Removed unused figures/sections/simulinks
BIN
figs/G_sigma.svg
Before Width: | Height: | Size: 406 KiB |
BIN
figs/G_ws_pz.svg
Before Width: | Height: | Size: 346 KiB |
BIN
figs/G_ws_vc.svg
Before Width: | Height: | Size: 328 KiB |
Before Width: | Height: | Size: 278 KiB |
Before Width: | Height: | Size: 317 KiB |
Before Width: | Height: | Size: 213 KiB |
BIN
figs/Guu_ws.svg
Before Width: | Height: | Size: 422 KiB |
Before Width: | Height: | Size: 383 KiB |
BIN
figs/Guv_ws.svg
Before Width: | Height: | Size: 411 KiB |
Before Width: | Height: | Size: 228 KiB |
Before Width: | Height: | Size: 386 KiB |
Before Width: | Height: | Size: 163 KiB |
Before Width: | Height: | Size: 212 KiB |
Before Width: | Height: | Size: 322 KiB |
Before Width: | Height: | Size: 216 KiB |
Before Width: | Height: | Size: 245 KiB |
Before Width: | Height: | Size: 219 KiB |
Before Width: | Height: | Size: 339 KiB |
Before Width: | Height: | Size: 267 KiB |
Before Width: | Height: | Size: 236 KiB |
BIN
index.html
58
index.org
@ -30,14 +30,14 @@ In section [[sec:system]], a simple system composed of a spindle and a translati
|
||||
The rotation induces some coupling between the actuators and their displacement, and modifies the dynamics of the system.
|
||||
This is studied using the equations, and some numerical computations are used to compare the use of voice coil and piezoelectric actuators.
|
||||
|
||||
In sections [[sec:iff]] and [[sec:dvf]], the use of Integral Force Feedback and Direct Velocity Feedback is studied for the case of rotating positioning platforms.
|
||||
|
||||
Then, in section [[sec:control_strategies]], two different control approach are compared where:
|
||||
- the measurement is made in the fixed frame
|
||||
- the measurement is made in the rotating frame
|
||||
|
||||
In section [[sec:simscape]], the analytical study will be validated using a multi body model of the studied system.
|
||||
|
||||
Finally, in section [[sec:control]], the control strategies are implemented using Simulink and Simscape and compared.
|
||||
|
||||
* System Description and Analysis
|
||||
:PROPERTIES:
|
||||
:HEADER-ARGS:matlab+: :tangle matlab/system_numerical_analysis.m
|
||||
@ -1236,7 +1236,7 @@ As shown by the Root Locus in Figure [[fig:dvf_root_locus_ws]]:
|
||||
|
||||
|
||||
* Control Strategies
|
||||
<<sec:control_strategies>>
|
||||
<<sec:control_strategies>>
|
||||
** Measurement in the fixed reference frame
|
||||
First, let's consider a measurement in the fixed referenced frame.
|
||||
|
||||
@ -1270,10 +1270,10 @@ The corresponding block diagram is shown figure [[fig:control_measure_rotating_2
|
||||
The loop gain is $L = G K$.
|
||||
|
||||
* Multi Body Model - Simscape
|
||||
:PROPERTIES:
|
||||
:HEADER-ARGS:matlab+: :tangle matlab/simscape_analysis.m
|
||||
:END:
|
||||
<<sec:simscape>>
|
||||
:PROPERTIES:
|
||||
:HEADER-ARGS:matlab+: :tangle matlab/simscape_analysis.m
|
||||
:END:
|
||||
<<sec:simscape>>
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
@ -1998,47 +1998,3 @@ First, we create the closed loop systems. Then, we plot the transfer function fr
|
||||
The close-loop performance does not vary a lot with the rotating speed (figure [[fig:perfcomp]]) even tough the open loop system is varying quite a lot (figure [[fig:Guu_uv_ws]]).
|
||||
#+end_important
|
||||
|
||||
** BKMK Plant Control - MIMO approach
|
||||
*** Analysis - SVD
|
||||
The singular value decomposition of a MIMO system $G$ is defined as follow:
|
||||
\[ G = U \Sigma V^H \]
|
||||
|
||||
With:
|
||||
- $\Sigma$ is an $2 \times 2$ matrix with 2 non-negative *singular values* $\sigma_i$, arranged in descending order along its main diagonal
|
||||
- $U$ is an $2 \times 2$ unitary matrix. The columns vectors of $U$, denoted $u_i$, represent the *output directions* of the plant. They are orthonomal
|
||||
- $V$ is an $2 \times 2$ unitary matrix. The columns vectors of $V$, denoted $v_i$, represent the *input directions* of the plant. They are orthonomal
|
||||
|
||||
We first look at the evolution of the singular values as a function of frequency (figure [[fig:G_sigma]]).
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(-2, 1, 1000);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
sv = sigma(Gs_vc{i}, 2*pi*freqs);
|
||||
set(gca,'ColorOrderIndex',i)
|
||||
plot(freqs, sv(1, :), 'DisplayName', sprintf('w = %.0f rpm', ws(i)*60/2/pi));
|
||||
set(gca,'ColorOrderIndex',i)
|
||||
plot(freqs, sv(2, :), '--', 'HandleVisibility', 'off');
|
||||
end
|
||||
hold off;
|
||||
set(gca,'xscale','log'); set(gca,'yscale','log');
|
||||
legend('location', 'southwest');
|
||||
#+end_src
|
||||
|
||||
#+HEADER: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/G_sigma.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+LABEL: fig:G_sigma
|
||||
#+CAPTION: Evolution of the singular values with frequency
|
||||
[[file:figs/G_sigma.png]]
|
||||
|
||||
* Control Implementation
|
||||
<<sec:control>>
|
||||
|
||||
* Bibliography :ignore:
|
||||
# bibliographystyle:unsrt
|
||||
# bibliography:refs.bib
|
||||
|