phd-nass-rotating-3dof-model/nass-rotating-3dof-model.org
2024-04-30 15:25:20 +02:00

199 KiB
Raw Blame History

Nano Active Stabilization System - Effect of rotation


This report is also available as a pdf.


Glossary and Acronyms - Tables   ignore

label name description
psdx \ensuremath{Φx} Power spectral density of signal $x$
asdx \ensuremath{Γx} Amplitude spectral density of signal $x$
cpsx \ensuremath{Φx} Cumulative Power Spectrum of signal $x$
casx \ensuremath{Γx} Cumulative Amplitude Spectrum of signal $x$
key abbreviation full form
haclac HAC-LAC High Authority Control - Low Authority Control
hac HAC High Authority Control
lac LAC Low Authority Control
nass NASS Nano Active Stabilization System
asd ASD Amplitude Spectral Density
psd PSD Power Spectral Density
cps CPS Cumulative Power Spectrum
cas CAS Cumulative Amplitude Spectrum
frf FRF Frequency Response Function
iff IFF Integral Force Feedback
rdc RDC Relative Damping Control
drga DRGA Dynamical Relative Gain Array
hpf HPF high-pass filter
lpf LPF low-pass filter

Introduction   ignore

An important aspect of the acrfull:nass is that the nano-hexapod continuously rotates around a vertical axis, whereas the external metrology is not. Such rotation induces gyroscopic effects that may impact the system dynamics and obtained performance. To study these effects, a model of a rotating suspended platform is first presented (Section ref:sec:rotating_system_description) This model is simple enough to be able to derive its dynamics analytically and to understand its behavior, while still allowing the capture of important physical effects in play.

acrfull:iff is then applied to the rotating platform, and it is shown that the unconditional stability of acrshort:iff is lost due to the gyroscopic effects induced by the rotation (Section ref:sec:rotating_iff_pure_int). Two modifications of the Integral Force Feedback are then proposed. The first modification involves adding a high-pass filter to the acrshort:iff controller (Section ref:sec:rotating_iff_pseudo_int). It is shown that the acrshort:iff controller is stable for some gain values, and that damping can be added to the suspension modes. The optimal high-pass filter cut-off frequency is computed. The second modification consists of adding a stiffness in parallel to the force sensors (Section ref:sec:rotating_iff_parallel_stiffness). Under certain conditions, the unconditional stability of the IFF controller is regained. The optimal parallel stiffness is then computed. This study of adapting acrshort:iff for the damping of rotating platforms has been the subject of two published papers cite:&dehaeze20_activ_dampin_rotat_platf_integ_force_feedb;&dehaeze21_activ_dampin_rotat_platf_using.

It is then shown that acrfull:rdc is less affected by gyroscopic effects (Section ref:sec:rotating_relative_damp_control). Once the optimal control parameters for the three tested active damping techniques are obtained, they are compared in terms of achievable damping, damped plant and closed-loop compliance and transmissibility (Section ref:sec:rotating_comp_act_damp).

The previous analysis was applied to three considered nano-hexapod stiffnesses ($k_n = 0.01\,N/\mu m$, $k_n = 1\,N/\mu m$ and $k_n = 100\,N/\mu m$) and the optimal active damping controller was obtained in each case (Section ref:sec:rotating_nano_hexapod). Up until this section, the study was performed on a very simplistic model that only captures the rotation aspect, and the model parameters were not tuned to correspond to the NASS. In the last section (Section ref:sec:rotating_nass), a model of the micro-station is added below the suspended platform (i.e. the nano-hexapod) with a rotating spindle and parameters tuned to match the NASS dynamics. The goal is to determine whether the rotation imposes performance limitation on the NASS.

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_overview.png

System Description and Analysis

<<sec:rotating_system_description>>

Introduction   ignore

The system used to study gyroscopic effects consists of a 2 degree of freedom translation stage on top of a rotating stage (Figure ref:fig:rotating_3dof_model_schematic). The rotating stage is supposed to be ideal, meaning it induces a perfect rotation $\theta(t) = \Omega t$ where $\Omega$ is the rotational speed in $\si{\radian\per\s}$. The suspended platform consists of two orthogonal actuators, each represented by three elements in parallel: a spring with a stiffness $k$ in $\si{\newton\per\meter}$, a dashpot with a damping coefficient $c$ in $\si{\newton\per(\meter\per\second)}$ and an ideal force source $F_u, F_v$. A payload with a mass $m$ in $\si{\kilo\gram}$, is mounted on the (rotating) suspended platform. Two reference frames are used: an inertial frame $(\vec{i}_x, \vec{i}_y, \vec{i}_z)$ and a uniform rotating frame $(\vec{i}_u, \vec{i}_v, \vec{i}_w)$ rigidly fixed on top of the rotating stage with $\vec{i}_w$ aligned with the rotation axis. The position of the payload is represented by $(d_u, d_v, 0)$ expressed in the rotating frame. After the dynamics of this system is studied, the objective will be to dampen the two suspension modes of the payload while the rotating stage performs a constant rotation.

\begin{tikzpicture}
  % Angle
  \def\thetau{25}

  % Rotational Stage
  \draw[fill=black!60!white] (0, 0) circle (4.3);
  \draw[fill=black!40!white] (0, 0) circle (3.8);

  % Label
  \node[anchor=north west, rotate=\thetau] at (-2.5, 2.5) {\small Rotating Stage};

  % Rotating Scope
  \begin{scope}[rotate=\thetau]
    % Rotating Frame
    \draw[fill=black!20!white] (-2.6, -2.6) rectangle (2.6, 2.6);
    % Label
    \node[anchor=north west, rotate=\thetau] at (-2.6, 2.6) {\small Suspended Platform};

    % Mass
    \draw[fill=white] (-1, -1) rectangle (1, 1);
    % Label
    \node[anchor=south west, rotate=\thetau] at (-1, -1) {\small Payload};

    % Attached Points
    \node[] at (-1, 0){$\bullet$};
    \draw[] (-1, 0) -- ++(-0.2, 0) coordinate(cu);
    \draw[] ($(cu) + (0, -0.8)$) coordinate(actu) -- ($(cu) + (0, 0.8)$) coordinate(ku);
    \node[] at (0, -1){$\bullet$};
    \draw[] (0, -1) -- ++(0, -0.2) coordinate(cv);
    \draw[] ($(cv) + (-0.8, 0)$)coordinate(kv) -- ($(cv) + (0.8, 0)$) coordinate(actv);

    % Spring and Actuator for U
    \draw[actuator={0.6}{0.2}{black}] (actu) -- node[above=0.1, rotate=\thetau]{$F_u$} (actu-|-2.6,0);
    \draw[spring=0.2] (ku) -- node[above=0.1, rotate=\thetau]{$k$} (ku-|-2.6,0);
    \draw[damper={black}{8}{8}] (cu) -- node[above left=0.2 and -0.1, rotate=\thetau]{$c$} (cu-|-2.6,0);

    \draw[actuator={0.6}{0.2}{black}] (actv) -- node[left, rotate=\thetau]{$F_v$} (actv|-0,-2.6);
    \draw[spring=0.2] (kv) -- node[left, rotate=\thetau]{$k$} (kv|-0,-2.6);
    \draw[damper={black}{8}{8}] (cv) -- node[left=0.1, rotate=\thetau]{$c$} (cv|-0,-2.6);
  \end{scope}

  % Inertial Frame
  \draw[->] (-4, -4) -- ++(2, 0) node[below]{$\vec{i}_x$};
  \draw[->] (-4, -4) -- ++(0, 2) node[left]{$\vec{i}_y$};
  \draw[fill, color=black] (-4, -4) circle (0.06);
  \node[draw, circle, inner sep=0pt, minimum size=0.3cm, label=left:$\vec{i}_z$] at (-4, -4){};

  \draw[->] (0, 0) node[above left, rotate=\thetau]{$\vec{i}_w$} -- ++(\thetau:2) node[above, rotate=\thetau]{$\vec{i}_u$};
  \draw[->] (0, 0) -- ++(\thetau+90:2) node[left, rotate=\thetau]{$\vec{i}_v$};
  \draw[fill, color=black] (0,0) circle (0.06);
  \node[draw, circle, inner sep=0pt, minimum size=0.3cm] at (0, 0){};
  \draw[dashed] (0, 0) -- ++(2, 0);
  \draw[] (1.5, 0) arc (0:\thetau:1.5) node[midway, right]{$\theta$};

  \draw[->] (3.5, 0) arc (0:40:3.5) node[midway, left]{$\Omega$};
\end{tikzpicture}

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_3dof_model_schematic.png

Equations of motion and transfer functions

To obtain the equations of motion for the system represented in Figure ref:fig:rotating_3dof_model_schematic, the Lagrangian equation eqref:eq:rotating_lagrangian_equations is used. $L = T - V$ is the Lagrangian, $T$ the kinetic coenergy, $V$ the potential energy, $D$ the dissipation function, and $Q_i$ the generalized force associated with the generalized variable $\begin{bmatrix}q_1 & q_2\end{bmatrix} = \begin{bmatrix}d_u & d_v\end{bmatrix}$. These terms are derived in eqref:eq:rotating_energy_functions_lagrange. Note that the equation of motion corresponding to constant rotation along $\vec{i}_w$ is disregarded because this motion is imposed by the rotation stage.

\begin{equation}\label{eq:rotating_lagrangian_equations} \frac{d}{dt} ≤ft( \frac{∂ L}{∂ \dot{q}_i} \right) + \frac{∂ D}{∂ \dot{q}_i} - \frac{∂ L}{∂ q_i} = Q_i

\end{equation}

\begin{equation} \label{eq:rotating_energy_functions_lagrange}

\begin{aligned} T &= \frac{1}{2} m \left( ( \dot{d}_u - \Omega d_v )^2 + ( \dot{d}_v + \Omega d_u )^2 \right), \quad Q_1 = F_u, \quad Q_2 = F_v, \\ V &= \frac{1}{2} k \big( {d_u}^2 + {d_v}^2 \big), \quad D = \frac{1}{2} c \big( \dot{d}_u{}^2 + \dot{d}_v{}^2 \big) \end{aligned}

\end{equation}

Substituting equations eqref:eq:rotating_energy_functions_lagrange into equation eqref:eq:rotating_lagrangian_equations for both generalized coordinates gives two coupled differential equations eqref:eq:rotating_eom_coupled_1 and eqref:eq:rotating_eom_coupled_2.

\begin{subequations} \label{eq:rotating_eom_coupled}

\begin{align} m \ddot{d}_u + c \dot{d}_u + ( k - m \Omega^2 ) d_u &= F_u + 2 m \Omega \dot{d}_v \label{eq:rotating_eom_coupled_1} \\ m \ddot{d}_v + c \dot{d}_v + ( k \underbrace{-\,m \Omega^2}_{\text{Centrif.}} ) d_v &= F_v \underbrace{-\,2 m \Omega \dot{d}_u}_{\text{Coriolis}} \label{eq:rotating_eom_coupled_2} \end{align}

\end{subequations}

The uniform rotation of the system induces two gyroscopic effects as shown in equation eqref:eq:rotating_eom_coupled:

  • Centrifugal forces: that can be seen as an added negative stiffness $- m \Omega^2$ along $\vec{i}_u$ and $\vec{i}_v$
  • Coriolis forces: that adds coupling between the two orthogonal directions.

One can verify that without rotation ($\Omega = 0$), the system becomes equivalent to two uncoupled one degree of freedom mass-spring-damper systems.

To study the dynamics of the system, the two differential equations of motions eqref:eq:rotating_eom_coupled are converted into the Laplace domain and the $2 \times 2$ transfer function matrix $\mathbf{G}_d$ from $\begin{bmatrix}F_u & F_v\end{bmatrix}$ to $\begin{bmatrix}d_u & d_v\end{bmatrix}$ in equation eqref:eq:rotating_Gd_mimo_tf is obtained. The four transfer functions in $\mathbf{G}_d$ are shown in equation eqref:eq:rotating_Gd_indiv_el.

\begin{equation}\label{eq:rotating_Gd_mimo_tf} \begin{bmatrix} d_u \\ d_v \end{bmatrix} = \mathbf{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix} = \mathbf{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix}

\end{equation}

\begin{subequations}\label{eq:rotating_Gd_indiv_el}

\begin{align} \mathbf{G}_{d}(1,1) &= \mathbf{G}_{d}(2,2) = \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} \\ \mathbf{G}_{d}(1,2) &= -\mathbf{G}_{d}(2,1) = \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} \end{align}

\end{subequations}

To simplify the analysis, the undamped natural frequency $\omega_0$ and the damping ratio $\xi$ defined in eqref:eq:rotating_xi_and_omega are used instead. The elements of the transfer function matrix $\mathbf{G}_d$ are described by equation eqref:eq:rotating_Gd_w0_xi_k. \begin{equation} \label{eq:rotating_xi_and_omega} ω_0 = \sqrt{\frac{k}{m}} \text{ in } \si{\radian\persecond}, \quad ξ = \frac{c}{2 \sqrt{k m}}

\end{equation}

\begin{subequations} \label{eq:rotating_Gd_w0_xi_k}

\begin{align} \mathbf{G}_{d}(1,1) &= \frac{\frac{1}{k} \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \\ \mathbf{G}_{d}(1,2) &= \frac{\frac{1}{k} \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \end{align}

\end{subequations}

System Poles: Campbell Diagram

The poles of $\mathbf{G}_d$ are the complex solutions $p$ of equation eqref:eq:rotating_poles (i.e. the roots of its denominator).

\begin{equation}\label{eq:rotating_poles} ≤ft( \frac{p^2}{{ω_0}^2} + 2 ξ \frac{p}{ω_0} + 1 - \frac{{Ω}^2}{{ω_0}^2} \right)^2 + ≤ft( 2 \frac{Ω}{ω_0} \frac{p}{ω_0} \right)^2 = 0

\end{equation}

Supposing small damping ($\xi \ll 1$), two pairs of complex conjugate poles $[p_{+}, p_{-}]$ are obtained as shown in equation eqref:eq:rotating_pole_values.

\begin{subequations} \label{eq:rotating_pole_values}

\begin{align} p_{+} &= - \xi \omega_0 \left( 1 + \frac{\Omega}{\omega_0} \right) \pm j \omega_0 \left( 1 + \frac{\Omega}{\omega_0} \right) \\ p_{-} &= - \xi \omega_0 \left( 1 - \frac{\Omega}{\omega_0} \right) \pm j \omega_0 \left( 1 - \frac{\Omega}{\omega_0} \right) \end{align}

\end{subequations}

%% Model parameters for first analysis
kn = 1;    % Actuator Stiffness [N/m]
mn = 1;    % Payload Mass [kg]
cn = 0.05; % Actuator Damping [N/(m/s)]

xin = cn/(2*sqrt(kn*mn)); % Modal Damping [-]
w0n = sqrt(kn/mn);       % Natural Frequency [rad/s]

%% Computation of the poles as a function of the rotating velocity
Wzs = linspace(0, 2, 51); % Vector of rotation speeds [rad/s]

p_ws = zeros(4, length(Wzs));

for i = 1:length(Wzs)
    Wz = Wzs(i);

    pole_G = pole(1/(((s^2)/(w0n^2) + 2*xin*s/w0n + 1 - (Wz^2)/(w0n^2))^2 + (2*Wz*s/(w0n^2))^2));
    [~, i_sort] = sort(imag(pole_G));
    p_ws(:, i) = pole_G(i_sort);
end

clear pole_G;

The real and complex parts of these two pairs of complex conjugate poles are represented in Figure ref:fig:rotating_campbell_diagram as a function of the rotational speed $\Omega$. As the rotational speed increases, $p_{+}$ goes to higher frequencies and $p_{-}$ goes to lower frequencies (Figure ref:fig:rotating_campbell_diagram_imag). The system becomes unstable for $\Omega > \omega_0$ as the real part of $p_{-}$ is positive (Figure ref:fig:rotating_campbell_diagram_real). Physically, the negative stiffness term $-m\Omega^2$ induced by centrifugal forces exceeds the spring stiffness $k$.

%% Campbell diagram - Real and Imaginary parts of the poles as a function of the rotating velocity
figure;
hold on;
plot(Wzs, real(p_ws(1, :)), '-', 'color', colors(1,:), 'DisplayName', '$p_{+}$')
plot(Wzs, real(p_ws(4, :)), '-', 'color', colors(1,:), 'HandleVisibility', 'off')
plot(Wzs, real(p_ws(2, :)), '-', 'color', colors(2,:), 'DisplayName', '$p_{-}$')
plot(Wzs, real(p_ws(3, :)), '-', 'color', colors(2,:), 'HandleVisibility', 'off')
plot(Wzs, zeros(size(Wzs)), 'k--', 'HandleVisibility', 'off')
hold off;
xlabel('Rotational Speed $\Omega$'); ylabel('Real Part');
leg = legend('location', 'northwest', 'FontSize', 8);
leg.ItemTokenSize(1) = 8;
xlim([0, 2*w0n]);
xticks([0,w0n/2,w0n,3/2*w0n,2*w0n])
xticklabels({'$0$', '', '$\omega_0$', '', '$2 \omega_0$'})
ylim([-3*xin, 3*xin]);
yticks([-3*xin, -2*xin, -xin, 0, xin, 2*xin, 3*xin])
yticklabels({'', '', '$-\xi\omega_0$', '$0$', ''})
figure
hold on;
plot(Wzs, imag(p_ws(1, :)), '-', 'color', colors(1,:))
plot(Wzs, imag(p_ws(4, :)), '-', 'color', colors(1,:))
plot(Wzs, imag(p_ws(2, :)), '-', 'color', colors(2,:))
plot(Wzs, imag(p_ws(3, :)), '-', 'color', colors(2,:))
plot(Wzs, zeros(size(Wzs)), 'k--')
hold off;
xlabel('Rotational Speed $\Omega$'); ylabel('Imaginary Part');
xlim([0, 2*w0n]);
xticks([0,w0n/2,w0n,3/2*w0n,2*w0n])
xticklabels({'$0$', '', '$\omega_0$', '', '$2 \omega_0$'})
ylim([-3*w0n, 3*w0n]);
yticks([-3*w0n, -2*w0n, -w0n, 0, w0n, 2*w0n, 3*w0n])
yticklabels({'', '', '$-\omega_0$', '$0$', '$\omega_0$', '', ''})

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_campbell_diagram_real.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_campbell_diagram_imag.png

System Dynamics: Effect of rotation

The system dynamics from actuator forces $[F_u, F_v]$ to the relative motion $[d_u, d_v]$ is identified for several rotating velocities. Looking at the transfer function matrix $\mathbf{G}_d$ in equation eqref:eq:rotating_Gd_w0_xi_k, one can see that the two diagonal (direct) terms are equal and that the two off-diagonal (coupling) terms are opposite. The bode plots of these two terms are shown in Figure ref:fig:rotating_bode_plot for several rotational speeds $\Omega$. These plots confirm the expected behavior: the frequencies of the two pairs of complex conjugate poles are further separated as $\Omega$ increases. For $\Omega > \omega_0$, the low-frequency pair of complex conjugate poles $p_{-}$ becomes unstable (shown be the 180 degrees phase lead instead of phase lag).

%% Bode plot of the direct and coupling terms for several rotating velocities
freqs = logspace(-1, 1, 1000);

figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');

% Magnitude
ax1 = nexttile([2, 1]);
hold on;
for i = 1:length(Wzs)
    plot(freqs, abs(squeeze(freqresp(Gs{i}('du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:))
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]); ylabel('Magnitude [m/N]');
ylim([1e-2, 1e2]);
yticks([1e-2,1e-1,1,1e1,1e2])
yticklabels({'$0.01/k$', '$0.1/k$', '$1/k$', '$10/k$', '$100/k$'})

ax2 = nexttile;
hold on;
for i = 1:length(Wzs)
    plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}('du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:))
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
yticks(-180:90:180);
ylim([-180 180]);
xticks([1e-1,1,1e1])
xticklabels({'$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'})

linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');

ax1 = nexttile([2, 1]);
hold on;
for i = 1:length(Wzs)
    plot(freqs, abs(squeeze(freqresp(Gs{i}('dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:), ...
         'DisplayName', sprintf('$\\Omega = %.1f \\omega_0$', Wzs(i)))
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]); ylabel('Magnitude [m/N]');
ldg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1);
ldg.ItemTokenSize = [10, 1];
ylim([1e-2, 1e2]);
yticks([1e-2,1e-1,1,1e1,1e2])
yticklabels({'$0.01/k$', '$0.1/k$', '$1/k$', '$10/k$', '$100/k$'})


ax2 = nexttile;
hold on;
for i = 1:length(Wzs)
    plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}('dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
yticks(-180:90:180);
ylim([-180 180]);
xticks([1e-1,1,1e1])
xticklabels({'$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'})

linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_bode_plot_direct.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_bode_plot_coupling.png

Integral Force Feedback

<<sec:rotating_iff_pure_int>>

Introduction   ignore

The goal is now to damp the two suspension modes of the payload using an active damping strategy while the rotating stage performs a constant rotation. As was explained with the uniaxial model, such an active damping strategy is key to both reducing the magnification of the response in the vicinity of the resonances cite:collette11_review_activ_vibrat_isolat_strat and to make the plant easier to control for the high authority controller.

Many active damping techniques have been developed over the years, such as Positive Position Feedback (PPF) cite:lin06_distur_atten_precis_hexap_point,fanson90_posit_posit_feedb_contr_large_space_struc, Integral Force Feedback (IFF) cite:preumont91_activ and Direct Velocity Feedback (DVF) cite:karnopp74_vibrat_contr_using_semi_activ_force_gener,serrand00_multic_feedb_contr_isolat_base_excit_vibrat,preumont02_force_feedb_versus_accel_feedb. In cite:&preumont91_activ, the IFF control scheme has been proposed, where a force sensor, a force actuator, and an integral controller are used to increase the damping of a mechanical system. When the force sensor is collocated with the actuator, the open-loop transfer function has alternating poles and zeros, which guarantees the stability of the closed-loop system cite:preumont02_force_feedb_versus_accel_feedb. It was later shown that this property holds for multiple collated actuator/sensor pairs cite:preumont08_trans_zeros_struc_contr_with.

The main advantages of IFF over other active damping techniques are the guaranteed stability even in the presence of flexible dynamics, good performance, and robustness properties cite:preumont02_force_feedb_versus_accel_feedb.

Several improvements to the classical IFF have been proposed, such as adding a feed-through term to increase the achievable damping cite:teo15_optim_integ_force_feedb_activ_vibrat_contr or adding a high-pass filter to recover the loss of compliance at low-frequency cite:chesne16_enhan_dampin_flexib_struc_using_force_feedb. Recently, an $\mathcal{H}_\infty$ optimization criterion has been used to derive optimal gains for the IFF controller cite:zhao19_optim_integ_force_feedb_contr. \par

However, none of these studies have been applied to rotating systems. In this section, the acrshort:iff strategy is applied on the rotating suspended platform, and it is shown that gyroscopic effects alter the system dynamics and that IFF cannot be applied as is.

System and Equations of motion

To apply Integral Force Feedback, two force sensors are added in series with the actuators (Figure ref:fig:rotating_3dof_model_schematic_iff). Two identical controllers $K_F$ described by eqref:eq:rotating_iff_controller are then used to feedback each of the sensed force to its associated actuator.

\begin{equation}\label{eq:rotating_iff_controller} KF(s) = g ⋅ \frac{1}{s}

\end{equation}

\begin{tikzpicture}
  % Angle
  \def\thetau{25}

  % Rotational Stage
  \draw[fill=black!60!white] (0, 0) circle (4.3);
  \draw[fill=black!40!white] (0, 0) circle (3.8);

  % Label
  \node[anchor=north west, rotate=\thetau] at (-2.5, 2.5) {\small Rotating Stage};

  % Rotating Scope
  \begin{scope}[rotate=\thetau]
    % Rotating Frame
    \draw[fill=black!20!white] (-2.6, -2.6) rectangle (2.6, 2.6);
    % Label
    \node[anchor=north west, rotate=\thetau] at (-2.6, 2.6) {\small Suspended Platform};

    % Mass
    \draw[fill=white] (-1, -1) rectangle (1, 1);
    % Label
    \node[anchor=south west, rotate=\thetau] at (-1, -1) {\small Payload};

    % Attached Points
    \node[] at (-1, 0){$\bullet$};
    \draw[] (-1, 0) -- ++(-0.2, 0) coordinate(au);
    \node[] at (0, -1){$\bullet$};
    \draw[] (0, -1) -- ++(0, -0.2) coordinate(av);

    % Force Sensors
    \draw[draw=colorblue, fill=colorblue!10!white] ($(au) + (-0.2, -0.5)$) rectangle ($(au) + (0, 0.5)$);
    \draw[draw=colorblue] ($(au) + (-0.2, -0.5)$)coordinate(actu) -- ($(au) + (0,  0.5)$);
    \draw[draw=colorblue] ($(au) + (-0.2,  0.5)$)coordinate(ku)   -- ($(au) + (0, -0.5)$);

    \draw[draw=colorblue, fill=colorblue!10!white] ($(av) + (-0.5, -0.2)$) rectangle ($(av) + (0.5, 0)$);
    \draw[draw=colorblue] ($(av) + ( 0.5, -0.2)$)coordinate(actv) -- ($(av) + (-0.5,  0)$);
    \draw[draw=colorblue] ($(av) + (-0.5, -0.2)$)coordinate(kv)   -- ($(av) + ( 0.5,  0)$);

    % Spring and Actuator for U
    \draw[actuator={0.6}{0.2}{black}] (actu) -- coordinate[midway](actumid) (actu-|-2.6,0);
    \draw[spring=0.2] (ku) -- node[above=0.1, rotate=\thetau]{$k$} (ku-|-2.6,0);

    % \draw[actuator={0.6}{0.2}] (actv) -- node[right, rotate=\thetau]{$F_v$} (actv|-0,-2.6);
    \draw[actuator={0.6}{0.2}{black}] (actv) -- coordinate[midway](actvmid) (actv|-0,-2.6);
    \draw[spring=0.2] (kv) -- node[left, rotate=\thetau]{$k$} (kv|-0,-2.6);

    \node[color=colorblue, block={0.8cm}{0.6cm}, fill=colorblue!10!white, rotate=\thetau] (Ku) at ($(actumid) + (0, -1.2)$) {$K_{F}$};
    \draw[->, draw=colorblue] ($(au) + (-0.1, -0.5)$) |- (Ku.east) node[below right, rotate=\thetau]{$f_{u}$};
    \draw[->, draw=colorblue] (Ku.north) -- ($(actumid) + (0, -0.1)$) node[below left, rotate=\thetau]{$F_u$};

    \node[color=colorblue, block={0.8cm}{0.6cm}, fill=colorblue!10!white, rotate=\thetau] (Kv) at ($(actvmid) + (1.2, 0)$) {$K_{F}$};
    \draw[->, draw=colorblue] ($(av) + (0.5, -0.1)$) -| (Kv.north) node[above right, rotate=\thetau]{$f_{v}$};
    \draw[->, draw=colorblue] (Kv.west) -- ($(actvmid) + (0.1, 0)$) node[below right, rotate=\thetau]{$F_v$};
  \end{scope}

  % Inertial Frame
  \draw[->] (-4, -4) -- ++(2, 0) node[below]{$\vec{i}_x$};
  \draw[->] (-4, -4) -- ++(0, 2) node[left]{$\vec{i}_y$};
  \draw[fill, color=black] (-4, -4) circle (0.06);
  \node[draw, circle, inner sep=0pt, minimum size=0.3cm, label=left:$\vec{i}_z$] at (-4, -4){};

  \node[draw, circle, inner sep=0pt, minimum size=0.3cm] at (0, 0){};
  \draw[->] (0, 0) node[above left, rotate=\thetau]{$\vec{i}_w$} -- ++(\thetau:2) node[above, rotate=\thetau]{$\vec{i}_u$};
  \draw[->] (0, 0) -- ++(\thetau+90:2) node[left, rotate=\thetau]{$\vec{i}_v$};
  \draw[dashed] (0, 0) -- ++(2, 0);
  \draw[] (1.5, 0) arc (0:\thetau:1.5) node[midway, right]{$\theta$};
  \node[] at (0,0) {$\bullet$};

  \draw[->] (3.5, 0) arc (0:40:3.5) node[midway, left]{$\Omega$};
\end{tikzpicture}
\tikzset{block/.default={0.8cm}{0.8cm}}
\tikzset{addb/.append style={scale=0.7}}
\tikzset{node distance=0.6}

\begin{tikzpicture}
  \node[block={1.8cm}{2.2cm}] (G) {$\bm{G}_f$};

  % Inputs of the controllers
  \coordinate[] (output1) at ($(G.south east)!0.75!(G.north east)$);
  \coordinate[] (output2) at ($(G.south east)!0.25!(G.north east)$);
  \coordinate[] (input1)  at ($(G.south west)!0.75!(G.north west)$);
  \coordinate[] (input2)  at ($(G.south west)!0.25!(G.north west)$);

  \node[block, left=1.8 of input1] (K1) {$g/s$};
  \node[block] (K2) at ($(K1.east|-input2)+(0.6, 0)$) {$g/s$};

  % Connections and labels
  \draw[->] (K1.east) -- (input1)node[above left]{$F_u$};
  \draw[->] (K2.east) -- (input2)node[above left]{$F_v$};

  \draw[->] (output1) -- ++(0.8, 0) node[above left]{$f_u$};
  \draw[->] (output2) -- ++(0.8, 0) node[above left]{$f_v$};

  \draw[->] ($(output1)+(0.2, 0)$)node[branch]{} -- ++(0,  1.2) -| ($(K1.west) + (-0.8, 0)$)coordinate(start) -- (K1.west);
  \draw[->] ($(output2)+(0.2, 0)$)node[branch]{} -- ++(0, -1.2) -| (start|-K2) -- (K2.west);

  \begin{scope}[on background layer]
    \node[fit={(K1.north west) (K2.south east)}, inner sep=6pt, draw, dashed, fill=black!20!white] (K) {};
    \node[below left] at (K.north east) {$\bm{K}_F$};
  \end{scope}
\end{tikzpicture}

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_3dof_model_schematic_iff.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_iff_diagram.png

The forces $\begin{bmatrix}f_u & f_v\end{bmatrix}$ measured by the two force sensors represented in Figure ref:fig:rotating_3dof_model_schematic_iff are described by equation eqref:eq:rotating_measured_force.

\begin{equation}\label{eq:rotating_measured_force} \begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k) \begin{bmatrix} d_u \\ d_v \end{bmatrix} = \begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k) \begin{bmatrix} d_u \\ d_v \end{bmatrix} - (c s + k) \begin{bmatrix} d_u \\ d_v \end{bmatrix}

\end{equation}

The transfer function matrix $\mathbf{G}_{f}$ from actuator forces to measured forces in equation eqref:eq:rotating_Gf_mimo_tf can be obtained by inserting equation eqref:eq:rotating_Gd_w0_xi_k into equation eqref:eq:rotating_measured_force. Its elements are shown in equation eqref:eq:rotating_Gf.

\begin{equation}\label{eq:rotating_Gf_mimo_tf} \begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \mathbf{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix} = \mathbf{G}f \begin{bmatrix} F_u \\ F_v \end{bmatrix}

\end{equation}

\begin{subequations}\label{eq:rotating_Gf}

\begin{align} \mathbf{G}_{f}(1,1) &= \mathbf{G}_{f}(2,2) = \frac{\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \label{eq:rotating_Gf_diag_tf} \\ \mathbf{G}_{f}(1,2) &= -\mathbf{G}_{f}(2,1) = \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \label{eq:rotating_Gf_off_diag_tf} \end{align}

\end{subequations}

The zeros of the diagonal terms of $\mathbf{G}_f$ in equation eqref:eq:rotating_Gf_diag_tf are computed, and neglecting the damping for simplicity, two complex conjugated zeros $z_{c}$ eqref:eq:rotating_iff_zero_cc, and two real zeros $z_{r}$ eqref:eq:rotating_iff_zero_real are obtained.

\begin{subequations} \begin{align} z_c &= \pm j \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} + \frac{\Omega^2}{{\omega_0}^2} + \frac{1}{2} } \label{eq:rotating_iff_zero_cc} \\ z_r &= \pm \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} - \frac{\Omega^2}{{\omega_0}^2} - \frac{1}{2} } \label{eq:rotating_iff_zero_real} \end{align} \end{subequations}

It is interesting to see that the frequency of the pair of complex conjugate zeros $z_c$ in equation eqref:eq:rotating_iff_zero_cc always lies between the frequency of the two pairs of complex conjugate poles $p_{-}$ and $p_{+}$ in equation eqref:eq:rotating_pole_values. This is what usually gives the unconditional stability of IFF when collocated force sensors are used.

However, for non-null rotational speeds, the two real zeros $z_r$ in equation eqref:eq:rotating_iff_zero_real are inducing a non-minimum phase behavior. This can be seen in the Bode plot of the diagonal terms (Figure ref:fig:rotating_iff_bode_plot_effect_rot) where the low-frequency gain is no longer zero while the phase stays at $\SI{180}{\degree}$.

The low-frequency gain of $\mathbf{G}_f$ increases with the rotational speed $\Omega$ as shown in equation eqref:eq:rotating_low_freq_gain_iff_plan. This can be explained as follows: a constant actuator force $F_u$ induces a small displacement of the mass $d_u = \frac{F_u}{k - m\Omega^2}$ (Hooke's law considering the negative stiffness induced by the rotation). This small displacement then increases the centrifugal force $m\Omega^2d_u = \frac{\Omega^2}{{\omega_0}^2 - \Omega^2} F_u$ which is then measured by the force sensors.

\begin{equation}\label{eq:rotating_low_freq_gain_iff_plan} limω → 0 ≤ft| \mathbf{G}_f (jω) \right| = \begin{bmatrix} \frac{Ω^2}{{ω_0}^2 - Ω^2} & 0
0 & \frac{Ω^2}{{ω_0}^2 - Ω^2}

\end{bmatrix}

\end{equation}

Effect of rotation speed on IFF plant dynamics

The transfer functions from actuator forces $[F_u,\ F_v]$ to the measured force sensors $[f_u,\ f_v]$ are identified for several rotating velocities and are shown in Figure ref:fig:rotating_iff_bode_plot_effect_rot. As expected from the derived equations of motion:

  • when $\Omega < \omega_0$: the low-frequency gain is no longer zero and two (non-minimum phase) real zeros appear at low-frequencies. The low-frequency gain increases with $\Omega$. A pair of (minimum phase) complex conjugate zeros appears between the two complex conjugate poles, which are split further apart as $\Omega$ increases.
  • when $\omega_0 < \Omega$: the low-frequency pole becomes unstable.
%% Bode plot of the direct and coupling term for Integral Force Feedback - Effect of rotation
freqs = logspace(-2, 1, 1000);

Wz_i = [1,3,4];

figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');

% Magnitude
ax1 = nexttile([2, 1]);
hold on;
for i = 1:length(Wz_i)
    plot(freqs, abs(squeeze(freqresp(Gs{Wz_i(i)}('fu', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:), ...
         'DisplayName', sprintf('$\\Omega = %.1f \\omega_0 $', Wzs(Wz_i(i))),'MarkerSize',8);
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]');
ylim([1e-3, 1e2]);
leg = legend('location', 'northwest', 'FontSize', 8);

ax2 = nexttile;
hold on;
for i = 1:length(Wz_i)
    plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{Wz_i(i)}('fu', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:))
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
yticks(-180:90:180);
ylim([0 180]);
xticks([1e-2,1e-1,1,1e1])
xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'})

linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_iff_bode_plot_effect_rot_direct.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_root_locus_iff_pure_int.png

Decentralized Integral Force Feedback

The control diagram for decentralized acrshort:iff is shown in Figure ref:fig:rotating_iff_diagram. The decentralized acrshort:iff controller $\bm{K}_F$ corresponds to a diagonal controller with integrators eqref:eq:rotating_Kf_pure_int.

\begin{equation} \label{eq:rotating_Kf_pure_int}

\begin{aligned} \mathbf{K}_{F}(s) &= \begin{bmatrix} K_{F}(s) & 0 \\ 0 & K_{F}(s) \end{bmatrix} \\ K_{F}(s) &= g \cdot \frac{1}{s} \end{aligned}

\end{equation}

To determine how the acrshort:iff controller affects the poles of the closed-loop system, a Root Locus plot (Figure ref:fig:rotating_root_locus_iff_pure_int) is constructed as follows: the poles of the closed-loop system are drawn in the complex plane as the controller gain $g$ varies from $0$ to $\infty$ for the two controllers $K_{F}$ simultaneously. As explained in cite:preumont08_trans_zeros_struc_contr_with,skogestad07_multiv_feedb_contr, the closed-loop poles start at the open-loop poles (shown by $\tikz[baseline=-0.6ex] \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){};$) for $g = 0$ and coincide with the transmission zeros (shown by $\tikz[baseline=-0.6ex] \draw[line width=2pt, inner sep=0pt, outer sep=0pt] (0,0) circle[radius=3pt];$) as $g \to \infty$.

Whereas collocated IFF is usually associated with unconditional stability cite:preumont91_activ, this property is lost due to gyroscopic effects as soon as the rotation velocity becomes non-null. This can be seen in the Root Locus plot (Figure ref:fig:rotating_root_locus_iff_pure_int) where poles corresponding to the controller are bound to the right half plane implying closed-loop system instability. Physically, this can be explained as follows: at low frequencies, the loop gain is huge due to the pure integrator in $K_{F}$ and the finite gain of the plant (Figure ref:fig:rotating_iff_bode_plot_effect_rot). The control system is thus cancels the spring forces, which makes the suspended platform not capable to hold the payload against centrifugal forces, hence the instability.

%% Root Locus for the Decentralized Integral Force Feedback controller
Kiff = 1/s*eye(2);

gains = logspace(-2, 4, 300);
Wz_i = [1,3,4];

figure;
hold on;
for i = 1:length(Wz_i)
    plot(real(pole(Gs{Wz_i(i)}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)),  imag(pole(Gs{Wz_i(i)}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), 'x', 'color', colors(i,:), ...
         'DisplayName', sprintf('$\\Omega = %.1f \\omega_0 $', Wzs(Wz_i(i))),'MarkerSize',8);
    plot(real(tzero(Gs{Wz_i(i)}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)),  imag(tzero(Gs{Wz_i(i)}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), 'o', 'color', colors(i,:), ...
         'HandleVisibility', 'off','MarkerSize',8);
    for g = gains
        cl_poles = pole(feedback(Gs{Wz_i(i)}({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff, -1));
        plot(real(cl_poles), imag(cl_poles), '.', 'color', colors(i,:), ...
             'HandleVisibility', 'off','MarkerSize',4);
    end
end
hold off;
axis square;
xlim([-1.8, 0.2]); ylim([0, 2]);
xticks([-1, 0])
xticklabels({'-$\omega_0$', '$0$'})
yticks([0, 1, 2])
yticklabels({'$0$', '$\omega_0$', '$2 \omega_0$'})

xlabel('Real Part'); ylabel('Imaginary Part');
leg = legend('location', 'northwest', 'FontSize', 8);
leg.ItemTokenSize(1) = 8;

Integral Force Feedback with a High-Pass Filter

<<sec:rotating_iff_pseudo_int>>

Introduction   ignore

As explained in the previous section, the instability of the IFF controller applied to the rotating system is due to the high gain of the integrator at low-frequency. To limit the low-frequency controller gain, a acrfull:hpf can be added to the controller, as shown in equation eqref:eq:rotating_iff_lhf. This is equivalent to slightly shifting the controller pole to the left along the real axis. This modification of the IFF controller is typically performed to avoid saturation associated with the pure integrator cite:preumont91_activ,marneffe07_activ_passiv_vibrat_isolat_dampin_shunt_trans. This is however not the reason why this high-pass filter is added here.

\begin{equation}\label{eq:rotating_iff_lhf} \boxed{KF(s) = g ⋅ \frac{1}{s} ⋅ _brace{\frac{s/ω_i}{1 + s/ω_i}}_{\text{HPF}} = g ⋅ \frac{1}{s + ω_i}}

\end{equation}

Modified Integral Force Feedback Controller

The Integral Force Feedback Controller is modified such that instead of using pure integrators, pseudo integrators (i.e. low pass filters) are used eqref:eq:rotating_iff_lhf where $\omega_i$ characterize the frequency down to which the signal is integrated. The loop gains ($K_F(s)$ times the direct dynamics $f_u/F_u$) with and without the added HPF are shown in Figure ref:fig:rotating_iff_modified_loop_gain. The effect of the added HPF limits the low-frequency gain to finite values as expected.

The Root Locus plots for the decentralized acrshort:iff with and without the acrshort:hpf are displayed in Figure ref:fig:rotating_iff_root_locus_hpf_large. With the added acrshort:hpf, the poles of the closed-loop system are shown to be stable up to some value of the gain $g_\text{max}$ given by equation eqref:eq:rotating_gmax_iff_hpf. It is interesting to note that $g_{\text{max}}$ also corresponds to the controller gain at which the low-frequency loop gain reaches one (for instance the gain $g$ can be increased by a factor $5$ in Figure ref:fig:rotating_iff_modified_loop_gain before the system becomes unstable).

\begin{equation}\label{eq:rotating_gmax_iff_hpf} \boxed{g_{\text{max}} = ω_i ≤ft( \frac{{ω_0}^2}{Ω^2} - 1 \right)}

\end{equation}

%% Modified IFF - parameters
g = 2; % Controller gain
wi = 0.1; % HPF Cut-Off frequency [rad/s]

Kiff     = (g/s)*eye(2); % Pure IFF
Kiff_hpf = (g/(wi+s))*eye(2); % IFF with added HPF
%% Loop gain for the IFF with pure integrator and modified IFF with added  high-pass filter
freqs = logspace(-2, 1, 1000);
Wz_i = 2;

figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');

% Magnitude
ax1 = nexttile([2, 1]);
hold on;
plot(freqs, abs(squeeze(freqresp(Gs{Wz_i}('fu', 'Fu')*Kiff(1,1), freqs, 'rad/s'))))
plot(freqs, abs(squeeze(freqresp(Gs{Wz_i}('fu', 'Fu')*Kiff_hpf(1,1), freqs, 'rad/s'))))
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]); ylabel('Loop Gain');

% Phase
ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{Wz_i}('fu', 'Fu')*Kiff(1,1), freqs, 'rad/s'))), 'DisplayName', 'IFF')
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{Wz_i}('fu', 'Fu')*Kiff_hpf(1,1), freqs, 'rad/s'))), 'DisplayName', 'IFF,HPF')
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
yticks(-180:90:180);
ylim([-90 180]);
xticks([1e-2,1e-1,1,1e1])
xticklabels({'', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'})
leg = legend('location', 'southwest', 'FontSize', 8);
leg.ItemTokenSize(1) = 15;

linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_iff_modified_loop_gain.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_iff_root_locus_hpf_large.png

Optimal IFF with HPF parameters $\omega_i$ and $g$

Two parameters can be tuned for the modified controller in equation eqref:eq:rotating_iff_lhf: the gain $g$ and the pole's location $\omega_i$. The optimal values of $\omega_i$ and $g$ are considered here as the values for which the damping of all the closed-loop poles is simultaneously maximized.

To visualize how $\omega_i$ does affect the attainable damping, the Root Locus plots for several $\omega_i$ are displayed in Figure ref:fig:rotating_root_locus_iff_modified_effect_wi. It is shown that even though small $\omega_i$ seem to allow more damping to be added to the suspension modes (see Root locus in Figure ref:fig:rotating_root_locus_iff_modified_effect_wi), the control gain $g$ may be limited to small values due to equation eqref:eq:rotating_gmax_iff_hpf. To study this trade-off, the attainable closed-loop damping ratio $\xi_{\text{cl}}$ is computed as a function of $\omega_i/\omega_0$. The gain $g_{\text{opt}}$ at which this maximum damping is obtained is also displayed and compared with the gain $g_{\text{max}}$ at which the system becomes unstable (Figure ref:fig:rotating_iff_hpf_optimal_gain).

For small values of $\omega_i$, the added damping is limited by the maximum allowed control gain $g_{\text{max}}$ (red curve and dashed red curve superimposed in Figure ref:fig:rotating_iff_hpf_optimal_gain) at which point the pole corresponding to the controller becomes unstable. For larger values of $\omega_i$, the attainable damping ratio decreases as a function of $\omega_i$ as was predicted from the root locus plot of Figure ref:fig:rotating_iff_root_locus_hpf_large.

%%  High-Pass Filter Cut-Off Frequency
wis = [0.01, 0.05, 0.1]; % [rad/s]
%% Root Locus for the initial IFF and the modified IFF
gains = logspace(-2, 4, 200);

figure;
hold on;
for wi_i = 1:length(wis)
    wi = wis(wi_i);
    Kiff = (1/(wi+s))*eye(2);
    L(wi_i) = plot(nan, nan, '.', 'color', colors(wi_i,:), 'DisplayName', sprintf('$\\omega_i = %.2f \\omega_0$', wi));
    for g = gains
        clpoles = pole(feedback(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff));
        plot(real(clpoles), imag(clpoles), '.', 'color', colors(wi_i,:),'MarkerSize',4);
    end
    plot(real(pole(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ...
         imag(pole(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ...
         'x', 'color', colors(wi_i,:),'MarkerSize',8);
    plot(real(tzero(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ...
         imag(tzero(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ...
         'o', 'color', colors(wi_i,:),'MarkerSize',8);
end
hold off;
axis equal;
xlim([-2.3, 0.1]); ylim([-1.2, 1.2]);
xticks([-2:1:2]); yticks([-2:1:2]);
leg = legend(L, 'location', 'southwest', 'FontSize', 8);
leg.ItemTokenSize(1) = 8;
xlabel('Real Part'); ylabel('Imaginary Part');
clear L

xlim([-1.25, 0.25]); ylim([-1.25, 1.25]);
xticks([-1, 0])
xticklabels({'$-\omega_0$', '$0$'})
yticks([-1, 0, 1])
yticklabels({'$-\omega_0$', '$0$', '$\omega_0$'})
ytickangle(90)
%% Compute the optimal control gain
wis = logspace(-2, 1, 100); % [rad/s]

opt_xi = zeros(1, length(wis)); % Optimal simultaneous damping
opt_gain = zeros(1, length(wis)); % Corresponding optimal gain

for wi_i = 1:length(wis)
    wi = wis(wi_i);
    Kiff = 1/(s + wi)*eye(2);

    fun = @(g)computeSimultaneousDamping(g, Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff);

    [g_opt, xi_opt] = fminsearch(fun, 0.5*wi*((1/Wzs(2))^2 - 1));
    opt_xi(wi_i) = 1/xi_opt;
    opt_gain(wi_i) = g_opt;
end
%% Attainable damping ratio as a function of wi/w0. Corresponding control gain g_opt and g_max are also shown
figure;
yyaxis left
plot(wis, opt_xi, '-', 'DisplayName', '$\xi_{cl}$');
set(gca, 'YScale', 'lin');
ylim([0,1]);
ylabel('Damping Ratio $\xi$');

yyaxis right
hold on;
plot(wis, opt_gain, '-', 'DisplayName', '$g_{opt}$');
plot(wis, wis*((1/Wzs(2))^2 - 1), '--', 'DisplayName', '$g_{max}$');
hold off;
set(gca, 'YScale', 'lin');
ylim([0,10]);
ylabel('Controller gain $g$');

xlabel('$\omega_i/\omega_0$');
set(gca, 'XScale', 'log');
legend('location', 'northeast', 'FontSize', 8);

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_root_locus_iff_modified_effect_wi.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_iff_hpf_optimal_gain.png

Obtained Damped Plant

To study how the parameter $\omega_i$ affects the damped plant, the obtained damped plants for several $\omega_i$ are compared in Figure ref:fig:rotating_iff_hpf_damped_plant_effect_wi_plant. It can be seen that the low-frequency coupling increases as $\omega_i$ increases. Therefore, there is a trade-off between achievable damping and added coupling when tuning $\omega_i$. The same trade-off can be seen between achievable damping and loss of compliance at low-frequency (see Figure ref:fig:rotating_iff_hpf_effect_wi_compliance).

%% Compute damped plant
wis = [0.03, 0.1, 0.5]; % [rad/s]
g = 2; % Gain

Gs_iff_hpf  = {};

for i = 1:length(wis)
    Kiff_hpf = (g/(wis(i)+s))*eye(2); % IFF with added HPF
    Kiff_hpf.InputName = {'fu', 'fv'};
    Kiff_hpf.OutputName = {'Fu', 'Fv'};

    Gs_iff_hpf(i) = {feedback(Gs{2}, Kiff_hpf, 'name')};
end

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_iff_hpf_damped_plant_effect_wi_plant.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_iff_hpf_effect_wi_compliance.png

IFF with a stiffness in parallel with the force sensor

<<sec:rotating_iff_parallel_stiffness>>

Introduction   ignore

In this section it is proposed to add springs in parallel with the force sensors to counteract the negative stiffness induced by the gyroscopic effects. Such springs are schematically shown in Figure ref:fig:rotating_3dof_model_schematic_iff_parallel_springs where $k_a$ is the stiffness of the actuator and $k_p$ the added stiffness in parallel with the actuator and force sensor.

\begin{tikzpicture}
  % Angle
  \def\thetau{25}

  % Rotational Stage
  \draw[fill=black!60!white] (0, 0) circle (4.3);
  \draw[fill=black!40!white] (0, 0) circle (3.8);

  % Label
  \node[anchor=north west, rotate=\thetau] at (-2.5, 2.5) {\small Rotating Stage};

  % Rotating Scope
  \begin{scope}[rotate=\thetau]
    % Rotating Frame
    \draw[fill=black!20!white] (-2.6, -2.6) rectangle (2.6, 2.6);
    % Label
    \node[anchor=north west, rotate=\thetau] at (-2.6, 2.6) {\small Suspended Platform};

    % Mass
    \draw[fill=white] (-1, -1) rectangle (1, 1);
    % Label
    \node[anchor=south west, rotate=\thetau] at (-1, -1) {\small Payload};

    % Attached Points
    \draw[] (-1, 0) -- ++(-0.2, 0) coordinate(au);
    \draw[] (0, -1) -- ++(0, -0.2) coordinate(av);

    % Force Sensors
    \draw[fill=white] ($(au) + (-0.2, -0.5)$) rectangle ($(au) + (0, 0.5)$);
    \draw[] ($(au) + (-0.2, -0.5)$)coordinate(actu) -- ($(au) + (0,  0.5)$);
    \draw[] ($(au) + (-0.2,  0.5)$)coordinate(ku)   -- ($(au) + (0, -0.5)$);
    \node[below=0.1, rotate=\thetau] at ($(au) + (-0.1, -0.5)$) {$f_{u}$};

    \draw[fill=white] ($(av) + (-0.5, -0.2)$) rectangle ($(av) + (0.5, 0)$);
    \draw[] ($(av) + ( 0.5, -0.2)$)coordinate(actv) -- ($(av) + (-0.5,  0)$);
    \draw[] ($(av) + (-0.5, -0.2)$)coordinate(kv)   -- ($(av) + ( 0.5,  0)$);
    \node[right=0.1, rotate=\thetau] at ($(av) + (0.5, -0.1)$) {$f_{v}$};

    % Spring and Actuator for U
    \draw[actuator={0.6}{0.2}{black}] (actu) -- node[below=0.1, rotate=\thetau]{$F_u$} (actu-|-2.6,0);
    \draw[spring=0.2] (ku) -- node[below=0.1, rotate=\thetau]{$k_a$} (ku-|-2.6,0);
    \draw[spring=0.2,draw=colorred] (-1, 0.8) -- node[above=0.1, rotate=\thetau, color=colorred]{$k_p$} (-1, 0.8-|-2.6,0);

    \draw[actuator={0.6}{0.2}{black}] (actv) -- node[right=0.1, rotate=\thetau]{$F_v$} (actv|-0,-2.6);
    \draw[spring=0.2] (kv) -- node[right=0.1, rotate=\thetau]{$k_a$} (kv|-0,-2.6);
    \draw[spring=0.2, draw=colorred] (-0.8, -1) -- node[left=0.1, rotate=\thetau, color=colorred]{$k_p$} (-0.8, -1|-0,-2.6);
  \end{scope}

  % Inertial Frame
  \draw[->] (-4, -4) -- ++(2, 0) node[below]{$\vec{i}_x$};
  \draw[->] (-4, -4) -- ++(0, 2) node[left]{$\vec{i}_y$};
  \draw[fill, color=black] (-4, -4) circle (0.06);
  \node[draw, circle, inner sep=0pt, minimum size=0.3cm, label=left:$\vec{i}_z$] at (-4, -4){};

  \node[draw, circle, inner sep=0pt, minimum size=0.3cm] at (0, 0){};
  \draw[->] (0, 0) node[above left, rotate=\thetau]{$\vec{i}_w$} -- ++(\thetau:2) node[above, rotate=\thetau]{$\vec{i}_u$};
  \draw[->] (0, 0) -- ++(\thetau+90:2) node[left, rotate=\thetau]{$\vec{i}_v$};
  \draw[dashed] (0, 0) -- ++(2, 0);
  \draw[] (1.5, 0) arc (0:\thetau:1.5) node[midway, right]{$\theta$};
  \node[] at (0,0) {$\bullet$};

  \draw[->] (3.5, 0) arc (0:40:3.5) node[midway, left]{$\Omega$};
\end{tikzpicture}

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_3dof_model_schematic_iff_parallel_springs.png

Equations

The forces measured by the two force sensors represented in Figure ref:fig:rotating_3dof_model_schematic_iff_parallel_springs are described by eqref:eq:rotating_measured_force_kp.

\begin{equation}\label{eq:rotating_measured_force_kp} \begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k_a) \begin{bmatrix} d_u \\ d_v \end{bmatrix} = \begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k_a) \begin{bmatrix} d_u \\ d_v \end{bmatrix} - (c s + k_a) \begin{bmatrix} d_u \\ d_v \end{bmatrix}

\end{equation}

To keep the overall stiffness $k = k_a + k_p$ constant, thus not modifying the open-loop poles as $k_p$ is changed, a scalar parameter $\alpha$ ($0 \le \alpha < 1$) is defined to describe the fraction of the total stiffness in parallel with the actuator and force sensor as in eqref:eq:rotating_kp_alpha.

\begin{equation}\label{eq:rotating_kp_alpha} k_p = α k, \quad k_a = (1 - α) k

\end{equation}

After the equations of motion are derived and transformed in the Laplace domain, the transfer function matrix $\mathbf{G}_k$ in Eq. eqref:eq:rotating_Gk_mimo_tf is computed. Its elements are shown in Eqs. eqref:eq:rotating_Gk_diag and eqref:eq:rotating_Gk_off_diag.

\begin{equation}\label{eq:rotating_Gk_mimo_tf} \begin{bmatrix} f_u \\ f_v \end{bmatrix} = \mathbf{G}_k \begin{bmatrix} F_u \\ F_v \end{bmatrix} = \mathbf{G}_k \begin{bmatrix} F_u \\ F_v \end{bmatrix}

\end{equation}

\begin{subequations}\label{eq:rotating_Gk}

\begin{align} \mathbf{G}_{k}(1,1) &= \mathbf{G}_{k}(2,2) = \frac{\big( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} + \alpha \big) \big( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \big) + \big( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \big)^2}{\big( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \big)^2 + \big( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \big)^2} \label{eq:rotating_Gk_diag} \\ \mathbf{G}_{k}(1,2) &= -\mathbf{G}_{k}(2,1) = \frac{- \left( 2 \xi \frac{s}{\omega_0} + 1 - \alpha \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \label{eq:rotating_Gk_off_diag} \end{align}

\end{subequations}

Comparing $\mathbf{G}_k$ in eqref:eq:rotating_Gk with $\mathbf{G}_f$ in eqref:eq:rotating_Gf shows that while the poles of the system remain the same, the zeros of the diagonal terms change. The two real zeros $z_r$ in eqref:eq:rotating_iff_zero_real that were inducing a non-minimum phase behavior are transformed into two complex conjugate zeros if the condition in eqref:eq:rotating_kp_cond_cc_zeros holds. Thus, if the added parallel stiffness $k_p$ is higher than the negative stiffness induced by centrifugal forces $m \Omega^2$, the dynamics from the actuator to its collocated force sensor will show minimum phase behavior.

\begin{equation}\label{eq:rotating_kp_cond_cc_zeros} \boxed{α > \frac{Ω^2}{{ω_0}^2} \quad ⇔ \quad k_p > m Ω^2}

\end{equation}

Effect of parallel stiffness on the IFF plant

The IFF plant (transfer function from $[F_u, F_v]$ to $[f_u, f_v]$) is identified without parallel stiffness $k_p = 0$, with a small parallel stiffness $k_p < m \Omega^2$ and with a large parallel stiffness $k_p > m \Omega^2$. Bode plots of the obtained dynamics are shown in Figure ref:fig:rotating_iff_effect_kp. The two real zeros for $k_p < m \Omega^2$ are transformed into two complex conjugate zeros for $k_p > m \Omega^2$. In that case, the system shows alternating complex conjugate poles and zeros as what is the case in the non-rotating case.

Figure ref:fig:rotating_iff_kp_root_locus shows the Root Locus plots for $k_p = 0$, $k_p < m \Omega^2$ and $k_p > m \Omega^2$ when $K_F$ is a pure integrator, as shown in Eq. eqref:eq:rotating_Kf_pure_int. It is shown that if the added stiffness is higher than the maximum negative stiffness, the poles of the closed-loop system are bounded on the (stable) left half-plane, and hence the unconditional stability of acrshort:iff is recovered.

Wz = 0.1; % The rotation speed [rad/s]

%% No parallel Stiffness
kp = 0; % Parallel Stiffness [N/m]
cp = 0.001*2*sqrt(kp*(mn+ms)); % Small parallel damping [N/(m/s)]
kn = 1 - kp; % Stiffness [N/m]
cn = 0.01*2*sqrt(kn*(mn+ms)); % Damping [N/(m/s)]

G_no_kp = linearize(mdl, io, 0);
G_no_kp.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy'};
G_no_kp.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

%% Small parallel Stiffness
kp = 0.5*(mn+ms)*Wz^2; % Parallel Stiffness [N/m]
cp = 0.001*2*sqrt(kp*(mn+ms)); % Small parallel damping [N/(m/s)]
kn = 1 - kp; % Stiffness [N/m]
cn = 0.01*2*sqrt(kn*(mn+ms)); % Damping [N/(m/s)]

G_low_kp = linearize(mdl, io, 0);
G_low_kp.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy'};
G_low_kp.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

%% Large parallel Stiffness
kp = 1.5*(mn+ms)*Wz^2; % Parallel Stiffness [N/m]
cp = 0.001*2*sqrt(kp*(mn+ms)); % Small parallel damping [N/(m/s)]
kn = 1 - kp; % Stiffness [N/m]
cn = 0.01*2*sqrt(kn*(mn+ms)); % Damping [N/(m/s)]

G_high_kp = linearize(mdl, io, 0);
G_high_kp.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy'};
G_high_kp.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};
%% Effect of the parallel stiffness on the IFF plant
freqs = logspace(-2, 1, 1000);

figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');

% Magnitude
ax1 = nexttile([2, 1]);
hold on;
plot(freqs, abs(squeeze(freqresp(G_no_kp(  'fu', 'Fu'), freqs, 'rad/s'))), '-', ...
     'DisplayName', '$k_p = 0$')
plot(freqs, abs(squeeze(freqresp(G_low_kp( 'fu', 'Fu'), freqs, 'rad/s'))), '-', ...
     'DisplayName', '$k_p < m\Omega^2$')
plot(freqs, abs(squeeze(freqresp(G_high_kp('fu', 'Fu'), freqs, 'rad/s'))), '-', ...
     'DisplayName', '$k_p > m\Omega^2$')
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]');
ylim([1e-4, 5e1]);
legend('location', 'southeast', 'FontSize', 8);

% Phase
ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G_no_kp(  'fu', 'Fu'), freqs, 'rad/s'))), '-')
plot(freqs, 180/pi*angle(squeeze(freqresp(G_low_kp( 'fu', 'Fu'), freqs, 'rad/s'))), '-')
plot(freqs, 180/pi*angle(squeeze(freqresp(G_high_kp('fu', 'Fu'), freqs, 'rad/s'))), '-')
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
yticks(-180:90:180);
ylim([0 180]);
hold off;
xticks([1e-2,1e-1,1,1e1])
xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'})

linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
%% Root Locus for IFF without parallel spring, with small parallel spring and with large parallel spring
gains = logspace(-2, 2, 200);

figure;
hold on;
plot(real(pole(G_no_kp({'fu','fv'},{'Fu','Fv'})*(1/s))),  imag(pole(G_no_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), 'x', 'color', colors(1,:), ...
     'DisplayName', '$k_p = 0$','MarkerSize',8);
plot(real(tzero(G_no_kp({'fu','fv'},{'Fu','Fv'})*(1/s))),  imag(tzero(G_no_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), 'o', 'color', colors(1,:), ...
     'HandleVisibility', 'off','MarkerSize',8);
for g = gains
    cl_poles = pole(feedback(G_no_kp({'fu','fv'},{'Fu','Fv'}), (g/s)*eye(2)));
    plot(real(cl_poles), imag(cl_poles), '.', 'color', colors(1,:), ...
         'HandleVisibility', 'off','MarkerSize',4);
end

plot(real(pole(G_low_kp({'fu','fv'},{'Fu','Fv'})*(1/s))),  imag(pole(G_low_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), 'x', 'color', colors(2,:), ...
     'DisplayName', '$k_p < m\Omega^2$','MarkerSize',8);
plot(real(tzero(G_low_kp({'fu','fv'},{'Fu','Fv'})*(1/s))),  imag(tzero(G_low_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), 'o', 'color', colors(2,:), ...
     'HandleVisibility', 'off','MarkerSize',8);
for g = gains
    cl_poles = pole(feedback(G_low_kp({'fu','fv'},{'Fu','Fv'}), (g/s)*eye(2)));
    plot(real(cl_poles), imag(cl_poles), '.', 'color', colors(2,:), ...
         'HandleVisibility', 'off','MarkerSize',4);
end

plot(real(pole(G_high_kp({'fu','fv'},{'Fu','Fv'})*(1/s))),  imag(pole(G_high_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), 'x', 'color', colors(3,:), ...
     'DisplayName', '$k_p > m\Omega^2$','MarkerSize',8);
plot(real(tzero(G_high_kp({'fu','fv'},{'Fu','Fv'})*(1/s))),  imag(tzero(G_high_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), 'o', 'color', colors(3,:), ...
     'HandleVisibility', 'off','MarkerSize',8);
for g = gains
    cl_poles = pole(feedback(G_high_kp({'fu','fv'},{'Fu','Fv'}), (g/s)*eye(2)));
    plot(real(cl_poles), imag(cl_poles), '.', 'color', colors(3,:), ...
         'HandleVisibility', 'off','MarkerSize',4);
end
hold off;
axis square;
xlim([-2.25, 0.25]); ylim([-1.25, 1.25]);
xticks([-2, -1, 0])
xticklabels({'$-2\omega_0$', '$-\omega_0$', '$0$'})
yticks([-1, 0, 1])
yticklabels({'$-\omega_0$', '$0$', '$\omega_0$'})

xlabel('Real Part'); ylabel('Imaginary Part');
leg = legend('location', 'northwest', 'FontSize', 8);
leg.ItemTokenSize(1) = 8;

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_iff_effect_kp.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_iff_kp_root_locus.png

Effect of $k_p$ on the attainable damping

Even though the parallel stiffness $k_p$ has no impact on the open-loop poles (as the overall stiffness $k$ is kept constant), it has a large impact on the transmission zeros. Moreover, as the attainable damping is generally proportional to the distance between poles and zeros cite:preumont18_vibrat_contr_activ_struc_fourt_edition, the parallel stiffness $k_p$ is expected to have some impact on the attainable damping. To study this effect, Root Locus plots for several parallel stiffnesses $k_p > m \Omega^2$ are shown in Figure ref:fig:rotating_iff_kp_root_locus_effect_kp. The frequencies of the transmission zeros of the system increase with an increase in the parallel stiffness $k_p$ (thus getting closer to the poles), and the associated attainable damping is reduced. Therefore, even though the parallel stiffness $k_p$ should be larger than $m \Omega^2$ for stability reasons, it should not be taken too large as this would limit the attainable damping. This is confirmed by the Figure ref:fig:rotating_iff_kp_optimal_gain where the attainable closed-loop damping ratio $\xi_{\text{cl}}$ and the associated optimal control gain $g_\text{opt}$ are computed as a function of the parallel stiffness.

%% Tested parallel stiffnesses
kps = [2, 20, 40]*(mn + ms)*Wz^2;
%% Root Locus: Effect of the parallel stiffness on the attainable damping
gains = logspace(-2, 4, 500);

figure;
hold on;
for kp_i = 1:length(kps)
    kp = kps(kp_i); % Parallel Stiffness [N/m]
    cp = 0.001*2*sqrt(kp*(mn+ms)); % Small parallel damping [N/(m/s)]
    kn = 1 - kp; % Stiffness [N/m]
    cn = 0.01*2*sqrt(kn*(mn+ms)); % Damping [N/(m/s)]

    % Identify dynamics
    G = linearize(mdl, io, 0);
    G.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy'};
    G.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

    plot(real(pole(G({'fu', 'fv'}, {'Fu', 'Fv'})*(1/s*eye(2)))),  imag(pole(G({'fu', 'fv'}, {'Fu', 'Fv'})*(1/s*eye(2)))), 'x', 'color', colors(kp_i,:), ...
         'DisplayName', sprintf('$k_p = %.1f m \\Omega^2$', kp/((mn+ms)*Wz^2)),'MarkerSize',8);
    plot(real(tzero(G({'fu', 'fv'}, {'Fu', 'Fv'})*(1/s*eye(2)))),  imag(tzero(G({'fu', 'fv'}, {'Fu', 'Fv'})*(1/s*eye(2)))), 'o', 'color', colors(kp_i,:), ...
         'HandleVisibility', 'off','MarkerSize',8);
    for g = gains
        cl_poles = pole(feedback(G({'fu', 'fv'}, {'Fu', 'Fv'}), (g/s)*eye(2)));
        plot(real(cl_poles), imag(cl_poles), '.', 'color', colors(kp_i,:),'MarkerSize',4, ...
             'HandleVisibility', 'off');
    end
end
hold off;
axis square;
% xlim([-1.15, 0.05]); ylim([0, 1.2]);
xlim([-2.25, 0.25]); ylim([-1.25, 1.25]);
xticks([-2, -1, 0])
xticklabels({'$-2\omega_0$', '$-\omega_0$', '$0$'})
yticks([-1, 0, 1])
yticklabels({'$-\omega_0$', '$0$', '$\omega_0$'})

xlabel('Real Part'); ylabel('Imaginary Part');
leg = legend('location', 'northwest', 'FontSize', 8);
leg.ItemTokenSize(1) = 12;
%% Computes the optimal parameters and attainable simultaneous damping
alphas = logspace(-2, 0, 100);
alphas(end) = []; % Remove last point

opt_xi = zeros(1, length(alphas)); % Optimal simultaneous damping
opt_gain = zeros(1, length(alphas)); % Corresponding optimal gain

Kiff = 1/s*eye(2);

for alpha_i = 1:length(alphas)
    kp = alphas(alpha_i);
    cp = 0.001*2*sqrt(kp*(mn+ms)); % Small parallel damping [N/(m/s)]
    kn = 1 - kp; % Stiffness [N/m]
    cn = 0.01*2*sqrt(kn*(mn+ms)); % Damping [N/(m/s)]

    % Identify dynamics
    G = linearize(mdl, io, 0);
    G.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy'};
    G.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

    fun = @(g)computeSimultaneousDamping(g, G({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff);

    [g_opt, xi_opt] = fminsearch(fun, 2);
    opt_xi(alpha_i) = 1/xi_opt;
    opt_gain(alpha_i) = g_opt;
end
%% Attainable damping as a function of the stiffness ratio
figure;
yyaxis left
plot(alphas, opt_xi, '-', 'DisplayName', '$\xi_{cl}$');
set(gca, 'YScale', 'lin');
ylim([0,1]);
ylabel('Damping Ratio $\xi$');

yyaxis right
hold on;
plot(alphas, opt_gain, '-', 'DisplayName', '$g_{opt}$');
set(gca, 'YScale', 'lin');
ylim([0,2.5]);
ylabel('Controller gain $g$');

set(gca, 'XScale', 'log');
legend('location', 'northeast', 'FontSize', 8);

xlabel('$k_p$');
xlim([0.01, 1]);
xticks([0.01, 0.1, 1])
xticklabels({'$m\Omega^2$', '$10m\Omega^2$', '$100m\Omega^2$'})

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_iff_kp_root_locus_effect_kp.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_iff_kp_optimal_gain.png

Damped plant

The parallel stiffness are chosen to be $k_p = 2 m \Omega^2$ and the damped plant is computed. The damped and undamped transfer functions from $F_u$ to $d_u$ are compared in Figure ref:fig:rotating_iff_kp_added_hpf_damped_plant. Even though the two resonances are well damped, the IFF changes the low-frequency behavior of the plant, which is usually not desired. This is because "pure" integrators are used which are inducing large low-frequency loop gains.

To lower the low-frequency gain, a high-pass filter is added to the IFF controller (which is equivalent as shifting the controller pole to the left in the complex plane):

\begin{equation} K_{\text{IFF}}(s) = g\frac{1}{\omega_i + s} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{equation}

To determine how the high-pass filter impacts the attainable damping, the controller gain $g$ is kept constant while $\omega_i$ is changed, and the minimum damping ratio of the damped plant is computed. The obtained damping ratio as a function of $\omega_i/\omega_0$ (where $\omega_0$ is the resonance of the system without rotation) is shown in Figure ref:fig:rotating_iff_kp_added_hpf_effect_damping. It is shown that the attainable damping ratio reduces as $\omega_i$ is increased (same conclusion than in Section ref:sec:rotating_iff_pseudo_int). Let's choose $\omega_i = 0.1 \cdot \omega_0$ and compare the obtained damped plant again with the undamped and with the "pure" IFF in Figure ref:fig:rotating_iff_kp_added_hpf_damped_plant. The added high-pass filter gives almost the same damping properties to the suspension while exhibiting good low-frequency behavior.

%% Identify dynamics with parallel stiffness = 2mW^2
Wz = 0.1; % [rad/s]
kp = 2*(mn + ms)*Wz^2; % Parallel Stiffness [N/m]
cp = 0.001*2*sqrt(kp*(mn+ms)); % Small parallel damping [N/(m/s)]
kn = 1 - kp; % Stiffness [N/m]
cn = 0.01*2*sqrt(kn*(mn+ms)); % Damping [N/(m/s)]

% Identify dynamics
G = linearize(mdl, io, 0);
G.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy'};
G.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

%% IFF controller with pure integrator
Kiff_kp = (2.2/s)*eye(2);
Kiff_kp.InputName = {'fu', 'fv'};
Kiff_kp.OutputName = {'Fu', 'Fv'};

%% Compute the damped plant
G_cl_iff_kp = feedback(G, Kiff_kp, 'name');
w0 = sqrt((kn+kp)/(mn+ms)); % Resonance frequency [rad/s]
wis = w0*logspace(-2, 0, 100); % LPF cut-off [rad/s]
%% Computes the obtained damping as a function of the HPF cut-off frequency
opt_xi = zeros(1, length(wis)); % Optimal simultaneous damping

for wi_i = 1:length(wis)
    Kiff_kp_hpf = (2.2/(s + wis(wi_i)))*eye(2);
    Kiff_kp_hpf.InputName = {'fu', 'fv'};
    Kiff_kp_hpf.OutputName = {'Fu', 'Fv'};

    [~, xi] = damp(feedback(G, Kiff_kp_hpf, 'name'));
    opt_xi(wi_i) = min(xi);
end
%% Effect of the  high-pass filter cut-off frequency on the obtained damping
figure;
plot(wis, opt_xi, '-');
set(gca, 'XScale', 'log');
set(gca, 'YScale', 'lin');
ylim([0,1]);
ylabel('Damping Ratio $\xi$');
xlabel('$\omega_i/\omega_0$');
%% Compute the damped plant with added  High-Pass Filter
Kiff_kp_hpf = (2.2/(s + 0.1*w0))*eye(2);
Kiff_kp_hpf.InputName = {'fu', 'fv'};
Kiff_kp_hpf.OutputName = {'Fu', 'Fv'};

G_cl_iff_hpf_kp = feedback(G, Kiff_kp_hpf, 'name');
%% Bode plot of the direct and coupling terms for several rotating velocities
freqs = logspace(-3, 1, 1000);

figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');

% Magnitude
ax1 = nexttile([2, 1]);
hold on;
plot(freqs, abs(squeeze(freqresp(G(              'Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', zeros( 1,3), ...
    'DisplayName', '$d_u/F_u$ - OL')
plot(freqs, abs(squeeze(freqresp(G_cl_iff_kp(    'Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(1,:), ...
    'DisplayName', '$d_u/F_u$ - IFF + $k_p$')
plot(freqs, abs(squeeze(freqresp(G_cl_iff_hpf_kp('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(2,:), ...
    'DisplayName', '$d_u/F_u$ - IFF + $k_p$ + HPF')
plot(freqs, abs(squeeze(freqresp(G(              'Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [zeros( 1,3), 0.5], ...
    'HandleVisibility', 'off')
plot(freqs, abs(squeeze(freqresp(G_cl_iff_kp(    'Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [colors(1,:), 0.5], ...
    'HandleVisibility', 'off')
plot(freqs, abs(squeeze(freqresp(G_cl_iff_hpf_kp('Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [colors(2,:), 0.5], ...
    'HandleVisibility', 'off')
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]); ylabel('Magnitude [m/N]');
ldg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1);
ldg.ItemTokenSize(1) = 10;

ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G(              'Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', zeros( 1,3))
plot(freqs, 180/pi*angle(squeeze(freqresp(G_cl_iff_kp(    'Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(1,:))
plot(freqs, 180/pi*angle(squeeze(freqresp(G_cl_iff_hpf_kp('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(2,:))
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
yticks(-180:90:180);
ylim([-180 90]);
xticks([1e-3,1e-2,1e-1,1,1e1])
xticklabels({'$0.001 \omega_0$', '$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'})

linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);

#+caption:Effect of high-pass filter cut-off frequency on the obtained damping

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_iff_kp_added_hpf_effect_damping.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_iff_kp_added_hpf_damped_plant.png

Relative Damping Control

<<sec:rotating_relative_damp_control>>

Introduction   ignore

To apply a "Relative Damping Control" strategy, relative motion sensors are added in parallel with the actuators as shown in Figure ref:fig:rotating_3dof_model_schematic_rdc. Two controllers $K_d$ are used to feed back the relative motion to the actuator. These controllers are in principle pure derivators ($K_d = s$), but to be implemented in practice they are usually replaced by a high-pass filter eqref:eq:rotating_rdc_controller.

\begin{equation}\label{eq:rotating_rdc_controller} K_d(s) = g ⋅ \frac{s}{s + ω_d}

\end{equation}

\begin{tikzpicture}
  % Angle
  \def\thetau{25}

  % Rotational Stage
  \draw[fill=black!60!white] (0, 0) circle (4.3);
  \draw[fill=black!40!white] (0, 0) circle (3.8);

  % Label
  \node[anchor=north west, rotate=\thetau] at (-2.5, 2.5) {\small Rotating Stage};

  % Rotating Scope
  \begin{scope}[rotate=\thetau]
    % Rotating Frame
    \draw[fill=black!20!white] (-2.6, -2.6) rectangle (2.6, 2.6);
    % Label
    \node[anchor=north west, rotate=\thetau] at (-2.6, 2.6) {\small Suspended Platform};

    % Mass
    \draw[fill=white] (-1, -1) rectangle (1, 1);
    % Label
    \node[anchor=south west, rotate=\thetau] at (-1, -1) {\small Payload};

    % Attached Points
    \node[] at (-1, 0){$\bullet$};
    \draw[] (-1, 0) -- ++(-0.2, 0) coordinate(cu);
    \draw[] ($(cu) + (0, -0.8)$) coordinate(actu) -- ($(cu) + (0, 0.8)$) coordinate(ku);
    \node[] at (0, -1){$\bullet$};
    \draw[] (0, -1) -- ++(0, -0.2) coordinate(cv);
    \draw[] ($(cv) + (-0.8, 0)$)coordinate(kv) -- ($(cv) + (0.8, 0)$) coordinate(actv);

    % Spring and Actuator for U
    \draw[actuator={0.6}{0.2}{black}] (cu) -- coordinate[midway, below=0.1](actumid) node[above=0.1, rotate=\thetau]{$F_u$} (cu-|-2.6,0);
    \draw[spring=0.2] (ku) -- node[above=0.1, rotate=\thetau]{$k$} (ku-|-2.6,0);
    \draw[<->, dashed, draw=colorgreen] (actu) node[below=0.1, rotate=\thetau, color=colorgreen](du){$d_u$} -- (actu-|-2.6,0);

    \node[color=colorgreen, block={0.6cm}{0.6cm}, fill=colorgreen!10!white, rotate=\thetau] (Ku) at ($(actumid) + (0, -1.4)$) {$K_{d}$};
    \draw[->, draw=colorgreen] (du.south) -- ++(0, -0.8) -| (Ku.south);
    \draw[->, draw=colorgreen] (Ku.north) -- (actumid);

    \draw[actuator={0.6}{0.2}{black}] (cv) -- coordinate[midway, right=0.1](actvmid) node[left, rotate=\thetau]{$F_v$} (cv|-0,-2.6);
    \draw[spring=0.2] (kv) -- node[left, rotate=\thetau]{$k$} (kv|-0,-2.6);
    \draw[<->, dashed, draw=colorgreen] (actv)node[right=0.1, rotate=\thetau, color=colorgreen](dv){$d_v$} -- (actv|-0,-2.6);

    \node[color=colorgreen, block={0.6cm}{0.6cm}, fill=colorgreen!10!white, rotate=\thetau] (Kv) at ($(actvmid) + (1.4, 0)$) {$K_{d}$};
    \draw[->, draw=colorgreen] (dv.east) -- ++(0.8, 0) |- (Kv.east);
    \draw[->, draw=colorgreen] (Kv.west) -- (actvmid);
  \end{scope}

  % Inertial Frame
  \draw[->] (-4, -4) -- ++(2, 0) node[below]{$\vec{i}_x$};
  \draw[->] (-4, -4) -- ++(0, 2) node[left]{$\vec{i}_y$};
  \draw[fill, color=black] (-4, -4) circle (0.06);
  \node[draw, circle, inner sep=0pt, minimum size=0.3cm, label=left:$\vec{i}_z$] at (-4, -4){};

  \draw[->] (0, 0) node[above left, rotate=\thetau]{$\vec{i}_w$} -- ++(\thetau:2) node[above, rotate=\thetau]{$\vec{i}_u$};
  \draw[->] (0, 0) -- ++(\thetau+90:2) node[left, rotate=\thetau]{$\vec{i}_v$};
  \draw[fill, color=black] (0,0) circle (0.06);
  \node[draw, circle, inner sep=0pt, minimum size=0.3cm] at (0, 0){};
  \draw[dashed] (0, 0) -- ++(2, 0);
  \draw[] (1.5, 0) arc (0:\thetau:1.5) node[midway, right]{$\theta$};

  \draw[->] (3.5, 0) arc (0:40:3.5) node[midway, left]{$\Omega$};
\end{tikzpicture}

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_3dof_model_schematic_rdc.png

Equations of motion

Let's note $\bm{G}_d$ the transfer function between actuator forces and measured relative motion in parallel with the actuators eqref:eq:rotating_rdc_plant_matrix. The elements of $\bm{G}_d$ were derived in Section ref:sec:rotating_system_description are shown in eqref:eq:rotating_rdc_plant_elements.

\begin{equation}\label{eq:rotating_rdc_plant_matrix} \begin{bmatrix} d_u \\ d_v \end{bmatrix} = \mathbf{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix} = \mathbf{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix}

\end{equation}

\begin{subequations}\label{eq:rotating_rdc_plant_elements}

\begin{align} \mathbf{G}_{d}(1,1) &= \mathbf{G}_{d}(2,2) = \frac{\frac{1}{k} \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \\ \mathbf{G}_{d}(1,2) &= -\mathbf{G}_{d}(2,1) = \frac{\frac{1}{k} \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2} \end{align}

\end{subequations}

Neglecting the damping for simplicity ($\xi \ll 1$), the direct terms have two complex conjugate zeros between the two pairs of complex conjugate poles eqref:eq:rotating_rdc_zeros_poles. Therefore, for $\Omega < \sqrt{k/m}$ (i.e. stable system), the transfer functions for Relative Damping Control have alternating complex conjugate poles and zeros.

\begin{equation}\label{eq:rotating_rdc_zeros_poles} z = ± j \sqrt{ω_0^2 - ω^2}, \quad p_1 = ± j (ω_0 - ω), \quad p_2 = ± j (ω_0 + ω)

\end{equation}

Decentralized Relative Damping Control

The transfer functions from $[F_u,\ F_v]$ to $[d_u,\ d_v]$ were identified for several rotating velocities in Section ref:sec:rotating_system_description and are shown in Figure ref:fig:rotating_bode_plot (page pageref:fig:rotating_bode_plot).

To see if large damping can be added with Relative Damping Control, the root locus is computed (Figure ref:fig:rotating_rdc_root_locus). The closed-loop system is unconditionally stable as expected and the poles can be damped as much as desired.

Let us select a reasonable "Relative Damping Control" gain, and compute the closed-loop damped system. The open-loop and damped plants are compared in Figure ref:fig:rotating_rdc_damped_plant. The rotating aspect does not add any complexity to the use of Relative Damping Control. It does not increase the low-frequency coupling as compared to the Integral Force Feedback.

%% Root Locus for Relative Damping Control
Krdc = s*eye(2); % Relative damping controller

gains = logspace(-2, 2, 300); % Tested gains
Wz_i = [1,3,4];

figure;
hold on;
for i = 1:length(Wz_i)
    plot(real(pole(Gs{Wz_i(i)}({'du', 'dv'}, {'Fu', 'Fv'})*Krdc)),  imag(pole(Gs{Wz_i(i)}({'du', 'dv'}, {'Fu', 'Fv'})*Krdc)), 'x', 'color', colors(i,:), ...
         'DisplayName', sprintf('$\\Omega = %.1f \\omega_0 $', Wzs(Wz_i(i))),'MarkerSize',8);
    plot(real(tzero(Gs{Wz_i(i)}({'du', 'dv'}, {'Fu', 'Fv'})*Krdc)),  imag(tzero(Gs{Wz_i(i)}({'du', 'dv'}, {'Fu', 'Fv'})*Krdc)), 'o', 'color', colors(i,:), ...
         'HandleVisibility', 'off','MarkerSize',8);
    for g = gains
        cl_poles = pole(feedback(Gs{Wz_i(i)}({'du', 'dv'}, {'Fu', 'Fv'}), g*Krdc, -1));
        plot(real(cl_poles), imag(cl_poles), '.', 'color', colors(i,:), ...
             'HandleVisibility', 'off','MarkerSize',4);
    end
end
hold off;
axis square;
xlim([-1.8, 0.2]); ylim([0, 2]);
xticks([-1, 0])
xticklabels({'-$\omega_0$', '$0$'})
yticks([0, 1, 2])
yticklabels({'$0$', '$\omega_0$', '$2 \omega_0$'})

xlabel('Real Part'); ylabel('Imaginary Part');
leg = legend('location', 'northwest', 'FontSize', 8);
leg.ItemTokenSize(1) = 8;
%% Root Locus for Relative Damping Control
Krdc = s*eye(2); % Relative damping controller

gains = logspace(-2, 2, 300); % Tested gains
Wz_i = [1,3,4];

figure;
hold on;
for i = 1:length(Wz_i)
    plot(real(pole(Gs{Wz_i(i)}({'du', 'dv'}, {'Fu', 'Fv'})*Krdc)),  imag(pole(Gs{Wz_i(i)}({'du', 'dv'}, {'Fu', 'Fv'})*Krdc)), 'x', 'color', colors(i,:), ...
         'DisplayName', sprintf('$\\Omega = %.1f \\omega_0 $', Wzs(Wz_i(i))),'MarkerSize',8);
    plot(real(tzero(Gs{Wz_i(i)}({'du', 'dv'}, {'Fu', 'Fv'})*Krdc)),  imag(tzero(Gs{Wz_i(i)}({'du', 'dv'}, {'Fu', 'Fv'})*Krdc)), 'o', 'color', colors(i,:), ...
         'HandleVisibility', 'off','MarkerSize',8);

    poles_rdc = rootLocusPolesSorted(Gs{Wz_i(i)}({'du', 'dv'}, {'Fu', 'Fv'}), Krdc, gains, 'd_max', 1e-4);
    for p_i = 1:size(poles_rdc, 2)
        plot(real(poles_rdc(:, p_i)), imag(poles_rdc(:, p_i)), '-', 'color', colors(i,:), ...
            'HandleVisibility', 'off');
    end
end
hold off;
axis equal;
xlim([-1.8, 0.2]); ylim([0, 2]);
xticks([-1, 0])
xticklabels({'-$\omega_0$', '$0$'})
yticks([0, 1, 2])
yticklabels({'$0$', '$\omega_0$', '$2 \omega_0$'})

xlabel('Real Part'); ylabel('Imaginary Part');
leg = legend('location', 'northwest', 'FontSize', 8);
leg.ItemTokenSize(1) = 8;
i = 2;

%% Relative Damping Controller
Krdc = 2*s*eye(2);
Krdc.InputName = {'Du', 'Dv'};
Krdc.OutputName = {'Fu', 'Fv'};

%% Compute the damped plant
G_cl_rdc = feedback(Gs{i}, Krdc, 'name');
%% Damped plant using Relative Damping Control
freqs = logspace(-3, 2, 1000);

figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');

% Magnitude
ax1 = nexttile([2, 1]);
hold on;
plot(freqs, abs(squeeze(freqresp(Gs{i}(   'Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', zeros(1,3), ...
    'DisplayName', 'OL - $G_d(1,1)$')
plot(freqs, abs(squeeze(freqresp(G_cl_rdc('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(1,:), ...
    'DisplayName', 'RDC - $G_d(1,1)$')
plot(freqs, abs(squeeze(freqresp(Gs{i}(   'Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [zeros(1,3), 0.5], ...
    'DisplayName', 'OL - $G_d(2,1)$')
plot(freqs, abs(squeeze(freqresp(G_cl_rdc('Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [colors(1,:), 0.5], ...
    'DisplayName', 'RDC - $G_d(2,1)$')
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]); ylabel('Magnitude [m/N]');
ldg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
ldg.ItemTokenSize(1) = 20;
ylim([1e-4, 1e2]);

ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', zeros(1,3))
plot(freqs, 180/pi*angle(squeeze(freqresp(G_cl_rdc('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(1,:))
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
yticks(-180:90:180);
ylim([-180 0]);

linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_rdc_root_locus.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_rdc_damped_plant.png

Comparison of Active Damping Techniques

<<sec:rotating_comp_act_damp>>

Introduction   ignore

These two proposed IFF modifications and relative damping control are compared in terms of added damping and closed-loop behavior. For the following comparisons, the cut-off frequency for the added HPF is set to $\omega_i = 0.1 \omega_0$ and the stiffness of the parallel springs is set to $k_p = 5 m \Omega^2$ (corresponding to $\alpha = 0.05$). These values are chosen one the basis of previous discussions about optimal parameters.

Root Locus

Figure ref:fig:rotating_comp_techniques_root_locus shows the Root Locus plots for the two proposed IFF modifications and the relative damping control. While the two pairs of complex conjugate open-loop poles are identical for both IFF modifications, the transmission zeros are not. This means that the closed-loop behavior of both systems will differ when large control gains are used.

The closed-loop poles corresponding to the system with added springs (in red) are bounded to the left half plane implying unconditional stability. This is not the case for the system in which the controller is augmented with an HPF (in blue). It is interesting to note that the maximum added damping is very similar for both modified IFF techniques.

gains = logspace(-2, 2, 500);

poles_iff_hpf = rootLocusPolesSorted(G({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff, gains, 'd_max', 1e-4);
poles_iff_kp = rootLocusPolesSorted(G_kp({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff_kp, gains, 'd_max', 1e-4);
poles_rdc = rootLocusPolesSorted(G({'Du', 'Dv'}, {'Fu', 'Fv'}), Krdc, gains, 'd_max', 1e-4);

figure;
hold on;
% IFF
plot(real(pole(G({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)),  imag(pole(G({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), 'x', 'color', colors(1,:), ...
     'DisplayName', 'IFF with HPF', 'MarkerSize', 8);
plot(real(tzero(G({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)),  imag(tzero(G({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), 'o', 'color', colors(1,:), ...
     'HandleVisibility', 'off', 'MarkerSize', 8);
for p_i = 1:size(poles_iff_hpf, 2)
    plot(real(poles_iff_hpf(:, p_i)), imag(poles_iff_hpf(:, p_i)), '-', 'color', colors(1,:), ...
         'HandleVisibility', 'off');
end

% IFF with parallel stiffness
plot(real(pole(G_kp({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp)),  imag(pole(G_kp({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp)), 'x', 'color', colors(2,:), ...
     'DisplayName', 'IFF with $k_p$', 'MarkerSize', 8);
plot(real(tzero(G_kp({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp)),  imag(tzero(G_kp({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp)), 'o', 'color', colors(2,:), ...
     'HandleVisibility', 'off', 'MarkerSize', 8);
for p_i = 1:size(poles_iff_kp, 2)
    plot(real(poles_iff_kp(:, p_i)), imag(poles_iff_kp(:, p_i)), '-', 'color', colors(2,:), ...
         'HandleVisibility', 'off');
end
% RDC
plot(real(pole(G({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc)),  imag(pole(G({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc)), 'x', 'color', colors(3,:), ...
     'DisplayName', 'RDC', 'MarkerSize', 8);
plot(real(tzero(G({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc)),  imag(tzero(G({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc)), 'o', 'color', colors(3,:), ...
     'HandleVisibility', 'off', 'MarkerSize', 8);
for p_i = 1:size(poles_rdc, 2)
    plot(real(poles_rdc(:, p_i)), imag(poles_rdc(:, p_i)), '-', 'color', colors(3,:), ...
         'HandleVisibility', 'off');
end
hold off;
axis equal;
xlim([-1.15, 0.05]); ylim([0, 1.2]);
xticks([-1, -0.8, -0.6, -0.4, -0.2 , 0]);
xticklabels({'-$\omega_0$', '', '', '', '', '$0$'});
yticks([0, 0.2, 0.4, 0.6, 0.8, 1]);
yticklabels({'$0$', '', '', '', '', '$\omega_0$'});

xlabel('Real Part'); ylabel('Imaginary Part');
leg = legend('location', 'northwest', 'FontSize', 8);
leg.ItemTokenSize(1) = 12;

exportFig('figs/rotating_comp_techniques_root_locus_inkscape.pdf', 'width', 600, 'height', 600, 'png', false, 'pdf', false, 'svg', true);

xlim([-0.14, 0.02]); ylim([0, 0.2]);

exportFig('figs/rotating_comp_techniques_root_locus_zoom.pdf', 'width', 600, 'height', 600, 'png', false, 'pdf', false, 'svg', true);

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_comp_techniques_root_locus.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_comp_techniques_dampled_plants.png

Obtained Damped Plant

The actively damped plants are computed for the three techniques and compared in Figure ref:fig:rotating_comp_techniques_dampled_plants. It is shown that while the diagonal (direct) terms of the damped plants are similar for the three active damping techniques, the off-diagonal (coupling) terms are not. The acrshort:iff strategy is adding some coupling at low-frequency, which may negatively impact the positioning performance.

%% Compute Damped plants
G_cl_iff    = feedback(G,    Kiff,    'name');
G_cl_iff_kp = feedback(G_kp, Kiff_kp, 'name');
G_cl_rdc    = feedback(G,    Krdc,    'name');

Transmissibility And Compliance

The proposed active damping techniques are now compared in terms of closed-loop transmissibility and compliance. The transmissibility is defined as the transfer function from the displacement of the rotating stage along $\vec{i}_x$ to the displacement of the payload along the same direction. It is used to characterize the amount of vibration is transmitted through the suspended platform to the payload. The compliance describes the displacement response of the payload to the external forces applied to it. This is a useful metric when disturbances are directly applied to the payload. Here, it is defined as the transfer function from external forces applied on the payload along $\vec{i}_x$ to the displacement of the payload along the same direction.

Very similar results were obtained for the two proposed IFF modifications in terms of transmissibility and compliance (Figure ref:fig:rotating_comp_techniques_trans_compliance). Using IFF degrades the compliance at low frequencies, whereas using relative damping control degrades the transmissibility at high frequencies. This is very well known characteristics of these common active damping techniques that hold when applied to rotating platforms.

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_comp_techniques_transmissibility.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_comp_techniques_compliance.png

Rotating Nano-Hexapod

<<sec:rotating_nano_hexapod>>

Introduction   ignore

The previous analysis is now applied to a model representing a rotating nano-hexapod. Three nano-hexapod stiffnesses are tested as for the uniaxial model: $k_n = \SI{0.01}{\N\per\mu\m}$, $k_n = \SI{1}{\N\per\mu\m}$ and $k_n = \SI{100}{\N\per\mu\m}$. Only the maximum rotating velocity is here considered ($\Omega = \SI{60}{rpm}$) with the light sample ($m_s = \SI{1}{kg}$) because this is the worst identified case scenario in terms of gyroscopic effects.

Nano-Active-Stabilization-System - Plant Dynamics

For the NASS, the maximum rotating velocity is $\Omega = \SI[parse-numbers=false]{2\pi}{\radian\per\s}$ for a suspended mass on top of the nano-hexapod's actuators equal to $m_n + m_s = \SI{16}{\kilo\gram}$. The parallel stiffness corresponding to the centrifugal forces is $m \Omega^2 \approx \SI{0.6}{\newton\per\mm}$.

%% Compute negative spring in [N/m]
Kneg_light = (15+1)*(2*pi)^2;

The transfer functions from the nano-hexapod actuator force $F_u$ to the displacement of the nano-hexapod in the same direction $d_u$ as well as in the orthogonal direction $d_v$ (coupling) are shown in Figure ref:fig:rotating_nano_hexapod_dynamics for all three considered nano-hexapod stiffnesses. The soft nano-hexapod is the most affected by rotation. This can be seen by the large shift of the resonance frequencies, and by the induced coupling, which is larger than that for the stiffer nano-hexapods. The coupling (or interaction) in a MIMO $2 \times 2$ system can be visually estimated as the ratio between the diagonal term and the off-diagonal terms (see corresponding Appendix).

%% Effect of rotation on the nano-hexapod dynamics
freqs = logspace(0, 1, 1000);

figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');

ax1 = nexttile([2,1]);
hold on;
plot(freqs, abs(squeeze(freqresp(G_vc_norot('Du', 'Fu'), freqs, 'Hz'))), '--',  'color', colors(1,:), ...
    'DisplayName', '$\Omega = 0\,$rpm, $D_u/F_u$');
plot(freqs, abs(squeeze(freqresp(G_vc_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' ,  'color', colors(1,:), ...
    'DisplayName', '$\Omega = 60\,$rpm, $D_u/F_u$');
plot(freqs, abs(squeeze(freqresp(G_vc_fast( 'Dv', 'Fu'), freqs, 'Hz'))), '-' , 'color', [colors(1,:), 0.5], ...
    'DisplayName', '$\Omega = 60\,$rpm, $D_v/F_u$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]);
ylim([1e-6, 1e-2])

ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G_vc_norot('Du', 'Fu'), freqs, 'Hz'))), '--', 'color', colors(1,:));
plot(freqs, 180/pi*angle(squeeze(freqresp(G_vc_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' , 'color', colors(1,:));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
yticks(-360:90:360);
ylim([-180, 0]);

linkaxes([ax1,ax2],'x');
% xlim([1, 1e3]);
%% Effect of rotation on the nano-hexapod dynamics
freqs = logspace(1, 2, 1000);

figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');

ax1 = nexttile([2,1]);
hold on;
plot(freqs, abs(squeeze(freqresp(G_md_norot('Du', 'Fu'), freqs, 'Hz'))), '--',  'color', colors(2,:), ...
    'DisplayName', '$\Omega = 0\,$rpm, $D_u/F_u$');
plot(freqs, abs(squeeze(freqresp(G_md_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' ,  'color', colors(2,:), ...
    'DisplayName', '$\Omega = 60\,$rpm, $D_u/F_u$');
plot(freqs, abs(squeeze(freqresp(G_md_fast( 'Dv', 'Fu'), freqs, 'Hz'))), '-' , 'color', [colors(2,:), 0.5], ...
    'DisplayName', '$\Omega = 60\,$rpm, $D_v/F_u$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]);
ylim([1e-8, 1e-4])

ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G_md_norot('Du', 'Fu'), freqs, 'Hz'))), '--', 'color', colors(2,:));
plot(freqs, 180/pi*angle(squeeze(freqresp(G_md_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' , 'color', colors(2,:));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
yticks(-360:90:360);
ylim([-180, 0]);

linkaxes([ax1,ax2],'x');
%% Effect of rotation on the nano-hexapod dynamics
freqs = logspace(2, 3, 1000);

figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');

ax1 = nexttile([2,1]);
hold on;
plot(freqs, abs(squeeze(freqresp(G_pz_norot('Du', 'Fu'), freqs, 'Hz'))), '--',  'color', colors(3,:), ...
    'DisplayName', '$\Omega = 0\,$rpm, $D_u/F_u$');
plot(freqs, abs(squeeze(freqresp(G_pz_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' ,  'color', colors(3,:), ...
    'DisplayName', '$\Omega = 60\,$rpm, $D_u/F_u$');
plot(freqs, abs(squeeze(freqresp(G_pz_fast( 'Dv', 'Fu'), freqs, 'Hz'))), '-' , 'color', [colors(3,:), 0.5], ...
    'DisplayName', '$\Omega = 60\,$rpm, $D_v/F_u$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]);
ylim([1e-10, 1e-6])

ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G_pz_norot('Du', 'Fu'), freqs, 'Hz'))), '--', 'color', colors(3,:));
plot(freqs, 180/pi*angle(squeeze(freqresp(G_pz_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' , 'color', colors(3,:));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
yticks(-360:90:360);
ylim([-180, 0]);

linkaxes([ax1,ax2],'x');

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_nano_hexapod_dynamics_vc.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_nano_hexapod_dynamics_md.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_nano_hexapod_dynamics_pz.png

Optimal IFF with a High-Pass Filter

Integral Force Feedback with an added high-pass filter is applied to the three nano-hexapods. First, the parameters ($\omega_i$ and $g$) of the IFF controller that yield the best simultaneous damping are determined from Figure ref:fig:rotating_iff_hpf_nass_optimal_gain. The IFF parameters are chosen as follows:

  • for $k_n = \SI{0.01}{\N\per\mu\m}$ (Figure ref:fig:rotating_iff_hpf_nass_optimal_gain): $\omega_i$ is chosen such that maximum damping is achieved while the gain is less than half of the maximum gain at which the system is unstable. This is done to have some control robustness.
  • for $k_n = \SI{1}{\N\per\mu\m}$ and $k_n = \SI{100}{\N\per\mu\m}$ (Figure ref:fig:rotating_iff_hpf_nass_optimal_gain_md and ref:fig:rotating_iff_hpf_nass_optimal_gain_pz): the largest $\omega_i$ is chosen such that the obtained damping is $\SI{95}{\percent}$ of the maximum achievable damping. Large $\omega_i$ is chosen here to limit the loss of compliance and the increase of coupling at low-frequency as shown in Section ref:sec:rotating_iff_pseudo_int.

The obtained IFF parameters and the achievable damping are visually shown by large dots in Figure ref:fig:rotating_iff_hpf_nass_optimal_gain and are summarized in Table ref:tab:rotating_iff_hpf_opt_iff_hpf_params_nass.

%% Compute the optimal control gain
wis = logspace(-2, 3, 200); % [rad/s]

opt_iff_hpf_xi_vc = zeros(1, length(wis)); % Optimal simultaneous damping
opt_iff_hpf_gain_vc = zeros(1, length(wis)); % Corresponding optimal gain

opt_iff_hpf_xi_md = zeros(1, length(wis)); % Optimal simultaneous damping
opt_iff_hpf_gain_md = zeros(1, length(wis)); % Corresponding optimal gain

opt_iff_hpf_xi_pz = zeros(1, length(wis)); % Optimal simultaneous damping
opt_iff_hpf_gain_pz = zeros(1, length(wis)); % Corresponding optimal gain

for wi_i = 1:length(wis)
    wi = wis(wi_i);
    Kiff = 1/(s + wi)*eye(2);

    fun = @(g)computeSimultaneousDamping(g, G_vc_fast({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff);

    [g_opt, xi_opt] = fminsearch(fun, 0.1);
    opt_iff_hpf_xi_vc(wi_i) = 1/xi_opt;
    opt_iff_hpf_gain_vc(wi_i) = g_opt;

    fun = @(g)computeSimultaneousDamping(g, G_md_fast({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff);

    [g_opt, xi_opt] = fminsearch(fun, 0.1);
    opt_iff_hpf_xi_md(wi_i) = 1/xi_opt;
    opt_iff_hpf_gain_md(wi_i) = g_opt;

    fun = @(g)computeSimultaneousDamping(g, G_pz_fast({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff);

    [g_opt, xi_opt] = fminsearch(fun, 0.1);
    opt_iff_hpf_xi_pz(wi_i) = 1/xi_opt;
    opt_iff_hpf_gain_pz(wi_i) = g_opt;
end
%% Find optimal parameters with at least a gain margin of 2
i_iff_hpf_vc = find(opt_iff_hpf_gain_vc < 0.5*(wis*((sqrt(1e4/16)/(2*pi))^2 - 1)));
i_iff_hpf_vc = i_iff_hpf_vc(1);

i_iff_hpf_md = find(opt_iff_hpf_xi_md > 0.95*max(opt_iff_hpf_xi_md));
i_iff_hpf_md = i_iff_hpf_md(end)+1;

i_iff_hpf_pz = find(opt_iff_hpf_xi_pz > 0.95*max(opt_iff_hpf_xi_pz));
i_iff_hpf_pz = i_iff_hpf_pz(end)+1;
%% Optimal modified IFF parameters that yields maximum simultaneous damping
figure;
yyaxis left
hold on;
plot(wis, opt_iff_hpf_xi_vc, '-', 'DisplayName', '$\xi_{cl}$');
plot(wis(i_iff_hpf_vc), opt_iff_hpf_xi_vc(i_iff_hpf_vc), '.', 'MarkerSize', 15, 'HandleVisibility', 'off');
hold off;
set(gca, 'YScale', 'lin');
ylim([0,1]);
ylabel('Damping Ratio $\xi$');

yyaxis right
hold on;
plot(wis, opt_iff_hpf_gain_vc, '-', 'DisplayName', '$g_{opt}$');
plot(wis, wis*((sqrt(1e4/16)/(2*pi))^2 - 1), '--', 'DisplayName', '$g_{max}$');
plot(wis(i_iff_hpf_vc), opt_iff_hpf_gain_vc(i_iff_hpf_vc), '.', 'MarkerSize', 15, 'HandleVisibility', 'off');
set(gca, 'YScale', 'lin');
ylim([0,200]);
xlabel('$\omega_i$ [rad/s]');
set(gca, 'YTickLabel',[]);
ylabel('Controller gain $g$');
set(gca, 'XScale', 'log');
xticks([1e-2,1,1e2])
legend('location', 'northwest', 'FontSize', 8);
figure;
yyaxis left
hold on;
plot(wis, opt_iff_hpf_xi_md, '-');
plot(wis(i_iff_hpf_md), opt_iff_hpf_xi_md(i_iff_hpf_md), '.', 'MarkerSize', 15, 'HandleVisibility', 'off');
hold off;
set(gca, 'YScale', 'lin');
ylim([0,1]);
ylabel('Damping Ratio $\xi$');

yyaxis right
hold on;
plot(wis, opt_iff_hpf_gain_md, '-');
plot(wis(i_iff_hpf_md), opt_iff_hpf_gain_md(i_iff_hpf_md), '.', 'MarkerSize', 15, 'HandleVisibility', 'off');
plot(wis, wis*((sqrt(1e6/16)/(2*pi))^2 - 1), '--');
set(gca, 'YScale', 'lin');
ylim([0,1000]);
xlabel('$\omega_i$ [rad/s]');
ylabel('Controller gain $g$');
set(gca, 'YTickLabel',[]);
set(gca, 'XScale', 'log');
xticks([1e-2,1,1e2])
figure;
yyaxis left
hold on;
plot(wis, opt_iff_hpf_xi_pz, '-');
plot(wis(i_iff_hpf_pz), opt_iff_hpf_xi_pz(i_iff_hpf_pz), '.', 'MarkerSize', 15, 'HandleVisibility', 'off');
hold off;
set(gca, 'YScale', 'lin');
ylim([0,1]);
ylabel('Damping Ratio $\xi$');

yyaxis right
hold on;
plot(wis, opt_iff_hpf_gain_pz, '-');
plot(wis(i_iff_hpf_pz), opt_iff_hpf_gain_pz(i_iff_hpf_pz), '.', 'MarkerSize', 15, 'HandleVisibility', 'off');
plot(wis, wis*((sqrt(1e8/16)/(2*pi))^2 - 1), '--');
set(gca, 'YScale', 'lin');
ylim([0,10000]);
xlabel('$\omega_i$ [rad/s]');
set(gca, 'YTickLabel',[]);
ylabel('Controller gain $g$');
set(gca, 'XScale', 'log');
xticks([1e-2,1,1e2])

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_iff_hpf_nass_optimal_gain_vc.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_iff_hpf_nass_optimal_gain_md.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_iff_hpf_nass_optimal_gain_pz.png

$k_n$ $\omega_i$ $g$ $\xi_\text{opt}$
$0.01\,N/\mu m$ 7.3 51 0.45
$1\,N/\mu m$ 39 427 0.93
$100\,N/\mu m$ 500 3775 0.94

Optimal IFF with Parallel Stiffness

For each considered nano-hexapod stiffness, the parallel stiffness $k_p$ is varied from $k_{p,\text{min}} = m\Omega^2$ (the minimum stiffness that yields unconditional stability) to $k_{p,\text{max}} = k_n$ (the total nano-hexapod stiffness). To keep the overall stiffness constant, the actuator stiffness $k_a$ is decreased when $k_p$ is increased ($k_a = k_n - k_p$, with $k_n$ the total nano-hexapod stiffness). A high-pass filter is also added to limit the low-frequency gain with a cut-off frequency $\omega_i$ equal to one tenth of the system resonance ($\omega_i = \omega_0/10$).

The achievable maximum simultaneous damping of all the modes is computed as a function of the parallel stiffnesses (Figure ref:fig:rotating_iff_kp_nass_optimal_gain). It is shown that the soft nano-hexapod cannot yield good damping because the parallel stiffness cannot be sufficiently large compared to the negative stiffness induced by the rotation. For the two stiff options, the achievable damping decreases when the parallel stiffness is too high, as explained in Section ref:sec:rotating_iff_parallel_stiffness. Such behavior can be explained by the fact that the achievable damping can be approximated by the distance between the open-loop pole and the open-loop zero cite:&preumont18_vibrat_contr_activ_struc_fourt_edition chapt 7.2. This distance is larger for stiff nano-hexapod because the open-loop pole will be at higher frequencies while the open-loop zero, whereas depends on the value of the parallel stiffness, can only be made large for stiff nano-hexapods.

Let's choose $k_p = 1\,N/mm$, $k_p = 0.01\,N/\mu m$ and $k_p = 1\,N/\mu m$ for the three considered nano-hexapods. The corresponding optimal controller gains and achievable damping are summarized in Table ref:tab:rotating_iff_kp_opt_iff_kp_params_nass.

%% Maximum rotating velocity
Wz = 2*pi; % [rad/s]

%% Minimum parallel stiffness
kp_min = (mn + ms) * Wz^2; % [N/m]

%% Parameters for simulation
mn = 15; % Nano-Hexapod mass [kg]
ms = 1; % Sample Mass [kg]

%% IFF Controller
Kiff_vc = 1/(s + 0.1*sqrt(1e4/(mn+ms)))*eye(2); % IFF
Kiff_md = 1/(s + 0.1*sqrt(1e6/(mn+ms)))*eye(2); % IFF
Kiff_pz = 1/(s + 0.1*sqrt(1e8/(mn+ms)))*eye(2); % IFF

%% General Configuration
model_config = struct();
model_config.controller = "open_loop"; % Default: Open-Loop
model_config.Tuv_type   = "parallel_k";    % Default: 2DoF stage

%% Computes the optimal parameters and attainable simultaneous damping - Voice Coil nano-hexapod
kps_vc = logspace(log10(kp_min), log10(1e4), 100); % Tested parallel stiffnesses [N/m]
kps_vc(end) = [];

opt_iff_kp_xi_vc   = zeros(1, length(kps_vc)); % Optimal simultaneous damping
opt_iff_kp_gain_vc = zeros(1, length(kps_vc)); % Corresponding optimal gain

for kp_i = 1:length(kps_vc)
    % Voice Coil Nano-Hexapod
    kp = kps_vc(kp_i);
    cp = 2*0.001*sqrt((ms + mn)*kp);
    kn = 1e4 - kp; % Nano-Hexapod Stiffness [N/m]
    cn = 2*0.01*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)]

    % Identify dynamics
    Giff_vc = linearize(mdl, io, 0);
    Giff_vc.InputName  = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'};
    Giff_vc.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

    fun = @(g)computeSimultaneousDamping(g, Giff_vc({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff_vc);

    [g_opt, xi_opt] = fminsearch(fun, 0.1);
    opt_iff_kp_xi_vc(kp_i) = 1/xi_opt;
    opt_iff_kp_gain_vc(kp_i) = g_opt;
end

%% Computes the optimal parameters and attainable simultaneous damping - APA nano-hexapod
kps_md = logspace(log10(kp_min), log10(1e6), 100); % Tested parallel stiffnesses [N/m]
kps_md(end) = [];

opt_iff_kp_xi_md   = zeros(1, length(kps_md)); % Optimal simultaneous damping
opt_iff_kp_gain_md = zeros(1, length(kps_md)); % Corresponding optimal gain


for kp_i = 1:length(kps_md)
    % Voice Coil Nano-Hexapod
    kp = kps_md(kp_i);
    cp = 2*0.001*sqrt((ms + mn)*kp);
    kn = 1e6 - kp; % Nano-Hexapod Stiffness [N/m]
    cn = 2*0.01*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)]

    % Identify dynamics
    Giff_md = linearize(mdl, io, 0);
    Giff_md.InputName  = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'};
    Giff_md.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

    fun = @(g)computeSimultaneousDamping(g, Giff_md({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff_md);

    [g_opt, xi_opt] = fminsearch(fun, 0.1);
    opt_iff_kp_xi_md(kp_i) = 1/xi_opt;
    opt_iff_kp_gain_md(kp_i) = g_opt;
end

%% Computes the optimal parameters and attainable simultaneous damping - Piezo nano-hexapod
kps_pz = logspace(log10(kp_min), log10(1e8), 100); % Tested parallel stiffnesses [N/m]
kps_pz(end) = [];

opt_iff_kp_xi_pz   = zeros(1, length(kps_pz)); % Optimal simultaneous damping
opt_iff_kp_gain_pz = zeros(1, length(kps_pz)); % Corresponding optimal gain


for kp_i = 1:length(kps_pz)
    % Voice Coil Nano-Hexapod
    kp = kps_pz(kp_i);
    cp = 2*0.001*sqrt((ms + mn)*kp);
    kn = 1e8 - kp; % Nano-Hexapod Stiffness [N/m]
    cn = 2*0.01*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)]

    % Identify dynamics
    Giff_pz = linearize(mdl, io, 0);
    Giff_pz.InputName  = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'};
    Giff_pz.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

    fun = @(g)computeSimultaneousDamping(g, Giff_pz({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff_pz);

    [g_opt, xi_opt] = fminsearch(fun, 0.1);
    opt_iff_kp_xi_pz(kp_i) = 1/xi_opt;
    opt_iff_kp_gain_pz(kp_i) = g_opt;
end
%% Find result with wanted parallel stiffness
[~, i_kp_vc] = min(abs(kps_vc - 1e3));
[~, i_kp_md] = min(abs(kps_md - 1e4));
[~, i_kp_pz] = min(abs(kps_pz - 1e6));

%% Identify plants with choosen Parallel stiffnesses
model_config.Tuv_type   = "parallel_k";    % Default: 2DoF stage

% Voice Coil
kp = 1e3;
cp = 2*0.001*sqrt((ms + mn)*kp);
kn = 1e4-kp; % Nano-Hexapod Stiffness [N/m]
cn = 2*0.01*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)]

% Identify dynamics
Wz = 2*pi; % [rad/s]
G_vc_kp_fast = linearize(mdl, io, 0);
G_vc_kp_fast.InputName  = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'};
G_vc_kp_fast.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

Wz = 0; % [rad/s]
G_vc_kp_norot = linearize(mdl, io, 0);
G_vc_kp_norot.InputName  = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'};
G_vc_kp_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

% APA
kp = 1e4;
cp = 2*0.001*sqrt((ms + mn)*kp);
kn = 1e6 - kp; % Nano-Hexapod Stiffness [N/m]
cn = 2*0.01*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)]

% Identify dynamics
Wz = 2*pi; % [rad/s]
G_md_kp_fast = linearize(mdl, io, 0);
G_md_kp_fast.InputName  = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'};
G_md_kp_fast.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

Wz = 0; % [rad/s]
G_md_kp_norot = linearize(mdl, io, 0);
G_md_kp_norot.InputName  = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'};
G_md_kp_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

% Piezo
kp = 1e6;
cp = 2*0.001*sqrt((ms + mn)*kp);
kn = 1e8 - kp; % Nano-Hexapod Stiffness [N/m]
cn = 2*0.01*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)]

% Identify dynamics
Wz = 2*pi; % [rad/s]
G_pz_kp_fast = linearize(mdl, io, 0);
G_pz_kp_fast.InputName  = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'};
G_pz_kp_fast.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

Wz = 0; % [rad/s]
G_pz_kp_norot = linearize(mdl, io, 0);
G_pz_kp_norot.InputName  = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'};
G_pz_kp_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};
%% Optimal IFF gain and associated simultaneous damping as a function of the parallel stiffness
figure;
hold on;
plot(kps_vc, opt_iff_kp_xi_vc, '-', ...
     'color', colors(1,:), 'DisplayName', '$k_n = 0.01\,N/\mu m$');
plot(kps_vc(i_kp_vc), opt_iff_kp_xi_vc(i_kp_vc), '.', ...
     'color', colors(1,:), 'MarkerSize', 15, 'HandleVisibility', 'off');
plot(kps_md, opt_iff_kp_xi_md, '-', ...
     'color', colors(2,:), 'DisplayName', '$k_n = 1\,N/\mu m$');
plot(kps_md(i_kp_md), opt_iff_kp_xi_md(i_kp_md), '.', ...
     'color', colors(2,:), 'MarkerSize', 15, 'HandleVisibility', 'off');
plot(kps_pz, opt_iff_kp_xi_pz, '-', ...
     'color', colors(3,:), 'DisplayName', '$k_n = 100\,N/\mu m$');
plot(kps_pz(i_kp_pz), opt_iff_kp_xi_pz(i_kp_pz), '.', ...
     'color', colors(3,:), 'MarkerSize', 15, 'HandleVisibility', 'off');
hold off;
xlabel('$k_p [N/m]$');
ylabel('Damping Ratio $\xi$');
set(gca, 'XScale', 'log');
set(gca, 'YScale', 'lin');
ylim([0,1]);
yticks([0:0.2:1])
legend('location', 'southeast', 'FontSize', 8);
xlim([kps_pz(1), kps_pz(end)])
/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_iff_kp_nass_optimal_gain.png
Maximum damping $\xi$ as a function of the parallel stiffness $k_p$

\hfill

$k_n$ $k_p$ $g$ $\xi_{\text{opt}}$
$0.01\,N/\mu m$ $1\,N/mm$ 47.9 0.44
$1\,N/\mu m$ $0.01\,N/\mu m$ 465.57 0.97
$100\,N/\mu m$ $1\,N/\mu m$ 4624.25 0.99

Optimal Relative Motion Control

For each considered nano-hexapod stiffness, relative damping control is applied and the achievable damping ratio as a function of the controller gain is computed (Figure ref:fig:rotating_rdc_optimal_gain). The gain is chosen such that 99% of modal damping is obtained (obtained gains are summarized in Table ref:tab:rotating_rdc_opt_params_nass).

%% Computes the optimal parameters and attainable simultaneous damping - Piezo nano-hexapod
rdc_gains = 2*logspace(1, 5, 200);
% Obtained simultaneous damping
rdc_xi_vc = zeros(1, length(rdc_gains));
rdc_xi_md = zeros(1, length(rdc_gains));
rdc_xi_pz = zeros(1, length(rdc_gains));

Krdc = s*eye(2);
Krdc.InputName  = {'Du', 'Dv'};
Krdc.OutputName = {'Fu', 'Fv'};

for g_i = 1:length(rdc_gains)
    [~, xi] = damp(feedback(G_vc_fast({'Du', 'Dv'}, {'Fu', 'Fv'}), rdc_gains(g_i)*Krdc));
    rdc_xi_vc(g_i) = min(xi);

    [~, xi] = damp(feedback(G_md_fast({'Du', 'Dv'}, {'Fu', 'Fv'}), rdc_gains(g_i)*Krdc));
    rdc_xi_md(g_i) = min(xi);

    [~, xi] = damp(feedback(G_pz_fast({'Du', 'Dv'}, {'Fu', 'Fv'}), rdc_gains(g_i)*Krdc));
    rdc_xi_pz(g_i) = min(xi);
end
%% Optimal RDC
[~, i_rdc_vc] = min(abs(rdc_xi_vc - 0.99));
[~, i_rdc_md] = min(abs(rdc_xi_md - 0.99));
[~, i_rdc_pz] = min(abs(rdc_xi_pz - 0.99));

Krdc_vc = rdc_gains(i_rdc_vc)*Krdc;
Krdc_md = rdc_gains(i_rdc_md)*Krdc;
Krdc_pz = rdc_gains(i_rdc_pz)*Krdc;
%% Optimal IFF gain and associated simultaneous damping as a function of the parallel stiffness
figure;
hold on;
plot(rdc_gains, rdc_xi_vc, '-', ...
     'color', colors(1,:), 'DisplayName', '$k_n = 0.01\,N/\mu m$');
plot(rdc_gains(i_rdc_vc), rdc_xi_vc(i_rdc_vc), '.', ...
     'color', colors(1,:), 'MarkerSize', 15, 'HandleVisibility', 'off');
plot(rdc_gains, rdc_xi_md, '-', ...
     'color', colors(2,:), 'DisplayName', '$k_n = 1\,N/\mu m$');
plot(rdc_gains(i_rdc_md), rdc_xi_md(i_rdc_md), '.', ...
     'color', colors(2,:), 'MarkerSize', 15, 'HandleVisibility', 'off');
plot(rdc_gains, rdc_xi_pz, '-', ...
     'color', colors(3,:), 'DisplayName', '$k_n = 100\,N/\mu m$');
plot(rdc_gains(i_rdc_pz), rdc_xi_pz(i_rdc_pz), '.', ...
     'color', colors(3,:), 'MarkerSize', 15, 'HandleVisibility', 'off');
hold off;
xlabel('Relative Damping Controller gain $g$');
ylabel('Damping Ratio $\xi$');
set(gca, 'XScale', 'log');
set(gca, 'YScale', 'lin');
ylim([0,1]);
yticks([0:0.2:1])
xlim([rdc_gains(1), rdc_gains(end)])
legend('location', 'southeast', 'FontSize', 8);
/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_rdc_optimal_gain.png
Maximum damping $\xi$ as a function of the RDC gain $g$

\hfill

$k_n$ $g$ $\xi_{\text{opt}}$
$0.01\,N/\mu m$ 1600 0.99
$1\,N/\mu m$ 8200 0.99
$100\,N/\mu m$ 80000 0.99

Comparison of the obtained damped plants

Now that the optimal parameters for the three considered active damping techniques have been determined, the obtained damped plants are computed and compared in Figure ref:fig:rotating_nass_damped_plant_comp.

Similar to what was concluded in the previous analysis:

  • acrshort:iff adds more coupling below the resonance frequency as compared to the open-loop and acrshort:rdc cases
  • All three methods yield good damping, except for acrshort:iff applied on the soft nano-hexapod
  • Coupling is smaller for stiff nano-hexapods
%% Saved controllers
save('./matlab/mat/nass_controllers.mat', ...
     'Kiff_hpf_vc', 'Kiff_hpf_md', 'Kiff_hpf_pz', ...
     'Kiff_kp_vc', 'Kiff_kp_md', 'Kiff_kp_pz', ...
     'Krdc_vc', 'Krdc_md', 'Krdc_pz');
%% Load controllers
load('nass_controllers.mat');
%% Closed-Loop Plants - IFF with HPF
G_vc_norot_iff_hpf = feedback(G_vc_norot, Kiff_hpf_vc, 'name');
G_vc_fast_iff_hpf  = feedback(G_vc_fast,  Kiff_hpf_vc, 'name');

G_md_norot_iff_hpf = feedback(G_md_norot, Kiff_hpf_md, 'name');
G_md_fast_iff_hpf  = feedback(G_md_fast,  Kiff_hpf_md, 'name');

G_pz_norot_iff_hpf = feedback(G_pz_norot, Kiff_hpf_pz, 'name');
G_pz_fast_iff_hpf  = feedback(G_pz_fast,  Kiff_hpf_pz, 'name');

%% Closed-Loop Plants - IFF with Parallel Stiffness
G_vc_norot_iff_kp = feedback(G_vc_kp_norot, Kiff_kp_vc, 'name');
G_vc_fast_iff_kp  = feedback(G_vc_kp_fast,  Kiff_kp_vc, 'name');

G_md_norot_iff_kp = feedback(G_md_kp_norot, Kiff_kp_md, 'name');
G_md_fast_iff_kp  = feedback(G_md_kp_fast,  Kiff_kp_md, 'name');

G_pz_norot_iff_kp = feedback(G_pz_kp_norot, Kiff_kp_pz, 'name');
G_pz_fast_iff_kp  = feedback(G_pz_kp_fast,  Kiff_kp_pz, 'name');

%% Closed-Loop Plants - RDC
G_vc_norot_rdc = feedback(G_vc_norot, Krdc_vc, 'name');
G_vc_fast_rdc  = feedback(G_vc_fast,  Krdc_vc, 'name');

G_md_norot_rdc = feedback(G_md_norot, Krdc_md, 'name');
G_md_fast_rdc  = feedback(G_md_fast,  Krdc_md, 'name');

G_pz_norot_rdc = feedback(G_pz_norot, Krdc_pz, 'name');
G_pz_fast_rdc  = feedback(G_pz_fast,  Krdc_pz, 'name');

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_nass_damped_plant_comp_vc.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_nass_damped_plant_comp_md.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_nass_damped_plant_comp_pz.png

Nano-Active-Stabilization-System with rotation

<<sec:rotating_nass>>

Introduction   ignore

Until now, the model used to study gyroscopic effects consisted of an infinitely stiff rotating stage with a X-Y suspended stage on top. While quite simplistic, this allowed us to study the effects of rotation and the associated limitations when active damping is to be applied. In this section, the limited compliance of the micro-station is considered as well as the rotation of the spindle.

Nano Active Stabilization System model

To have a more realistic dynamics model of the NASS, the 2-DoF nano-hexapod (modeled as shown in Figure ref:fig:rotating_3dof_model_schematic) is now located on top of a model of the micro-station including (see Figure ref:fig:rotating_nass_model for a 3D view):

  • the floor whose motion is imposed
  • a 2-DoF granite ($k_{g,x} = k_{g,y} = \SI{950}{\N\per\mu\m}$, $m_g = \SI{2500}{\kg}$)
  • a 2-DoF $T_y$ stage ($k_{t,x} = k_{t,y} = \SI{520}{\N\per\mu\m}$, $m_t = \SI{600}{\kg}$)
  • a spindle (vertical rotation) stage whose rotation is imposed ($m_s = \SI{600}{\kg}$)
  • a 2-DoF micro-hexapod ($k_{h,x} = k_{h,y} = \SI{61}{\N\per\mu\m}$, $m_h = \SI{15}{\kg}$)

A payload is rigidly fixed to the nano-hexapod and the $x,y$ motion of the payload is measured with respect to the granite.

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_nass_model.png

System dynamics

The dynamics of the undamped and damped plants are identified using the optimal parameters found in Section ref:sec:rotating_nano_hexapod. The obtained dynamics are compared in Figure ref:fig:rotating_nass_plant_comp_stiffness in which the direct terms are shown by the solid curves and the coupling terms are shown by the shaded ones. It can be observed that:

  • The coupling (quantified by the ratio between the off-diagonal and direct terms) is higher for the soft nano-hexapod
  • Damping added using the three proposed techniques is quite high, and the obtained plant is rather easy to control
  • There is some coupling between nano-hexapod and micro-station dynamics for the stiff nano-hexapod (mode at 200Hz)
  • The two proposed IFF modifications yield similar results
%% System parameters
mn = 15; % Nano-Hexapod mass [kg]
ms = 1; % Sample Mass [kg]

% General Configuration
model_config = struct();
model_config.controller = "open_loop"; % Default: Open-Loop
model_config.Tuv_type   = "normal";    % Default: 2DoF stage

% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/controller'],   1, 'openinput');  io_i = io_i + 1; % Actuator Forces [Fu, Fv]
io(io_i) = linio([mdl, '/fd'],           1, 'openinput');  io_i = io_i + 1; % Direct Forces on Sample [Fdx, Fdy]
io(io_i) = linio([mdl, '/xf'],           1, 'openinput');  io_i = io_i + 1; % Floor Motion [Dfx, Dfy]
io(io_i) = linio([mdl, '/ft'],           1, 'openinput');  io_i = io_i + 1; % Micro-Station Disturbances [Ftx, Fty]
io(io_i) = linio([mdl, '/nano_hexapod'], 1, 'openoutput'); io_i = io_i + 1; % [Fmu, Fmv]
io(io_i) = linio([mdl, '/nano_hexapod'], 2, 'openoutput'); io_i = io_i + 1; % [Du, Dv]
io(io_i) = linio([mdl, '/ext_metrology'],1, 'openoutput'); io_i = io_i + 1; % [Dx, Dy]

%% Identify plant without parallel stiffness
% Voice Coil (i.e. soft) Nano-Hexapod
kn = 1e4; % Nano-Hexapod Stiffness [N/m]
cn = 2*0.005*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)]

Wz = 0; % Rotating Velocity [rad/s]
G_vc_norot = linearize(mdl, io, 0.0);
G_vc_norot.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy', 'Ftx', 'Fty'};
G_vc_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

Wz = 2*pi; % Rotating Velocity [rad/s]
G_vc_fast = linearize(mdl, io, 0.0);
G_vc_fast.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy', 'Ftx', 'Fty'};
G_vc_fast.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

% APA (i.e. relatively stiff) Nano-Hexapod
kn = 1e6; % Nano-Hexapod Stiffness [N/m]
cn = 2*0.005*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)]

Wz = 0; % Rotating Velocity [rad/s]
G_md_norot = linearize(mdl, io, 0.0);
G_md_norot.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy', 'Ftx', 'Fty'};
G_md_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

Wz = 2*pi; % Rotating Velocity [rad/s]
G_md_fast = linearize(mdl, io, 0.0);
G_md_fast.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy', 'Ftx', 'Fty'};
G_md_fast.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

% Piezoelectric (i.e. stiff) Nano-Hexapod
kn = 1e8; % Nano-Hexapod Stiffness [N/m]
cn = 2*0.005*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)]

Wz = 0; % Rotating Velocity [rad/s]
G_pz_norot = linearize(mdl, io, 0.0);
G_pz_norot.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy', 'Ftx', 'Fty'};
G_pz_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

Wz = 2*pi; % Rotating Velocity [rad/s]
G_pz_fast = linearize(mdl, io, 0.0);
G_pz_fast.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy', 'Ftx', 'Fty'};
G_pz_fast.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

%% Identify plants with Parallel stiffnesses
model_config.Tuv_type   = "parallel_k";    % Default: 2DoF stage

% Voice Coil
kp = 1e3;
cp = 2*0.001*sqrt((ms + mn)*kp);
kn = 1e4-kp; % Nano-Hexapod Stiffness [N/m]
cn = 2*0.01*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)]

% Identify dynamics
Wz = 2*pi; % [rad/s]
G_vc_kp_fast = linearize(mdl, io, 0);
G_vc_kp_fast.InputName  = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy', 'Ftx', 'Fty'};
G_vc_kp_fast.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

Wz = 0; % [rad/s]
G_vc_kp_norot = linearize(mdl, io, 0);
G_vc_kp_norot.InputName  = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy', 'Ftx', 'Fty'};
G_vc_kp_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

% APA
kp = 1e4;
cp = 2*0.001*sqrt((ms + mn)*kp);
kn = 1e6 - kp; % Nano-Hexapod Stiffness [N/m]
cn = 2*0.01*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)]

% Identify dynamics
Wz = 2*pi; % [rad/s]
G_md_kp_fast = linearize(mdl, io, 0);
G_md_kp_fast.InputName  = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy', 'Ftx', 'Fty'};
G_md_kp_fast.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

Wz = 0; % [rad/s]
G_md_kp_norot = linearize(mdl, io, 0);
G_md_kp_norot.InputName  = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy', 'Ftx', 'Fty'};
G_md_kp_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

% Piezo
kp = 1e5;
cp = 2*0.001*sqrt((ms + mn)*kp);
kn = 1e8 - kp; % Nano-Hexapod Stiffness [N/m]
cn = 2*0.01*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)]

% Identify dynamics
Wz = 2*pi; % [rad/s]
G_pz_kp_fast = linearize(mdl, io, 0);
G_pz_kp_fast.InputName  = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy', 'Ftx', 'Fty'};
G_pz_kp_fast.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

Wz = 0; % [rad/s]
G_pz_kp_norot = linearize(mdl, io, 0);
G_pz_kp_norot.InputName  = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy', 'Ftx', 'Fty'};
G_pz_kp_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};

%% Compute dampepd plants
% Closed-Loop Plants - IFF with HPF
G_vc_norot_iff_hpf = feedback(G_vc_norot, Kiff_hpf_vc, 'name');
G_vc_fast_iff_hpf  = feedback(G_vc_fast,  Kiff_hpf_vc, 'name');

G_md_norot_iff_hpf = feedback(G_md_norot, Kiff_hpf_md, 'name');
G_md_fast_iff_hpf  = feedback(G_md_fast,  Kiff_hpf_md, 'name');

G_pz_norot_iff_hpf = feedback(G_pz_norot, Kiff_hpf_pz, 'name');
G_pz_fast_iff_hpf  = feedback(G_pz_fast,  Kiff_hpf_pz, 'name');

% Closed-Loop Plants - IFF with Parallel Stiffness
G_vc_norot_iff_kp = feedback(G_vc_kp_norot, Kiff_kp_vc, 'name');
G_vc_fast_iff_kp  = feedback(G_vc_kp_fast,  Kiff_kp_vc, 'name');

G_md_norot_iff_kp = feedback(G_md_kp_norot, Kiff_kp_md, 'name');
G_md_fast_iff_kp  = feedback(G_md_kp_fast,  Kiff_kp_md, 'name');

G_pz_norot_iff_kp = feedback(G_pz_kp_norot, Kiff_kp_pz, 'name');
G_pz_fast_iff_kp  = feedback(G_pz_kp_fast,  Kiff_kp_pz, 'name');

% Closed-Loop Plants - RDC
G_vc_norot_rdc = feedback(G_vc_norot, Krdc_vc, 'name');
G_vc_fast_rdc  = feedback(G_vc_fast,  Krdc_vc, 'name');

G_md_norot_rdc = feedback(G_md_norot, Krdc_md, 'name');
G_md_fast_rdc  = feedback(G_md_fast,  Krdc_md, 'name');

G_pz_norot_rdc = feedback(G_pz_norot, Krdc_pz, 'name');
G_pz_fast_rdc  = feedback(G_pz_fast,  Krdc_pz, 'name');

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_nass_plant_comp_stiffness_vc.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_nass_plant_comp_stiffness_md.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_nass_plant_comp_stiffness_pz.png

Effect of disturbances

The effect of three disturbances are considered (as for the uniaxial model), floor motion $[x_{f,x},\ x_{f,y}]$ (Figure ref:fig:rotating_nass_effect_floor_motion), micro-Station vibrations $[f_{t,x},\ f_{t,y}]$ (Figure ref:fig:rotating_nass_effect_stage_vibration) and direct forces applied on the sample $[f_{s,x},\ f_{s,y}]$ (Figure ref:fig:rotating_nass_effect_direct_forces). Note that only the transfer functions from the disturbances in the $x$ direction to the relative position $d_x$ between the sample and the granite in the $x$ direction are displayed because the transfer functions in the $y$ direction are the same due to the system symmetry.

Conclusions are similar than those of the uniaxial (non-rotating) model:

  • Regarding the effect of floor motion and forces applied on the payload:

    • The stiffer, the better. This can be seen in Figures ref:fig:rotating_nass_effect_floor_motion and ref:fig:rotating_nass_effect_direct_forces where the magnitudes for the stiff hexapod are lower than those for the soft one
    • acrshort:iff degrades the performance at low-frequency compared to acrshort:rdc
  • Regarding the effect of micro-station vibrations:

    • Having a soft nano-hexapod allows filtering of these vibrations between the suspension modes of the nano-hexapod and some flexible modes of the micro-station. Using relative damping control reduces this filtering (Figure ref:fig:rotating_nass_effect_stage_vibration_vc).

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_nass_effect_floor_motion_vc.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_nass_effect_floor_motion_md.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_nass_effect_floor_motion_pz.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_nass_effect_stage_vibration_vc.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_nass_effect_stage_vibration_md.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_nass_effect_stage_vibration_pz.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_nass_effect_direct_forces_vc.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_nass_effect_direct_forces_md.png

/tdehaeze/phd-nass-rotating-3dof-model/media/commit/b5e07eeedcd49809b9e257f43a5cc808df2c02c5/figs/rotating_nass_effect_direct_forces_pz.png

Conclusion

In this study, the gyroscopic effects induced by the spindle's rotation have been studied using a simplified model (Section ref:sec:rotating_system_description). Decentralized acrlong:iff with pure integrators was shown to be unstable when applied to rotating platforms (Section ref:sec:rotating_iff_pure_int). Two modifications of the classical acrshort:iff control have been proposed to overcome this issue.

The first modification concerns the controller and consists of adding a high-pass filter to the pure integrators. This is equivalent to moving the controller pole to the left along the real axis. This allows the closed-loop system to be stable up to some value of the controller gain (Section ref:sec:rotating_iff_pseudo_int).

The second proposed modification concerns the mechanical system. Additional springs are added in parallel with the actuators and force sensors. It was shown that if the stiffness $k_p$ of the additional springs is larger than the negative stiffness $m \Omega^2$ induced by centrifugal forces, the classical decentralized acrshort:iff regains its unconditional stability property (Section ref:sec:rotating_iff_parallel_stiffness).

These two modifications were compared with acrlong:rdc in Section ref:sec:rotating_comp_act_damp. While having very different implementations, both proposed modifications were found to be very similar with respect to the attainable damping and the obtained closed-loop system behavior.

This study has been applied to a rotating platform that corresponds to the nano-hexapod parameters (Section ref:sec:rotating_nano_hexapod). As for the uniaxial model, three nano-hexapod stiffnesses values were considered. The dynamics of the soft nano-hexapod ($k_n = 0.01\,N/\mu m$) was shown to be more depend more on the rotation velocity (higher coupling and change of dynamics due to gyroscopic effects). In addition, the attainable damping ratio of the soft nano-hexapod when using acrshort:iff is limited by gyroscopic effects.

To be closer to the acrlong:nass dynamics, the limited compliance of the micro-station has been considered (Section ref:sec:rotating_nass). Results are similar to those of the uniaxial model except that come complexity is added for the soft nano-hexapod due to the spindle's rotation. For the moderately stiff nano-hexapod ($k_n = 1\,N/\mu m$), the gyroscopic effects only slightly affect the system dynamics, and therefore could represent a good alternative to the soft nano-hexapod that showed better results with the uniaxial model.

Bibliography   ignore

Glossary   ignore