Recompute some figures

This commit is contained in:
Thomas Dehaeze 2025-03-15 10:44:19 +01:00
parent cb8664f4c5
commit bbefea2599
23 changed files with 1019 additions and 311 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 63 KiB

After

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 64 KiB

After

Width:  |  Height:  |  Size: 74 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 62 KiB

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

After

Width:  |  Height:  |  Size: 24 KiB

View File

@ -0,0 +1,704 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg
width="290.71875pt"
height="82.539062pt"
viewBox="0 0 290.71875 82.539062"
version="1.1"
id="svg71"
sodipodi:docname="detail_instrumentation_force_sensor_adc_setup.svg"
inkscape:version="1.4 (e7c3feb100, 2024-10-09)"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns="http://www.w3.org/2000/svg"
xmlns:svg="http://www.w3.org/2000/svg">
<sodipodi:namedview
id="namedview71"
pagecolor="#ffffff"
bordercolor="#666666"
borderopacity="1.0"
inkscape:showpageshadow="2"
inkscape:pageopacity="0.0"
inkscape:pagecheckerboard="0"
inkscape:deskcolor="#d1d1d1"
inkscape:document-units="pt"
inkscape:zoom="19.26101"
inkscape:cx="136.05205"
inkscape:cy="78.812066"
inkscape:window-width="1894"
inkscape:window-height="1127"
inkscape:window-x="11"
inkscape:window-y="60"
inkscape:window-maximized="1"
inkscape:current-layer="svg71" />
<defs
id="defs3">
<clipPath
id="clip-0">
<path
clip-rule="nonzero"
d="M 130 0 L 240 0 L 240 82.539062 L 130 82.539062 Z M 130 0 "
id="path1" />
</clipPath>
<clipPath
id="clip-1">
<path
clip-rule="nonzero"
d="M 126 0 L 244 0 L 244 82.539062 L 126 82.539062 Z M 126 0 "
id="path2" />
</clipPath>
<clipPath
id="clip-2">
<path
clip-rule="nonzero"
d="M 286 9 L 290.71875 9 L 290.71875 16 L 286 16 Z M 286 9 "
id="path3" />
</clipPath>
<g
id="g5462">
<g
id="g3521">
<path
d="m 5.34375,-4.5 c 0.390625,-0.59375 0.703125,-0.65625 1.015625,-0.671875 0.09375,-0.015625 0.125,-0.09375 0.125,-0.15625 0,-0.03125 -0.015625,-0.109375 -0.125,-0.109375 -0.09375,0 -0.0625,0.015625 -0.640625,0.015625 -0.5,0 -0.71875,-0.015625 -0.75,-0.015625 -0.046875,0 -0.15625,0 -0.15625,0.140625 0,0.109375 0.09375,0.125 0.140625,0.125 0.203125,0.015625 0.3125,0.09375 0.3125,0.234375 0,0.125 -0.0625,0.234375 -0.109375,0.296875 L 2.5625,-0.71875 1.90625,-4.828125 c -0.015625,-0.0625 -0.015625,-0.109375 -0.015625,-0.125 0,-0.109375 0.125,-0.21875 0.53125,-0.21875 0.09375,0 0.1875,0 0.1875,-0.15625 0,-0.03125 -0.015625,-0.109375 -0.125,-0.109375 -0.0625,0 -0.390625,0.015625 -0.453125,0.015625 h -0.5 c -0.71875,0 -0.828125,-0.015625 -0.890625,-0.015625 -0.03125,0 -0.15625,0 -0.15625,0.140625 0,0.125 0.109375,0.125 0.21875,0.125 0.40625,0 0.421875,0.0625 0.453125,0.265625 L 1.9375,-0.0625 c 0.015625,0.171875 0.03125,0.234375 0.1875,0.234375 0.125,0 0.171875,-0.078125 0.234375,-0.15625 z m 0,0"
id="path8868" />
</g>
<g
id="g3915">
<path
d="M 2.734375,-2.25 C 2.5625,-2.203125 2.5,-2.0625 2.5,-1.96875 c 0,0.09375 0.0625,0.203125 0.203125,0.203125 0.125,0 0.296875,-0.09375 0.296875,-0.34375 0,-0.40625 -0.453125,-0.53125 -0.84375,-0.53125 -0.921875,0 -1.140625,0.609375 -1.140625,0.859375 0,0.484375 0.546875,0.578125 0.703125,0.609375 0.453125,0.078125 0.796875,0.140625 0.796875,0.4375 0,0.125 -0.09375,0.34375 -0.3125,0.453125 -0.234375,0.125 -0.484375,0.140625 -0.671875,0.140625 -0.203125,0 -0.578125,-0.015625 -0.75,-0.21875 0.21875,-0.03125 0.3125,-0.203125 0.3125,-0.34375 0,-0.125 -0.078125,-0.21875 -0.25,-0.21875 -0.15625,0 -0.34375,0.125 -0.34375,0.40625 0,0.328125 0.328125,0.578125 1.03125,0.578125 1.125,0 1.359375,-0.703125 1.359375,-0.96875 0,-0.203125 -0.078125,-0.34375 -0.21875,-0.453125 C 2.484375,-1.53125 2.25,-1.5625 1.96875,-1.609375 1.671875,-1.671875 1.390625,-1.71875 1.390625,-1.953125 c 0,0 0,-0.484375 0.75,-0.484375 0.15625,0 0.453125,0.015625 0.59375,0.1875 z m 0,0"
id="path8234" />
</g>
</g>
<g
id="g7147">
<g
id="g4383">
<path
d="m 2.984375,-0.875 c -0.03125,0.15625 -0.40625,0.734375 -0.9375,0.734375 -0.390625,0 -0.53125,-0.296875 -0.53125,-0.640625 0,-0.484375 0.28125,-1.1875 0.453125,-1.640625 C 2.046875,-2.625 2.078125,-2.6875 2.078125,-2.84375 c 0,-0.4375 -0.359375,-0.671875 -0.71875,-0.671875 -0.796875,0 -1.125,1.125 -1.125,1.21875 0,0.078125 0.0625,0.109375 0.125,0.109375 0.109375,0 0.109375,-0.046875 0.140625,-0.125 0.203125,-0.71875 0.546875,-0.984375 0.828125,-0.984375 0.125,0 0.1875,0.078125 0.1875,0.265625 0,0.1875 -0.0625,0.375 -0.171875,0.65625 -0.328125,0.84375 -0.40625,1.1875 -0.40625,1.46875 0,0.78125 0.59375,0.984375 1.0625,0.984375 0.59375,0 0.96875,-0.46875 1,-0.515625 0.125,0.375 0.484375,0.515625 0.765625,0.515625 0.375,0 0.5625,-0.3125 0.609375,-0.4375 0.171875,-0.28125 0.28125,-0.75 0.28125,-0.78125 C 4.65625,-1.1875 4.625,-1.25 4.53125,-1.25 4.4375,-1.25 4.421875,-1.203125 4.359375,-1 c -0.09375,0.40625 -0.234375,0.859375 -0.5625,0.859375 -0.1875,0 -0.265625,-0.15625 -0.265625,-0.375 0,-0.140625 0.078125,-0.40625 0.125,-0.609375 0.046875,-0.203125 0.171875,-0.671875 0.203125,-0.8125 l 0.15625,-0.609375 C 4.0625,-2.765625 4.15625,-3.140625 4.15625,-3.1875 c 0,-0.203125 -0.15625,-0.25 -0.25,-0.25 -0.109375,0 -0.28125,0.078125 -0.34375,0.265625 z m 0,0"
id="path1522" />
</g>
</g>
</defs>
<g
clip-path="url(#clip-0)"
id="g4">
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="0.36"
d="M 178.453125 0.375 L 178.453125 2.683594 L 176.285156 2.683594 L 133.558594 30.988281 C 132.332031 31.980469 130.769531 34.722656 130.566406 36.023438 L 130.566406 46.515625 C 130.769531 47.820312 132.332031 50.558594 133.558594 51.550781 L 176.285156 79.855469 L 178.453125 79.855469 L 178.453125 82.164062 L 191.769531 82.164062 L 191.769531 79.855469 L 193.933594 79.855469 L 236.660156 51.550781 C 237.890625 50.558594 239.449219 47.820312 239.65625 46.515625 L 239.65625 36.023438 C 239.449219 34.722656 237.890625 31.980469 236.660156 30.988281 L 193.933594 2.683594 L 191.769531 2.683594 L 191.769531 0.375 Z M 177.625 6.90625 L 192.597656 6.90625 L 232.847656 33.953125 L 232.847656 35.386719 L 229.445312 35.386719 L 229.445312 47.152344 L 232.847656 47.152344 L 232.847656 48.585938 L 192.597656 75.632812 L 177.625 75.632812 L 137.371094 48.585938 L 137.371094 47.152344 L 140.777344 47.152344 L 140.777344 35.386719 L 137.371094 35.386719 L 137.371094 33.953125 Z M 177.625 6.90625 "
id="path4" />
</g>
<g
clip-path="url(#clip-1)"
id="g5">
<path
fill="none"
stroke-width="0.75"
stroke-linecap="butt"
stroke-linejoin="miter"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 178.453125 0.375 L 178.453125 2.683594 L 176.285156 2.683594 L 133.558594 30.988281 C 132.332031 31.980469 130.769531 34.722656 130.566406 36.023438 L 130.566406 46.515625 C 130.769531 47.820312 132.332031 50.558594 133.558594 51.550781 L 176.285156 79.855469 L 178.453125 79.855469 L 178.453125 82.164062 L 191.769531 82.164062 L 191.769531 79.855469 L 193.933594 79.855469 L 236.660156 51.550781 C 237.890625 50.558594 239.449219 47.820312 239.65625 46.515625 L 239.65625 36.023438 C 239.449219 34.722656 237.890625 31.980469 236.660156 30.988281 L 193.933594 2.683594 L 191.769531 2.683594 L 191.769531 0.375 Z M 177.625 6.90625 L 192.597656 6.90625 L 232.847656 33.953125 L 232.847656 35.386719 L 229.445312 35.386719 L 229.445312 47.152344 L 232.847656 47.152344 L 232.847656 48.585938 L 192.597656 75.632812 L 177.625 75.632812 L 137.371094 48.585938 L 137.371094 47.152344 L 140.777344 47.152344 L 140.777344 35.386719 L 137.371094 35.386719 L 137.371094 33.953125 Z M 177.625 6.90625 "
id="path5" />
</g>
<path
fill-rule="evenodd"
fill="rgb(0%, 43.920898%, 74.116516%)"
fill-opacity="0.361354"
stroke-width="0.7515"
stroke-linecap="round"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 140.777344 35.386719 L 170.089844 35.386719 L 170.089844 47.152344 L 140.777344 47.152344 Z M 140.777344 35.386719 "
id="path6" />
<path
fill-rule="evenodd"
fill="rgb(85.096741%, 31.764221%, 9.01947%)"
fill-opacity="0.361354"
stroke-width="0.7515"
stroke-linecap="round"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 170.089844 35.386719 L 199.40625 35.386719 L 199.40625 47.152344 L 170.089844 47.152344 Z M 170.089844 35.386719 "
id="path7" />
<path
fill-rule="evenodd"
fill="rgb(85.096741%, 31.764221%, 9.01947%)"
fill-opacity="0.361354"
stroke-width="0.7515"
stroke-linecap="round"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 199.40625 35.386719 L 229.445312 35.386719 L 229.445312 47.152344 L 199.40625 47.152344 Z M 199.40625 35.386719 "
id="path8" />
<path
fill-rule="evenodd"
fill="rgb(100%, 100%, 100%)"
fill-opacity="0.361354"
stroke-width="0.7515"
stroke-linecap="round"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 174.839844 44.257812 C 174.839844 45.128906 174.132812 45.835938 173.261719 45.835938 C 172.390625 45.835938 171.6875 45.128906 171.6875 44.257812 C 171.6875 43.386719 172.390625 42.679688 173.261719 42.679688 C 174.132812 42.679688 174.839844 43.386719 174.839844 44.257812 Z M 174.839844 44.257812 "
id="path9" />
<path
fill-rule="evenodd"
fill="rgb(100%, 100%, 100%)"
fill-opacity="0.361354"
stroke-width="0.7515"
stroke-linecap="round"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 204.410156 44.257812 C 204.410156 45.128906 203.703125 45.835938 202.832031 45.835938 C 201.960938 45.835938 201.257812 45.128906 201.257812 44.257812 C 201.257812 43.386719 201.960938 42.679688 202.832031 42.679688 C 203.703125 42.679688 204.410156 43.386719 204.410156 44.257812 Z M 204.410156 44.257812 "
id="path10" />
<path
fill="none"
stroke-width="0.751177"
stroke-linecap="round"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 202.777344 44.324219 C 194.023438 45.984375 182.117188 44.089844 173.21875 44.242188 C 164.320312 44.394531 155.191406 64.730469 148.320312 64.992188 "
id="path11" />
<path
fill-rule="evenodd"
fill="rgb(100%, 100%, 100%)"
fill-opacity="0.361354"
stroke-width="0.7515"
stroke-linecap="round"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 145.328125 44.074219 C 145.328125 44.945312 144.621094 45.652344 143.75 45.652344 C 142.882812 45.652344 142.175781 44.945312 142.175781 44.074219 C 142.175781 43.207031 142.882812 42.5 143.75 42.5 C 144.621094 42.5 145.328125 43.207031 145.328125 44.074219 Z M 145.328125 44.074219 "
id="path12" />
<path
fill="none"
stroke-width="0.751177"
stroke-linecap="round"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 143.664062 44.070312 C 134.632812 43.929688 125.671875 46.675781 119.335938 46.804688 "
id="path13" />
<path
fill-rule="evenodd"
fill="rgb(100%, 100%, 100%)"
fill-opacity="0.361354"
stroke-width="0.7515"
stroke-linecap="round"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 204.410156 44.257812 C 204.410156 45.128906 203.703125 45.835938 202.832031 45.835938 C 201.960938 45.835938 201.257812 45.128906 201.257812 44.257812 C 201.257812 43.386719 201.960938 42.679688 202.832031 42.679688 C 203.703125 42.679688 204.410156 43.386719 204.410156 44.257812 Z M 204.410156 44.257812 "
id="path14" />
<path
fill-rule="evenodd"
fill="rgb(0%, 0%, 0%)"
fill-opacity="0.077859"
stroke-width="0.75"
stroke-linecap="round"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 0.375 16.203125 L 103.0625 16.203125 L 103.0625 81.589844 L 0.375 81.589844 Z M 0.375 16.203125 "
id="path15" />
<path
fill-rule="evenodd"
fill="rgb(100%, 100%, 100%)"
fill-opacity="1"
stroke-width="0.75"
stroke-linecap="round"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 74.355469 40.453125 L 66.703125 46.78125 L 74.355469 53.109375 L 95.90625 53.109375 L 95.90625 40.453125 Z M 74.355469 40.453125 "
id="path16" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 79.023438 44.171875 C 78.988281 44.078125 78.964844 44.019531 78.847656 44.019531 C 78.730469 44.019531 78.707031 44.066406 78.671875 44.171875 L 77.125 48.636719 C 76.984375 49.023438 76.691406 49.140625 76.28125 49.140625 L 76.28125 49.375 C 76.457031 49.363281 76.785156 49.351562 77.042969 49.351562 C 77.277344 49.351562 77.664062 49.363281 77.910156 49.375 L 77.910156 49.140625 C 77.535156 49.140625 77.347656 48.953125 77.347656 48.765625 C 77.347656 48.742188 77.359375 48.660156 77.359375 48.648438 L 77.710938 47.675781 L 79.550781 47.675781 L 79.949219 48.8125 C 79.960938 48.847656 79.972656 48.894531 79.972656 48.917969 C 79.972656 49.140625 79.550781 49.140625 79.351562 49.140625 L 79.351562 49.375 C 79.621094 49.351562 80.148438 49.351562 80.429688 49.351562 C 80.746094 49.351562 81.097656 49.363281 81.402344 49.375 L 81.402344 49.140625 L 81.273438 49.140625 C 80.828125 49.140625 80.722656 49.09375 80.640625 48.847656 Z M 78.625 45.003906 L 79.46875 47.441406 L 77.792969 47.441406 Z M 78.625 45.003906 "
id="path17" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 81.910156 44.265625 L 81.910156 44.5 L 82.097656 44.5 C 82.671875 44.5 82.683594 44.582031 82.683594 44.851562 L 82.683594 48.789062 C 82.683594 49.058594 82.671875 49.140625 82.097656 49.140625 L 81.910156 49.140625 L 81.910156 49.375 L 84.652344 49.375 C 85.90625 49.375 86.9375 48.273438 86.9375 46.867188 C 86.9375 45.4375 85.929688 44.265625 84.652344 44.265625 Z M 83.691406 49.140625 C 83.339844 49.140625 83.328125 49.09375 83.328125 48.847656 L 83.328125 44.804688 C 83.328125 44.546875 83.339844 44.5 83.691406 44.5 L 84.441406 44.5 C 84.910156 44.5 85.425781 44.664062 85.800781 45.191406 C 86.128906 45.636719 86.1875 46.28125 86.1875 46.867188 C 86.1875 47.6875 86.046875 48.144531 85.777344 48.507812 C 85.625 48.707031 85.203125 49.140625 84.453125 49.140625 Z M 83.691406 49.140625 "
id="path18" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 87.78125 46.820312 C 87.78125 48.367188 88.988281 49.539062 90.382812 49.539062 C 91.601562 49.539062 92.328125 48.496094 92.328125 47.628906 C 92.328125 47.558594 92.328125 47.5 92.234375 47.5 C 92.152344 47.5 92.152344 47.546875 92.140625 47.628906 C 92.082031 48.695312 91.285156 49.304688 90.464844 49.304688 C 90.007812 49.304688 88.542969 49.058594 88.542969 46.820312 C 88.542969 44.59375 90.007812 44.335938 90.464844 44.335938 C 91.273438 44.335938 91.941406 45.015625 92.09375 46.105469 C 92.105469 46.210938 92.105469 46.234375 92.210938 46.234375 C 92.328125 46.234375 92.328125 46.210938 92.328125 46.058594 L 92.328125 44.289062 C 92.328125 44.160156 92.328125 44.101562 92.246094 44.101562 C 92.222656 44.101562 92.1875 44.101562 92.128906 44.195312 L 91.753906 44.746094 C 91.484375 44.476562 91.097656 44.101562 90.382812 44.101562 C 88.976562 44.101562 87.78125 45.296875 87.78125 46.820312 Z M 87.78125 46.820312 "
id="path19" />
<path
fill-rule="evenodd"
fill="rgb(100%, 100%, 100%)"
fill-opacity="1"
stroke-width="0.75"
stroke-linecap="round"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 88.324219 58.65625 L 95.972656 64.984375 L 88.324219 71.316406 L 66.773438 71.316406 L 66.773438 58.65625 Z M 88.324219 58.65625 "
id="path20" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 70.503906 62.472656 L 70.503906 62.707031 L 70.691406 62.707031 C 71.265625 62.707031 71.277344 62.789062 71.277344 63.058594 L 71.277344 66.996094 C 71.277344 67.265625 71.265625 67.347656 70.691406 67.347656 L 70.503906 67.347656 L 70.503906 67.582031 L 73.246094 67.582031 C 74.5 67.582031 75.53125 66.480469 75.53125 65.074219 C 75.53125 63.644531 74.523438 62.472656 73.246094 62.472656 Z M 72.285156 67.347656 C 71.933594 67.347656 71.921875 67.300781 71.921875 67.054688 L 71.921875 63.011719 C 71.921875 62.753906 71.933594 62.707031 72.285156 62.707031 L 73.035156 62.707031 C 73.503906 62.707031 74.019531 62.871094 74.394531 63.398438 C 74.722656 63.84375 74.78125 64.488281 74.78125 65.074219 C 74.78125 65.894531 74.640625 66.351562 74.371094 66.714844 C 74.21875 66.914062 73.796875 67.347656 73.046875 67.347656 Z M 72.285156 67.347656 "
id="path21" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 78.71875 62.378906 C 78.683594 62.285156 78.660156 62.226562 78.542969 62.226562 C 78.425781 62.226562 78.402344 62.273438 78.367188 62.378906 L 76.820312 66.84375 C 76.679688 67.230469 76.386719 67.347656 75.976562 67.347656 L 75.976562 67.582031 C 76.152344 67.570312 76.480469 67.558594 76.738281 67.558594 C 76.972656 67.558594 77.359375 67.570312 77.605469 67.582031 L 77.605469 67.347656 C 77.230469 67.347656 77.042969 67.160156 77.042969 66.972656 C 77.042969 66.949219 77.054688 66.867188 77.054688 66.855469 L 77.40625 65.882812 L 79.246094 65.882812 L 79.644531 67.019531 C 79.65625 67.054688 79.667969 67.101562 79.667969 67.125 C 79.667969 67.347656 79.246094 67.347656 79.046875 67.347656 L 79.046875 67.582031 C 79.316406 67.558594 79.84375 67.558594 80.125 67.558594 C 80.441406 67.558594 80.792969 67.570312 81.097656 67.582031 L 81.097656 67.347656 L 80.96875 67.347656 C 80.523438 67.347656 80.417969 67.300781 80.335938 67.054688 Z M 78.320312 63.210938 L 79.164062 65.648438 L 77.488281 65.648438 Z M 78.320312 63.210938 "
id="path22" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 81.558594 65.027344 C 81.558594 66.574219 82.765625 67.746094 84.160156 67.746094 C 85.378906 67.746094 86.105469 66.703125 86.105469 65.835938 C 86.105469 65.765625 86.105469 65.707031 86.011719 65.707031 C 85.929688 65.707031 85.929688 65.753906 85.917969 65.835938 C 85.859375 66.902344 85.0625 67.511719 84.242188 67.511719 C 83.785156 67.511719 82.320312 67.265625 82.320312 65.027344 C 82.320312 62.800781 83.785156 62.542969 84.242188 62.542969 C 85.050781 62.542969 85.71875 63.222656 85.871094 64.3125 C 85.882812 64.417969 85.882812 64.441406 85.988281 64.441406 C 86.105469 64.441406 86.105469 64.417969 86.105469 64.265625 L 86.105469 62.496094 C 86.105469 62.367188 86.105469 62.308594 86.023438 62.308594 C 86 62.308594 85.964844 62.308594 85.90625 62.402344 L 85.53125 62.953125 C 85.261719 62.683594 84.875 62.308594 84.160156 62.308594 C 82.753906 62.308594 81.558594 63.503906 81.558594 65.027344 Z M 81.558594 65.027344 "
id="path23" />
<path
fill="none"
stroke-width="0.75"
stroke-linecap="butt"
stroke-linejoin="miter"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 99.558594 46.804688 L 119.335938 46.804688 "
id="path24" />
<path
fill-rule="evenodd"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
stroke-width="0.28125"
stroke-linecap="butt"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 100.972656 48.621094 L 96.054688 46.8125 L 100.972656 45.003906 C 100.1875 46.070312 100.191406 47.53125 100.972656 48.621094 Z M 100.972656 48.621094 "
id="path25" />
<path
fill="none"
stroke-width="0.75"
stroke-linecap="butt"
stroke-linejoin="miter"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 131.648438 64.992188 L 148.320312 64.992188 "
id="path26" />
<path
fill="none"
stroke-width="0.75"
stroke-linecap="butt"
stroke-linejoin="miter"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 95.972656 64.984375 L 115.097656 64.992188 "
id="path27" />
<path
fill-rule="evenodd"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
stroke-width="0.28125"
stroke-linecap="butt"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 111.175781 63.175781 L 116.089844 64.988281 L 111.171875 66.792969 C 111.960938 65.726562 111.957031 64.265625 111.175781 63.175781 Z M 111.175781 63.175781 "
id="path28" />
<path
fill-rule="evenodd"
fill="rgb(100%, 100%, 100%)"
fill-opacity="1"
stroke-width="0.75"
stroke-linecap="round"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 131.90625 64.992188 L 116.445312 73.917969 L 116.445312 56.066406 Z M 131.90625 64.992188 "
id="path29" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 118.683594 66.828125 L 119.480469 66.054688 C 120.640625 65.023438 121.085938 64.625 121.085938 63.875 C 121.085938 63.019531 120.417969 62.421875 119.503906 62.421875 C 118.660156 62.421875 118.109375 63.113281 118.109375 63.78125 C 118.109375 64.191406 118.484375 64.191406 118.507812 64.191406 C 118.636719 64.191406 118.894531 64.109375 118.894531 63.792969 C 118.894531 63.605469 118.753906 63.40625 118.496094 63.40625 C 118.4375 63.40625 118.425781 63.40625 118.402344 63.417969 C 118.566406 62.925781 118.976562 62.65625 119.410156 62.65625 C 120.089844 62.65625 120.40625 63.265625 120.40625 63.875 C 120.40625 64.472656 120.042969 65.058594 119.621094 65.527344 L 118.191406 67.121094 C 118.109375 67.203125 118.109375 67.226562 118.109375 67.402344 L 120.886719 67.402344 L 121.085938 66.101562 L 120.910156 66.101562 C 120.863281 66.324219 120.816406 66.652344 120.734375 66.769531 C 120.6875 66.828125 120.195312 66.828125 120.03125 66.828125 Z M 118.683594 66.828125 "
id="path30" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 124.90625 65.011719 C 124.90625 64.414062 124.871094 63.816406 124.613281 63.265625 C 124.273438 62.539062 123.652344 62.421875 123.347656 62.421875 C 122.890625 62.421875 122.351562 62.621094 122.035156 63.3125 C 121.800781 63.828125 121.765625 64.414062 121.765625 65.011719 C 121.765625 65.574219 121.789062 66.242188 122.105469 66.816406 C 122.421875 67.414062 122.972656 67.566406 123.335938 67.566406 C 123.734375 67.566406 124.308594 67.414062 124.636719 66.699219 C 124.871094 66.183594 124.90625 65.597656 124.90625 65.011719 Z M 123.335938 67.402344 C 123.042969 67.402344 122.597656 67.214844 122.46875 66.5 C 122.386719 66.054688 122.386719 65.363281 122.386719 64.917969 C 122.386719 64.4375 122.386719 63.945312 122.445312 63.546875 C 122.585938 62.65625 123.148438 62.585938 123.335938 62.585938 C 123.582031 62.585938 124.074219 62.726562 124.214844 63.464844 C 124.296875 63.886719 124.296875 64.449219 124.296875 64.917969 C 124.296875 65.480469 124.296875 65.984375 124.214844 66.464844 C 124.097656 67.179688 123.675781 67.402344 123.335938 67.402344 Z M 123.335938 67.402344 "
id="path31" />
<path
fill="none"
stroke-width="0.75"
stroke-linecap="butt"
stroke-linejoin="miter"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 53.496094 64.984375 L 65.804688 64.984375 "
id="path32" />
<path
fill-rule="evenodd"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
stroke-width="0.28125"
stroke-linecap="butt"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 61.878906 63.171875 L 66.796875 64.980469 L 61.878906 66.785156 C 62.664062 65.71875 62.660156 64.257812 61.878906 63.171875 Z M 61.878906 63.171875 "
id="path33" />
<path
fill-rule="evenodd"
fill="rgb(100%, 100%, 100%)"
fill-opacity="1"
stroke-width="0.75"
stroke-linecap="round"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 34.984375 58.636719 L 53.179688 58.636719 C 53.300781 58.636719 53.394531 58.734375 53.394531 58.855469 L 53.394531 71.117188 C 53.394531 71.238281 53.300781 71.332031 53.179688 71.332031 L 34.984375 71.332031 C 34.867188 71.332031 34.769531 71.238281 34.769531 71.117188 L 34.769531 58.855469 C 34.769531 58.734375 34.867188 58.636719 34.984375 58.636719 Z M 34.984375 58.636719 "
id="path34" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 259.351562 9.898438 C 259.316406 9.804688 259.292969 9.746094 259.175781 9.746094 C 259.058594 9.746094 259.035156 9.792969 259 9.898438 L 257.453125 14.363281 C 257.3125 14.75 257.019531 14.867188 256.609375 14.867188 L 256.609375 15.101562 C 256.785156 15.089844 257.113281 15.078125 257.371094 15.078125 C 257.605469 15.078125 257.992188 15.089844 258.238281 15.101562 L 258.238281 14.867188 C 257.863281 14.867188 257.675781 14.679688 257.675781 14.492188 C 257.675781 14.46875 257.6875 14.386719 257.6875 14.375 L 258.039062 13.402344 L 259.878906 13.402344 L 260.277344 14.539062 C 260.289062 14.574219 260.300781 14.621094 260.300781 14.644531 C 260.300781 14.867188 259.878906 14.867188 259.679688 14.867188 L 259.679688 15.101562 C 259.949219 15.078125 260.476562 15.078125 260.757812 15.078125 C 261.074219 15.078125 261.425781 15.089844 261.730469 15.101562 L 261.730469 14.867188 L 261.601562 14.867188 C 261.15625 14.867188 261.050781 14.820312 260.96875 14.574219 Z M 258.953125 10.730469 L 259.796875 13.167969 L 258.121094 13.167969 Z M 258.953125 10.730469 "
id="path35" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 263.679688 12.734375 L 264.945312 12.734375 C 265.835938 12.734375 266.644531 12.136719 266.644531 11.386719 C 266.644531 10.648438 265.90625 9.992188 264.886719 9.992188 L 262.238281 9.992188 L 262.238281 10.226562 L 262.425781 10.226562 C 263 10.226562 263.011719 10.308594 263.011719 10.578125 L 263.011719 14.515625 C 263.011719 14.785156 263 14.867188 262.425781 14.867188 L 262.238281 14.867188 L 262.238281 15.101562 C 262.507812 15.078125 263.058594 15.078125 263.339844 15.078125 C 263.621094 15.078125 264.183594 15.078125 264.453125 15.101562 L 264.453125 14.867188 L 264.265625 14.867188 C 263.691406 14.867188 263.679688 14.785156 263.679688 14.515625 Z M 263.65625 12.546875 L 263.65625 10.53125 C 263.65625 10.273438 263.667969 10.226562 264.019531 10.226562 L 264.6875 10.226562 C 265.871094 10.226562 265.871094 11.023438 265.871094 11.386719 C 265.871094 11.738281 265.871094 12.546875 264.6875 12.546875 Z M 263.65625 12.546875 "
id="path36" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 269.421875 9.898438 C 269.386719 9.804688 269.363281 9.746094 269.246094 9.746094 C 269.128906 9.746094 269.105469 9.792969 269.070312 9.898438 L 267.523438 14.363281 C 267.382812 14.75 267.089844 14.867188 266.679688 14.867188 L 266.679688 15.101562 C 266.855469 15.089844 267.183594 15.078125 267.441406 15.078125 C 267.675781 15.078125 268.0625 15.089844 268.308594 15.101562 L 268.308594 14.867188 C 267.933594 14.867188 267.746094 14.679688 267.746094 14.492188 C 267.746094 14.46875 267.757812 14.386719 267.757812 14.375 L 268.109375 13.402344 L 269.949219 13.402344 L 270.347656 14.539062 C 270.359375 14.574219 270.371094 14.621094 270.371094 14.644531 C 270.371094 14.867188 269.949219 14.867188 269.75 14.867188 L 269.75 15.101562 C 270.019531 15.078125 270.546875 15.078125 270.828125 15.078125 C 271.144531 15.078125 271.496094 15.089844 271.800781 15.101562 L 271.800781 14.867188 L 271.671875 14.867188 C 271.226562 14.867188 271.121094 14.820312 271.039062 14.574219 Z M 269.023438 10.730469 L 269.867188 13.167969 L 268.191406 13.167969 Z M 269.023438 10.730469 "
id="path37" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 274.789062 12.722656 L 274.789062 12.96875 C 274.789062 14.714844 274.015625 15.054688 273.582031 15.054688 C 273.453125 15.054688 273.042969 15.042969 272.84375 14.785156 C 273.171875 14.785156 273.230469 14.574219 273.230469 14.445312 C 273.230469 14.210938 273.054688 14.105469 272.890625 14.105469 C 272.773438 14.105469 272.550781 14.164062 272.550781 14.457031 C 272.550781 14.960938 272.949219 15.265625 273.582031 15.265625 C 274.554688 15.265625 275.46875 14.246094 275.46875 12.640625 C 275.46875 10.625 274.601562 10.121094 273.933594 10.121094 C 273.523438 10.121094 273.160156 10.261719 272.84375 10.589844 C 272.527344 10.929688 272.363281 11.246094 272.363281 11.808594 C 272.363281 12.734375 273.019531 13.472656 273.851562 13.472656 C 274.308594 13.472656 274.613281 13.15625 274.789062 12.722656 Z M 273.863281 13.296875 C 273.746094 13.296875 273.394531 13.296875 273.171875 12.828125 C 273.03125 12.546875 273.03125 12.183594 273.03125 11.808594 C 273.03125 11.410156 273.03125 11.058594 273.195312 10.777344 C 273.394531 10.402344 273.675781 10.308594 273.933594 10.308594 C 274.285156 10.308594 274.53125 10.566406 274.660156 10.894531 C 274.742188 11.140625 274.777344 11.609375 274.777344 11.949219 C 274.777344 12.570312 274.519531 13.296875 273.863281 13.296875 Z M 273.863281 13.296875 "
id="path38" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 279.136719 13.601562 C 279.136719 12.710938 278.527344 11.960938 277.71875 11.960938 C 277.367188 11.960938 277.039062 12.078125 276.769531 12.347656 L 276.769531 10.882812 C 276.921875 10.929688 277.167969 10.976562 277.402344 10.976562 C 278.328125 10.976562 278.855469 10.296875 278.855469 10.203125 C 278.855469 10.15625 278.832031 10.121094 278.773438 10.121094 C 278.773438 10.121094 278.75 10.121094 278.714844 10.144531 C 278.5625 10.214844 278.199219 10.367188 277.695312 10.367188 C 277.402344 10.367188 277.050781 10.308594 276.699219 10.15625 C 276.640625 10.132812 276.628906 10.132812 276.617188 10.132812 C 276.535156 10.132812 276.535156 10.191406 276.535156 10.308594 L 276.535156 12.523438 C 276.535156 12.652344 276.535156 12.710938 276.640625 12.710938 C 276.699219 12.710938 276.710938 12.699219 276.746094 12.652344 C 276.828125 12.535156 277.097656 12.125 277.707031 12.125 C 278.09375 12.125 278.28125 12.464844 278.339844 12.605469 C 278.457031 12.886719 278.480469 13.167969 278.480469 13.542969 C 278.480469 13.8125 278.480469 14.257812 278.292969 14.574219 C 278.117188 14.867188 277.835938 15.054688 277.496094 15.054688 C 276.957031 15.054688 276.523438 14.65625 276.394531 14.222656 C 276.417969 14.222656 276.441406 14.234375 276.523438 14.234375 C 276.769531 14.234375 276.898438 14.046875 276.898438 13.871094 C 276.898438 13.683594 276.769531 13.496094 276.523438 13.496094 C 276.417969 13.496094 276.160156 13.554688 276.160156 13.894531 C 276.160156 14.539062 276.675781 15.265625 277.507812 15.265625 C 278.375 15.265625 279.136719 14.550781 279.136719 13.601562 Z M 279.136719 13.601562 "
id="path39" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 281.324219 10.15625 C 281.253906 9.992188 281.230469 9.992188 281.054688 9.992188 L 279.800781 9.992188 L 279.800781 10.226562 L 279.976562 10.226562 C 280.550781 10.226562 280.5625 10.308594 280.5625 10.578125 L 280.5625 14.316406 C 280.5625 14.515625 280.5625 14.867188 279.800781 14.867188 L 279.800781 15.101562 C 280.058594 15.089844 280.421875 15.078125 280.667969 15.078125 C 280.914062 15.078125 281.289062 15.089844 281.546875 15.101562 L 281.546875 14.867188 C 280.773438 14.867188 280.773438 14.515625 280.773438 14.316406 L 280.773438 10.285156 L 280.785156 10.285156 L 282.589844 14.9375 C 282.625 15.03125 282.660156 15.101562 282.730469 15.101562 C 282.8125 15.101562 282.835938 15.042969 282.871094 14.960938 L 284.710938 10.226562 L 284.710938 14.515625 C 284.710938 14.785156 284.699219 14.867188 284.125 14.867188 L 283.949219 14.867188 L 283.949219 15.101562 C 284.21875 15.078125 284.734375 15.078125 285.027344 15.078125 C 285.308594 15.078125 285.8125 15.078125 286.09375 15.101562 L 286.09375 14.867188 L 285.90625 14.867188 C 285.332031 14.867188 285.320312 14.785156 285.320312 14.515625 L 285.320312 10.578125 C 285.320312 10.308594 285.332031 10.226562 285.90625 10.226562 L 286.09375 10.226562 L 286.09375 9.992188 L 284.828125 9.992188 C 284.628906 9.992188 284.628906 10.003906 284.582031 10.132812 L 282.941406 14.351562 Z M 281.324219 10.15625 "
id="path40" />
<g
clip-path="url(#clip-2)"
id="g41">
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 290.71875 13.167969 L 290.53125 13.167969 C 290.449219 13.929688 290.34375 14.867188 289.03125 14.867188 L 288.421875 14.867188 C 288.070312 14.867188 288.058594 14.820312 288.058594 14.574219 L 288.058594 10.589844 C 288.058594 10.332031 288.058594 10.226562 288.761719 10.226562 L 289.007812 10.226562 L 289.007812 9.992188 C 288.738281 10.015625 288.058594 10.015625 287.753906 10.015625 C 287.460938 10.015625 286.875 10.015625 286.617188 9.992188 L 286.617188 10.226562 L 286.792969 10.226562 C 287.367188 10.226562 287.390625 10.308594 287.390625 10.578125 L 287.390625 14.515625 C 287.390625 14.785156 287.367188 14.867188 286.792969 14.867188 L 286.617188 14.867188 L 286.617188 15.101562 L 290.507812 15.101562 Z M 290.71875 13.167969 "
id="path41" />
</g>
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 259.246094 27.023438 L 258.285156 26.800781 C 257.816406 26.683594 257.535156 26.285156 257.535156 25.851562 C 257.535156 25.324219 257.933594 24.867188 258.519531 24.867188 C 259.761719 24.867188 259.925781 26.097656 259.972656 26.425781 C 259.984375 26.472656 259.984375 26.519531 260.066406 26.519531 C 260.160156 26.519531 260.160156 26.484375 260.160156 26.34375 L 260.160156 24.84375 C 260.160156 24.714844 260.160156 24.65625 260.078125 24.65625 C 260.03125 24.65625 260.019531 24.667969 259.972656 24.761719 L 259.703125 25.183594 C 259.480469 24.960938 259.175781 24.65625 258.507812 24.65625 C 257.675781 24.65625 257.054688 25.3125 257.054688 26.109375 C 257.054688 26.730469 257.453125 27.28125 258.027344 27.480469 C 258.109375 27.503906 258.496094 27.597656 259.023438 27.726562 C 259.222656 27.773438 259.445312 27.832031 259.65625 28.101562 C 259.808594 28.300781 259.890625 28.546875 259.890625 28.792969 C 259.890625 29.320312 259.515625 29.859375 258.882812 29.859375 C 258.671875 29.859375 258.097656 29.824219 257.699219 29.460938 C 257.265625 29.050781 257.242188 28.582031 257.242188 28.3125 C 257.230469 28.230469 257.171875 28.230469 257.148438 28.230469 C 257.054688 28.230469 257.054688 28.289062 257.054688 28.417969 L 257.054688 29.917969 C 257.054688 30.046875 257.054688 30.09375 257.136719 30.09375 C 257.183594 30.09375 257.195312 30.082031 257.242188 30 C 257.242188 29.988281 257.265625 29.964844 257.511719 29.566406 C 257.746094 29.824219 258.226562 30.09375 258.894531 30.09375 C 259.761719 30.09375 260.359375 29.367188 260.359375 28.535156 C 260.359375 27.796875 259.867188 27.175781 259.246094 27.023438 Z M 259.246094 27.023438 "
id="path42" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 261.617188 28.042969 C 261.664062 26.929688 262.296875 26.742188 262.554688 26.742188 C 263.316406 26.742188 263.398438 27.75 263.398438 28.042969 Z M 261.617188 28.207031 L 263.703125 28.207031 C 263.867188 28.207031 263.890625 28.207031 263.890625 28.042969 C 263.890625 27.304688 263.480469 26.578125 262.554688 26.578125 C 261.6875 26.578125 260.996094 27.351562 260.996094 28.289062 C 260.996094 29.285156 261.78125 30.011719 262.636719 30.011719 C 263.550781 30.011719 263.890625 29.179688 263.890625 29.039062 C 263.890625 28.96875 263.832031 28.945312 263.785156 28.945312 C 263.726562 28.945312 263.703125 28.992188 263.691406 29.050781 C 263.433594 29.824219 262.753906 29.824219 262.683594 29.824219 C 262.308594 29.824219 262.015625 29.601562 261.839844 29.320312 C 261.617188 28.96875 261.617188 28.476562 261.617188 28.207031 Z M 261.617188 28.207031 "
id="path43" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 264.925781 27.363281 L 264.925781 29.367188 C 264.925781 29.695312 264.84375 29.695312 264.339844 29.695312 L 264.339844 29.929688 C 264.609375 29.917969 264.984375 29.90625 265.195312 29.90625 C 265.382812 29.90625 265.769531 29.917969 266.027344 29.929688 L 266.027344 29.695312 C 265.523438 29.695312 265.441406 29.695312 265.441406 29.367188 L 265.441406 27.984375 C 265.441406 27.210938 265.980469 26.789062 266.449219 26.789062 C 266.929688 26.789062 267.011719 27.1875 267.011719 27.621094 L 267.011719 29.367188 C 267.011719 29.695312 266.929688 29.695312 266.425781 29.695312 L 266.425781 29.929688 C 266.683594 29.917969 267.070312 29.90625 267.269531 29.90625 C 267.457031 29.90625 267.855469 29.917969 268.101562 29.929688 L 268.101562 29.695312 C 267.714844 29.695312 267.527344 29.695312 267.527344 29.472656 L 267.527344 28.042969 C 267.527344 27.398438 267.527344 27.175781 267.292969 26.90625 C 267.1875 26.777344 266.941406 26.625 266.507812 26.625 C 265.957031 26.625 265.605469 26.941406 265.394531 27.410156 L 265.394531 26.625 L 264.339844 26.707031 L 264.339844 26.941406 C 264.867188 26.941406 264.925781 26.988281 264.925781 27.363281 Z M 264.925781 27.363281 "
id="path44" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 269.816406 28.476562 C 269.980469 28.511719 270.589844 28.628906 270.589844 29.167969 C 270.589844 29.542969 270.332031 29.847656 269.746094 29.847656 C 269.113281 29.847656 268.84375 29.425781 268.703125 28.78125 C 268.679688 28.6875 268.679688 28.664062 268.597656 28.664062 C 268.503906 28.664062 268.503906 28.710938 268.503906 28.839844 L 268.503906 29.835938 C 268.503906 29.964844 268.503906 30.011719 268.585938 30.011719 C 268.621094 30.011719 268.632812 30 268.773438 29.859375 C 268.785156 29.847656 268.785156 29.835938 268.925781 29.695312 C 269.253906 30 269.59375 30.011719 269.746094 30.011719 C 270.601562 30.011719 270.953125 29.507812 270.953125 28.96875 C 270.953125 28.582031 270.730469 28.347656 270.636719 28.265625 C 270.390625 28.019531 270.097656 27.960938 269.78125 27.902344 C 269.359375 27.820312 268.867188 27.726562 268.867188 27.292969 C 268.867188 27.023438 269.054688 26.71875 269.699219 26.71875 C 270.519531 26.71875 270.566406 27.398438 270.578125 27.621094 C 270.578125 27.691406 270.648438 27.691406 270.660156 27.691406 C 270.765625 27.691406 270.765625 27.65625 270.765625 27.515625 L 270.765625 26.753906 C 270.765625 26.636719 270.765625 26.578125 270.683594 26.578125 C 270.648438 26.578125 270.625 26.578125 270.53125 26.671875 C 270.507812 26.695312 270.4375 26.765625 270.402344 26.789062 C 270.121094 26.578125 269.816406 26.578125 269.699219 26.578125 C 268.785156 26.578125 268.503906 27.082031 268.503906 27.503906 C 268.503906 27.761719 268.621094 27.972656 268.820312 28.136719 C 269.066406 28.324219 269.277344 28.371094 269.816406 28.476562 Z M 269.816406 28.476562 "
id="path45" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 274.71875 28.324219 C 274.71875 27.375 273.980469 26.578125 273.078125 26.578125 C 272.140625 26.578125 271.414062 27.398438 271.414062 28.324219 C 271.414062 29.296875 272.1875 30.011719 273.066406 30.011719 C 273.96875 30.011719 274.71875 29.273438 274.71875 28.324219 Z M 273.078125 29.824219 C 272.75 29.824219 272.421875 29.671875 272.222656 29.320312 C 272.035156 28.992188 272.035156 28.535156 272.035156 28.265625 C 272.035156 27.972656 272.035156 27.574219 272.210938 27.246094 C 272.410156 26.90625 272.761719 26.742188 273.066406 26.742188 C 273.394531 26.742188 273.710938 26.90625 273.910156 27.234375 C 274.109375 27.550781 274.109375 27.984375 274.109375 28.265625 C 274.109375 28.535156 274.109375 28.945312 273.945312 29.273438 C 273.769531 29.613281 273.441406 29.824219 273.078125 29.824219 Z M 273.078125 29.824219 "
id="path46" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 276.191406 27.445312 L 276.191406 26.625 L 275.148438 26.707031 L 275.148438 26.941406 C 275.675781 26.941406 275.734375 26.988281 275.734375 27.363281 L 275.734375 29.367188 C 275.734375 29.695312 275.652344 29.695312 275.148438 29.695312 L 275.148438 29.929688 C 275.441406 29.917969 275.792969 29.90625 276.003906 29.90625 C 276.296875 29.90625 276.648438 29.90625 276.953125 29.929688 L 276.953125 29.695312 L 276.789062 29.695312 C 276.238281 29.695312 276.226562 29.613281 276.226562 29.34375 L 276.226562 28.195312 C 276.226562 27.457031 276.542969 26.789062 277.105469 26.789062 C 277.152344 26.789062 277.175781 26.789062 277.1875 26.800781 C 277.164062 26.800781 277.011719 26.894531 277.011719 27.09375 C 277.011719 27.292969 277.175781 27.410156 277.339844 27.410156 C 277.46875 27.410156 277.65625 27.316406 277.65625 27.082031 C 277.65625 26.847656 277.421875 26.625 277.105469 26.625 C 276.554688 26.625 276.285156 27.128906 276.191406 27.445312 Z M 276.191406 27.445312 "
id="path47" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 258.3125 49.554688 C 258.277344 49.460938 258.253906 49.402344 258.136719 49.402344 C 258.019531 49.402344 257.996094 49.449219 257.960938 49.554688 L 256.414062 54.019531 C 256.273438 54.40625 255.980469 54.523438 255.570312 54.523438 L 255.570312 54.757812 C 255.746094 54.746094 256.074219 54.734375 256.332031 54.734375 C 256.566406 54.734375 256.953125 54.746094 257.199219 54.757812 L 257.199219 54.523438 C 256.824219 54.523438 256.636719 54.335938 256.636719 54.148438 C 256.636719 54.125 256.648438 54.042969 256.648438 54.03125 L 257 53.058594 L 258.839844 53.058594 L 259.238281 54.195312 C 259.25 54.230469 259.261719 54.277344 259.261719 54.300781 C 259.261719 54.523438 258.839844 54.523438 258.640625 54.523438 L 258.640625 54.757812 C 258.910156 54.734375 259.4375 54.734375 259.71875 54.734375 C 260.035156 54.734375 260.386719 54.746094 260.691406 54.757812 L 260.691406 54.523438 L 260.5625 54.523438 C 260.117188 54.523438 260.011719 54.476562 259.929688 54.230469 Z M 257.914062 50.386719 L 258.757812 52.824219 L 257.082031 52.824219 Z M 257.914062 50.386719 "
id="path48" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 261.820312 53.128906 C 261.820312 51.910156 262.429688 51.59375 262.828125 51.59375 C 262.898438 51.59375 263.367188 51.605469 263.625 51.875 C 263.320312 51.898438 263.273438 52.121094 263.273438 52.214844 C 263.273438 52.414062 263.414062 52.554688 263.613281 52.554688 C 263.8125 52.554688 263.964844 52.4375 263.964844 52.203125 C 263.964844 51.699219 263.390625 51.40625 262.816406 51.40625 C 261.878906 51.40625 261.199219 52.214844 261.199219 53.140625 C 261.199219 54.101562 261.9375 54.839844 262.804688 54.839844 C 263.800781 54.839844 264.046875 53.9375 264.046875 53.867188 C 264.046875 53.796875 263.964844 53.796875 263.941406 53.796875 C 263.882812 53.796875 263.859375 53.820312 263.847656 53.867188 C 263.636719 54.558594 263.144531 54.652344 262.875 54.652344 C 262.476562 54.652344 261.820312 54.335938 261.820312 53.128906 Z M 261.820312 53.128906 "
id="path49" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 265.550781 51.769531 L 266.628906 51.769531 L 266.628906 51.535156 L 265.550781 51.535156 L 265.550781 50.164062 L 265.363281 50.164062 C 265.363281 50.773438 265.140625 51.570312 264.402344 51.605469 L 264.402344 51.769531 L 265.035156 51.769531 L 265.035156 53.832031 C 265.035156 54.746094 265.738281 54.839844 266.007812 54.839844 C 266.535156 54.839844 266.746094 54.3125 266.746094 53.832031 L 266.746094 53.410156 L 266.558594 53.410156 L 266.558594 53.820312 C 266.558594 54.371094 266.335938 54.652344 266.054688 54.652344 C 265.550781 54.652344 265.550781 53.972656 265.550781 53.84375 Z M 265.550781 51.769531 "
id="path50" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 270.085938 54.171875 L 270.085938 54.839844 L 271.164062 54.757812 L 271.164062 54.523438 C 270.648438 54.523438 270.589844 54.476562 270.589844 54.101562 L 270.589844 51.453125 L 269.488281 51.535156 L 269.488281 51.769531 C 270.003906 51.769531 270.074219 51.816406 270.074219 52.191406 L 270.074219 53.515625 C 270.074219 54.171875 269.710938 54.675781 269.160156 54.675781 C 268.539062 54.675781 268.503906 54.324219 268.503906 53.9375 L 268.503906 51.453125 L 267.402344 51.535156 L 267.402344 51.769531 C 267.988281 51.769531 267.988281 51.792969 267.988281 52.449219 L 267.988281 53.574219 C 267.988281 54.160156 267.988281 54.839844 269.125 54.839844 C 269.546875 54.839844 269.875 54.628906 270.085938 54.171875 Z M 270.085938 54.171875 "
id="path51" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 273.804688 54.195312 C 273.839844 54.488281 274.039062 54.804688 274.390625 54.804688 C 274.554688 54.804688 275.011719 54.699219 275.011719 54.089844 L 275.011719 53.667969 L 274.824219 53.667969 L 274.824219 54.089844 C 274.824219 54.523438 274.636719 54.570312 274.554688 54.570312 C 274.308594 54.570312 274.273438 54.230469 274.273438 54.195312 L 274.273438 52.707031 C 274.273438 52.390625 274.273438 52.097656 274.003906 51.816406 C 273.710938 51.523438 273.335938 51.40625 272.984375 51.40625 C 272.363281 51.40625 271.847656 51.757812 271.847656 52.25 C 271.847656 52.472656 272 52.601562 272.199219 52.601562 C 272.410156 52.601562 272.539062 52.449219 272.539062 52.261719 C 272.539062 52.167969 272.503906 51.921875 272.152344 51.921875 C 272.363281 51.652344 272.726562 51.570312 272.960938 51.570312 C 273.335938 51.570312 273.757812 51.863281 273.757812 52.53125 L 273.757812 52.800781 C 273.371094 52.824219 272.855469 52.847656 272.386719 53.070312 C 271.824219 53.328125 271.636719 53.714844 271.636719 54.042969 C 271.636719 54.652344 272.363281 54.839844 272.832031 54.839844 C 273.324219 54.839844 273.664062 54.535156 273.804688 54.195312 Z M 273.757812 52.964844 L 273.757812 53.714844 C 273.757812 54.417969 273.21875 54.675781 272.878906 54.675781 C 272.515625 54.675781 272.210938 54.417969 272.210938 54.042969 C 272.210938 53.632812 272.527344 53.011719 273.757812 52.964844 Z M 273.757812 52.964844 "
id="path52" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 276.34375 51.769531 L 277.421875 51.769531 L 277.421875 51.535156 L 276.34375 51.535156 L 276.34375 50.164062 L 276.15625 50.164062 C 276.15625 50.773438 275.933594 51.570312 275.195312 51.605469 L 275.195312 51.769531 L 275.828125 51.769531 L 275.828125 53.832031 C 275.828125 54.746094 276.53125 54.839844 276.800781 54.839844 C 277.328125 54.839844 277.539062 54.3125 277.539062 53.832031 L 277.539062 53.410156 L 277.351562 53.410156 L 277.351562 53.820312 C 277.351562 54.371094 277.128906 54.652344 276.847656 54.652344 C 276.34375 54.652344 276.34375 53.972656 276.34375 53.84375 Z M 276.34375 51.769531 "
id="path53" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 281.476562 53.152344 C 281.476562 52.203125 280.738281 51.40625 279.835938 51.40625 C 278.898438 51.40625 278.171875 52.226562 278.171875 53.152344 C 278.171875 54.125 278.945312 54.839844 279.824219 54.839844 C 280.726562 54.839844 281.476562 54.101562 281.476562 53.152344 Z M 279.835938 54.652344 C 279.507812 54.652344 279.179688 54.5 278.980469 54.148438 C 278.792969 53.820312 278.792969 53.363281 278.792969 53.09375 C 278.792969 52.800781 278.792969 52.402344 278.96875 52.074219 C 279.167969 51.734375 279.519531 51.570312 279.824219 51.570312 C 280.152344 51.570312 280.46875 51.734375 280.667969 52.0625 C 280.867188 52.378906 280.867188 52.8125 280.867188 53.09375 C 280.867188 53.363281 280.867188 53.773438 280.703125 54.101562 C 280.527344 54.441406 280.199219 54.652344 279.835938 54.652344 Z M 279.835938 54.652344 "
id="path54" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 282.949219 52.273438 L 282.949219 51.453125 L 281.90625 51.535156 L 281.90625 51.769531 C 282.433594 51.769531 282.492188 51.816406 282.492188 52.191406 L 282.492188 54.195312 C 282.492188 54.523438 282.410156 54.523438 281.90625 54.523438 L 281.90625 54.757812 C 282.199219 54.746094 282.550781 54.734375 282.761719 54.734375 C 283.054688 54.734375 283.40625 54.734375 283.710938 54.757812 L 283.710938 54.523438 L 283.546875 54.523438 C 282.996094 54.523438 282.984375 54.441406 282.984375 54.171875 L 282.984375 53.023438 C 282.984375 52.285156 283.300781 51.617188 283.863281 51.617188 C 283.910156 51.617188 283.933594 51.617188 283.945312 51.628906 C 283.921875 51.628906 283.769531 51.722656 283.769531 51.921875 C 283.769531 52.121094 283.933594 52.238281 284.097656 52.238281 C 284.226562 52.238281 284.414062 52.144531 284.414062 51.910156 C 284.414062 51.675781 284.179688 51.453125 283.863281 51.453125 C 283.3125 51.453125 283.042969 51.957031 282.949219 52.273438 Z M 282.949219 52.273438 "
id="path55" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 36.558594 22.199219 L 35.597656 21.976562 C 35.128906 21.859375 34.847656 21.460938 34.847656 21.027344 C 34.847656 20.5 35.246094 20.042969 35.832031 20.042969 C 37.074219 20.042969 37.238281 21.273438 37.285156 21.601562 C 37.296875 21.648438 37.296875 21.695312 37.378906 21.695312 C 37.472656 21.695312 37.472656 21.660156 37.472656 21.519531 L 37.472656 20.019531 C 37.472656 19.890625 37.472656 19.832031 37.390625 19.832031 C 37.34375 19.832031 37.332031 19.84375 37.285156 19.9375 L 37.015625 20.359375 C 36.792969 20.136719 36.488281 19.832031 35.820312 19.832031 C 34.988281 19.832031 34.367188 20.488281 34.367188 21.285156 C 34.367188 21.90625 34.765625 22.457031 35.339844 22.65625 C 35.421875 22.679688 35.808594 22.773438 36.335938 22.902344 C 36.535156 22.949219 36.757812 23.007812 36.96875 23.277344 C 37.121094 23.476562 37.203125 23.722656 37.203125 23.96875 C 37.203125 24.496094 36.828125 25.035156 36.195312 25.035156 C 35.984375 25.035156 35.410156 25 35.011719 24.636719 C 34.578125 24.226562 34.554688 23.757812 34.554688 23.488281 C 34.542969 23.40625 34.484375 23.40625 34.460938 23.40625 C 34.367188 23.40625 34.367188 23.464844 34.367188 23.59375 L 34.367188 25.09375 C 34.367188 25.222656 34.367188 25.269531 34.449219 25.269531 C 34.496094 25.269531 34.507812 25.257812 34.554688 25.175781 C 34.554688 25.164062 34.578125 25.140625 34.824219 24.742188 C 35.058594 25 35.539062 25.269531 36.207031 25.269531 C 37.074219 25.269531 37.671875 24.542969 37.671875 23.710938 C 37.671875 22.972656 37.179688 22.351562 36.558594 22.199219 Z M 36.558594 22.199219 "
id="path56" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 39.386719 22.292969 L 39.386719 21.800781 L 38.308594 21.882812 L 38.308594 22.117188 C 38.835938 22.117188 38.894531 22.164062 38.894531 22.492188 L 38.894531 25.984375 C 38.894531 26.324219 38.8125 26.324219 38.308594 26.324219 L 38.308594 26.558594 C 38.566406 26.546875 38.953125 26.535156 39.140625 26.535156 C 39.351562 26.535156 39.726562 26.546875 39.984375 26.558594 L 39.984375 26.324219 C 39.492188 26.324219 39.410156 26.324219 39.410156 25.984375 L 39.410156 24.660156 C 39.445312 24.789062 39.761719 25.1875 40.324219 25.1875 C 41.214844 25.1875 41.988281 24.449219 41.988281 23.488281 C 41.988281 22.539062 41.273438 21.800781 40.429688 21.800781 C 39.84375 21.800781 39.527344 22.128906 39.386719 22.292969 Z M 39.410156 24.25 L 39.410156 22.585938 C 39.621094 22.199219 39.984375 21.988281 40.371094 21.988281 C 40.921875 21.988281 41.367188 22.644531 41.367188 23.488281 C 41.367188 24.390625 40.851562 25.023438 40.300781 25.023438 C 39.996094 25.023438 39.714844 24.871094 39.515625 24.566406 C 39.410156 24.414062 39.410156 24.402344 39.410156 24.25 Z M 39.410156 24.25 "
id="path57" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 43.289062 23.21875 C 43.335938 22.105469 43.96875 21.917969 44.226562 21.917969 C 44.988281 21.917969 45.070312 22.925781 45.070312 23.21875 Z M 43.289062 23.382812 L 45.375 23.382812 C 45.539062 23.382812 45.5625 23.382812 45.5625 23.21875 C 45.5625 22.480469 45.152344 21.753906 44.226562 21.753906 C 43.359375 21.753906 42.667969 22.527344 42.667969 23.464844 C 42.667969 24.460938 43.453125 25.1875 44.308594 25.1875 C 45.222656 25.1875 45.5625 24.355469 45.5625 24.214844 C 45.5625 24.144531 45.503906 24.121094 45.457031 24.121094 C 45.398438 24.121094 45.375 24.167969 45.363281 24.226562 C 45.105469 25 44.425781 25 44.355469 25 C 43.980469 25 43.6875 24.777344 43.511719 24.496094 C 43.289062 24.144531 43.289062 23.652344 43.289062 23.382812 Z M 43.289062 23.382812 "
id="path58" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 46.609375 23.21875 C 46.65625 22.105469 47.289062 21.917969 47.546875 21.917969 C 48.308594 21.917969 48.390625 22.925781 48.390625 23.21875 Z M 46.609375 23.382812 L 48.695312 23.382812 C 48.859375 23.382812 48.882812 23.382812 48.882812 23.21875 C 48.882812 22.480469 48.472656 21.753906 47.546875 21.753906 C 46.679688 21.753906 45.988281 22.527344 45.988281 23.464844 C 45.988281 24.460938 46.773438 25.1875 47.628906 25.1875 C 48.542969 25.1875 48.882812 24.355469 48.882812 24.214844 C 48.882812 24.144531 48.824219 24.121094 48.777344 24.121094 C 48.71875 24.121094 48.695312 24.167969 48.683594 24.226562 C 48.425781 25 47.746094 25 47.675781 25 C 47.300781 25 47.007812 24.777344 46.832031 24.496094 C 46.609375 24.144531 46.609375 23.652344 46.609375 23.382812 Z M 46.609375 23.382812 "
id="path59" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 51.933594 24.695312 L 51.933594 25.1875 L 53.035156 25.105469 L 53.035156 24.871094 C 52.519531 24.871094 52.449219 24.824219 52.449219 24.449219 L 52.449219 19.914062 L 51.382812 19.996094 L 51.382812 20.230469 C 51.898438 20.230469 51.957031 20.277344 51.957031 20.652344 L 51.957031 22.269531 C 51.746094 22 51.417969 21.800781 51.019531 21.800781 C 50.140625 21.800781 49.355469 22.539062 49.355469 23.5 C 49.355469 24.449219 50.082031 25.1875 50.9375 25.1875 C 51.417969 25.1875 51.746094 24.929688 51.933594 24.695312 Z M 51.933594 22.691406 L 51.933594 24.226562 C 51.933594 24.355469 51.933594 24.367188 51.851562 24.496094 C 51.628906 24.859375 51.300781 25.023438 50.972656 25.023438 C 50.632812 25.023438 50.363281 24.824219 50.1875 24.542969 C 50 24.238281 49.976562 23.816406 49.976562 23.5 C 49.976562 23.230469 49.988281 22.785156 50.199219 22.445312 C 50.363281 22.210938 50.644531 21.964844 51.054688 21.964844 C 51.3125 21.964844 51.628906 22.082031 51.851562 22.410156 C 51.933594 22.539062 51.933594 22.550781 51.933594 22.691406 Z M 51.933594 22.691406 "
id="path60" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 57.679688 24.636719 C 57.785156 24.800781 58.078125 25.09375 58.160156 25.09375 C 58.230469 25.09375 58.230469 25.035156 58.230469 24.929688 L 58.230469 23.628906 C 58.230469 23.335938 58.253906 23.300781 58.746094 23.300781 L 58.746094 23.066406 C 58.464844 23.066406 58.054688 23.089844 57.832031 23.089844 C 57.539062 23.089844 56.894531 23.089844 56.625 23.066406 L 56.625 23.300781 L 56.871094 23.300781 C 57.539062 23.300781 57.5625 23.382812 57.5625 23.652344 L 57.5625 24.132812 C 57.5625 24.976562 56.613281 25.035156 56.402344 25.035156 C 55.921875 25.035156 54.433594 24.777344 54.433594 22.550781 C 54.433594 20.3125 55.910156 20.066406 56.355469 20.066406 C 57.164062 20.066406 57.84375 20.734375 57.984375 21.835938 C 58.007812 21.941406 58.007812 21.964844 58.113281 21.964844 C 58.230469 21.964844 58.230469 21.941406 58.230469 21.789062 L 58.230469 20.019531 C 58.230469 19.890625 58.230469 19.832031 58.148438 19.832031 C 58.113281 19.832031 58.089844 19.832031 58.03125 19.925781 L 57.65625 20.476562 C 57.410156 20.242188 57.011719 19.832031 56.273438 19.832031 C 54.878906 19.832031 53.671875 21.015625 53.671875 22.550781 C 53.671875 24.085938 54.867188 25.269531 56.285156 25.269531 C 56.835938 25.269531 57.433594 25.070312 57.679688 24.636719 Z M 57.679688 24.636719 "
id="path61" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 62.628906 23.5 C 62.628906 22.550781 61.890625 21.753906 60.988281 21.753906 C 60.050781 21.753906 59.324219 22.574219 59.324219 23.5 C 59.324219 24.472656 60.097656 25.1875 60.976562 25.1875 C 61.878906 25.1875 62.628906 24.449219 62.628906 23.5 Z M 60.988281 25 C 60.660156 25 60.332031 24.847656 60.132812 24.496094 C 59.945312 24.167969 59.945312 23.710938 59.945312 23.441406 C 59.945312 23.148438 59.945312 22.75 60.121094 22.421875 C 60.320312 22.082031 60.671875 21.917969 60.976562 21.917969 C 61.304688 21.917969 61.621094 22.082031 61.820312 22.410156 C 62.019531 22.726562 62.019531 23.160156 62.019531 23.441406 C 62.019531 23.710938 62.019531 24.121094 61.855469 24.449219 C 61.679688 24.789062 61.351562 25 60.988281 25 Z M 60.988281 25 "
id="path62" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 65.332031 24.542969 C 65.367188 24.835938 65.566406 25.152344 65.917969 25.152344 C 66.082031 25.152344 66.539062 25.046875 66.539062 24.4375 L 66.539062 24.015625 L 66.351562 24.015625 L 66.351562 24.4375 C 66.351562 24.871094 66.164062 24.917969 66.082031 24.917969 C 65.835938 24.917969 65.800781 24.578125 65.800781 24.542969 L 65.800781 23.054688 C 65.800781 22.738281 65.800781 22.445312 65.53125 22.164062 C 65.238281 21.871094 64.863281 21.753906 64.511719 21.753906 C 63.890625 21.753906 63.375 22.105469 63.375 22.597656 C 63.375 22.820312 63.527344 22.949219 63.726562 22.949219 C 63.9375 22.949219 64.066406 22.796875 64.066406 22.609375 C 64.066406 22.515625 64.03125 22.269531 63.679688 22.269531 C 63.890625 22 64.253906 21.917969 64.488281 21.917969 C 64.863281 21.917969 65.285156 22.210938 65.285156 22.878906 L 65.285156 23.148438 C 64.898438 23.171875 64.382812 23.195312 63.914062 23.417969 C 63.351562 23.675781 63.164062 24.0625 63.164062 24.390625 C 63.164062 25 63.890625 25.1875 64.359375 25.1875 C 64.851562 25.1875 65.191406 24.882812 65.332031 24.542969 Z M 65.285156 23.3125 L 65.285156 24.0625 C 65.285156 24.765625 64.746094 25.023438 64.40625 25.023438 C 64.042969 25.023438 63.738281 24.765625 63.738281 24.390625 C 63.738281 23.980469 64.054688 23.359375 65.285156 23.3125 Z M 65.285156 23.3125 "
id="path63" />
<path
fill-rule="nonzero"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
d="M 67.875 22.117188 L 68.953125 22.117188 L 68.953125 21.882812 L 67.875 21.882812 L 67.875 20.511719 L 67.6875 20.511719 C 67.6875 21.121094 67.464844 21.917969 66.726562 21.953125 L 66.726562 22.117188 L 67.359375 22.117188 L 67.359375 24.179688 C 67.359375 25.09375 68.0625 25.1875 68.332031 25.1875 C 68.859375 25.1875 69.070312 24.660156 69.070312 24.179688 L 69.070312 23.757812 L 68.882812 23.757812 L 68.882812 24.167969 C 68.882812 24.71875 68.660156 25 68.378906 25 C 67.875 25 67.875 24.320312 67.875 24.191406 Z M 67.875 22.117188 "
id="path64" />
<path
fill="none"
stroke-width="0.75"
stroke-linecap="butt"
stroke-linejoin="miter"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 253.199219 52.738281 L 219.453125 52.738281 L 210.398438 43.683594 "
id="path65" />
<path
fill-rule="evenodd"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
stroke-width="0.198874"
stroke-linecap="butt"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 129.816406 -82.074219 L 126.339844 -83.351562 L 129.816406 -84.628906 C 129.261719 -83.875 129.263672 -82.841797 129.816406 -82.074219 Z M 129.816406 -82.074219 "
transform="matrix(1, 1, -1, 1, 0, 0)"
id="path66" />
<path
fill="none"
stroke-width="0.75"
stroke-linecap="butt"
stroke-linejoin="miter"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 253.199219 28.453125 L 170.59375 28.453125 L 161.542969 39.492188 "
id="path67" />
<path
fill-rule="evenodd"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
stroke-width="0.217474"
stroke-linecap="butt"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 58.629054 117.35349 L 54.826771 115.956014 L 58.628651 114.556945 C 58.021143 115.383271 58.025396 116.512595 58.629054 117.35349 Z M 58.629054 117.35349 "
transform="matrix(0.820073, -1, 1, 0.820073, 0, 0)"
id="path68" />
<path
fill="none"
stroke-width="0.75"
stroke-linecap="butt"
stroke-linejoin="miter"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 253.199219 12.003906 L 205.480469 12.003906 "
id="path69" />
<path
fill-rule="evenodd"
fill="rgb(0%, 0%, 0%)"
fill-opacity="1"
stroke-width="0.28125"
stroke-linecap="butt"
stroke-linejoin="round"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 209.402344 13.820312 L 204.488281 12.011719 L 209.402344 10.203125 C 208.617188 11.269531 208.621094 12.730469 209.402344 13.820312 Z M 209.402344 13.820312 "
id="path70" />
<path
fill="none"
stroke-width="0.75"
stroke-linecap="butt"
stroke-linejoin="miter"
stroke="rgb(0%, 0%, 0%)"
stroke-opacity="1"
stroke-miterlimit="4"
d="M 36.230469 68.472656 L 40.257812 68.472656 L 40.257812 61.703125 L 50.113281 61.703125 "
id="path71" />
<g
inkscape:label=""
transform="translate(104.70729,37.791025)"
id="g71">
<g
fill="#000000"
fill-opacity="1"
id="g3"
transform="translate(-117.07,-6.0195)">
<g
id="use2"
transform="translate(116.586,11.457)">
<path
d="m 5.34375,-4.5 c 0.390625,-0.59375 0.703125,-0.65625 1.015625,-0.671875 0.09375,-0.015625 0.125,-0.09375 0.125,-0.15625 0,-0.03125 -0.015625,-0.109375 -0.125,-0.109375 -0.09375,0 -0.0625,0.015625 -0.640625,0.015625 -0.5,0 -0.71875,-0.015625 -0.75,-0.015625 -0.046875,0 -0.15625,0 -0.15625,0.140625 0,0.109375 0.09375,0.125 0.140625,0.125 0.203125,0.015625 0.3125,0.09375 0.3125,0.234375 0,0.125 -0.0625,0.234375 -0.109375,0.296875 L 2.5625,-0.71875 1.90625,-4.828125 c -0.015625,-0.0625 -0.015625,-0.109375 -0.015625,-0.125 0,-0.109375 0.125,-0.21875 0.53125,-0.21875 0.09375,0 0.1875,0 0.1875,-0.15625 0,-0.03125 -0.015625,-0.109375 -0.125,-0.109375 -0.0625,0 -0.390625,0.015625 -0.453125,0.015625 h -0.5 c -0.71875,0 -0.828125,-0.015625 -0.890625,-0.015625 -0.03125,0 -0.15625,0 -0.15625,0.140625 0,0.125 0.109375,0.125 0.21875,0.125 0.40625,0 0.421875,0.0625 0.453125,0.265625 L 1.9375,-0.0625 c 0.015625,0.171875 0.03125,0.234375 0.1875,0.234375 0.125,0 0.171875,-0.078125 0.234375,-0.15625 z m 0,0"
id="path4-1" />
</g>
</g>
<g
fill="#000000"
fill-opacity="1"
id="g4-1"
transform="translate(-117.07,-6.0195)">
<g
id="use3"
transform="translate(121.517,12.453)">
<path
d="M 2.734375,-2.25 C 2.5625,-2.203125 2.5,-2.0625 2.5,-1.96875 c 0,0.09375 0.0625,0.203125 0.203125,0.203125 0.125,0 0.296875,-0.09375 0.296875,-0.34375 0,-0.40625 -0.453125,-0.53125 -0.84375,-0.53125 -0.921875,0 -1.140625,0.609375 -1.140625,0.859375 0,0.484375 0.546875,0.578125 0.703125,0.609375 0.453125,0.078125 0.796875,0.140625 0.796875,0.4375 0,0.125 -0.09375,0.34375 -0.3125,0.453125 -0.234375,0.125 -0.484375,0.140625 -0.671875,0.140625 -0.203125,0 -0.578125,-0.015625 -0.75,-0.21875 0.21875,-0.03125 0.3125,-0.203125 0.3125,-0.34375 0,-0.125 -0.078125,-0.21875 -0.25,-0.21875 -0.15625,0 -0.34375,0.125 -0.34375,0.40625 0,0.328125 0.328125,0.578125 1.03125,0.578125 1.125,0 1.359375,-0.703125 1.359375,-0.96875 0,-0.203125 -0.078125,-0.34375 -0.21875,-0.453125 C 2.484375,-1.53125 2.25,-1.5625 1.96875,-1.609375 1.671875,-1.671875 1.390625,-1.71875 1.390625,-1.953125 c 0,0 0,-0.484375 0.75,-0.484375 0.15625,0 0.453125,0.015625 0.59375,0.1875 z m 0,0"
id="path5-1" />
</g>
</g>
</g>
<g
inkscape:label=""
transform="translate(106.60903,58.281245)"
id="g72">
<g
fill="#000000"
fill-opacity="1"
id="g2"
transform="translate(-118.83,-7.94137)">
<g
id="use1"
transform="translate(118.596,11.457)">
<path
d="m 2.984375,-0.875 c -0.03125,0.15625 -0.40625,0.734375 -0.9375,0.734375 -0.390625,0 -0.53125,-0.296875 -0.53125,-0.640625 0,-0.484375 0.28125,-1.1875 0.453125,-1.640625 C 2.046875,-2.625 2.078125,-2.6875 2.078125,-2.84375 c 0,-0.4375 -0.359375,-0.671875 -0.71875,-0.671875 -0.796875,0 -1.125,1.125 -1.125,1.21875 0,0.078125 0.0625,0.109375 0.125,0.109375 0.109375,0 0.109375,-0.046875 0.140625,-0.125 0.203125,-0.71875 0.546875,-0.984375 0.828125,-0.984375 0.125,0 0.1875,0.078125 0.1875,0.265625 0,0.1875 -0.0625,0.375 -0.171875,0.65625 -0.328125,0.84375 -0.40625,1.1875 -0.40625,1.46875 0,0.78125 0.59375,0.984375 1.0625,0.984375 0.59375,0 0.96875,-0.46875 1,-0.515625 0.125,0.375 0.484375,0.515625 0.765625,0.515625 0.375,0 0.5625,-0.3125 0.609375,-0.4375 0.171875,-0.28125 0.28125,-0.75 0.28125,-0.78125 C 4.65625,-1.1875 4.625,-1.25 4.53125,-1.25 4.4375,-1.25 4.421875,-1.203125 4.359375,-1 c -0.09375,0.40625 -0.234375,0.859375 -0.5625,0.859375 -0.1875,0 -0.265625,-0.15625 -0.265625,-0.375 0,-0.140625 0.078125,-0.40625 0.125,-0.609375 0.046875,-0.203125 0.171875,-0.671875 0.203125,-0.8125 l 0.15625,-0.609375 C 4.0625,-2.765625 4.15625,-3.140625 4.15625,-3.1875 c 0,-0.203125 -0.15625,-0.25 -0.25,-0.25 -0.109375,0 -0.28125,0.078125 -0.34375,0.265625 z m 0,0"
id="path2-1" />
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 107 KiB

After

Width:  |  Height:  |  Size: 107 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 66 KiB

After

Width:  |  Height:  |  Size: 69 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

After

Width:  |  Height:  |  Size: 11 KiB

View File

@ -139,6 +139,11 @@ We can suppose the noise ASD to be flat with frequency and find the maximum valu
*We need inputs and outputs to be in volts for the NASS plant !*
- use 2DoF model of APA and 3 and 4 DoF model of the flexible joints
** TODO [#B] Verify that the specs are correct
[[*Output Voltage Noise][Output Voltage Noise]]
Are we considering output voltage noise for the specs?
** DONE [#A] Make schematic with the plant and all the instrumentation
CLOSED: [2025-02-27 Thu 14:25]
@ -801,34 +806,36 @@ The most important characteristics are the (small signal) bandwidth > 5 [kHz] an
#+caption: Characteristics of the PD200 compared with the specifications
#+attr_latex: :environment tabularx :width \linewidth :align Xcccc
#+attr_latex: :center t :booktabs t :float t
| *Specification* | *PD200* | WMA-200 | LA75B | E-505 |
|---------------------------------------------------------+------------------------------------------+-------------------------------------------+----------------------+-----------|
| Input Voltage Range: $\pm 10\,V$ | $\pm 10\,V$ | $\pm8.75\,V$ | $-1/7.5\,V$ | |
| Output Voltage Range: $-20/150\,V$ | $-50/150\,V$ | $\pm 175\,V$ | $-20/150\,V$ | -30/130 |
| Gain | 20 | 20 | 20 | 10 |
| Output Current $> 50\,mA$ | $900\,mA$ | $150\,mA$ | $360\,mA$ | $215\,mA$ |
| Slew Rate $> 34\,V/ms$ | $150\,V/\mu s$ | $80\,V/\mu s$ | n/a | n/a |
| Output noise (10uF load) $< 20\,mV\ \text{RMS}$ | $0.7\,mV\,\text{RMS}$ ($10\,\mu F$ load) | $0.05\,mV$ ($10\,\mu F$ load) | $3.4\,mV$ | $0.6\,mV$ |
| Small Signal Bandwidth ($10\,\mu F$ load): $> 5\,kHz$ | $6.4\,kHz$ ($10\,\mu F$ load) | $300\,Hz$[fn:detail_instrumentation_1] | $30\,kHz$ (unloaded) | n/a |
| Output Impedance: $< 3.6\,\Omega$ | n/a | $50\,\Omega$[fn:detail_instrumentation_1] | n/a | n/a |
| *Specification* | *PD200* | WMA-200 | LA75B | E-505 |
|--------------------------------------+-----------------------+-------------------------------------------+--------------+-----------|
| Input Voltage Range: $\pm 10\,V$ | $\pm 10\,V$ | $\pm8.75\,V$ | $-1/7.5\,V$ | |
| Output Voltage Range: $-20/150\,V$ | $-50/150\,V$ | $\pm 175\,V$ | $-20/150\,V$ | -30/130 |
| Gain | 20 | 20 | 20 | 10 |
| Output Current $> 50\,mA$ | $900\,mA$ | $150\,mA$ | $360\,mA$ | $215\,mA$ |
| Slew Rate $> 34\,V/ms$ | $150\,V/\mu s$ | $80\,V/\mu s$ | n/a | n/a |
| Output noise $< 20\,mV\ \text{RMS}$ | $0.7\,mV\,\text{RMS}$ | $0.05\,mV$ | $3.4\,mV$ | $0.6\,mV$ |
| (10uF load) | ($10\,\mu F$ load) | ($10\,\mu F$ load) | | |
| Small Signal Bandwidth $> 5\,kHz$ | $6.4\,kHz$ | $300\,Hz$ | $30\,kHz$ | n/a |
| ($10\,\mu F$ load) | ($10\,\mu F$ load) | [fn:detail_instrumentation_1] | (unloaded) | |
| Output Impedance: $< 3.6\,\Omega$ | n/a | $50\,\Omega$[fn:detail_instrumentation_1] | n/a | n/a |
#+name: fig:detail_instrumentation_pd200_specs
#+caption: Caption with reference to sub figure (\subref{fig:detail_instrumentation_pd200_specs_bandwidth})
#+attr_latex: :options [htbp]
#+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:detail_instrumentation_pd200_specs_bandwidth}sub caption a}
#+attr_latex: :options {0.48\textwidth}
#+begin_subfigure
#+attr_latex: :width 0.95\linewidth
[[file:figs/detail_instrumentation_pd200_specs_bandwidth.png]]
#+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:detail_instrumentation_pd200_specs_noise}sub caption b}
#+attr_latex: :options {0.48\textwidth}
#+begin_subfigure
#+attr_latex: :width 0.95\linewidth
[[file:figs/detail_instrumentation_pd200_specs_noise.png]]
#+end_subfigure
#+end_figure
# #+name: fig:detail_instrumentation_pd200_specs
# #+caption: Caption with reference to sub figure (\subref{fig:detail_instrumentation_pd200_specs_bandwidth})
# #+attr_latex: :options [htbp]
# #+begin_figure
# #+attr_latex: :caption \subcaption{\label{fig:detail_instrumentation_pd200_specs_bandwidth}sub caption a}
# #+attr_latex: :options {0.48\textwidth}
# #+begin_subfigure
# #+attr_latex: :width 0.95\linewidth
# [[file:figs/detail_instrumentation_pd200_specs_bandwidth.png]]
# #+end_subfigure
# #+attr_latex: :caption \subcaption{\label{fig:detail_instrumentation_pd200_specs_noise}sub caption b}
# #+attr_latex: :options {0.48\textwidth}
# #+begin_subfigure
# #+attr_latex: :width 0.95\linewidth
# [[file:figs/detail_instrumentation_pd200_specs_noise.png]]
# #+end_subfigure
# #+end_figure
** ADC and DAC
**** Synchronicity and Jitter
@ -1039,15 +1046,15 @@ The specifications are summarized in Table ref:tab:detail_instrumentation_sensor
#+name: tab:detail_instrumentation_sensor_specs
#+caption: Characteristics of the Vionic compared with the specifications
#+attr_latex: :environment tabularx :width 0.6\linewidth :align Xccc
#+attr_latex: :environment tabularx :width 0.9\linewidth :align Xccc
#+attr_latex: :center t :booktabs t :float t
| *Specification* | *Renishaw Vionic* | LION CPL190 | Cedrat ECP500 |
|-----------------------------+-------------------+-------------+---------------|
| Bandwidth $> 5\,\text{kHz}$ | > 500 kHz | 10kHz | 20kHz |
| Noise $< 6\,nm\,\text{RMS}$ | 1.6 nm rms | 4 nm rms | 15 nm rms |
| Range $> 100\,\mu m$ | Ruler length | 250 um | 500um |
| In line measurement | | $\times$ | $\checkmark$ |
| Digital Output | $\times$ | | |
| *Specification* | *Renishaw Vionic* | LION CPL190 | Cedrat ECP500 |
|-----------------------------+---------------------+-------------+---------------|
| Bandwidth $> 5\,\text{kHz}$ | $> 500\,\text{kHz}$ | 10kHz | 20kHz |
| Noise $< 6\,nm\,\text{RMS}$ | 1.6 nm rms | 4 nm rms | 15 nm rms |
| Range $> 100\,\mu m$ | Ruler length | 250 um | 500um |
| In line measurement | | $\times$ | $\times$ |
| Digital Output | $\times$ | | |
* Characterization of Instrumentation
:PROPERTIES:
@ -1107,6 +1114,8 @@ The ADC noise of the IO131 was simply measured by short-circuiting its input wit
Results are shown in Figure ref:fig:detail_instrumentation_adc_noise_measured.
The ADC noise is a white noise with an amplitude spectral density of $5.6\,\mu V/\sqrt{Hz}$.
RMS value of 0.4mV.
#+begin_src matlab
%% ADC noise
adc = load("2023-08-23_15-42_io131_adc_noise.mat");
@ -1124,6 +1133,11 @@ adc.f = f;
% estimated mean ASD
sprintf('Mean ASD of the ADC: %.1f uV/sqrt(Hz)', 1e6*sqrt(mean(adc.pxx)))
sprintf('Specifications: %.1f uV/sqrt(Hz)', 1e6*max_adc_asd)
% estimated RMS
sprintf('RMS of the ADC: %.2f mV RMS', 1e3*rms(detrend(adc.adc_1,0)))
sprintf('RMS specifications: %.2f mV RMS', max_adc_rms)
% Estimate quantization noise of the IO318 ADC
delta_V = 20; % +/-10 V
@ -1139,8 +1153,8 @@ adc.q_asd = sqrt(adc.q_psd); % Quantization noise Amplitude Spectral Density [V/
%% Measured ADC noise (IO318)
figure;
hold on;
plot(adc.f, sqrt(adc.pxx), 'color', colors(3,:), 'DisplayName', sprintf('Measured, %.2f mV RMS', 1e3*rms(detrend(adc.adc_1,0))))
plot([adc.f(2), adc.f(end)], [max_adc_asd, max_adc_asd], '--', 'color', colors(3,:), 'DisplayName', sprintf('Specs, %.2f mV RMS', max_adc_rms))
plot(adc.f, sqrt(adc.pxx), 'color', colors(3,:), 'DisplayName', '$\Gamma_{q_{ad}}$')
plot([adc.f(2), adc.f(end)], [max_adc_asd, max_adc_asd], '--', 'color', colors(3,:), 'DisplayName', 'Specs')
plot([adc.f(2), adc.f(end)], [adc.q_asd, adc.q_asd], 'k--', 'DisplayName', 'Quantization noise (16 bits, $\pm 10\,V$)')
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
@ -1271,28 +1285,30 @@ hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1);
leg.ItemTokenSize(1) = 15;
xlim([0, 50]);
xlim([0, 20]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file none
exportFig('figs/detail_instrumentation_step_response_force_sensor.pdf', 'width', 500, 'height', 300);
exportFig('figs/detail_instrumentation_step_response_force_sensor.pdf', 'width', 'third', 'height', 300);
#+end_src
#+attr_latex: :options [b]{0.48\linewidth}
#+begin_minipage
#+name: fig:detail_instrumentation_step_response_force_sensor
#+caption: Translation Stage
#+attr_latex: :scale 1 :float nil
[[file:figs/detail_instrumentation_step_response_force_sensor.png]]
#+end_minipage
\hfill
#+attr_latex: :options [b]{0.48\linewidth}
#+begin_minipage
#+name: fig:detail_instrumentation_force_sensor_adc
#+caption: Tilt Stage
#+attr_latex: :width 0.95\linewidth :float nil
#+name: fig:detail_instrumentation_force_sensor
#+caption: Electrical schematic of the ADC measuring the piezoelectric force sensor (\subref{fig:detail_instrumentation_force_sensor_adc}). Measured voltage $V_s$ while step voltages are generated for the actuator stacks (\subref{fig:detail_instrumentation_step_response_force_sensor}).
#+attr_latex: :options [htbp]
#+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:detail_instrumentation_force_sensor_adc}Electrical Schematic}
#+attr_latex: :options {0.61\textwidth}
#+begin_subfigure
#+attr_latex: :scale 1
[[file:figs/detail_instrumentation_force_sensor_adc.png]]
#+end_minipage
#+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:detail_instrumentation_step_response_force_sensor}Signals}
#+attr_latex: :options {0.35\textwidth}
#+begin_subfigure
#+attr_latex: :width 0.95\linewidth
[[file:figs/detail_instrumentation_step_response_force_sensor.png]]
#+end_subfigure
#+end_figure
As shown in Figure ref:fig:detail_instrumentation_step_response_force_sensor, the voltage across the Piezoelectric sensor stack shows a constant voltage offset.
This can be explained by looking at the electrical model shown in Figure ref:fig:detail_instrumentation_force_sensor_adc (taken from cite:reza06_piezoel_trans_vibrat_contr_dampin).
@ -1382,24 +1398,26 @@ xlim([0, 20]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file none
exportFig('figs/detail_instrumentation_step_response_force_sensor_R.pdf', 'width', 500, 'height', 300);
exportFig('figs/detail_instrumentation_step_response_force_sensor_R.pdf', 'width', 'third', 'height', 300);
#+end_src
#+attr_latex: :options [b]{0.48\linewidth}
#+begin_minipage
#+name: fig:detail_instrumentation_step_response_force_sensor_R
#+caption: Translation Stage
#+attr_latex: :scale 1 :float nil
[[file:figs/detail_instrumentation_step_response_force_sensor_R.png]]
#+end_minipage
\hfill
#+attr_latex: :options [b]{0.48\linewidth}
#+begin_minipage
#+name: fig:detail_instrumentation_force_sensor_adc_R
#+caption: Tilt Stage
#+attr_latex: :width 0.95\linewidth :float nil
#+name: fig:detail_instrumentation_force_sensor_R
#+caption: Effect of an added resistor $R_p$ in parallel to the force sensor. The electrical schematic is shown in (\subref{fig:detail_instrumentation_force_sensor_adc_R}) and the measured signals in (\subref{fig:detail_instrumentation_step_response_force_sensor_R}).
#+attr_latex: :options [htbp]
#+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:detail_instrumentation_force_sensor_adc_R}Electrical Schematic}
#+attr_latex: :options {0.61\textwidth}
#+begin_subfigure
#+attr_latex: :scale 1
[[file:figs/detail_instrumentation_force_sensor_adc_R.png]]
#+end_minipage
#+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:detail_instrumentation_step_response_force_sensor_R}Signals}
#+attr_latex: :options {0.35\textwidth}
#+begin_subfigure
#+attr_latex: :width 0.95\linewidth
[[file:figs/detail_instrumentation_step_response_force_sensor_R.png]]
#+end_subfigure
#+end_figure
** Instrumentation Amplifier
@ -1421,6 +1439,8 @@ The maximum amplifier gain of 80dB (i.e. 10000) is used.
The measured voltage is then divided by 10000 to obtain the equivalent noise at the input of the voltage amplifier.
In that case, the noise of the ADC is negligible, thanks to the high gain used.
It was also verified that the bandwidth of the instrumentation amplifier is much larger than 5kHz such that not phase drop are added by the use of the amplifier in the frequency band of interest.
#+begin_src latex :file detail_instrumentation_femto_meas_setup.pdf
\begin{tikzpicture}
\node[block={0.6cm}{0.6cm}] (const) {$0$};
@ -1488,18 +1508,19 @@ hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD [$V/\sqrt{Hz}$]');
legend('location', 'northeast');
xlim([1, 5e3]); ylim([1e-10, 4e-4]);
xticks([1e0, 1e1, 1e2, 1e3])
xlim([1, 5e3]); ylim([2e-10, 1e-7]);
xticks([1e0, 1e1, 1e2, 1e3]);
yticks([1e-9, 1e-8]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file none
exportFig('figs/detail_instrumentation_femto_input_noise.pdf', 'width', 'half', 'height', 'normal');
exportFig('figs/detail_instrumentation_femto_input_noise.pdf', 'width', 'half', 'height', 350);
#+end_src
#+attr_latex: :options [b]{0.48\linewidth}
#+begin_minipage
#+name: fig:detail_instrumentation_femto_meas_setup
#+caption: Translation Stage
#+caption: Measurement of the instrumentation amplifier input voltage noise
#+attr_latex: :scale 1 :float nil
[[file:figs/detail_instrumentation_femto_meas_setup.png]]
#+end_minipage
@ -1507,14 +1528,12 @@ exportFig('figs/detail_instrumentation_femto_input_noise.pdf', 'width', 'half',
#+attr_latex: :options [b]{0.48\linewidth}
#+begin_minipage
#+name: fig:detail_instrumentation_femto_input_noise
#+caption: Tilt Stage
#+caption: Obtained ASD of the instrumentation amplifier input voltage noise
#+attr_latex: :scale 1 :float nil
[[file:figs/detail_instrumentation_femto_input_noise.png]]
#+end_minipage
** Digital to Analog Converters
**** Noise Measurement
In order not to have any quantization noise and only measure the output voltage noise of the DAC, we "ask" the DAC to output a zero voltage.
The measurement setup is schematically represented in Figure ref:fig:detail_instrumentation_dac_setup.
@ -1583,7 +1602,7 @@ And it is verified that the Amplitude Spectral Density of $n_{da}$ is much large
#+end_src
#+name: fig:detail_instrumentation_dac_setup
#+caption: Figure caption
#+caption: Measurement of the DAC output voltage noise. A pre-amplifier with a gain of 1000 is used before measuring the signal with the ADC.
#+RESULTS:
[[file:figs/detail_instrumentation_dac_setup.png]]
@ -1604,6 +1623,14 @@ Noverlap = floor(Nfft/2);
dac.pxx = pxx(f<=5e3);
dac.f = f(f<=5e3);
% Estimated mean ASD
sprintf('Mean ASD of the DAC: %.1f uV/sqrt(Hz)', 1e6*sqrt(mean(dac.pxx)))
sprintf('Specifications: %.1f uV/sqrt(Hz)', 1e6*max_dac_asd)
% Estimated RMS
sprintf('RMS of the DAC: %.2f mV RMS', 1e3*rms(dac.Vn))
sprintf('RMS specifications: %.2f mV RMS', max_dac_rms)
#+end_src
The obtained Amplitude Spectral Density of the DAC's output voltage is shown in Figure ref:fig:detail_instrumentation_dac_output_noise.
@ -1611,20 +1638,22 @@ It is almost white noise with an ASD of 0.6uV/sqrt(Hz).
There is a little bit of 50Hz, and some low frequency noise (thermal noise?) which are not foreseen to be an issue as it will be inside the bandwidth.
#+begin_src matlab :exports none
colors = get(gca,'colororder');
figure;
tiledlayout(1, 1, 'TileSpacing', 'compact', 'Padding', 'None');
ax1 = nexttile();
hold on;
plot(femto.f, sqrt(femto.pxx), 'color', colors(5,:), 'DisplayName', '$\Gamma_{n_a}$');
plot(dac.f, sqrt(dac.pxx), 'color', colors(1,:), 'DisplayName', '$\Gamma_{n_{da}}$');
plot([dac.f(2), dac.f(end)], [max_dac_asd, max_dac_asd], '--', 'color', colors(1,:), 'DisplayName', 'DAC specs')
plot(adc.f, sqrt(adc.pxx)./dac.notes.pre_amp.gain, 'color', colors(3,:), 'DisplayName', '$\Gamma_{q_{ad}}/|G_a|$')
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD [$V/\sqrt{Hz}$]');
leg = legend('location', 'east', 'FontSize', 8, 'NumColumns', 1);
leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1);
leg.ItemTokenSize(1) = 15;
xlim([1, 5e3]); ylim([1e-10, 4e-4]);
xticks([1e0, 1e1, 1e2, 1e3])
xlim([1, 5e3]); ylim([2e-10, 4e-4]);
xticks([1e0, 1e1, 1e2, 1e3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file none
@ -1680,7 +1709,7 @@ ylim([-200, 20])
linkaxes([ax1,ax2],'x');
xlim([1, 5e3]);
xticks([1e0, 1e1, 1e2, 1e3])
xticks([1e0, 1e1, 1e2, 1e3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
@ -1688,16 +1717,16 @@ exportFig('figs/detail_instrumentation_dac_adc_tf.pdf', 'width', 'half', 'height
#+end_src
#+name: fig:detail_instrumentation_dac
#+caption: Measure transfer function from DAC to ADC - It fits a pure "1-sample" delay (\subref{fig:fig_label_a})
#+caption: Measurement of the output voltage noise of the ADC (\subref{fig:detail_instrumentation_dac_output_noise}) and measured transfer function from DAC to ADC (\subref{fig:detail_instrumentation_dac_adc_tf}) which corresponds to a "1-sample" delay.
#+attr_latex: :options [htbp]
#+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:detail_instrumentation_dac_output_noise}sub caption a}
#+attr_latex: :caption \subcaption{\label{fig:detail_instrumentation_dac_output_noise}Output noise of the DAC}
#+attr_latex: :options {0.48\textwidth}
#+begin_subfigure
#+attr_latex: :width 0.95\linewidth
[[file:figs/detail_instrumentation_dac_output_noise.png]]
#+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:detail_instrumentation_dac_adc_tf}sub caption b}
#+attr_latex: :caption \subcaption{\label{fig:detail_instrumentation_dac_adc_tf}Transfer function from DAC to ADC}
#+attr_latex: :options {0.48\textwidth}
#+begin_subfigure
#+attr_latex: :width 0.95\linewidth
@ -1768,56 +1797,11 @@ Two piezoelectric stacks of the APA95ML are connected to the PD200 output to hav
#+end_src
#+name: fig:detail_instrumentation_pd200_setup
#+caption: Sources of noise in the experimental setup
#+caption: Setup used to measured the output voltage noise of the PD200 voltage amplifier. A gain $G_a = 1000$ was used for the instrumentation amplifier.
#+RESULTS:
[[file:figs/detail_instrumentation_pd200_setup.png]]
#+begin_src matlab :exports none
%% PD200 Input Voltage Noise
% Load all the measurements
pd200w = load('noise_PD200_4_3uF.mat', 't', 'Vn', 'notes');
% Take into account the pre-amplifier gain and PD200 Gain
pd200w.Vn = pd200w.Vn/pd200w.notes.pre_amp.gain/20;
#+end_src
The measured low frequency (<20Hz) *output* noise of one of the PD200 amplifiers is shown in Figure ref:fig:pd200_noise_time_lpf.
It is very similar to the one specified in the datasheet in Figure ref:fig:pd200_expected_noise.
#+begin_src matlab :exports none
% Compute the low frequency noise
G_lpf = 1/(1 + s/2/pi/20);
t_max = 40;
figure;
hold on;
plot(pd200w.t(1:t_max/Ts), 20*lsim(G_lpf, 1e3*pd200w.Vn(1:t_max/Ts), pd200w.t(1:t_max/Ts)))
hold off;
xlabel('Time [s]');
ylabel('Voltage [mV]');
ylim([-3, 3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/pd200_noise_time_lpf.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:pd200_noise_time_lpf
#+caption: Measured low frequency noise of the PD200 from 0.01Hz to 20Hz
#+RESULTS:
[[file:figs/pd200_noise_time_lpf.png]]
The obtained RMS and peak to peak values of the measured *output* noise are shown in Table ref:tab:rms_pkp_noise and found to be very similar to the specified ones.
| | *RMS [$\mu V$]* | *Peak to Peak [$mV$]* |
|-----------------------------+-----------------+-----------------------|
| Specification [$10\,\mu F$] | 714.0 | 4.3 |
| PD200 1 | 565.1 | 3.7 |
| PD200 2 | 767.6 | 3.5 |
| PD200 3 | 479.9 | 3.0 |
| PD200 4 | 615.7 | 3.5 |
| PD200 5 | 651.0 | 2.4 |
| PD200 6 | 473.2 | 2.7 |
| PD200 7 | 423.1 | 2.3 |
# Can say that measurements are found to be very close to the one specified in the documentation.
The Amplitude Spectral Density $\Gamma_n(\omega)$ of the measured signal by the ADC is computed.
The Amplitude Spectral Density of the input voltage noise of the PD200 amplifier $n_p$ is then computed taking into account the gain of the pre-amplifier and the gain of the PD200 amplifier:
@ -1831,16 +1815,16 @@ And we verify that we are indeed measuring the noise of the PD200 and not the no
\end{equation}
#+begin_src matlab :exports none
%% PD200 Input Voltage Noise
%% PD200 Output Voltage Noise
% Load all the measurements
pd200 = {};
for i = 1:6
pd200(i) = {load(['mat/noise_PD200_' num2str(i) '_10uF.mat'], 't', 'Vout', 'notes')};
end
% Take into account the pre-amplifier gain and PD200 Gain
% Take into account the pre-amplifier gain
for i = 1:6
pd200{i}.Vout = pd200{i}.Vout/pd200{i}.notes.pre_amp.gain/20;
pd200{i}.Vout = pd200{i}.Vout/pd200{i}.notes.pre_amp.gain;
end
% Sampling time / frequency
@ -1857,9 +1841,13 @@ for i = 1:6
pd200{i}.pxx = pxx(f<=5e3);
pd200{i}.f = f(f<=5e3);
end
% Estimated RMS
sprintf('RMS of the PD200: %.2f mV RMS', 1e3*rms(detrend(pd200{1}.Vout,0)))
sprintf('RMS specifications: %.2f mV RMS', max_amp_rms)
#+end_src
The Amplitude Spectral Density of the measured *input* noise is computed and shown in Figure ref:fig:asd_noise_pd200_10uF.
The Amplitude Spectral Density of the measured *input* noise is computed and shown in Figure ref:fig:detail_instrumentation_pd200_noise.
It is verified that the contribution of the PD200 noise is much larger than the contribution of the pre-amplifier noise of the quantization noise.
@ -1930,7 +1918,10 @@ end
Gp = 20/(1 + s/2/pi/25e3);
#+end_src
The obtained transfer functions from $V_{in}$ to $V_{out}$ are shown in Figure ref:fig:pd200_small_signal_tf.
We can see the very well matching between all the 7 amplifiers.
The amplitude is constant over a wide frequency band and the phase drop is limited to less than 1 degree up to 500Hz.
The identified dynamics in Figure ref:fig:detail_instrumentation_pd200_tf can very well be modeled this dynamics with a first order low pass filter (even a constant could work fine).
#+begin_src matlab :exports none
figure;
@ -1938,27 +1929,25 @@ tiledlayout(3, 1, 'TileSpacing', 'compact', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
for i = 1:length(pd200)
plot(pd200{i}.f, abs(pd200{i}.tf), 'color', [colors(2,:), 0.5])
end
plot(pd200{1}.f, abs(squeeze(freqresp(Gp, pd200{1}.f, 'Hz'))), 'k--')
plot(pd200{1}.f, abs(pd200{1}.tf), '-', 'color', [colors(2,:), 0.5], 'linewidth', 2.5, 'DisplayName', 'Measurement')
plot(pd200{1}.f, abs(squeeze(freqresp(Gp, pd200{1}.f, 'Hz'))), '--', 'color', colors(2,:), 'DisplayName', 'Model')
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude $V_{out}/V_{in}$ [V/V]'); set(gca, 'XTickLabel',[]);
ylabel('Magnitude [V/V]'); set(gca, 'XTickLabel',[]);
hold off;
ylim([1, 1e2]);
leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1);
leg.ItemTokenSize(1) = 15;
ax2 = nexttile;
hold on;
for i = 1:length(pd200)
plot(pd200{i}.f, 180/pi*unwrap(angle(pd200{i}.tf)), 'color', [colors(2,:), 0.5])
end
plot(pd200{1}.f, 180/pi*unwrap(angle(squeeze(freqresp(Gp, pd200{1}.f, 'Hz')))), 'k--')
plot(pd200{1}.f, 180/pi*unwrap(angle(pd200{1}.tf)), '-', 'color', [colors(2,:), 0.5], 'linewidth', 2.5)
plot(pd200{1}.f, 180/pi*unwrap(angle(squeeze(freqresp(Gp, pd200{1}.f, 'Hz')))), '--', 'color', colors(2,:))
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
yticks(-360:5:360);
ylim([-45, 5]);
yticks(-360:2:360);
ylim([-13, 1]);
linkaxes([ax1,ax2],'x');
xlim([1, 5e3]);
@ -1973,11 +1962,6 @@ exportFig('figs/detail_instrumentation_pd200_tf.pdf', 'width', 'wide', 'height',
#+RESULTS:
[[file:figs/detail_instrumentation_pd200_tf.png]]
We can see the very well matching between all the 7 amplifiers.
The amplitude is constant over a wide frequency band and the phase drop is limited to less than 1 degree up to 500Hz.
The identified dynamics in Figure ref:fig:pd200_small_signal_tf can very well be modeled this dynamics with a first order low pass filter (even a constant could work fine).
**** Output Impedance
The goal of this experimental setup is to estimate the output impedance $R_\text{out}$ of the PD200 voltage amplifiers.
@ -2023,20 +2007,19 @@ f0 = 1./(R_out*Cp)
#+name: tab:table_name
#+caption: Measured characteristics, Manual characterstics and specified ones
#+attr_latex: :environment tabularx :width \linewidth :align lXXX
#+attr_latex: :environment tabularx :width \linewidth :align Xcc
#+attr_latex: :center t :booktabs t :float t
| <l> | <c> | <c> | <c> |
| *Characteristics* | *Measurement* | *Manual* | *Specification* |
|-------------------------------------+---------------+--------------+-----------------|
| Input Voltage Range | - | +/- 10 [V] | +/- 10 [V] |
| Output Voltage Range | - | -50/150 [V] | -20/150 [V] |
| Gain | | 20 [V/V] | - |
| Maximum RMS current | | 0.9 [A] | > 50 [mA] |
| Maximum Pulse current | | 10 [A] | - |
| Slew Rate | | 150 [V/us] | - |
| Noise (10uF load) | | 0.7 [mV RMS] | < 2 [mV rms] |
| Small Signal Bandwidth (10uF load) | | 7.4 [kHz] | > 5 [kHz] |
| Large Signal Bandwidth (150V, 10uF) | | 300 [Hz] | - |
| *Characteristics* | *Specification* | *Measurement* |
|-------------------------------------+-----------------+---------------|
| Input Voltage Range | +/- 10 [V] | - |
| Output Voltage Range | -20/150 [V] | - |
| Gain | 20 | 20 |
| Maximum RMS current | > 50 [mA] | |
| Maximum Pulse current | - | |
| Slew Rate | - | |
| Noise (10uF load) | < 2 [mV rms] | |
| Small Signal Bandwidth (10uF load) | > 5 [kHz] | |
| Large Signal Bandwidth (150V, 10uF) | - | |
** Noise of the full setup with 16bits DAC :noexport:
@ -2135,15 +2118,15 @@ Then, the measured signal $y_m$ corresponds to the noise $n$.
The measurement bench is shown in Figures ref:fig:meas_bench_top_view and ref:fig:meas_bench_side_view.
Note that the bench is then covered with a "plastic bubble sheet" in order to keep disturbances as small as possible.
#+name: fig:meas_bench_top_view
#+caption: Top view picture of the measurement bench
#+attr_latex: :width 0.8\linewidth
[[file:figs/IMG_20210211_170554.jpg]]
# #+name: fig:meas_bench_top_view
# #+caption: Top view picture of the measurement bench
# #+attr_latex: :width 0.8\linewidth
# [[file:figs/IMG_20210211_170554.jpg]]
#+name: fig:meas_bench_side_view
#+caption: Side view picture of the measurement bench
#+attr_latex: :width 0.8\linewidth
[[file:figs/IMG_20210211_170607.jpg]]
# #+name: fig:meas_bench_side_view
# #+caption: Side view picture of the measurement bench
# #+attr_latex: :width 0.8\linewidth
# [[file:figs/IMG_20210211_170607.jpg]]
Then, and for all the 7 encoders, we record the measured motion during 100s with a sampling frequency of 20kHz.
@ -2178,7 +2161,9 @@ xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]');
xlim([1, 5e3]); ylim([1e-12, 1e-8]);
#+end_src
** External Metrology
** TODO External Metrology :noexport:
Should this be included here?
[[file:~/Cloud/work-projects/ID31-NASS/matlab/test-bench-attocube/test-bench-attocube.org][test-bench-attocube]]
@ -2192,51 +2177,78 @@ For the final tests, QuDIS were used.
** Conclusion
#+begin_src matlab
%% Estimate the resulting errors induced by noise of instruments
f = dac.f;
length(dac.pxx)
length(adc.pxx)
length(pd200{1}.pxx)
length(enc{1}.pxx)
% Vertical direction
psd_z_dac = 6*(abs(squeeze(freqresp(Gd('z', 'nda1' ), f, 'Hz'))).^2).*dac.pxx;
psd_z_adc = 6*(abs(squeeze(freqresp(Gd('z', 'nad1' ), f, 'Hz'))).^2).*adc.pxx;
psd_z_amp = 6*(abs(squeeze(freqresp(Gd('z', 'namp1'), f, 'Hz'))).^2).*pd200{1}.pxx;
psd_z_enc = 6*(abs(squeeze(freqresp(Gd('z', 'ddL1' ), f, 'Hz'))).^2).*enc{1}.pxx;
psd_z_tot = psd_z_dac + psd_z_adc + psd_z_amp + psd_z_enc;
rms_z_dac = sqrt(trapz(f, psd_z_dac));
rms_z_adc = sqrt(trapz(f, psd_z_adc));
rms_z_amp = sqrt(trapz(f, psd_z_amp));
rms_z_enc = sqrt(trapz(f, psd_z_enc));
rms_z_tot = sqrt(trapz(f, psd_z_tot));
% Lateral direction
psd_y_dac = 6*(abs(squeeze(freqresp(Gd('y', 'nda1' ), f, 'Hz'))).^2).*dac.pxx;
psd_y_adc = 6*(abs(squeeze(freqresp(Gd('y', 'nad1' ), f, 'Hz'))).^2).*adc.pxx;
psd_y_amp = 6*(abs(squeeze(freqresp(Gd('y', 'namp1'), f, 'Hz'))).^2).*pd200{1}.pxx;
psd_y_enc = 6*(abs(squeeze(freqresp(Gd('y', 'ddL1' ), f, 'Hz'))).^2).*enc{1}.pxx;
psd_y_tot = psd_y_dac + psd_y_adc + psd_y_amp + psd_y_enc;
rms_y_tot = sqrt(trapz(f, psd_y_tot));
#+end_src
- [ ] Compare with measurement noise? or effect of measurement noise => higher so it's OK?
- [ ] Or compare with specifications?
- [ ] Or compare with specifications? (but we don't have specifications for ASD, only RMS)
- [ ] Or maybe put the ASD of the measured vibration in simulation (or noise budget based on disturbances) => show that we are bellow disturbances so it should not be limited
From all the measured noises, compute the obtained PSD error in Y and Z (show PSD of individual + Sum + Cumulative?)
#+begin_src matlab :exports none :results none
%% Measured output voltage noise of the PD200 amplifiers
%% Closed-loop noise budgeting using measured noise of instrumentation
figure;
hold on;
plot(f, sqrt(psd_z_tot), 'k-', 'linewidth', 2, 'DisplayName', sprintf('Total: %.1f nm RMS', 1e9*rms_z_tot));
plot(f, sqrt(psd_z_amp), 'color', colors(2, :), 'DisplayName', 'PD200');
plot(f, sqrt(psd_z_dac), 'color', colors(1,:), 'DisplayName', 'DAC')
plot(f, sqrt(psd_z_adc), 'color', colors(3,:), 'DisplayName', 'ADC')
plot(f, sqrt(psd_z_enc), 'color', colors(5,:), 'DisplayName', 'ENC')
plot(f, sqrt(psd_z_amp), 'color', [colors(2,:)], 'linewidth', 2.5, 'DisplayName', 'PD200');
plot(f, sqrt(psd_z_dac), 'color', [colors(1,:)], 'linewidth', 2.5, 'DisplayName', 'DAC')
plot(f, sqrt(psd_z_adc), 'color', [colors(3,:)], 'linewidth', 2.5, 'DisplayName', 'ADC')
plot(f, sqrt(psd_z_tot), 'k-', 'DisplayName', sprintf('Total: %.1f nm RMS', 1e9*rms_z_tot));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]');
leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1);
leg.ItemTokenSize(1) = 15;
xlim([1, 5e3]);
xticks([1e0, 1e1, 1e2, 1e3])
xlim([1, 5e3]); ylim([1e-14, 1e-9]);
xticks([1e0, 1e1, 1e2, 1e3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/detail_instrumentation_cl_noise_budget.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:detail_instrumentation_cl_noise_budget
#+caption: Closed-loop noise budgeting using measured noise of instrumentation
#+RESULTS:
[[file:figs/detail_instrumentation_cl_noise_budget.png]]
* Conclusion
:PROPERTIES:
:UNNUMBERED: t
:END:
<<sec:detail_instrumentation_conclusion>>
- thanks to multi-body model in which it is easy to include instrumentation and noise sources
From specification on the sample's vertical motion (most stringent requirement), specification for each noise source was extracted.
- based on those specifications, adequate instrumentation were chosen.
for some instrumentation, it was difficult to choose only based on data-sheets are manufacturers often don't share relevant information for noise budgets, such as amplitude spectral densities
- then, the instrumentation was procured and tested individually.
All were found to comply with the requirements.
Finally, based on the measured noise of all instrumentation, the expected sample's vibration induced by all the noise sources was estimated and found to comply with the requirements.
* Bibliography :ignore:
#+latex: \printbibliography[heading=bibintoc,title={Bibliography}]

Binary file not shown.

View File

@ -1,4 +1,4 @@
% Created 2025-03-14 Fri 22:33
% Created 2025-03-15 Sat 10:44
% Intended LaTeX compiler: pdflatex
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
@ -43,6 +43,7 @@ The received instrumentation are characterized in Section \ref{sec:detail_instru
\end{figure}
\chapter{Dynamic Error Budgeting}
\label{sec:org5318a4e}
\label{sec:detail_instrumentation_dynamic_error_budgeting}
\textbf{Goal}:
\begin{itemize}
@ -66,6 +67,7 @@ As the voltage amplifier gain will impact how the DAC noise will be amplified, s
\item Assumption of voltage amplifier with gain 20
\end{itemize}
\section{Closed-Loop Sensitivity to Instrumentation Disturbances}
\label{sec:org0921bec}
The following noise sources are considered (Figure \ref{fig:detail_instrumentation_plant}):
\begin{itemize}
@ -87,6 +89,7 @@ The lateral error was also considered, but the specifications are less stringent
\end{figure}
\section{Estimation of maximum instrumentation noise}
\label{sec:orgd3ab02f}
From previous analysis, we know how the noise of the instrumentation will affect the vertical error of the sample.
Now, we want to determine specifications for each instrumentation such that the effect on the vertical error of the sample is within specifications.
@ -147,6 +150,7 @@ RMS Noise & \(0.8\,mV\,\text{RMS}\) & \(1\,mV\,\text{RMS}\) & \(20\,mV\,\text{RM
If the Amplitude Spectral Density of the noise of the ADC, DAC and voltage amplifiers are all below the specified maximum noises, then the induced vertical error will be below 15nmRMS.
\chapter{Choice of Instrumentation}
\label{sec:orge67db89}
\label{sec:detail_instrumentation_choice}
In previous section: noise characteristics.
In this section, other characteristics (range, bandwidth, etc\ldots{})
@ -161,12 +165,14 @@ In this section, also tell which instrumentation has been bought, and different
\item[{$\square$}] block diagram of the model of the amplifier
\end{itemize}
\section{Piezoelectric Voltage Amplifier}
\label{sec:org584716c}
There are several characteristics of the piezoelectric voltage amplifiers that should be considered.
To be able to use the full stroke of the piezoelectric actuator, the voltage output should be between -20 and 150V.
It should accept an analog input voltage, preferably between -10 and 10V.
\paragraph{Small signal Bandwidth and Output Impedance}
\label{sec:orgf100305}
There are two bandwidth that should be considered for a piezoelectric voltage amplifier: large signal bandwidth and small signal bandwidth.
Large signal bandwidth are linked to the output current capacities of the amplifier and will be discussed next.
@ -193,6 +199,7 @@ As the capacitance load of the two piezoelectric stacks correspond to a capacita
If a small signal bandwidth of \(f_0 = \frac{\omega_0}{2\pi} = 5\,kHz\) is wanted, it corresponds to a maximum output impedance of \(R_0 = 3.6\,\Omega\).
\paragraph{Large signal Bandwidth}
\label{sec:orga060611}
Large signal bandwidth are linked to the maximum output capabilities of the amplifiers in terms of amplitude as a function of frequency \cite{spengen16_high_voltag_amplif}.
@ -211,6 +218,7 @@ In order to reach high voltage at high frequency, the required current that the
\end{itemize}
\paragraph{Output voltage noise}
\label{sec:orga1946e3}
As discussed in Section \ref{sec:detail_instrumentation_dynamic_error_budgeting}, the output noise of the voltage amplifier should be smaller than \(20\,mV\,\text{RMS}\).
@ -220,6 +228,7 @@ Therefore, when comparing noise of different voltage amplifiers, it should be no
Here, the output noise should be smaller than 20mVRMS for a load of 8.8uF.
\paragraph{Choice of voltage amplifier}
\label{sec:org3c7c558}
The specifications as well as the amplifier characteristics as shown in the datasheet are summarized in Table \ref{tab:pd200_characteristics}.
@ -249,31 +258,20 @@ Output Voltage Range: \(-20/150\,V\) & \(-50/150\,V\) & \(\pm 175\,V\) & \(-20/1
Gain & 20 & 20 & 20 & 10\\
Output Current \(> 50\,mA\) & \(900\,mA\) & \(150\,mA\) & \(360\,mA\) & \(215\,mA\)\\
Slew Rate \(> 34\,V/ms\) & \(150\,V/\mu s\) & \(80\,V/\mu s\) & n/a & n/a\\
Output noise (10uF load) \(< 20\,mV\ \text{RMS}\) & \(0.7\,mV\,\text{RMS}\) (\(10\,\mu F\) load) & \(0.05\,mV\) (\(10\,\mu F\) load) & \(3.4\,mV\) & \(0.6\,mV\)\\
Small Signal Bandwidth (\(10\,\mu F\) load): \(> 5\,kHz\) & \(6.4\,kHz\) (\(10\,\mu F\) load) & \(300\,Hz\)\footnotemark & \(30\,kHz\) (unloaded) & n/a\\
Output Impedance: \(< 3.6\,\Omega\) & n/a & \(50\,\Omega\)\textsuperscript{\ref{org9c934eb}} & n/a & n/a\\
Output noise \(< 20\,mV\ \text{RMS}\) & \(0.7\,mV\,\text{RMS}\) & \(0.05\,mV\) & \(3.4\,mV\) & \(0.6\,mV\)\\
(10uF load) & (\(10\,\mu F\) load) & (\(10\,\mu F\) load) & & \\
Small Signal Bandwidth \(> 5\,kHz\) & \(6.4\,kHz\) & \(300\,Hz\) & \(30\,kHz\) & n/a\\
(\(10\,\mu F\) load) & (\(10\,\mu F\) load) & \footnotemark & (unloaded) & \\
Output Impedance: \(< 3.6\,\Omega\) & n/a & \(50\,\Omega\)\textsuperscript{\ref{org28ed3ea}} & n/a & n/a\\
\bottomrule
\end{tabularx}
\end{table}\footnotetext[1]{\label{org9c934eb}The manufacturer proposed to remove the \(50\,\Omega\) output resistor to improve to small signal bandwidth above \(10\,kHz\)}
\end{table}\footnotetext[1]{\label{org28ed3ea}The manufacturer proposed to remove the \(50\,\Omega\) output resistor to improve to small signal bandwidth above \(10\,kHz\)}
\begin{figure}[htbp]
\begin{subfigure}{0.48\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_instrumentation_pd200_specs_bandwidth.png}
\end{center}
\subcaption{\label{fig:detail_instrumentation_pd200_specs_bandwidth}sub caption a}
\end{subfigure}
\begin{subfigure}{0.48\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_instrumentation_pd200_specs_noise.png}
\end{center}
\subcaption{\label{fig:detail_instrumentation_pd200_specs_noise}sub caption b}
\end{subfigure}
\caption{\label{fig:detail_instrumentation_pd200_specs}Caption with reference to sub figure (\subref{fig:detail_instrumentation_pd200_specs_bandwidth})}
\end{figure}
\section{ADC and DAC}
\label{sec:org80ca7dd}
\paragraph{Synchronicity and Jitter}
\label{sec:orge597a56}
For control systems, it is very important that the inputs and outputs are sampled synchronously with the controller and with low jitter \cite{abramovitch22_pract_method_real_world_contr_system,abramovitch23_tutor_real_time_comput_issues_contr_system}.
@ -285,6 +283,7 @@ Therefore, the ADC and DAC:
\end{itemize}
\paragraph{Sampling Frequency, Bandwidth and delays}
\label{sec:org41d5214}
Several requirements that may appear the same but are different:
\begin{itemize}
@ -300,6 +299,7 @@ Therefore, Sigma-Delta ADC are very well used for signal acquisition, but has li
Therefore, for real time control applications, SAR-ADC (Successive approximation ADCs) is still the mostly applied type because of its single sample latency.
\paragraph{ADC Noise}
\label{sec:org323f222}
From the dynamical error budget in Section \ref{sec:detail_instrumentation_dynamic_error_budgeting}
Measurement noise ASD should be bellow 11uV/sqrt(Hz), 0.8mV RMS
@ -364,11 +364,13 @@ The minimum number of bits so that the quantization noise is above some define v
With a sampling frequency \(F_s = 10\,kHz\), a full range of \(\Delta V = 20\,V\) and a maximum allowed ASD \(\Phi_{\text{max}} = 11\,\mu V/\sqrt{Hz}\), the minimum number of bits is \(n_{\text{min}} = 12.4\), which is easily satisfied.
\paragraph{DAC Output voltage noise}
\label{sec:org30caf00}
Similarly, the DAC output voltage noise ASD should be below \(14\,\mu V/\sqrt{Hz}\), 1mV RMS.
This corresponds to a 13bits +/-10V DAC.
\paragraph{Choice of the ADC and DAC Board}
\label{sec:org1df7a52}
Based on the above analysis, the choice of ADC and DAC is quite simple.
@ -394,6 +396,7 @@ Noise is not specified, but as it has 16 bits resolution, it should be well belo
It will be experimentally measured in Section \ref{sec:detail_instrumentation_characterization}.
\section{Relative Displacement Sensors}
\label{sec:org2dd10f4}
Specifications:
\begin{itemize}
@ -464,20 +467,21 @@ The specifications are summarized in Table \ref{tab:detail_instrumentation_senso
\begin{table}[htbp]
\caption{\label{tab:detail_instrumentation_sensor_specs}Characteristics of the Vionic compared with the specifications}
\centering
\begin{tabularx}{0.6\linewidth}{Xccc}
\begin{tabularx}{0.9\linewidth}{Xccc}
\toprule
\textbf{Specification} & \textbf{Renishaw Vionic} & LION CPL190 & Cedrat ECP500\\
\midrule
Bandwidth \(> 5\,\text{kHz}\) & > 500 kHz & 10kHz & 20kHz\\
Bandwidth \(> 5\,\text{kHz}\) & \(> 500\,\text{kHz}\) & 10kHz & 20kHz\\
Noise \(< 6\,nm\,\text{RMS}\) & 1.6 nm rms & 4 nm rms & 15 nm rms\\
Range \(> 100\,\mu m\) & Ruler length & 250 um & 500um\\
In line measurement & & \(\times\) & \(\checkmark\)\\
In line measurement & & \(\times\) & \(\times\)\\
Digital Output & \(\times\) & & \\
\bottomrule
\end{tabularx}
\end{table}
\chapter{Characterization of Instrumentation}
\label{sec:org3c1dd2e}
\label{sec:detail_instrumentation_characterization}
All the instrumentation was then procured and tested individually to verify whether is fulfils the specifications or not.
@ -494,14 +498,18 @@ blue & DAC\\
\item[{$\square$}] Make sure that at some point I talk about twisted pairs etc.. Maybe use the nice schematic?
\end{itemize}
\section{Analog to Digital Converters}
\label{sec:orga04d2a2}
Internally uses the AD7609 ADC from Analog Devices.
200kSPS, 16 bits, +/-10V
\paragraph{Measured Noise}
\label{sec:org485cf0d}
The ADC noise of the IO131 was simply measured by short-circuiting its input with a 50 Ohm resistor.
Results are shown in Figure \ref{fig:detail_instrumentation_adc_noise_measured}.
The ADC noise is a white noise with an amplitude spectral density of \(5.6\,\mu V/\sqrt{Hz}\).
RMS value of 0.4mV.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/detail_instrumentation_adc_noise_measured.png}
@ -519,6 +527,7 @@ This works because the noise can be approximated by a white noise and the amplit
\paragraph{Reading of piezoelectric force sensor}
\label{sec:org05565b5}
There are few other things to consider when measuring the voltage generated by a piezoelectric stack.
@ -542,19 +551,21 @@ With the capacitance being \(C_p = 4.4 \mu F\), the internal impedance of the Sp
It is close to the specified value of \(1\,M\Omega\) found in the datasheet
\begin{minipage}[b]{0.48\linewidth}
\begin{figure}[htbp]
\begin{subfigure}{0.61\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/detail_instrumentation_step_response_force_sensor.png}
\captionof{figure}{\label{fig:detail_instrumentation_step_response_force_sensor}Translation Stage}
\includegraphics[scale=1,scale=1]{figs/detail_instrumentation_force_sensor_adc.png}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[b]{0.48\linewidth}
\subcaption{\label{fig:detail_instrumentation_force_sensor_adc}Electrical Schematic}
\end{subfigure}
\begin{subfigure}{0.35\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_instrumentation_force_sensor_adc.png}
\captionof{figure}{\label{fig:detail_instrumentation_force_sensor_adc}Tilt Stage}
\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_instrumentation_step_response_force_sensor.png}
\end{center}
\end{minipage}
\subcaption{\label{fig:detail_instrumentation_step_response_force_sensor}Signals}
\end{subfigure}
\caption{\label{fig:detail_instrumentation_force_sensor}Electrical schematic of the ADC measuring the piezoelectric force sensor (\subref{fig:detail_instrumentation_force_sensor_adc}). Measured voltage \(V_s\) while step voltages are generated for the actuator stacks (\subref{fig:detail_instrumentation_step_response_force_sensor}).}
\end{figure}
As shown in Figure \ref{fig:detail_instrumentation_step_response_force_sensor}, the voltage across the Piezoelectric sensor stack shows a constant voltage offset.
This can be explained by looking at the electrical model shown in Figure \ref{fig:detail_instrumentation_force_sensor_adc} (taken from \cite{reza06_piezoel_trans_vibrat_contr_dampin}).
@ -585,21 +596,24 @@ After the resistor is added, the same steps response is performed.
And indeed, we obtain a much smaller offset voltage (\(V_{\text{off}} = 0.15\,V\)) and a much faster time constant (\(\tau = 0.45\,s\)).
This validates the model of the ADC and the effectiveness of the added resistor.
\begin{minipage}[b]{0.48\linewidth}
\begin{figure}[htbp]
\begin{subfigure}{0.61\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/detail_instrumentation_step_response_force_sensor_R.png}
\captionof{figure}{\label{fig:detail_instrumentation_step_response_force_sensor_R}Translation Stage}
\includegraphics[scale=1,scale=1]{figs/detail_instrumentation_force_sensor_adc_R.png}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[b]{0.48\linewidth}
\subcaption{\label{fig:detail_instrumentation_force_sensor_adc_R}Electrical Schematic}
\end{subfigure}
\begin{subfigure}{0.35\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_instrumentation_force_sensor_adc_R.png}
\captionof{figure}{\label{fig:detail_instrumentation_force_sensor_adc_R}Tilt Stage}
\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_instrumentation_step_response_force_sensor_R.png}
\end{center}
\end{minipage}
\subcaption{\label{fig:detail_instrumentation_step_response_force_sensor_R}Signals}
\end{subfigure}
\caption{\label{fig:detail_instrumentation_force_sensor_R}Effect of an added resistor \(R_p\) in parallel to the force sensor. The electrical schematic is shown in (\subref{fig:detail_instrumentation_force_sensor_adc_R}) and the measured signals in (\subref{fig:detail_instrumentation_step_response_force_sensor_R}).}
\end{figure}
\section{Instrumentation Amplifier}
\label{sec:org4ed7494}
Because the ADC noise may be too large to measure noise of other instruments (anything below \(5.6\,\mu V/\sqrt{Hz}\) cannot be distinguish from the noise of the ADC itself), a low noise instrumentation amplifier can be used.
@ -623,23 +637,24 @@ The maximum amplifier gain of 80dB (i.e. 10000) is used.
The measured voltage is then divided by 10000 to obtain the equivalent noise at the input of the voltage amplifier.
In that case, the noise of the ADC is negligible, thanks to the high gain used.
It was also verified that the bandwidth of the instrumentation amplifier is much larger than 5kHz such that not phase drop are added by the use of the amplifier in the frequency band of interest.
\begin{minipage}[b]{0.48\linewidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/detail_instrumentation_femto_meas_setup.png}
\captionof{figure}{\label{fig:detail_instrumentation_femto_meas_setup}Translation Stage}
\captionof{figure}{\label{fig:detail_instrumentation_femto_meas_setup}Measurement of the instrumentation amplifier input voltage noise}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[b]{0.48\linewidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/detail_instrumentation_femto_input_noise.png}
\captionof{figure}{\label{fig:detail_instrumentation_femto_input_noise}Tilt Stage}
\captionof{figure}{\label{fig:detail_instrumentation_femto_input_noise}Obtained ASD of the instrumentation amplifier input voltage noise}
\end{center}
\end{minipage}
\section{Digital to Analog Converters}
\paragraph{Noise Measurement}
\label{sec:org7adcab5}
In order not to have any quantization noise and only measure the output voltage noise of the DAC, we ``ask'' the DAC to output a zero voltage.
The measurement setup is schematically represented in Figure \ref{fig:detail_instrumentation_dac_setup}.
@ -659,7 +674,7 @@ And it is verified that the Amplitude Spectral Density of \(n_{da}\) is much lar
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/detail_instrumentation_dac_setup.png}
\caption{\label{fig:detail_instrumentation_dac_setup}Figure caption}
\caption{\label{fig:detail_instrumentation_dac_setup}Measurement of the DAC output voltage noise. A pre-amplifier with a gain of 1000 is used before measuring the signal with the ADC.}
\end{figure}
The obtained Amplitude Spectral Density of the DAC's output voltage is shown in Figure \ref{fig:detail_instrumentation_dac_output_noise}.
@ -675,21 +690,23 @@ It corresponds to 1 sample delay (Figure \ref{fig:detail_instrumentation_dac_adc
\begin{center}
\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_instrumentation_dac_output_noise.png}
\end{center}
\subcaption{\label{fig:detail_instrumentation_dac_output_noise}sub caption a}
\subcaption{\label{fig:detail_instrumentation_dac_output_noise}Output noise of the DAC}
\end{subfigure}
\begin{subfigure}{0.48\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_instrumentation_dac_adc_tf.png}
\end{center}
\subcaption{\label{fig:detail_instrumentation_dac_adc_tf}sub caption b}
\subcaption{\label{fig:detail_instrumentation_dac_adc_tf}Transfer function from DAC to ADC}
\end{subfigure}
\caption{\label{fig:detail_instrumentation_dac}Measure transfer function from DAC to ADC - It fits a pure ``1-sample'' delay (\subref{fig:fig_label_a})}
\caption{\label{fig:detail_instrumentation_dac}Measurement of the output voltage noise of the ADC (\subref{fig:detail_instrumentation_dac_output_noise}) and measured transfer function from DAC to ADC (\subref{fig:detail_instrumentation_dac_adc_tf}) which corresponds to a ``1-sample'' delay.}
\end{figure}
\section{Piezoelectric Voltage Amplifier}
\label{sec:orgd93524f}
\paragraph{Output Voltage Noise}
\label{sec:orgc975b4b}
The measurement setup is shown in Figure \ref{fig:detail_instrumentation_pd200_setup}.
The input of the PD200 amplifier is shunted with a 50 Ohm resistor such that there in no voltage input expected the PD200 input voltage noise.
The gain of the pre-amplifier is increased in order to measure a signal much larger than the quantization noise of the ADC.
@ -699,35 +716,9 @@ Two piezoelectric stacks of the APA95ML are connected to the PD200 output to hav
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/detail_instrumentation_pd200_setup.png}
\caption{\label{fig:detail_instrumentation_pd200_setup}Sources of noise in the experimental setup}
\caption{\label{fig:detail_instrumentation_pd200_setup}Setup used to measured the output voltage noise of the PD200 voltage amplifier. A gain \(G_a = 1000\) was used for the instrumentation amplifier.}
\end{figure}
The measured low frequency (<20Hz) \textbf{output} noise of one of the PD200 amplifiers is shown in Figure \ref{fig:pd200_noise_time_lpf}.
It is very similar to the one specified in the datasheet in Figure \ref{fig:pd200_expected_noise}.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/pd200_noise_time_lpf.png}
\caption{\label{fig:pd200_noise_time_lpf}Measured low frequency noise of the PD200 from 0.01Hz to 20Hz}
\end{figure}
The obtained RMS and peak to peak values of the measured \textbf{output} noise are shown in Table \ref{tab:rms_pkp_noise} and found to be very similar to the specified ones.
\begin{center}
\begin{tabular}{lrr}
& \textbf{RMS [\(\mu V\)]} & \textbf{Peak to Peak [\(mV\)]}\\
\hline
Specification [\(10\,\mu F\)] & 714.0 & 4.3\\
PD200 1 & 565.1 & 3.7\\
PD200 2 & 767.6 & 3.5\\
PD200 3 & 479.9 & 3.0\\
PD200 4 & 615.7 & 3.5\\
PD200 5 & 651.0 & 2.4\\
PD200 6 & 473.2 & 2.7\\
PD200 7 & 423.1 & 2.3\\
\end{tabular}
\end{center}
The Amplitude Spectral Density \(\Gamma_n(\omega)\) of the measured signal by the ADC is computed.
The Amplitude Spectral Density of the input voltage noise of the PD200 amplifier \(n_p\) is then computed taking into account the gain of the pre-amplifier and the gain of the PD200 amplifier:
\begin{equation}
@ -739,7 +730,7 @@ And we verify that we are indeed measuring the noise of the PD200 and not the no
\Gamma_{n_p}(\omega) |G_p(j\omega)| \ll \Gamma_{n_a}
\end{equation}
The Amplitude Spectral Density of the measured \textbf{input} noise is computed and shown in Figure \ref{fig:asd_noise_pd200_10uF}.
The Amplitude Spectral Density of the measured \textbf{input} noise is computed and shown in Figure \ref{fig:detail_instrumentation_pd200_noise}.
It is verified that the contribution of the PD200 noise is much larger than the contribution of the pre-amplifier noise of the quantization noise.
@ -753,6 +744,7 @@ It is not clear yet what causes such peaks and if these peaks have high influenc
\end{figure}
\paragraph{Small Signal Bandwidth}
\label{sec:orgff5c292}
Here the small signal dynamics of all the PD200 amplifiers are identified.
@ -762,20 +754,19 @@ The output voltage of the PD200 amplifier is measured thanks to the monitor volt
The input voltage of the PD200 amplifier (the generated voltage by the DAC) is measured with another ADC of the Speedgoat.
This way, the time delay related to the ADC will not be apparent in the results.
The obtained transfer functions from \(V_{in}\) to \(V_{out}\) are shown in Figure \ref{fig:pd200_small_signal_tf}.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/pd200_small_signal_tf.png}
\caption{\label{fig:pd200_small_signal_tf}Identified dynamics from input voltage to output voltage}
\end{figure}
We can see the very well matching between all the 7 amplifiers.
The amplitude is constant over a wide frequency band and the phase drop is limited to less than 1 degree up to 500Hz.
The identified dynamics in Figure \ref{fig:pd200_small_signal_tf} can very well be modeled this dynamics with a first order low pass filter (even a constant could work fine).
The identified dynamics in Figure \ref{fig:detail_instrumentation_pd200_tf} can very well be modeled this dynamics with a first order low pass filter (even a constant could work fine).
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/detail_instrumentation_pd200_tf.png}
\caption{\label{fig:detail_instrumentation_pd200_tf}Identified dynamics from input voltage to output voltage}
\end{figure}
\paragraph{Output Impedance}
\label{sec:orgb2297c8}
The goal of this experimental setup is to estimate the output impedance \(R_\text{out}\) of the PD200 voltage amplifiers.
A DAC with a constant output voltage (here 0.1V) is connected to the input of the PD200 amplifier.
@ -800,28 +791,30 @@ With the capacitive load \(C_p = 8.8\,\mu F\), the output resistor of the amplif
We get a corner frequency around \(10\,\text{kHz}\) which is not far from the specified \(7.4\,\text{kHz}\).
\paragraph{Conclusion}
\label{sec:org1118cdb}
\begin{table}[htbp]
\caption{\label{tab:table_name}Measured characteristics, Manual characterstics and specified ones}
\centering
\begin{tabularx}{\linewidth}{lXXX}
\begin{tabularx}{\linewidth}{Xcc}
\toprule
\textbf{Characteristics} & \textbf{Measurement} & \textbf{Manual} & \textbf{Specification}\\
\textbf{Characteristics} & \textbf{Specification} & \textbf{Measurement}\\
\midrule
Input Voltage Range & - & +/- 10 [V] & +/- 10 [V]\\
Output Voltage Range & - & -50/150 [V] & -20/150 [V]\\
Gain & & 20 [V/V] & -\\
Maximum RMS current & & 0.9 [A] & > 50 [mA]\\
Maximum Pulse current & & 10 [A] & -\\
Slew Rate & & 150 [V/us] & -\\
Noise (10uF load) & & 0.7 [mV RMS] & < 2 [mV rms]\\
Small Signal Bandwidth (10uF load) & & 7.4 [kHz] & > 5 [kHz]\\
Large Signal Bandwidth (150V, 10uF) & & 300 [Hz] & -\\
Input Voltage Range & +/- 10 [V] & -\\
Output Voltage Range & -20/150 [V] & -\\
Gain & 20 & 20\\
Maximum RMS current & > 50 [mA] & \\
Maximum Pulse current & - & \\
Slew Rate & - & \\
Noise (10uF load) & < 2 [mV rms] & \\
Small Signal Bandwidth (10uF load) & > 5 [kHz] & \\
Large Signal Bandwidth (150V, 10uF) & - & \\
\bottomrule
\end{tabularx}
\end{table}
\section{Linear Encoders}
\label{sec:orgddea30b}
To measure the noise \(n\) of the encoder, one can rigidly fix the head and the ruler together such that no motion should be measured.
Then, the measured signal \(y_m\) corresponds to the noise \(n\).
@ -829,39 +822,38 @@ Then, the measured signal \(y_m\) corresponds to the noise \(n\).
The measurement bench is shown in Figures \ref{fig:meas_bench_top_view} and \ref{fig:meas_bench_side_view}.
Note that the bench is then covered with a ``plastic bubble sheet'' in order to keep disturbances as small as possible.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.8\linewidth]{figs/IMG_20210211_170554.jpg}
\caption{\label{fig:meas_bench_top_view}Top view picture of the measurement bench}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.8\linewidth]{figs/IMG_20210211_170607.jpg}
\caption{\label{fig:meas_bench_side_view}Side view picture of the measurement bench}
\end{figure}
Then, and for all the 7 encoders, we record the measured motion during 100s with a sampling frequency of 20kHz.
\section{External Metrology}
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/test-bench-attocube/test-bench-attocube.org}{test-bench-attocube}
Different options:
\begin{itemize}
\item Attocube: issue of non-linearity estimated from the encoders
\item Smaract
\item QuDIS
\end{itemize}
For the final tests, QuDIS were used.
\section{Conclusion}
\label{sec:orgc63ce3f}
\begin{itemize}
\item[{$\square$}] Compare with measurement noise? or effect of measurement noise => higher so it's OK?
\item[{$\square$}] Or compare with specifications? (but we don't have specifications for ASD, only RMS)
\item[{$\square$}] Or maybe put the ASD of the measured vibration in simulation (or noise budget based on disturbances) => show that we are bellow disturbances so it should not be limited
\end{itemize}
From all the measured noises, compute the obtained PSD error in Y and Z (show PSD of individual + Sum + Cumulative?)
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/detail_instrumentation_cl_noise_budget.png}
\caption{\label{fig:detail_instrumentation_cl_noise_budget}Closed-loop noise budgeting using measured noise of instrumentation}
\end{figure}
\chapter*{Conclusion}
\label{sec:org9929878}
\label{sec:detail_instrumentation_conclusion}
\begin{itemize}
\item thanks to multi-body model in which it is easy to include instrumentation and noise sources
From specification on the sample's vertical motion (most stringent requirement), specification for each noise source was extracted.
\item based on those specifications, adequate instrumentation were chosen.
for some instrumentation, it was difficult to choose only based on data-sheets are manufacturers often don't share relevant information for noise budgets, such as amplitude spectral densities
\item then, the instrumentation was procured and tested individually.
All were found to comply with the requirements.
Finally, based on the measured noise of all instrumentation, the expected sample's vibration induced by all the noise sources was estimated and found to comply with the requirements.
\end{itemize}
\printbibliography[heading=bibintoc,title={Bibliography}]
\end{document}