Update some typography
This commit is contained in:
parent
35ada2f33e
commit
beb037bb95
BIN
index.html
BIN
index.html
Binary file not shown.
30
index.org
30
index.org
@ -61,7 +61,7 @@ As the translation stage is rotating around the Z axis due to the spindle, the f
|
||||
The measurement is either the $x-y$ displacement of the object located on top of the translation stage or the $u-v$ displacement of the sample with respect to a fixed reference frame.
|
||||
|
||||
#+name: fig:rotating_frame_2dof
|
||||
#+caption: Schematic of the mecanical system
|
||||
#+caption: Schematic of the mechanical system
|
||||
[[./figs/rotating_frame_2dof.png]]
|
||||
|
||||
In the following block diagram:
|
||||
@ -111,7 +111,7 @@ F_{\text{ext}, x} &= F_u \cos{\theta} - F_v \sin{\theta}\\
|
||||
F_{\text{ext}, y} &= F_u \sin{\theta} + F_v \cos{\theta}
|
||||
\end{align*}
|
||||
|
||||
By appling the Lagrangian equations, we obtain:
|
||||
By applying the Lagrangian equations, we obtain:
|
||||
\begin{align}
|
||||
m\ddot{x} + kx = F_u \cos{\theta} - F_v \sin{\theta}\\
|
||||
m\ddot{y} + ky = F_u \sin{\theta} + F_v \cos{\theta}
|
||||
@ -125,6 +125,11 @@ y & = d_u \sin{\theta} + d_v \cos{\theta}
|
||||
|
||||
We obtain:
|
||||
\begin{align*}
|
||||
\dot{x} & = \dot{d_u} \cos{\theta} - d_u\dot{\theta}\sin{\theta} - \dot{d_v}\sin{\theta} - d_v\dot{\theta} \cos{\theta} \\
|
||||
\dot{y} & = \dot{d_u} \sin{\theta} + d_u\dot{\theta}\cos{\theta} + \dot{d_v}\cos{\theta} - d_v\dot{\theta} \sin{\theta}
|
||||
\end{align*}
|
||||
and:
|
||||
\begin{align*}
|
||||
\ddot{x} & = \ddot{d_u} \cos{\theta} - 2\dot{d_u}\dot{\theta}\sin{\theta} - d_u\ddot{\theta}\sin{\theta} - d_u\dot{\theta}^2 \cos{\theta}
|
||||
- \ddot{d_v} \sin{\theta} - 2\dot{d_v}\dot{\theta}\cos{\theta} - d_v\ddot{\theta}\cos{\theta} + d_v\dot{\theta}^2 \sin{\theta} \\
|
||||
\ddot{y} & = \ddot{d_u} \sin{\theta} + 2\dot{d_u}\dot{\theta}\cos{\theta} + d_u\ddot{\theta}\cos{\theta} - d_u\dot{\theta}^2 \sin{\theta}
|
||||
@ -135,19 +140,24 @@ By injecting the previous result into the Lagrangian equation, we obtain:
|
||||
\begin{align*}
|
||||
m \ddot{d_u} \cos{\theta} - 2m\dot{d_u}\dot{\theta}\sin{\theta} - m d_u\ddot{\theta}\sin{\theta} - m d_u\dot{\theta}^2 \cos{\theta}
|
||||
- m \ddot{d_v} \sin{\theta} - 2m\dot{d_v}\dot{\theta}\cos{\theta} - m d_v\ddot{\theta}\cos{\theta} + m d_v\dot{\theta}^2 \sin{\theta}
|
||||
+ c \dot{d_u} \cos{\theta} - c d_u\dot{\theta}\sin{\theta} - c \dot{d_v}\sin{\theta} - c d_v\dot{\theta} \cos{\theta}
|
||||
+ k d_u \cos{\theta} - k d_v \sin{\theta} = F_u \cos{\theta} - F_v \sin{\theta} \\
|
||||
m \ddot{d_u} \sin{\theta} + 2m\dot{d_u}\dot{\theta}\cos{\theta} + m d_u\ddot{\theta}\cos{\theta} - m d_u\dot{\theta}^2 \sin{\theta}
|
||||
+ m \ddot{d_v} \cos{\theta} - 2m\dot{d_v}\dot{\theta}\sin{\theta} - m d_v\ddot{\theta}\sin{\theta} - m d_v\dot{\theta}^2 \cos{\theta}
|
||||
+ c \dot{d_u} \sin{\theta} + c d_u\dot{\theta}\cos{\theta} + c \dot{d_v}\cos{\theta} - c d_v\dot{\theta} \sin{\theta}
|
||||
+ k d_u \sin{\theta} + k d_v \cos{\theta} = F_u \sin{\theta} + F_v \cos{\theta}
|
||||
\end{align*}
|
||||
|
||||
|
||||
Which is equivalent to:
|
||||
\begin{align*}
|
||||
m \ddot{d_u} - 2m\dot{d_u}\dot{\theta}\frac{\sin{\theta}}{\cos{\theta}} - m d_u\ddot{\theta}\frac{\sin{\theta}}{\cos{\theta}} - m d_u\dot{\theta}^2
|
||||
- m \ddot{d_v} \frac{\sin{\theta}}{\cos{\theta}} - 2m\dot{d_v}\dot{\theta} - m d_v\ddot{\theta} + m d_v\dot{\theta}^2 \frac{\sin{\theta}}{\cos{\theta}}
|
||||
+ c \dot{d_u} - c d_u\dot{\theta}\frac{\sin{\theta}}{\cos{\theta}} - c \dot{d_v}\frac{\sin{\theta}}{\cos{\theta}} - c d_v\dot{\theta}
|
||||
+ k d_u - k d_v \frac{\sin{\theta}}{\cos{\theta}} = F_u - F_v \frac{\sin{\theta}}{\cos{\theta}} \\
|
||||
m \ddot{d_u} + 2m\dot{d_u}\dot{\theta}\frac{\cos{\theta}}{\sin{\theta}} + m d_u\ddot{\theta}\frac{\cos{\theta}}{\sin{\theta}} - m d_u\dot{\theta}^2
|
||||
+ m \ddot{d_v} \frac{\cos{\theta}}{\sin{\theta}} - 2m\dot{d_v}\dot{\theta} - m d_v\ddot{\theta} - m d_v\dot{\theta}^2 \frac{\cos{\theta}}{\sin{\theta}}
|
||||
+ c \dot{d_u} + c d_u\dot{\theta}\frac{\cos{\theta}}{\sin{\theta}} + c \dot{d_v}\frac{\cos{\theta}}{\sin{\theta}} - c d_v\dot{\theta}
|
||||
+ k d_u + k d_v \frac{\cos{\theta}}{\sin{\theta}} = F_u + F_v \frac{\cos{\theta}}{\sin{\theta}}
|
||||
\end{align*}
|
||||
|
||||
@ -155,11 +165,11 @@ We can then subtract and add the previous equations to obtain the following equa
|
||||
#+begin_important
|
||||
#+NAME: eq:du_coupled
|
||||
\begin{equation}
|
||||
m \ddot{d_u} + (k - m\dot{\theta}^2) d_u = F_u + 2 m\dot{d_v}\dot{\theta} + m d_v\ddot{\theta}
|
||||
m \ddot{d}_{u} + c \dot{d}_{u} + (k - m\dot{\theta}^2) d_u = F_u + 2 m\dot{d}_v\dot{\theta} + m d_v\ddot{\theta} + c d_{v} \dot{\theta}
|
||||
\end{equation}
|
||||
#+NAME: eq:dv_coupled
|
||||
\begin{equation}
|
||||
m \ddot{d_v} + (k - m\dot{\theta}^2) d_v = F_v - 2 m\dot{d_u}\dot{\theta} - m d_u\ddot{\theta}
|
||||
m \ddot{d}_{v} + c \dot{d}_{v} + (k - m\dot{\theta}^2) d_v = F_v - 2 m\dot{d}_u\dot{\theta} - m d_u\ddot{\theta} - c d_{u} \dot{\theta}
|
||||
\end{equation}
|
||||
#+end_important
|
||||
|
||||
@ -272,12 +282,13 @@ This is definitely negligible when using piezoelectric actuators. It may not be
|
||||
| Neg. Spring | 1381.7[N/m] | 0.9[N/m] |
|
||||
|
||||
** Limitations due to coupling
|
||||
*** Equations
|
||||
To simplify, we consider a constant rotating speed $\dot{\theta} = \omega_0$ and thus $\ddot{\theta} = 0$.
|
||||
|
||||
From equations [[eq:du_coupled]] and [[eq:dv_coupled]], we obtain:
|
||||
\begin{align*}
|
||||
(m s^2 + (k - m{\omega_0}^2)) d_u &= F_u + 2 m {\omega_0} s d_v \\
|
||||
(m s^2 + (k - m{\omega_0}^2)) d_v &= F_v - 2 m {\omega_0} s d_u \\
|
||||
(m s^2 + c s + (k - m{\omega_0}^2)) d_u &= F_u + 2 m \omega_0 s d_v + c \omega_0 d_v \\
|
||||
(m s^2 + c s + (k - m{\omega_0}^2)) d_v &= F_v - 2 m \omega_0 s d_u - c \omega_0 d_v
|
||||
\end{align*}
|
||||
|
||||
From second equation:
|
||||
@ -303,10 +314,10 @@ The two previous equations can be written in a matrix form:
|
||||
#+NAME: eq:coupledplant
|
||||
\begin{equation}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
\frac{1}{(m s^2 + (k - m{\omega_0}^2))^2 + (2 m {\omega_0} s)^2}
|
||||
\frac{1}{(m s^2 + cs + (k - m{\omega_r}^2))^2 + (2 m {\omega_r} s + c \omega_r)^2}
|
||||
\begin{bmatrix}
|
||||
ms^2 + (k-m{\omega_0}^2) & 2 m \omega_0 s \\
|
||||
-2 m \omega_0 s & ms^2 + (k-m{\omega_0}^2) \\
|
||||
ms^2 + cs + (k-m{\omega_r}^2) & 2 m \omega_r s + c \omega_r \\
|
||||
-2 m \omega_r s + c \omega_r & ms^2 + cs + (k-m{\omega_r}^2)
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
@ -411,6 +422,7 @@ From this analysis, we can determine the lowest practical stiffness that is poss
|
||||
| k min [N/m] | 2199 | 89 |
|
||||
|
||||
** Effect of rotation speed on the plant
|
||||
*** Introduction :ignore:
|
||||
As shown in equation [[eq:coupledplant]], the plant changes with the rotation speed $\omega_0$.
|
||||
|
||||
Then, we compute the bode plot of the direct term and coupling term for multiple rotating speed.
|
||||
|
Loading…
Reference in New Issue
Block a user