rty*Rry*Rrz;
ustation_dx = Ttot(1,4);
ustation_dy = Ttot(2,4);
ustation_dz = Ttot(3,4);
ustation_ry = atan2( Ttot(1, 3), sqrt(Ttot(1, 1)^2 + Ttot(1, 2)^2));
ustation_rx = atan2(-Ttot(2, 3)/cos(Ery), Ttot(3, 3)/cos(Ery));
ustation_rz = atan2(-Ttot(1, 2)/cos(Ery), Ttot(1, 1)/cos(Ery));
ustation_ry = atan2( Ttot(1, 3), sqrt(Ttot(1, 1)^2 + Ttot(1, 2)^2));
ustation_rx = atan2(-Ttot(2, 3)/cos(ustation_ry), Ttot(3, 3)/cos(ustation_ry));
ustation_rz = atan2(-Ttot(1, 2)/cos(ustation_ry), Ttot(1, 1)/cos(ustation_ry));
%% Verification using the Simscape model
% All stages are initialized as rigid bodies to avoid any guiding error
@ -1340,9 +782,9 @@ T_sim = [simout.y.R.Data(:,:,end), [simout.y.x.Data(end); simout.y.y.Data(end);
sim_dx = T_sim(1,4);
sim_dy = T_sim(2,4);
sim_dz = T_sim(3,4);
sim_ry = atan2( T_sim(1, 3), sqrt(T_sim(1, 1)^2 + T_sim(1, 2)^2));
sim_rx = atan2(-T_sim(2, 3)/cos(Ery), T_sim(3, 3)/cos(Ery));
sim_rz = atan2(-T_sim(1, 2)/cos(Ery), T_sim(1, 1)/cos(Ery));
sim_ry = atan2( T_sim(1, 3), sqrt(T_sim(1, 1)^2 + T_sim(1, 2)^2));
sim_rx = atan2(-T_sim(2, 3)/cos(sim_ry), T_sim(3, 3)/cos(sim_ry));
sim_rz = atan2(-T_sim(1, 2)/cos(sim_ry), T_sim(1, 1)/cos(sim_ry));
#+end_src
* Micro-Station Dynamics
@ -1491,7 +933,7 @@ load('ustation_frf_com.mat', 'frfs_CoM');
% Initialization of some variables to the figures
dirs = {'x', 'y', 'z', 'rx', 'ry', 'rz'};
stages = {'gbot', 'gtop', 'ty', 'ry', 'rz', 'hexa'}
stages = {'gbot', 'gtop', 'ty', 'ry', 'rz', 'hexa'};
f = logspace(log10(10), log10(500), 1000);
#+end_src
@ -2104,7 +1546,7 @@ exportFig('figs/ustation_errors_dy_vertical_remove_mean.pdf', 'width', 'half', '
delta_ty = (ty_errors.setpoint(end) - ty_errors.setpoint(1))/(length(ty_errors.setpoint) - 1); % [mm]
ty_vel = 8*1.125; % [mm/s]
Ts = delta_ty/ty_vel;
Fs = 1/Ts
Fs = 1/Ts;
% Frequency Analysis
Nfft = floor(length(ty_errors.setpoint)); % Number of frequency points
@ -2242,7 +1684,7 @@ exportFig('figs/ustation_errors_spindle_tilt.pdf', 'width', 'third', 'height', '
% Search the best angular match
fun = @(theta)rms((spindle_errors.Dx - (x0 + R*cos(pi/180*spindle_errors.deg+theta(1)))).^2 + (spindle_errors.Dy - (y0 - R*sin(pi/180*spindle_errors.deg+theta(1)))).^2);
x0 = [0];
delta_theta = fminsearch(fun, 0)
delta_theta = fminsearch(fun, 0);
% Compute the remaining error after removing the best circular fit
spindle_errors.Dx_err = spindle_errors.Dx - (x0 + R*cos(pi/180*spindle_errors.deg+delta_theta));
@ -2568,7 +2010,7 @@ plot(Dw.t, 1e6*Dw.x, 'DisplayName', '$D_{xf}$');
plot(Dw.t, 1e6*Dw.y, 'DisplayName', '$D_{yf}$');
plot(Dw.t, 1e6*Dw.z, 'DisplayName', '$D_{zf}$');
xlabel('Time [s]'); ylabel('Amplitude [$\mu$m]')
xlim([0, 1]); ylim([-0.15, 0.15])
xlim([0, 1]); ylim([-0.6, 0.6])
leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1);
leg.ItemTokenSize(1) = 15;
#+end_src