170 lines
5.6 KiB
TeX
170 lines
5.6 KiB
TeX
|
% Created 2024-04-17 Wed 11:35
|
||
|
% Intended LaTeX compiler: pdflatex
|
||
|
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
|
||
|
|
||
|
\input{preamble.tex}
|
||
|
\input{preamble_extra.tex}
|
||
|
\bibliography{nass-introduction.bib}
|
||
|
\author{Dehaeze Thomas}
|
||
|
\date{\today}
|
||
|
\title{NASS - Introduction}
|
||
|
\hypersetup{
|
||
|
pdfauthor={Dehaeze Thomas},
|
||
|
pdftitle={NASS - Introduction},
|
||
|
pdfkeywords={},
|
||
|
pdfsubject={},
|
||
|
pdfcreator={Emacs 29.3 (Org mode 9.6)},
|
||
|
pdflang={English}}
|
||
|
\usepackage{biblatex}
|
||
|
|
||
|
\begin{document}
|
||
|
|
||
|
\maketitle
|
||
|
\tableofcontents
|
||
|
|
||
|
\clearpage
|
||
|
|
||
|
\chapter{Context of this thesis / Background and Motivation}
|
||
|
|
||
|
\begin{itemize}
|
||
|
\item \gls{esrf} (Figure \ref{fig:esrf_picture})
|
||
|
\end{itemize}
|
||
|
|
||
|
\begin{figure}[htbp]
|
||
|
\centering
|
||
|
\includegraphics[scale=1,width=0.7\linewidth]{figs/introduction_esrf_picture.jpg}
|
||
|
\caption{\label{fig:esrf_picture}European Synchrotron Radiation Facility}
|
||
|
\end{figure}
|
||
|
|
||
|
\begin{itemize}
|
||
|
\item ID31 and Micro Station (Figure \ref{fig:id31_microstation_picture})
|
||
|
\end{itemize}
|
||
|
|
||
|
\begin{figure}[htbp]
|
||
|
\centering
|
||
|
\includegraphics[scale=1,width=0.49\linewidth]{figs/introduction_id31_microstation_picture.png}
|
||
|
\caption{\label{fig:id31_microstation_picture}Picture of the ID31 Micro-Station with annotations}
|
||
|
\end{figure}
|
||
|
|
||
|
Alternative: \texttt{id31\_microstation\_cad\_view.png} (CAD view)
|
||
|
|
||
|
\begin{itemize}
|
||
|
\item X-ray beam + detectors + sample stage (Figure \ref{fig:id31_beamline_schematic})
|
||
|
\end{itemize}
|
||
|
|
||
|
\begin{figure}[htbp]
|
||
|
\centering
|
||
|
\includegraphics[scale=1,width=\linewidth]{figs/introduction_id31_beamline_schematic.png}
|
||
|
\caption{\label{fig:id31_beamline_schematic}ID31 Beamline Schematic. With light source, nano-focusing optics, sample stage and detector.}
|
||
|
\end{figure}
|
||
|
|
||
|
\begin{itemize}
|
||
|
\item Few words about science made on ID31 and why nano-meter accuracy is required
|
||
|
\item Typical experiments (tomography, \ldots{}), various samples (up to 50kg)
|
||
|
\item Where to explain the goal of each stage? (e.g. micro-hexapod: static positioning, Ty and Rz: scans, \ldots{})
|
||
|
\item Example of picture obtained (Figure \ref{fig:id31_tomography_result})
|
||
|
\end{itemize}
|
||
|
|
||
|
\begin{figure}[htbp]
|
||
|
\centering
|
||
|
\includegraphics[scale=1,width=0.49\linewidth]{example-image-c.png}
|
||
|
\caption{\label{fig:id31_tomography_result}Image obtained on the ID31 beamline}
|
||
|
\end{figure}
|
||
|
|
||
|
\begin{itemize}
|
||
|
\item Explain wanted positioning accuracy and why micro-station cannot have this accuracy (backlash, play, thermal expansion, \ldots{})
|
||
|
|
||
|
\item Speak about the metrology concept, and why it is not included in this thesis
|
||
|
\end{itemize}
|
||
|
|
||
|
\chapter{Challenge definition}
|
||
|
|
||
|
\begin{figure}[htbp]
|
||
|
\centering
|
||
|
\includegraphics[scale=1]{figs/introduction_nass_concept_schematic.png}
|
||
|
\caption{\label{fig:nass_concept_schematic}Nass Concept. 1: micro-station, 2: nano-hexapod, 3: sample, 4: 5DoF metrology}
|
||
|
\end{figure}
|
||
|
|
||
|
\begin{itemize}
|
||
|
\item 6DoF vibration control platform on top of a complex positioning platform
|
||
|
\item \textbf{Goal}: Improve accuracy of 6DoF long stroke position platform
|
||
|
\item \textbf{Approach}: Mechatronic approach / model based / predictive
|
||
|
\item \textbf{Control}: Robust control approach / various payloads.
|
||
|
First hexapod with control bandwidth higher than the suspension modes that accepts various payloads?
|
||
|
\item Rotation aspect
|
||
|
\item Compactness? (more related to mechanical design)
|
||
|
\end{itemize}
|
||
|
|
||
|
\chapter{Literature Review}
|
||
|
|
||
|
\begin{figure}
|
||
|
\begin{subfigure}{0.49\textwidth}
|
||
|
\begin{center}
|
||
|
\includegraphics[scale=1,width=0.8\linewidth]{example-image-a.png}
|
||
|
\end{center}
|
||
|
\subcaption{Stewart platform based on voice coil actuators}
|
||
|
\end{subfigure}
|
||
|
\begin{subfigure}{0.49\textwidth}
|
||
|
\begin{center}
|
||
|
\includegraphics[scale=1,width=0.8\linewidth]{example-image-b.png}
|
||
|
\end{center}
|
||
|
\subcaption{Stewart platform based on piezoelectric actuators}
|
||
|
\end{subfigure}
|
||
|
\caption{\label{fig:stewart_platform_examples}Examples of Stewart Platforms}
|
||
|
\end{figure}
|
||
|
|
||
|
\begin{itemize}
|
||
|
\item Hexapods
|
||
|
\cite{li01_simul_fault_vibrat_isolat_point}
|
||
|
\cite{bishop02_devel_precis_point_contr_vibrat}
|
||
|
\cite{hanieh03_activ_stewar}
|
||
|
\cite{afzali-far16_vibrat_dynam_isotr_hexap_analy_studies}
|
||
|
\cite{naves20_desig}
|
||
|
\item Positioning stations
|
||
|
\item Mechatronic approach?
|
||
|
\cite{rankers98_machin}
|
||
|
\cite{monkhorst04_dynam_error_budget}
|
||
|
\cite{jabben07_mechat}
|
||
|
\end{itemize}
|
||
|
|
||
|
\chapter{Outline of thesis / Thesis Summary / Thesis Contributions}
|
||
|
|
||
|
\textbf{Mechatronic Design Approach} / \textbf{Model Based Design}:
|
||
|
\begin{itemize}
|
||
|
\item \cite{monkhorst04_dynam_error_budget} high costs of the design process: the designed system must be \textbf{first time right}.
|
||
|
When the system is finally build, its performance level should satisfy the specifications.
|
||
|
No significant changes are allowed in the post design phase.
|
||
|
Because of this, the designer wants to be able to predict the performance of the system a-priori and gain insight in the performance limiting factors of the system.
|
||
|
\end{itemize}
|
||
|
|
||
|
\begin{figure}[htbp]
|
||
|
\centering
|
||
|
\includegraphics[scale=1,width=\linewidth]{figs/introduction_nass_mechatronics_approach.png}
|
||
|
\caption{\label{fig:nass_mechatronics_approach}Overview of the mechatronic approach used for the Nano-Active-Stabilization-System}
|
||
|
\end{figure}
|
||
|
|
||
|
\textbf{Goals}:
|
||
|
\begin{itemize}
|
||
|
\item Design \gls{nass} such that it is easy to control (and maintain).
|
||
|
Have good performances by design and not by complex control strategies.
|
||
|
\end{itemize}
|
||
|
|
||
|
|
||
|
\textbf{Models}:
|
||
|
\begin{itemize}
|
||
|
\item Uniaxial Model:
|
||
|
\begin{itemize}
|
||
|
\item Effect of limited support compliance
|
||
|
\item Effect of change of payload
|
||
|
\end{itemize}
|
||
|
\item Rotating Model
|
||
|
\begin{itemize}
|
||
|
\item Gyroscopic effects
|
||
|
\end{itemize}
|
||
|
\item Multi Body Model
|
||
|
\item Finite Element Models
|
||
|
\end{itemize}
|
||
|
|
||
|
\printbibliography[heading=bibintoc,title={Bibliography}]
|
||
|
\end{document}
|