Update some typography

This commit is contained in:
Thomas Dehaeze 2020-11-03 09:42:04 +01:00
parent 35ada2f33e
commit beb037bb95
2 changed files with 26 additions and 14 deletions

Binary file not shown.

View File

@ -61,7 +61,7 @@ As the translation stage is rotating around the Z axis due to the spindle, the f
The measurement is either the $x-y$ displacement of the object located on top of the translation stage or the $u-v$ displacement of the sample with respect to a fixed reference frame. The measurement is either the $x-y$ displacement of the object located on top of the translation stage or the $u-v$ displacement of the sample with respect to a fixed reference frame.
#+name: fig:rotating_frame_2dof #+name: fig:rotating_frame_2dof
#+caption: Schematic of the mecanical system #+caption: Schematic of the mechanical system
[[./figs/rotating_frame_2dof.png]] [[./figs/rotating_frame_2dof.png]]
In the following block diagram: In the following block diagram:
@ -79,7 +79,7 @@ Indices $u$ and $v$ corresponds to signals in the rotating reference frame ($\ve
- $\epsilon_u$ and $\epsilon_v$ are position error of the sample along $\vec{i}_u$ and $\vec{i}_v$ - $\epsilon_u$ and $\epsilon_v$ are position error of the sample along $\vec{i}_u$ and $\vec{i}_v$
** Equations ** Equations
<<sec:equations>> <<sec:equations>>
Based on the figure [[fig:rotating_frame_2dof]], we can write the equations of motion of the system. Based on the figure [[fig:rotating_frame_2dof]], we can write the equations of motion of the system.
Let's express the kinetic energy $T$ and the potential energy $V$ of the mass $m$: Let's express the kinetic energy $T$ and the potential energy $V$ of the mass $m$:
@ -111,7 +111,7 @@ F_{\text{ext}, x} &= F_u \cos{\theta} - F_v \sin{\theta}\\
F_{\text{ext}, y} &= F_u \sin{\theta} + F_v \cos{\theta} F_{\text{ext}, y} &= F_u \sin{\theta} + F_v \cos{\theta}
\end{align*} \end{align*}
By appling the Lagrangian equations, we obtain: By applying the Lagrangian equations, we obtain:
\begin{align} \begin{align}
m\ddot{x} + kx = F_u \cos{\theta} - F_v \sin{\theta}\\ m\ddot{x} + kx = F_u \cos{\theta} - F_v \sin{\theta}\\
m\ddot{y} + ky = F_u \sin{\theta} + F_v \cos{\theta} m\ddot{y} + ky = F_u \sin{\theta} + F_v \cos{\theta}
@ -125,6 +125,11 @@ y & = d_u \sin{\theta} + d_v \cos{\theta}
We obtain: We obtain:
\begin{align*} \begin{align*}
\dot{x} & = \dot{d_u} \cos{\theta} - d_u\dot{\theta}\sin{\theta} - \dot{d_v}\sin{\theta} - d_v\dot{\theta} \cos{\theta} \\
\dot{y} & = \dot{d_u} \sin{\theta} + d_u\dot{\theta}\cos{\theta} + \dot{d_v}\cos{\theta} - d_v\dot{\theta} \sin{\theta}
\end{align*}
and:
\begin{align*}
\ddot{x} & = \ddot{d_u} \cos{\theta} - 2\dot{d_u}\dot{\theta}\sin{\theta} - d_u\ddot{\theta}\sin{\theta} - d_u\dot{\theta}^2 \cos{\theta} \ddot{x} & = \ddot{d_u} \cos{\theta} - 2\dot{d_u}\dot{\theta}\sin{\theta} - d_u\ddot{\theta}\sin{\theta} - d_u\dot{\theta}^2 \cos{\theta}
- \ddot{d_v} \sin{\theta} - 2\dot{d_v}\dot{\theta}\cos{\theta} - d_v\ddot{\theta}\cos{\theta} + d_v\dot{\theta}^2 \sin{\theta} \\ - \ddot{d_v} \sin{\theta} - 2\dot{d_v}\dot{\theta}\cos{\theta} - d_v\ddot{\theta}\cos{\theta} + d_v\dot{\theta}^2 \sin{\theta} \\
\ddot{y} & = \ddot{d_u} \sin{\theta} + 2\dot{d_u}\dot{\theta}\cos{\theta} + d_u\ddot{\theta}\cos{\theta} - d_u\dot{\theta}^2 \sin{\theta} \ddot{y} & = \ddot{d_u} \sin{\theta} + 2\dot{d_u}\dot{\theta}\cos{\theta} + d_u\ddot{\theta}\cos{\theta} - d_u\dot{\theta}^2 \sin{\theta}
@ -133,21 +138,26 @@ We obtain:
By injecting the previous result into the Lagrangian equation, we obtain: By injecting the previous result into the Lagrangian equation, we obtain:
\begin{align*} \begin{align*}
m \ddot{d_u} \cos{\theta} - 2m\dot{d_u}\dot{\theta}\sin{\theta} - m d_u\ddot{\theta}\sin{\theta} - m d_u\dot{\theta}^2 \cos{\theta} m \ddot{d_u} \cos{\theta} - 2m\dot{d_u}\dot{\theta}\sin{\theta} - m d_u\ddot{\theta}\sin{\theta} - m d_u\dot{\theta}^2 \cos{\theta}
-m \ddot{d_v} \sin{\theta} - 2m\dot{d_v}\dot{\theta}\cos{\theta} - m d_v\ddot{\theta}\cos{\theta} + m d_v\dot{\theta}^2 \sin{\theta} - m \ddot{d_v} \sin{\theta} - 2m\dot{d_v}\dot{\theta}\cos{\theta} - m d_v\ddot{\theta}\cos{\theta} + m d_v\dot{\theta}^2 \sin{\theta}
+ c \dot{d_u} \cos{\theta} - c d_u\dot{\theta}\sin{\theta} - c \dot{d_v}\sin{\theta} - c d_v\dot{\theta} \cos{\theta}
+ k d_u \cos{\theta} - k d_v \sin{\theta} = F_u \cos{\theta} - F_v \sin{\theta} \\ + k d_u \cos{\theta} - k d_v \sin{\theta} = F_u \cos{\theta} - F_v \sin{\theta} \\
m \ddot{d_u} \sin{\theta} + 2m\dot{d_u}\dot{\theta}\cos{\theta} + m d_u\ddot{\theta}\cos{\theta} - m d_u\dot{\theta}^2 \sin{\theta} m \ddot{d_u} \sin{\theta} + 2m\dot{d_u}\dot{\theta}\cos{\theta} + m d_u\ddot{\theta}\cos{\theta} - m d_u\dot{\theta}^2 \sin{\theta}
+ m \ddot{d_v} \cos{\theta} - 2m\dot{d_v}\dot{\theta}\sin{\theta} - m d_v\ddot{\theta}\sin{\theta} - m d_v\dot{\theta}^2 \cos{\theta} + m \ddot{d_v} \cos{\theta} - 2m\dot{d_v}\dot{\theta}\sin{\theta} - m d_v\ddot{\theta}\sin{\theta} - m d_v\dot{\theta}^2 \cos{\theta}
+ c \dot{d_u} \sin{\theta} + c d_u\dot{\theta}\cos{\theta} + c \dot{d_v}\cos{\theta} - c d_v\dot{\theta} \sin{\theta}
+ k d_u \sin{\theta} + k d_v \cos{\theta} = F_u \sin{\theta} + F_v \cos{\theta} + k d_u \sin{\theta} + k d_v \cos{\theta} = F_u \sin{\theta} + F_v \cos{\theta}
\end{align*} \end{align*}
Which is equivalent to: Which is equivalent to:
\begin{align*} \begin{align*}
m \ddot{d_u} - 2m\dot{d_u}\dot{\theta}\frac{\sin{\theta}}{\cos{\theta}} - m d_u\ddot{\theta}\frac{\sin{\theta}}{\cos{\theta}} - m d_u\dot{\theta}^2 m \ddot{d_u} - 2m\dot{d_u}\dot{\theta}\frac{\sin{\theta}}{\cos{\theta}} - m d_u\ddot{\theta}\frac{\sin{\theta}}{\cos{\theta}} - m d_u\dot{\theta}^2
-m \ddot{d_v} \frac{\sin{\theta}}{\cos{\theta}} - 2m\dot{d_v}\dot{\theta} - m d_v\ddot{\theta} + m d_v\dot{\theta}^2 \frac{\sin{\theta}}{\cos{\theta}} - m \ddot{d_v} \frac{\sin{\theta}}{\cos{\theta}} - 2m\dot{d_v}\dot{\theta} - m d_v\ddot{\theta} + m d_v\dot{\theta}^2 \frac{\sin{\theta}}{\cos{\theta}}
+ c \dot{d_u} - c d_u\dot{\theta}\frac{\sin{\theta}}{\cos{\theta}} - c \dot{d_v}\frac{\sin{\theta}}{\cos{\theta}} - c d_v\dot{\theta}
+ k d_u - k d_v \frac{\sin{\theta}}{\cos{\theta}} = F_u - F_v \frac{\sin{\theta}}{\cos{\theta}} \\ + k d_u - k d_v \frac{\sin{\theta}}{\cos{\theta}} = F_u - F_v \frac{\sin{\theta}}{\cos{\theta}} \\
m \ddot{d_u} + 2m\dot{d_u}\dot{\theta}\frac{\cos{\theta}}{\sin{\theta}} + m d_u\ddot{\theta}\frac{\cos{\theta}}{\sin{\theta}} - m d_u\dot{\theta}^2 m \ddot{d_u} + 2m\dot{d_u}\dot{\theta}\frac{\cos{\theta}}{\sin{\theta}} + m d_u\ddot{\theta}\frac{\cos{\theta}}{\sin{\theta}} - m d_u\dot{\theta}^2
+ m \ddot{d_v} \frac{\cos{\theta}}{\sin{\theta}} - 2m\dot{d_v}\dot{\theta} - m d_v\ddot{\theta} - m d_v\dot{\theta}^2 \frac{\cos{\theta}}{\sin{\theta}} + m \ddot{d_v} \frac{\cos{\theta}}{\sin{\theta}} - 2m\dot{d_v}\dot{\theta} - m d_v\ddot{\theta} - m d_v\dot{\theta}^2 \frac{\cos{\theta}}{\sin{\theta}}
+ c \dot{d_u} + c d_u\dot{\theta}\frac{\cos{\theta}}{\sin{\theta}} + c \dot{d_v}\frac{\cos{\theta}}{\sin{\theta}} - c d_v\dot{\theta}
+ k d_u + k d_v \frac{\cos{\theta}}{\sin{\theta}} = F_u + F_v \frac{\cos{\theta}}{\sin{\theta}} + k d_u + k d_v \frac{\cos{\theta}}{\sin{\theta}} = F_u + F_v \frac{\cos{\theta}}{\sin{\theta}}
\end{align*} \end{align*}
@ -155,11 +165,11 @@ We can then subtract and add the previous equations to obtain the following equa
#+begin_important #+begin_important
#+NAME: eq:du_coupled #+NAME: eq:du_coupled
\begin{equation} \begin{equation}
m \ddot{d_u} + (k - m\dot{\theta}^2) d_u = F_u + 2 m\dot{d_v}\dot{\theta} + m d_v\ddot{\theta} m \ddot{d}_{u} + c \dot{d}_{u} + (k - m\dot{\theta}^2) d_u = F_u + 2 m\dot{d}_v\dot{\theta} + m d_v\ddot{\theta} + c d_{v} \dot{\theta}
\end{equation} \end{equation}
#+NAME: eq:dv_coupled #+NAME: eq:dv_coupled
\begin{equation} \begin{equation}
m \ddot{d_v} + (k - m\dot{\theta}^2) d_v = F_v - 2 m\dot{d_u}\dot{\theta} - m d_u\ddot{\theta} m \ddot{d}_{v} + c \dot{d}_{v} + (k - m\dot{\theta}^2) d_v = F_v - 2 m\dot{d}_u\dot{\theta} - m d_u\ddot{\theta} - c d_{u} \dot{\theta}
\end{equation} \end{equation}
#+end_important #+end_important
@ -272,12 +282,13 @@ This is definitely negligible when using piezoelectric actuators. It may not be
| Neg. Spring | 1381.7[N/m] | 0.9[N/m] | | Neg. Spring | 1381.7[N/m] | 0.9[N/m] |
** Limitations due to coupling ** Limitations due to coupling
*** Equations
To simplify, we consider a constant rotating speed $\dot{\theta} = \omega_0$ and thus $\ddot{\theta} = 0$. To simplify, we consider a constant rotating speed $\dot{\theta} = \omega_0$ and thus $\ddot{\theta} = 0$.
From equations [[eq:du_coupled]] and [[eq:dv_coupled]], we obtain: From equations [[eq:du_coupled]] and [[eq:dv_coupled]], we obtain:
\begin{align*} \begin{align*}
(m s^2 + (k - m{\omega_0}^2)) d_u &= F_u + 2 m {\omega_0} s d_v \\ (m s^2 + c s + (k - m{\omega_0}^2)) d_u &= F_u + 2 m \omega_0 s d_v + c \omega_0 d_v \\
(m s^2 + (k - m{\omega_0}^2)) d_v &= F_v - 2 m {\omega_0} s d_u \\ (m s^2 + c s + (k - m{\omega_0}^2)) d_v &= F_v - 2 m \omega_0 s d_u - c \omega_0 d_v
\end{align*} \end{align*}
From second equation: From second equation:
@ -303,10 +314,10 @@ The two previous equations can be written in a matrix form:
#+NAME: eq:coupledplant #+NAME: eq:coupledplant
\begin{equation} \begin{equation}
\begin{bmatrix} d_u \\ d_v \end{bmatrix} = \begin{bmatrix} d_u \\ d_v \end{bmatrix} =
\frac{1}{(m s^2 + (k - m{\omega_0}^2))^2 + (2 m {\omega_0} s)^2} \frac{1}{(m s^2 + cs + (k - m{\omega_r}^2))^2 + (2 m {\omega_r} s + c \omega_r)^2}
\begin{bmatrix} \begin{bmatrix}
ms^2 + (k-m{\omega_0}^2) & 2 m \omega_0 s \\ ms^2 + cs + (k-m{\omega_r}^2) & 2 m \omega_r s + c \omega_r \\
-2 m \omega_0 s & ms^2 + (k-m{\omega_0}^2) \\ -2 m \omega_r s + c \omega_r & ms^2 + cs + (k-m{\omega_r}^2)
\end{bmatrix} \end{bmatrix}
\begin{bmatrix} F_u \\ F_v \end{bmatrix} \begin{bmatrix} F_u \\ F_v \end{bmatrix}
\end{equation} \end{equation}
@ -411,6 +422,7 @@ From this analysis, we can determine the lowest practical stiffness that is poss
| k min [N/m] | 2199 | 89 | | k min [N/m] | 2199 | 89 |
** Effect of rotation speed on the plant ** Effect of rotation speed on the plant
*** Introduction :ignore:
As shown in equation [[eq:coupledplant]], the plant changes with the rotation speed $\omega_0$. As shown in equation [[eq:coupledplant]], the plant changes with the rotation speed $\omega_0$.
Then, we compute the bode plot of the direct term and coupling term for multiple rotating speed. Then, we compute the bode plot of the direct term and coupling term for multiple rotating speed.