From 3c431dcf46f29c0027cb9570d1d473ffb796118c Mon Sep 17 00:00:00 2001 From: Thomas Dehaeze Date: Fri, 18 Apr 2025 17:47:36 +0200 Subject: [PATCH] Change bibliography reference --- nass-geometry.bib | 21 ++++++++++++--------- nass-geometry.org | 6 +++--- 2 files changed, 15 insertions(+), 12 deletions(-) diff --git a/nass-geometry.bib b/nass-geometry.bib index 27eb12c..fcaef09 100644 --- a/nass-geometry.bib +++ b/nass-geometry.bib @@ -191,7 +191,7 @@ url = {https://doi.org/10.1109/tra.2003.814506}, issn = {1042-296X}, keywords = {parallel robot, cubic configuration}, - month = {Aug}, + month = {8}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, } @@ -438,7 +438,7 @@ url = {https://doi.org/10.1016/j.jsv.2016.07.021}, issn = {0022-460X}, keywords = {parallel robot}, - month = {Nov}, + month = {11}, publisher = {Elsevier BV}, } @@ -489,12 +489,17 @@ -@phdthesis{naves20_desig, +@phdthesis{naves21_desig_optim_large_strok_flexur_mechan, author = {Mark Naves}, - school = {Univeristy of Twente}, - title = {Design and optimization of large stroke flexure mechanisms}, - year = 2020, + day = 21, + doi = "10.3990/1.9789036549943", + isbn = "978-90-365-4994-3", keywords = {flexure}, + month = may, + publisher = {University of Twente}, + school = {Univeristy of Twente}, + title = {Design and Optimization of Large Stroke Flexure Mechanisms}, + year = 2021, } @@ -577,7 +582,6 @@ year = 2014, doi = {10.1177/1687814020940072}, url = {http://dx.doi.org/10.1177/1687814020940072}, - DATE_ADDED = {Fri Apr 4 16:01:49 2025}, } @@ -595,7 +599,6 @@ year = 2019, doi = {10.1016/j.ymssp.2019.03.001}, url = {http://dx.doi.org/10.1016/j.ymssp.2019.03.001}, - DATE_ADDED = {Fri Apr 4 16:02:00 2025}, } @@ -612,7 +615,6 @@ year = 2024, doi = {10.1016/j.ijmachtools.2024.104118}, url = {http://dx.doi.org/10.1016/j.ijmachtools.2024.104118}, - DATE_ADDED = {Fri Apr 4 16:06:19 2025}, } @@ -657,6 +659,7 @@ } + @phdthesis{li01_simul_fault_vibrat_isolat_point, author = {Li, Xiaochun}, keywords = {parallel robot}, diff --git a/nass-geometry.org b/nass-geometry.org index df6885e..399bcce 100644 --- a/nass-geometry.org +++ b/nass-geometry.org @@ -143,7 +143,7 @@ Optimal geometry? | | Cubic | Piezoelectric | Force | [[cite:&wang16_inves_activ_vibrat_isolat_stewar]] | | | Almost cubic | Voice Coil | Force, Accelerometer | [[cite:&beijen18_self_tunin_mimo_distur_feedf;&tjepkema12_activ_ph]] | | Figure ref:fig:detail_kinematics_yang19 | Almost cubic | Piezoelectric | Force, Strain gauge | [[cite:&yang19_dynam_model_decoup_contr_flexib]] | -| Figure ref:fig:detail_kinematics_naves | Non-Cubic | 3-phase rotary motor | Rotary Encoder | [[cite:&naves20_desig;&naves20_t_flex]] | +| Figure ref:fig:detail_kinematics_naves | Non-Cubic | 3-phase rotary motor | Rotary Encoder | [[cite:&naves21_desig_optim_large_strok_flexur_mechan;&naves20_t_flex]] | *** Dynamic isotropy @@ -1121,7 +1121,7 @@ These sensors are predominantly aligned with the struts [[cite:&hauge04_sensor_c For high-precision positioning applications, various displacement sensors are implemented, including LVDTs [[cite:&thayer02_six_axis_vibrat_isolat_system;&kim00_robus_track_contr_desig_dof_paral_manip;&li01_simul_fault_vibrat_isolat_point;&thayer98_stewar]], capacitive sensors [[cite:&ting07_measur_calib_stewar_microm_system;&ting13_compos_contr_desig_stewar_nanos_platf]], eddy current sensors [[cite:&chen03_payload_point_activ_vibrat_isolat;&furutani04_nanom_cuttin_machin_using_stewar]], and strain gauges [[cite:&du14_piezo_actuat_high_precis_flexib]]. Notably, some designs incorporate external sensing methodologies rather than integrating sensors within the struts [[cite:&li01_simul_fault_vibrat_isolat_point;&chen03_payload_point_activ_vibrat_isolat;&ting13_compos_contr_desig_stewar_nanos_platf]]. -A recent design [[cite:&naves20_desig]], although not strictly speaking a Stewart platform, has demonstrated the use of 3-phase rotary motors with rotary encoders for achieving long-stroke and highly repeatable positioning, as illustrated in Figure ref:fig:detail_kinematics_naves. +A recent design [[cite:&naves21_desig_optim_large_strok_flexur_mechan]], although not strictly speaking a Stewart platform, has demonstrated the use of 3-phase rotary motors with rotary encoders for achieving long-stroke and highly repeatable positioning, as illustrated in Figure ref:fig:detail_kinematics_naves. Two primary categories of Stewart platform geometry can be identified. The first is cubic architecture (examples presented in Figure ref:fig:detail_kinematics_stewart_examples_cubic), wherein struts are positioned along six sides of a cube (and therefore oriented orthogonally to each other). @@ -1154,7 +1154,7 @@ The influence of strut orientation and joint positioning on Stewart platform pro #+attr_latex: :height 5cm [[file:figs/detail_kinematics_yang19.jpg]] #+end_subfigure -#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_naves}University of Twente - Netherlands \cite{naves20_desig}} +#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_naves}University of Twente - Netherlands \cite{naves21_desig_optim_large_strok_flexur_mechan}} #+attr_latex: :options {0.53\textwidth} #+begin_subfigure #+attr_latex: :height 5cm