phd-nass-introduction/nass-introduction.tex

170 lines
5.6 KiB
TeX
Raw Normal View History

2024-04-17 11:38:09 +02:00
% Created 2024-04-17 Wed 11:35
% Intended LaTeX compiler: pdflatex
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
\input{preamble.tex}
\input{preamble_extra.tex}
\bibliography{nass-introduction.bib}
\author{Dehaeze Thomas}
\date{\today}
\title{NASS - Introduction}
\hypersetup{
pdfauthor={Dehaeze Thomas},
pdftitle={NASS - Introduction},
pdfkeywords={},
pdfsubject={},
pdfcreator={Emacs 29.3 (Org mode 9.6)},
pdflang={English}}
\usepackage{biblatex}
\begin{document}
\maketitle
\tableofcontents
\clearpage
\chapter{Context of this thesis / Background and Motivation}
\begin{itemize}
\item \gls{esrf} (Figure \ref{fig:esrf_picture})
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.7\linewidth]{figs/introduction_esrf_picture.jpg}
\caption{\label{fig:esrf_picture}European Synchrotron Radiation Facility}
\end{figure}
\begin{itemize}
\item ID31 and Micro Station (Figure \ref{fig:id31_microstation_picture})
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.49\linewidth]{figs/introduction_id31_microstation_picture.png}
\caption{\label{fig:id31_microstation_picture}Picture of the ID31 Micro-Station with annotations}
\end{figure}
Alternative: \texttt{id31\_microstation\_cad\_view.png} (CAD view)
\begin{itemize}
\item X-ray beam + detectors + sample stage (Figure \ref{fig:id31_beamline_schematic})
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/introduction_id31_beamline_schematic.png}
\caption{\label{fig:id31_beamline_schematic}ID31 Beamline Schematic. With light source, nano-focusing optics, sample stage and detector.}
\end{figure}
\begin{itemize}
\item Few words about science made on ID31 and why nano-meter accuracy is required
\item Typical experiments (tomography, \ldots{}), various samples (up to 50kg)
\item Where to explain the goal of each stage? (e.g. micro-hexapod: static positioning, Ty and Rz: scans, \ldots{})
\item Example of picture obtained (Figure \ref{fig:id31_tomography_result})
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.49\linewidth]{example-image-c.png}
\caption{\label{fig:id31_tomography_result}Image obtained on the ID31 beamline}
\end{figure}
\begin{itemize}
\item Explain wanted positioning accuracy and why micro-station cannot have this accuracy (backlash, play, thermal expansion, \ldots{})
\item Speak about the metrology concept, and why it is not included in this thesis
\end{itemize}
\chapter{Challenge definition}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/introduction_nass_concept_schematic.png}
\caption{\label{fig:nass_concept_schematic}Nass Concept. 1: micro-station, 2: nano-hexapod, 3: sample, 4: 5DoF metrology}
\end{figure}
\begin{itemize}
\item 6DoF vibration control platform on top of a complex positioning platform
\item \textbf{Goal}: Improve accuracy of 6DoF long stroke position platform
\item \textbf{Approach}: Mechatronic approach / model based / predictive
\item \textbf{Control}: Robust control approach / various payloads.
First hexapod with control bandwidth higher than the suspension modes that accepts various payloads?
\item Rotation aspect
\item Compactness? (more related to mechanical design)
\end{itemize}
\chapter{Literature Review}
\begin{figure}
\begin{subfigure}{0.49\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.8\linewidth]{example-image-a.png}
\end{center}
\subcaption{Stewart platform based on voice coil actuators}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.8\linewidth]{example-image-b.png}
\end{center}
\subcaption{Stewart platform based on piezoelectric actuators}
\end{subfigure}
\caption{\label{fig:stewart_platform_examples}Examples of Stewart Platforms}
\end{figure}
\begin{itemize}
\item Hexapods
\cite{li01_simul_fault_vibrat_isolat_point}
\cite{bishop02_devel_precis_point_contr_vibrat}
\cite{hanieh03_activ_stewar}
\cite{afzali-far16_vibrat_dynam_isotr_hexap_analy_studies}
\cite{naves20_desig}
\item Positioning stations
\item Mechatronic approach?
\cite{rankers98_machin}
\cite{monkhorst04_dynam_error_budget}
\cite{jabben07_mechat}
\end{itemize}
\chapter{Outline of thesis / Thesis Summary / Thesis Contributions}
\textbf{Mechatronic Design Approach} / \textbf{Model Based Design}:
\begin{itemize}
\item \cite{monkhorst04_dynam_error_budget} high costs of the design process: the designed system must be \textbf{first time right}.
When the system is finally build, its performance level should satisfy the specifications.
No significant changes are allowed in the post design phase.
Because of this, the designer wants to be able to predict the performance of the system a-priori and gain insight in the performance limiting factors of the system.
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/introduction_nass_mechatronics_approach.png}
\caption{\label{fig:nass_mechatronics_approach}Overview of the mechatronic approach used for the Nano-Active-Stabilization-System}
\end{figure}
\textbf{Goals}:
\begin{itemize}
\item Design \gls{nass} such that it is easy to control (and maintain).
Have good performances by design and not by complex control strategies.
\end{itemize}
\textbf{Models}:
\begin{itemize}
\item Uniaxial Model:
\begin{itemize}
\item Effect of limited support compliance
\item Effect of change of payload
\end{itemize}
\item Rotating Model
\begin{itemize}
\item Gyroscopic effects
\end{itemize}
\item Multi Body Model
\item Finite Element Models
\end{itemize}
\printbibliography[heading=bibintoc,title={Bibliography}]
\end{document}