Change bibliography reference
This commit is contained in:
parent
9baa4c04d3
commit
3c431dcf46
@ -191,7 +191,7 @@
|
||||
url = {https://doi.org/10.1109/tra.2003.814506},
|
||||
issn = {1042-296X},
|
||||
keywords = {parallel robot, cubic configuration},
|
||||
month = {Aug},
|
||||
month = {8},
|
||||
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
|
||||
}
|
||||
|
||||
@ -438,7 +438,7 @@
|
||||
url = {https://doi.org/10.1016/j.jsv.2016.07.021},
|
||||
issn = {0022-460X},
|
||||
keywords = {parallel robot},
|
||||
month = {Nov},
|
||||
month = {11},
|
||||
publisher = {Elsevier BV},
|
||||
}
|
||||
|
||||
@ -489,12 +489,17 @@
|
||||
|
||||
|
||||
|
||||
@phdthesis{naves20_desig,
|
||||
@phdthesis{naves21_desig_optim_large_strok_flexur_mechan,
|
||||
author = {Mark Naves},
|
||||
school = {Univeristy of Twente},
|
||||
title = {Design and optimization of large stroke flexure mechanisms},
|
||||
year = 2020,
|
||||
day = 21,
|
||||
doi = "10.3990/1.9789036549943",
|
||||
isbn = "978-90-365-4994-3",
|
||||
keywords = {flexure},
|
||||
month = may,
|
||||
publisher = {University of Twente},
|
||||
school = {Univeristy of Twente},
|
||||
title = {Design and Optimization of Large Stroke Flexure Mechanisms},
|
||||
year = 2021,
|
||||
}
|
||||
|
||||
|
||||
@ -577,7 +582,6 @@
|
||||
year = 2014,
|
||||
doi = {10.1177/1687814020940072},
|
||||
url = {http://dx.doi.org/10.1177/1687814020940072},
|
||||
DATE_ADDED = {Fri Apr 4 16:01:49 2025},
|
||||
}
|
||||
|
||||
|
||||
@ -595,7 +599,6 @@
|
||||
year = 2019,
|
||||
doi = {10.1016/j.ymssp.2019.03.001},
|
||||
url = {http://dx.doi.org/10.1016/j.ymssp.2019.03.001},
|
||||
DATE_ADDED = {Fri Apr 4 16:02:00 2025},
|
||||
}
|
||||
|
||||
|
||||
@ -612,7 +615,6 @@
|
||||
year = 2024,
|
||||
doi = {10.1016/j.ijmachtools.2024.104118},
|
||||
url = {http://dx.doi.org/10.1016/j.ijmachtools.2024.104118},
|
||||
DATE_ADDED = {Fri Apr 4 16:06:19 2025},
|
||||
}
|
||||
|
||||
|
||||
@ -657,6 +659,7 @@
|
||||
}
|
||||
|
||||
|
||||
|
||||
@phdthesis{li01_simul_fault_vibrat_isolat_point,
|
||||
author = {Li, Xiaochun},
|
||||
keywords = {parallel robot},
|
||||
|
@ -143,7 +143,7 @@ Optimal geometry?
|
||||
| | Cubic | Piezoelectric | Force | [[cite:&wang16_inves_activ_vibrat_isolat_stewar]] |
|
||||
| | Almost cubic | Voice Coil | Force, Accelerometer | [[cite:&beijen18_self_tunin_mimo_distur_feedf;&tjepkema12_activ_ph]] |
|
||||
| Figure ref:fig:detail_kinematics_yang19 | Almost cubic | Piezoelectric | Force, Strain gauge | [[cite:&yang19_dynam_model_decoup_contr_flexib]] |
|
||||
| Figure ref:fig:detail_kinematics_naves | Non-Cubic | 3-phase rotary motor | Rotary Encoder | [[cite:&naves20_desig;&naves20_t_flex]] |
|
||||
| Figure ref:fig:detail_kinematics_naves | Non-Cubic | 3-phase rotary motor | Rotary Encoder | [[cite:&naves21_desig_optim_large_strok_flexur_mechan;&naves20_t_flex]] |
|
||||
|
||||
*** Dynamic isotropy
|
||||
|
||||
@ -1121,7 +1121,7 @@ These sensors are predominantly aligned with the struts [[cite:&hauge04_sensor_c
|
||||
|
||||
For high-precision positioning applications, various displacement sensors are implemented, including LVDTs [[cite:&thayer02_six_axis_vibrat_isolat_system;&kim00_robus_track_contr_desig_dof_paral_manip;&li01_simul_fault_vibrat_isolat_point;&thayer98_stewar]], capacitive sensors [[cite:&ting07_measur_calib_stewar_microm_system;&ting13_compos_contr_desig_stewar_nanos_platf]], eddy current sensors [[cite:&chen03_payload_point_activ_vibrat_isolat;&furutani04_nanom_cuttin_machin_using_stewar]], and strain gauges [[cite:&du14_piezo_actuat_high_precis_flexib]].
|
||||
Notably, some designs incorporate external sensing methodologies rather than integrating sensors within the struts [[cite:&li01_simul_fault_vibrat_isolat_point;&chen03_payload_point_activ_vibrat_isolat;&ting13_compos_contr_desig_stewar_nanos_platf]].
|
||||
A recent design [[cite:&naves20_desig]], although not strictly speaking a Stewart platform, has demonstrated the use of 3-phase rotary motors with rotary encoders for achieving long-stroke and highly repeatable positioning, as illustrated in Figure ref:fig:detail_kinematics_naves.
|
||||
A recent design [[cite:&naves21_desig_optim_large_strok_flexur_mechan]], although not strictly speaking a Stewart platform, has demonstrated the use of 3-phase rotary motors with rotary encoders for achieving long-stroke and highly repeatable positioning, as illustrated in Figure ref:fig:detail_kinematics_naves.
|
||||
|
||||
Two primary categories of Stewart platform geometry can be identified.
|
||||
The first is cubic architecture (examples presented in Figure ref:fig:detail_kinematics_stewart_examples_cubic), wherein struts are positioned along six sides of a cube (and therefore oriented orthogonally to each other).
|
||||
@ -1154,7 +1154,7 @@ The influence of strut orientation and joint positioning on Stewart platform pro
|
||||
#+attr_latex: :height 5cm
|
||||
[[file:figs/detail_kinematics_yang19.jpg]]
|
||||
#+end_subfigure
|
||||
#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_naves}University of Twente - Netherlands \cite{naves20_desig}}
|
||||
#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_naves}University of Twente - Netherlands \cite{naves21_desig_optim_large_strok_flexur_mechan}}
|
||||
#+attr_latex: :options {0.53\textwidth}
|
||||
#+begin_subfigure
|
||||
#+attr_latex: :height 5cm
|
||||
|
Reference in New Issue
Block a user