Tangled matlab files
This commit is contained in:
parent
b7f92acc79
commit
9b6dc8f9bf
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 47 KiB After Width: | Height: | Size: 43 KiB |
307
matlab/detail_fem_1_flexible_body.m
Normal file
307
matlab/detail_fem_1_flexible_body.m
Normal file
@ -0,0 +1,307 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
%% Path for functions, data and scripts
|
||||
addpath('./src/'); % Path for scripts
|
||||
addpath('./mat/'); % Path for data
|
||||
addpath('./STEPS/'); % Path for Simscape Model
|
||||
addpath('./subsystems/'); % Path for Subsystems Simulink files
|
||||
|
||||
%% Linearization options
|
||||
opts = linearizeOptions;
|
||||
opts.SampleTime = 0;
|
||||
|
||||
%% Open Simscape Model
|
||||
mdl = 'detail_fem_super_element'; % Name of the Simulink File
|
||||
open(mdl); % Open Simscape Model
|
||||
|
||||
%% Colors for the figures
|
||||
colors = colororder;
|
||||
freqs = logspace(1,3,500); % Frequency vector [Hz]
|
||||
|
||||
%% Estimate "Sensor Constant" - (THP5H)
|
||||
d33 = 680e-12; % Strain constant [m/V]
|
||||
n = 160; % Number of layers per stack
|
||||
eT = 4500*8.854e-12; % Permittivity under constant stress [F/m]
|
||||
sD = 21e-12; % Compliance under constant electric displacement [m2/N]
|
||||
|
||||
gs = d33/(eT*sD*n); % Sensor Constant [V/m]
|
||||
|
||||
%% Estimate "Actuator Constant" - (THP5H)
|
||||
d33 = 680e-12; % Strain constant [m/V]
|
||||
n = 320; % Number of layers
|
||||
|
||||
cE = 1/sD; % Youngs modulus [N/m^2]
|
||||
A = (10e-3)^2; % Area of the stacks [m^2]
|
||||
L = 40e-3; % Length of the two stacks [m]
|
||||
ka = cE*A/L; % Stiffness of the two stacks [N/m]
|
||||
|
||||
ga = d33*n*ka; % Actuator Constant [N/V]
|
||||
|
||||
%% Load reduced order model
|
||||
K = readmatrix('APA95ML_K.CSV'); % order: 48
|
||||
M = readmatrix('APA95ML_M.CSV');
|
||||
[int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('APA95ML_out_nodes_3D.txt');
|
||||
|
||||
%% Stiffness estimation
|
||||
m = 0.0001; % block-free condition, no payload
|
||||
k_support = 1e9;
|
||||
c_support = 1e3;
|
||||
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
|
||||
G = linearize(mdl, io);
|
||||
|
||||
% The inverse of the DC gain of the transfer function
|
||||
% from vertical force to vertical displacement is the axial stiffness of the APA
|
||||
k_est = 1/dcgain(G); % [N/m]
|
||||
|
||||
%% Estimated compliance of the APA95ML
|
||||
freqs = logspace(2, log10(5000), 1000);
|
||||
|
||||
% Get first resonance indice
|
||||
i_max = find(abs(squeeze(freqresp(G, freqs(2:end), 'Hz'))) - abs(squeeze(freqresp(G, freqs(1:end-1), 'Hz'))) < 0, 1);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz'))), 'DisplayName', 'Compliance');
|
||||
plot([freqs(1), freqs(end)], [1/k_est, 1/k_est], 'k--', 'DisplayName', sprintf('$1/k$ ($k = %.0f N/\\mu m$)', 1e-6*k_est))
|
||||
xline(freqs(i_max), '--', 'linewidth', 1, 'color', [0,0,0], 'DisplayName', sprintf('$f_0 = %.0f$ Hz', freqs(i_max)))
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]');
|
||||
leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
xlim([100, 5000]);
|
||||
|
||||
%% Estimation of the amplification factor and Stroke
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Fa'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/d'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
|
||||
G = linearize(mdl, io);
|
||||
|
||||
% Estimated amplification factor
|
||||
ampl_factor = abs(dcgain(G(1,1))./dcgain(G(2,1)));
|
||||
|
||||
% Estimated stroke
|
||||
apa_stroke = ampl_factor * 3 * 20e-6; % [m]
|
||||
|
||||
%% Experimental plant identification
|
||||
% with PD200 amplifier (gain of 20) - 2 stacks as an actuator, 1 as a sensor
|
||||
load('apa95ml_5kg_2a_1s.mat')
|
||||
|
||||
Va = 20*u; % Voltage amplifier gain: 20
|
||||
|
||||
% Spectral Analysis parameters
|
||||
Ts = t(end)/(length(t)-1);
|
||||
Nfft = floor(1/Ts);
|
||||
win = hanning(Nfft);
|
||||
Noverlap = floor(Nfft/2);
|
||||
|
||||
% Identification of the transfer function from Va to di
|
||||
[G_y, f] = tfestimate(detrend(Va, 0), detrend(y, 0), win, Noverlap, Nfft, 1/Ts);
|
||||
[G_Vs, ~] = tfestimate(detrend(Va, 0), detrend(v, 0), win, Noverlap, Nfft, 1/Ts);
|
||||
|
||||
%% Plant Identification from Multi-Body model
|
||||
% Load Reduced Order Matrices
|
||||
K = readmatrix('APA95ML_K.CSV'); % order: 48
|
||||
M = readmatrix('APA95ML_M.CSV');
|
||||
[int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('APA95ML_out_nodes_3D.txt');
|
||||
|
||||
m = 5.5; % Mass of the suspended granite [kg]
|
||||
k_support = 4e7;
|
||||
c_support = 3e2;
|
||||
|
||||
% Compute transfer functions
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Voltage accros piezo stacks [V]
|
||||
io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; % Vertical Displacement [m]
|
||||
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor stack voltage [V]
|
||||
|
||||
Gm = linearize(mdl, io);
|
||||
Gm.InputName = {'Va'};
|
||||
Gm.OutputName = {'y', 'Vs'};
|
||||
|
||||
%% Comparison of the identified transfer function from Va to di to the multi-body model
|
||||
freqs = logspace(1, 3, 500);
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(f, abs(G_y), '-', 'color', [colors(2,:), 0.5], 'linewidth', 2.5, 'DisplayName', 'Measured FRF');
|
||||
plot(freqs, abs(squeeze(freqresp(Gm('y', 'Va'), freqs, 'Hz'))), '--', 'color', colors(2,:), 'DisplayName', 'Model')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $y/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-8, 1e-5]);
|
||||
leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(f, 180/pi*angle(G_y), '-', 'color' , [colors(2,:), 0.5], 'linewidth', 2.5);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm('y', 'Va'), freqs, 'Hz'))), '--', 'color', colors(2,:))
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:45:360);
|
||||
ylim([-45, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 1e3]);
|
||||
|
||||
%% Comparison of the identified transfer function from Va to Vs to the multi-body model
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(f, abs(G_Vs), '-', 'color', [colors(1,:), 0.5], 'linewidth', 2.5, 'DisplayName', 'Measured FRF');
|
||||
plot(freqs, abs(squeeze(freqresp(Gm('Vs', 'Va'), freqs, 'Hz'))), '--', 'color', colors(1,:), 'DisplayName', 'Model')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-3, 1e1]);
|
||||
leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(f, 180/pi*angle(G_Vs), '-', 'color', [colors(1,:), 0.5], 'linewidth', 2.5);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm('Vs', 'Va'), freqs, 'Hz'))), '--', 'color', colors(1,:))
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360); ylim([-180, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 1e3]);
|
||||
|
||||
%% Integral Force Feedback Controller
|
||||
K_iff = (1/(s + 2*2*pi))*(s/(s + 0.5*2*pi));
|
||||
K_iff.inputname = {'Vs'};
|
||||
K_iff.outputname = {'u_iff'};
|
||||
|
||||
% New damped plant input
|
||||
S1 = sumblk("u = u_iff + u_damp");
|
||||
|
||||
% Voltage amplifier with gain of 20
|
||||
voltage_amplifier = tf(20);
|
||||
voltage_amplifier.inputname = {'u'};
|
||||
voltage_amplifier.outputname = {'Va'};
|
||||
|
||||
%% Load experimental data with IFF implemented with different gains
|
||||
load('apa95ml_iff_test.mat', 'results');
|
||||
|
||||
% Tested gains
|
||||
g_iff = [0, 10, 50, 100, 500, 1000];
|
||||
|
||||
% Spectral Analysis parameters
|
||||
Ts = t(end)/(length(t)-1);
|
||||
Nfft = floor(1/Ts);
|
||||
win = hanning(Nfft);
|
||||
Noverlap = floor(Nfft/2);
|
||||
|
||||
%% Computed the identified FRF of the damped plants
|
||||
tf_iff = {zeros(1, length(g_iff))};
|
||||
for i=1:length(g_iff)
|
||||
[tf_est, f] = tfestimate(results{i}.u, results{i}.y, win, Noverlap, Nfft, 1/Ts);
|
||||
tf_iff(i) = {tf_est};
|
||||
end
|
||||
|
||||
%% Estimate the damped plants from the multi-body model
|
||||
Gm_iff = {zeros(1, length(g_iff))};
|
||||
|
||||
for i=1:length(g_iff)
|
||||
K_iff_g = -K_iff*g_iff(i); K_iff_g.inputname = {'Vs'}; K_iff_g.outputname = {'u_iff'};
|
||||
Gm_iff(i) = {connect(Gm, K_iff_g, S1, voltage_amplifier, {'u_damp'}, {'y'})};
|
||||
end
|
||||
|
||||
%% Identify second order plants from the experimental data
|
||||
% This is mandatory to estimate the experimental "poles"
|
||||
% an place them in the root-locus plot
|
||||
G_id = {zeros(1,length(results))};
|
||||
|
||||
f_start = 70; % [Hz]
|
||||
f_end = 500; % [Hz]
|
||||
|
||||
for i = 1:length(results)
|
||||
tf_id = tf_iff{i}(sum(f<f_start):length(f)-sum(f>f_end));
|
||||
f_id = f(sum(f<f_start):length(f)-sum(f>f_end));
|
||||
|
||||
gfr = idfrd(tf_id, 2*pi*f_id, Ts);
|
||||
G_id(i) = {procest(gfr,'P2UDZ')};
|
||||
end
|
||||
|
||||
%% Comparison of the Root-Locus computed from the multi-body model and the identified closed-loop poles
|
||||
gains = logspace(0, 5, 1000);
|
||||
figure;
|
||||
hold on;
|
||||
plot(real( pole(Gm('Vs', 'Va'))), imag( pole(Gm('Vs', 'Va'))), 'kx', 'HandleVisibility', 'off');
|
||||
plot(real(tzero(Gm('Vs', 'Va'))), imag(tzero(Gm('Vs', 'Va'))), 'ko', 'HandleVisibility', 'off');
|
||||
for i = 1:length(gains)
|
||||
cl_poles = pole(feedback(Gm('Vs', 'Va'), gains(i)*K_iff));
|
||||
plot(real(cl_poles(imag(cl_poles)>100)), imag(cl_poles(imag(cl_poles)>100)), 'k.', 'HandleVisibility', 'off');
|
||||
end
|
||||
for i = 1:length(g_iff)
|
||||
cl_poles = pole(Gm_iff{i});
|
||||
plot(real(cl_poles(imag(cl_poles)>100)), imag(cl_poles(imag(cl_poles)>100)), '.', 'MarkerSize', 20, 'color', colors(i,:), 'HandleVisibility', 'off');
|
||||
plot(real(pole(G_id{i})), imag(pole(G_id{i})), 'x', 'color', colors(i,:), 'DisplayName', sprintf('g = %0.f', g_iff(i)), 'DisplayName', sprintf('$g = %.0f$', g_iff(i)));
|
||||
end
|
||||
xlabel('Real Part');
|
||||
ylabel('Imaginary Part');
|
||||
axis equal;
|
||||
ylim([-100, 2100]);
|
||||
xlim([-2100,100]);
|
||||
leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
%% Experimental damped plant for several IFF gains and estimated damped plants from the model
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2, 1]);
|
||||
hold on;
|
||||
plot(f, abs(tf_iff{1}), '-', 'DisplayName', '$g = 0$', 'color', [0,0,0, 0.5], 'linewidth', 2.5)
|
||||
plot(f, abs(squeeze(freqresp(Gm_iff{1}, f, 'Hz'))), 'k--', 'HandleVisibility', 'off')
|
||||
for i = 2:length(results)
|
||||
plot(f, abs(tf_iff{i}), '-', 'DisplayName', sprintf('g = %0.f', g_iff(i)), 'color', [colors(i-1,:), 0.5], 'linewidth', 2.5)
|
||||
end
|
||||
for i = 2:length(results)
|
||||
plot(f, abs(squeeze(freqresp(Gm_iff{i}, f, 'Hz'))), '--', 'color', colors(i-1,:), 'HandleVisibility', 'off')
|
||||
end
|
||||
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
|
||||
ylabel('Amplitude $y/V_a$ [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-6, 2e-4]);
|
||||
leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(f, 180/pi*angle(tf_iff{1}./squeeze(freqresp(exp(-s*2e-4), f, 'Hz'))), '-', 'color', [0,0,0, 0.5], 'linewidth', 2.5)
|
||||
plot(f, 180/pi*angle(squeeze(freqresp(Gm_iff{1}, f, 'Hz'))), 'k--')
|
||||
for i = 2:length(results)
|
||||
plot(f, 180/pi*angle(tf_iff{i}./squeeze(freqresp(exp(-s*2e-4), f, 'Hz'))), '-', 'color', [colors(i-1,:), 0.5], 'linewidth', 2.5)
|
||||
plot(f, 180/pi*angle(squeeze(freqresp(Gm_iff{i}, f, 'Hz'))), '--', 'color', colors(i-1,:))
|
||||
end
|
||||
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
hold off;
|
||||
yticks(-360:45:360);
|
||||
ylim([-10, 190]);
|
||||
|
||||
linkaxes([ax1,ax2], 'x');
|
||||
xlim([150, 500]);
|
318
matlab/detail_fem_2_actuators.m
Normal file
318
matlab/detail_fem_2_actuators.m
Normal file
@ -0,0 +1,318 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
%% Path for functions, data and scripts
|
||||
addpath('./src/'); % Path for scripts
|
||||
addpath('./mat/'); % Path for data
|
||||
addpath('./STEPS/'); % Path for Simscape Model
|
||||
addpath('./subsystems/'); % Path for Subsystems Simulink files
|
||||
|
||||
%% Linearization options
|
||||
opts = linearizeOptions;
|
||||
opts.SampleTime = 0;
|
||||
|
||||
%% Open Simscape Model
|
||||
mdl = 'detail_fem_APA300ML'; % Name of the Simulink File
|
||||
open(mdl); % Open Simscape Model
|
||||
|
||||
% Piezoelectric parameters
|
||||
ga = -25.9; % [N/V]
|
||||
gs = -5.08e6; % [V/m]
|
||||
|
||||
%% Colors for the figures
|
||||
colors = colororder;
|
||||
freqs = logspace(1,3,500); % Frequency vector [Hz]
|
||||
|
||||
%% Identify dynamics with "Reduced Order Flexible Body"
|
||||
K = readmatrix('APA300ML_mat_K.CSV');
|
||||
M = readmatrix('APA300ML_mat_M.CSV');
|
||||
[int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('APA300ML_out_nodes_3D.txt');
|
||||
|
||||
m = 5; % [kg]
|
||||
ga = 25.9; % [N/V]
|
||||
gs = 5.08e6; % [V/m]
|
||||
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
|
||||
G_fem = linearize(mdl, io);
|
||||
G_fem_z = G_fem('z','Va');
|
||||
G_fem_Vs = G_fem('Vs', 'Va');
|
||||
G_fem_comp = G_fem('z', 'Fd');
|
||||
|
||||
%% Determine c1 and k1 from the zero
|
||||
G_zeros = zero(minreal(G_fem_Vs));
|
||||
G_zeros = G_zeros(imag(G_zeros)>0);
|
||||
[~, i_sort] = sort(imag(G_zeros));
|
||||
G_zeros = G_zeros(i_sort);
|
||||
G_zero = G_zeros(1);
|
||||
|
||||
% Solving 2nd order equations
|
||||
c1 = -2*m*real(G_zero);
|
||||
k1 = m*(imag(G_zero)^2 + real(G_zero)^2);
|
||||
|
||||
%% Determine ka, ke, ca, ce from the first pole
|
||||
G_poles = pole(minreal(G_fem_z));
|
||||
G_poles = G_poles(imag(G_poles)>0);
|
||||
[~, i_sort] = sort(imag(G_poles));
|
||||
G_poles = G_poles(i_sort);
|
||||
G_pole = G_poles(1);
|
||||
|
||||
% Solving 2nd order equations
|
||||
ce = 3*(-2*m*real(G_pole(1)) - c1);
|
||||
ca = 1/2*ce;
|
||||
|
||||
ke = 3*(m*(imag(G_pole)^2 + real(G_pole)^2) - k1);
|
||||
ka = 1/2*ke;
|
||||
|
||||
%% Matching sensor/actuator constants
|
||||
% ga = dcgain(G_fem_z) / (1/(ka + k1*ke/(k1 + ke)));
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '_2dof', '/Fa'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '_2dof', '/z'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
ga = dcgain(G_fem_z)/dcgain(linearize([mdl, '_2dof'], io));
|
||||
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '_2dof', '/Va'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '_2dof', '/dL'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
gs = dcgain(G_fem_Vs)/dcgain(linearize([mdl, '_2dof'], io));
|
||||
|
||||
%% Identify dynamics with tuned 2DoF model
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '_2dof', '/Va'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '_2dof', '/Fd'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '_2dof', '/z'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '_2dof', '/Vs'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
|
||||
G_2dof = linearize([mdl, '_2dof'], io);
|
||||
G_2dof_z = G_2dof('z','Va');
|
||||
G_2dof_Vs = G_2dof('Vs', 'Va');
|
||||
G_2dof_comp = G_2dof('z', 'Fd');
|
||||
|
||||
%% Comparison of the transfer functions from Va to vertical motion - FEM vs 2DoF
|
||||
freqs = logspace(1, 3, 500);
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G_fem_z, freqs, 'Hz'))), '-', 'color', [colors(2,:), 0.5], 'linewidth', 2.5, 'DisplayName', 'FEM')
|
||||
plot(freqs, abs(squeeze(freqresp(G_2dof_z, freqs, 'Hz'))), '--', 'color', colors(2,:), 'DisplayName', '2DoF Model')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $y/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-8, 2e-4]);
|
||||
leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_fem_z, freqs, 'Hz')))), '-', 'color', [colors(2,:), 0.5], 'linewidth', 2.5);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_2dof_z, freqs, 'Hz')))), '--', 'color', colors(2,:))
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:45:360); ylim([-20, 200]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 1e3]);
|
||||
|
||||
%% Comparison of the transfer functions from Va to Vs - FEM vs 2DoF
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G_fem_Vs, freqs, 'Hz'))), '-', 'color', [colors(1,:), 0.5], 'linewidth', 2.5, 'DisplayName', 'FEM');
|
||||
plot(freqs, abs(squeeze(freqresp(G_2dof_Vs, freqs, 'Hz'))), '--', 'color', colors(1,:), 'DisplayName', '2DoF Model')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([6e-4, 3e1]);
|
||||
leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_fem_Vs, freqs, 'Hz')))), '-', 'color', [colors(1,:), 0.5], 'linewidth', 2.5);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_2dof_Vs, freqs, 'Hz')))), '--', 'color', colors(1,:))
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:45:360); ylim([-20, 200]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 1e3]);
|
||||
|
||||
%% Effect of electrical boundaries on the
|
||||
oc = load('detail_fem_apa95ml_open_circuit.mat', 't', 'encoder', 'u');
|
||||
sc = load('detail_fem_apa95ml_short_circuit.mat', 't', 'encoder', 'u');
|
||||
|
||||
% Spectral Analysis parameters
|
||||
Ts = sc.t(end)/(length(sc.t)-1);
|
||||
Nfft = floor(2/Ts);
|
||||
win = hanning(Nfft);
|
||||
Noverlap = floor(Nfft/2);
|
||||
|
||||
% Identification of the transfer function from Va to di
|
||||
[G_oc, f] = tfestimate(detrend(oc.u, 0), detrend(oc.encoder, 0), win, Noverlap, Nfft, 1/Ts);
|
||||
[G_sc, f] = tfestimate(detrend(sc.u, 0), detrend(sc.encoder, 0), win, Noverlap, Nfft, 1/Ts);
|
||||
|
||||
% Find resonance frequencies
|
||||
[~, i_oc] = max(abs(G_oc(f<300)));
|
||||
[~, i_sc] = max(abs(G_sc(f<300)));
|
||||
|
||||
%% Effect of the electrical bondaries of the force sensor stack on the APA95ML resonance frequency
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(f, abs(G_oc), '-', 'DisplayName', sprintf('Open-Circuit - $f_0 = %.1f Hz$', f(i_oc)))
|
||||
plot(f, abs(G_sc), '-', 'DisplayName', sprintf('Short-Circuit - $f_0 = %.1f Hz$', f(i_sc)))
|
||||
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-6, 1e-4]);
|
||||
leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(f, 180/pi*angle(G_oc), '-')
|
||||
plot(f, 180/pi*angle(G_sc), '-')
|
||||
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
|
||||
ylabel('Phase'); xlabel('Frequency [Hz]');
|
||||
hold off;
|
||||
yticks(-360:45:360);
|
||||
ylim([-20, 200]);
|
||||
axis padded 'auto x'
|
||||
|
||||
linkaxes([ax1,ax2], 'x');
|
||||
xlim([100, 300]);
|
||||
|
||||
%% Compare Dynamics between "Reduced Order" flexible joints and "2-dof and 3-dof" joints
|
||||
% Let's initialize all the stages with default parameters.
|
||||
initializeGround('type', 'rigid');
|
||||
initializeGranite('type', 'rigid');
|
||||
initializeTy('type', 'rigid');
|
||||
initializeRy('type', 'rigid');
|
||||
initializeRz('type', 'rigid');
|
||||
initializeMicroHexapod('type', 'rigid');
|
||||
initializeSample('m', 50);
|
||||
|
||||
initializeSimscapeConfiguration();
|
||||
initializeDisturbances('enable', false);
|
||||
initializeLoggingConfiguration('log', 'none');
|
||||
initializeController('type', 'open-loop');
|
||||
initializeReferences();
|
||||
|
||||
mdl = 'detail_fem_nass';
|
||||
|
||||
% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
||||
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'EdL'); io_i = io_i + 1; % Errors in the frame of the struts
|
||||
io(io_i) = linio([mdl, '/NASS'], 3, 'openoutput', [], 'fn'); io_i = io_i + 1; % Force Sensors
|
||||
|
||||
% Flexible actuators
|
||||
initializeSimplifiedNanoHexapod('actuator_type', 'flexible', ...
|
||||
'flex_type_F', '2dof', ...
|
||||
'flex_type_M', '3dof');
|
||||
|
||||
G_flex = linearize(mdl, io);
|
||||
G_flex.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'};
|
||||
G_flex.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6', 'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'};
|
||||
|
||||
% Actuators modeled as 2DoF system
|
||||
initializeSimplifiedNanoHexapod('actuator_type', 'apa300ml', ...
|
||||
'flex_type_F', '2dof', ...
|
||||
'flex_type_M', '3dof');
|
||||
|
||||
G_ideal = linearize(mdl, io);
|
||||
G_ideal.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'};
|
||||
G_ideal.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6', 'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'};
|
||||
|
||||
%% Comparison of the dynamics for actuators modeled using "reduced order flexible body" and using 2DoF system - HAC plant
|
||||
freqs = logspace(1, 4, 1000);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for j = 1:5
|
||||
for k = j+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G_flex("l"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(1,:), 0.1], ...
|
||||
'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_ideal("l"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(2,:), 0.1], ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
plot(freqs, abs(squeeze(freqresp(G_flex("l1","f1"), freqs, 'Hz'))), 'color', colors(1,:), 'DisplayName', 'FEM');
|
||||
plot(freqs, abs(squeeze(freqresp(G_ideal("l1","f1"), freqs, 'Hz'))), 'color', colors(2,:), 'DisplayName', '2-DoF');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
ylim([1e-10, 1e-4]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_flex("l1","f1"), freqs, 'Hz'))));
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ideal("l1","f1"), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-20, 200]);
|
||||
yticks([-360:45:360]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
|
||||
%% Comparison of the dynamics for actuators modeled using "reduced order flexible body" and using 2DoF system - IFF plant
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for j = 1:5
|
||||
for k = j+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G_flex("fm"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(1,:), 0.1], ...
|
||||
'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_ideal("fm"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(2,:), 0.1], ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
plot(freqs, abs(squeeze(freqresp(G_flex("fm1","f1"), freqs, 'Hz'))), 'color', colors(1,:), 'DisplayName', 'FEM');
|
||||
plot(freqs, abs(squeeze(freqresp(G_ideal("fm1","f1"), freqs, 'Hz'))), 'color', colors(2,:), 'DisplayName', '2-DoF');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
|
||||
leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
ylim([1e-5, 1e1]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_flex("fm1","f1"), freqs, 'Hz'))));
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ideal("fm1","f1"), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-20, 200]);
|
||||
yticks([-360:45:360]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
623
matlab/detail_fem_3_flexible_joints.m
Normal file
623
matlab/detail_fem_3_flexible_joints.m
Normal file
@ -0,0 +1,623 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
%% Path for functions, data and scripts
|
||||
addpath('./src/'); % Path for scripts
|
||||
addpath('./mat/'); % Path for data
|
||||
addpath('./STEPS/'); % Path for Simscape Model
|
||||
addpath('./subsystems/'); % Path for Subsystems Simulink files
|
||||
|
||||
%% Linearization options
|
||||
opts = linearizeOptions;
|
||||
opts.SampleTime = 0;
|
||||
|
||||
%% Open Simscape Model
|
||||
mdl = 'detail_fem_nass'; % Name of the Simulink File
|
||||
open(mdl); % Open Simscape Model
|
||||
|
||||
%% Colors for the figures
|
||||
colors = colororder;
|
||||
freqs = logspace(1,3,500); % Frequency vector [Hz]
|
||||
|
||||
%% Identify the dynamics for several considered bending stiffnesses
|
||||
% Let's initialize all the stages with default parameters.
|
||||
initializeGround('type', 'rigid');
|
||||
initializeGranite('type', 'rigid');
|
||||
initializeTy('type', 'rigid');
|
||||
initializeRy('type', 'rigid');
|
||||
initializeRz('type', 'rigid');
|
||||
initializeMicroHexapod('type', 'rigid');
|
||||
initializeSample('m', 50);
|
||||
|
||||
initializeSimscapeConfiguration();
|
||||
initializeDisturbances('enable', false);
|
||||
initializeLoggingConfiguration('log', 'none');
|
||||
initializeController('type', 'open-loop');
|
||||
initializeReferences();
|
||||
|
||||
% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
||||
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'EdL'); io_i = io_i + 1; % Errors in the frame of the struts
|
||||
io(io_i) = linio([mdl, '/NASS'], 3, 'openoutput', [], 'fn'); io_i = io_i + 1; % Force Sensors
|
||||
|
||||
% Effect of bending stiffness
|
||||
Kf = [0, 50, 100, 500]; % [Nm/rad]
|
||||
G_Kf = {zeros(length(Kf), 1)};
|
||||
|
||||
for i = 1:length(Kf)
|
||||
% Limited joint axial compliance
|
||||
initializeSimplifiedNanoHexapod('actuator_type', '1dof', ...
|
||||
'flex_type_F', '2dof', ...
|
||||
'flex_type_M', '3dof', ...
|
||||
'actuator_k', 1e6, ...
|
||||
'actuator_c', 1e1, ...
|
||||
'actuator_kp', 0, ...
|
||||
'actuator_cp', 0, ...
|
||||
'Fsm', 56e-3, ... % APA300ML weight 112g
|
||||
'Msm', 56e-3, ...
|
||||
'Kf_F', Kf(i), ...
|
||||
'Kf_M', Kf(i));
|
||||
|
||||
G_Kf(i) = {linearize(mdl, io)};
|
||||
G_Kf{i}.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'};
|
||||
G_Kf{i}.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6', 'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'};
|
||||
end
|
||||
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
%% Effect of the flexible joint bending stiffness on the HAC-plant
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(Kf)
|
||||
for j = 1:5
|
||||
for k = j+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G_Kf{i}("l"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(i,:), 0.1], ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
plot(freqs, abs(squeeze(freqresp(G_Kf{i}("l1","f1"), freqs, 'Hz'))), 'color', colors(i,:), 'DisplayName', sprintf('$k_f = %.0f $ [Nm/rad]', Kf(i)));
|
||||
for j = 2:6
|
||||
plot(freqs, abs(squeeze(freqresp(G_Kf{i}("l"+j,"f"+j), freqs, 'Hz'))), 'color', colors(i,:), 'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
ylim([1e-10, 1e-4]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(Kf)
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_Kf{i}(1, 1), freqs, 'Hz')))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-200, 20]);
|
||||
yticks([-360:45:360]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
|
||||
%% Effect of the flexible joint bending stiffness on the IFF plant
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(Kf)
|
||||
for j = 1:5
|
||||
for k = j+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G_Kf{i}("fm"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(i,:), 0.1], ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
plot(freqs, abs(squeeze(freqresp(G_Kf{i}("fm1","f1"), freqs, 'Hz'))), 'color', colors(i,:), 'DisplayName', sprintf('$k_f = %.0f $ [Nm/rad]', Kf(i)));
|
||||
for j = 2:6
|
||||
plot(freqs, abs(squeeze(freqresp(G_Kf{i}("fm"+j,"f"+j), freqs, 'Hz'))), 'color', colors(i,:), 'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
|
||||
leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
ylim([1e-4, 1e2]);
|
||||
|
||||
ax2 = nexttile();
|
||||
hold on;
|
||||
for i = 1:length(Kf)
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_Kf{i}("fm1", "f1"), freqs, 'Hz')))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-20, 200]);
|
||||
yticks([-360:45:360]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
|
||||
%% Decentalized IFF
|
||||
Kiff = -200 * ... % Gain
|
||||
1/s * ... % LPF: provides integral action
|
||||
eye(6); % Diagonal 6x6 controller (i.e. decentralized)
|
||||
|
||||
Kiff.InputName = {'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'};
|
||||
Kiff.OutputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'};
|
||||
|
||||
%% Root Locus for decentralized IFF - 1dof actuator - Effect of joint bending stiffness
|
||||
gains = logspace(-1, 2, 400);
|
||||
|
||||
figure;
|
||||
tiledlayout(1, 1, 'TileSpacing', 'compact', 'Padding', 'None');
|
||||
nexttile();
|
||||
hold on;
|
||||
|
||||
for i = 1:length(Kf)
|
||||
plot(real(pole(G_Kf{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), imag(pole(G_Kf{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), 'x', 'color', colors(i,:), ...
|
||||
'DisplayName', sprintf('$k_f = %.0f$ Nm/rad', Kf(i)));
|
||||
plot(real(tzero(G_Kf{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), imag(tzero(G_Kf{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), 'o', 'color', colors(i,:), ...
|
||||
'HandleVisibility', 'off');
|
||||
|
||||
for g = gains
|
||||
clpoles = pole(feedback(G_Kf{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}), g*Kiff, +1));
|
||||
plot(real(clpoles), imag(clpoles), '.', 'color', colors(i,:), ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
xline(0, 'HandleVisibility', 'off'); yline(0, 'HandleVisibility', 'off');
|
||||
hold off;
|
||||
axis equal;
|
||||
xlim(1.1*[-900, 100]); ylim(1.1*[-100, 900]);
|
||||
xticks(1.1*[-900:100:0]);
|
||||
yticks(1.1*[0:100:900]);
|
||||
set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]);
|
||||
xlabel('Real part'); ylabel('Imaginary part');
|
||||
leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
%% Identify the dynamics for several considered bending stiffnesses - APA300ML
|
||||
G_Kf_apa300ml = {zeros(length(Kf), 1)};
|
||||
|
||||
for i = 1:length(Kf)
|
||||
% Limited joint axial compliance
|
||||
initializeSimplifiedNanoHexapod('actuator_type', 'apa300ml', ...
|
||||
'flex_type_F', '2dof', ...
|
||||
'flex_type_M', '3dof', ...
|
||||
'Fsm', 56e-3, ... % APA300ML weight 112g
|
||||
'Msm', 56e-3, ...
|
||||
'Kf_F', Kf(i), ...
|
||||
'Kf_M', Kf(i));
|
||||
|
||||
G_Kf_apa300ml(i) = {linearize(mdl, io)};
|
||||
G_Kf_apa300ml{i}.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'};
|
||||
G_Kf_apa300ml{i}.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6', 'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'};
|
||||
end
|
||||
|
||||
Kiff = -1000 * ... % Gain
|
||||
1/(s) * ... % LPF: provides integral action
|
||||
eye(6); % Diagonal 6x6 controller (i.e. decentralized)
|
||||
|
||||
Kiff.InputName = {'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'};
|
||||
Kiff.OutputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'};
|
||||
|
||||
%% Root Locus for decentralized IFF - APA300ML actuator - Effect of joint bending stiffness
|
||||
gains = logspace(-1, 2, 300);
|
||||
|
||||
figure;
|
||||
tiledlayout(1, 1, 'TileSpacing', 'compact', 'Padding', 'None');
|
||||
nexttile();
|
||||
hold on;
|
||||
|
||||
for i = 1:length(Kf)
|
||||
plot(real(pole(G_Kf_apa300ml{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), imag(pole(G_Kf_apa300ml{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), 'x', 'color', colors(i,:), ...
|
||||
'DisplayName', sprintf('$k_f = %.0f$ [Nm/rad]', Kf(i)));
|
||||
plot(real(tzero(G_Kf_apa300ml{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), imag(tzero(G_Kf_apa300ml{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), 'o', 'color', colors(i,:), ...
|
||||
'HandleVisibility', 'off');
|
||||
|
||||
for g = gains
|
||||
clpoles = pole(feedback(G_Kf_apa300ml{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}), g*Kiff, +1));
|
||||
plot(real(clpoles), imag(clpoles), '.', 'color', colors(i,:), ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
xline(0, 'HandleVisibility', 'off'); yline(0, 'HandleVisibility', 'off');
|
||||
hold off;
|
||||
axis equal;
|
||||
xlim(1.4*[-900, 100]); ylim(1.4*[-100, 900]);
|
||||
xticks(1.4*[-900:100:0]);
|
||||
yticks(1.4*[0:100:900]);
|
||||
set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]);
|
||||
xlabel('Real part'); ylabel('Imaginary part');
|
||||
leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
%% Identify the dynamics for several considered axial stiffnesses
|
||||
% Let's initialize all the stages with default parameters.
|
||||
initializeGround('type', 'rigid');
|
||||
initializeGranite('type', 'rigid');
|
||||
initializeTy('type', 'rigid');
|
||||
initializeRy('type', 'rigid');
|
||||
initializeRz('type', 'rigid');
|
||||
initializeMicroHexapod('type', 'rigid');
|
||||
initializeSample('m', 50);
|
||||
|
||||
initializeSimscapeConfiguration();
|
||||
initializeDisturbances('enable', false);
|
||||
initializeLoggingConfiguration('log', 'none');
|
||||
initializeController('type', 'open-loop');
|
||||
initializeReferences();
|
||||
|
||||
% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
||||
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'EdL'); io_i = io_i + 1; % Errors in the frame of the struts
|
||||
io(io_i) = linio([mdl, '/NASS'], 3, 'openoutput', [], 'fn'); io_i = io_i + 1; % Force Sensors
|
||||
|
||||
% Effect of bending stiffness
|
||||
Ka = 1e6*[1000, 100, 10, 1]; % [Nm/rad]
|
||||
G_Ka = {zeros(length(Ka), 1)};
|
||||
|
||||
for i = 1:length(Ka)
|
||||
% Limited joint axial compliance
|
||||
initializeSimplifiedNanoHexapod('actuator_type', '1dof', ...
|
||||
'flex_type_F', '2dof_axial', ...
|
||||
'flex_type_M', '4dof', ...
|
||||
'actuator_k', 1e6, ...
|
||||
'actuator_c', 1e1, ...
|
||||
'actuator_kp', 0, ...
|
||||
'actuator_cp', 0, ...
|
||||
'Fsm', 56e-3, ... % APA300ML weight 112g
|
||||
'Msm', 56e-3, ...
|
||||
'Ca_F', 1, ...
|
||||
'Ca_M', 1, ...
|
||||
'Ka_F', Ka(i), ...
|
||||
'Ka_M', Ka(i));
|
||||
|
||||
G_Ka(i) = {linearize(mdl, io)};
|
||||
G_Ka{i}.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'};
|
||||
G_Ka{i}.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6', 'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'};
|
||||
end
|
||||
|
||||
freqs = logspace(1, 4, 1000);
|
||||
|
||||
%% Effect of the flexible joint axial stiffness on the HAC-plant
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(Ka)
|
||||
for j = 1:5
|
||||
for k = j+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G_Ka{i}("l"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(i,:), 0.1], ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
end
|
||||
for i = 1:length(Ka)
|
||||
plot(freqs, abs(squeeze(freqresp(G_Ka{i}("l1","f1"), freqs, 'Hz'))), 'color', colors(i,:), 'DisplayName', sprintf('$k_a = %.0f$ [N/$\\mu$m]', 1e-6*Ka(i)));
|
||||
% for j = 2:6
|
||||
% plot(freqs, abs(squeeze(freqresp(G_Ka{i}("l"+j,"f"+j), freqs, 'Hz'))), 'color', colors(i,:), 'HandleVisibility', 'off');
|
||||
% end
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
ylim([1e-10, 1e-4]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i = 1:length(Ka)
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_Ka{i}(1, 1), freqs, 'Hz')))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-200, 20]);
|
||||
yticks([-360:45:360]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
|
||||
%% Effect of the flexible joint axial stiffness on the IFF plant
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i = 1:length(Ka)
|
||||
for j = 1:5
|
||||
for k = j+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G_Ka{i}("fm"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(i,:), 0.1], ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
end
|
||||
for i = 1:length(Ka)
|
||||
plot(freqs, abs(squeeze(freqresp(G_Ka{i}("fm1","f1"), freqs, 'Hz'))), 'color', colors(i,:), 'DisplayName', sprintf('$k_a = %.0f$ [N/$\\mu$m]', 1e-6*Ka(i)));
|
||||
% for j = 2:6
|
||||
% plot(freqs, abs(squeeze(freqresp(G_Ka{i}("fm"+j,"f"+j), freqs, 'Hz'))), 'color', colors(i,:), 'HandleVisibility', 'off');
|
||||
% end
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
|
||||
leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
ylim([1e-4, 1e2]);
|
||||
|
||||
ax2 = nexttile();
|
||||
hold on;
|
||||
for i = 1:length(Ka)
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_Ka{i}("fm1", "f1"), freqs, 'Hz')))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-20, 200]);
|
||||
yticks([-360:45:360]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
|
||||
%% Decentalized IFF
|
||||
Kiff = -200 * ... % Gain
|
||||
1/s * ... % LPF: provides integral action
|
||||
eye(6); % Diagonal 6x6 controller (i.e. decentralized)
|
||||
|
||||
Kiff.InputName = {'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'};
|
||||
Kiff.OutputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'};
|
||||
|
||||
%% Root Locus for decentralized IFF - 1dof actuator - Effect of joint bending stiffness
|
||||
gains = logspace(-1, 2, 400);
|
||||
|
||||
figure;
|
||||
tiledlayout(1, 1, 'TileSpacing', 'compact', 'Padding', 'None');
|
||||
nexttile();
|
||||
hold on;
|
||||
|
||||
for i = 1:length(Ka)
|
||||
plot(real(pole(G_Ka{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), imag(pole(G_Ka{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), 'x', 'color', colors(i,:), ...
|
||||
'DisplayName', sprintf('$k_a = %.0f$ N/$\\mu$m', 1e-6*Ka(i)));
|
||||
plot(real(tzero(G_Ka{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), imag(tzero(G_Ka{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), 'o', 'color', colors(i,:), ...
|
||||
'HandleVisibility', 'off');
|
||||
|
||||
for g = gains
|
||||
clpoles = pole(feedback(G_Ka{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}), g*Kiff, +1));
|
||||
plot(real(clpoles), imag(clpoles), '.', 'color', colors(i,:), ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
xline(0, 'HandleVisibility', 'off'); yline(0, 'HandleVisibility', 'off');
|
||||
hold off;
|
||||
axis equal;
|
||||
xlim(1.1*[-900, 100]); ylim(1.1*[-100, 900]);
|
||||
xticks(1.1*[-900:100:0]);
|
||||
yticks(1.1*[0:100:900]);
|
||||
set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]);
|
||||
xlabel('Real part'); ylabel('Imaginary part');
|
||||
leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
%% Compute the damped plants
|
||||
Kiff = -500 * ... % Gain
|
||||
1/(s + 2*pi*0.1) * ... % LPF: provides integral action
|
||||
eye(6); % Diagonal 6x6 controller (i.e. decentralized)
|
||||
|
||||
Kiff.InputName = {'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'};
|
||||
Kiff.OutputName = {'u1iff', 'u2iff', 'u3iff', 'u4iff', 'u5iff', 'u6iff'};
|
||||
|
||||
% New damped plant input
|
||||
S1 = sumblk("f1 = u1iff + u1");
|
||||
S2 = sumblk("f2 = u2iff + u2");
|
||||
S3 = sumblk("f3 = u3iff + u3");
|
||||
S4 = sumblk("f4 = u4iff + u4");
|
||||
S5 = sumblk("f5 = u5iff + u5");
|
||||
S6 = sumblk("f6 = u6iff + u6");
|
||||
|
||||
G_Ka_iff = {zeros(1,length(Ka))};
|
||||
for i=1:length(Ka)
|
||||
G_Ka_iff(i) = {connect(G_Ka{i}, Kiff, S1, S2, S3, S4, S5, S6, {'u1', 'u2', 'u3', 'u4', 'u5', 'u6'}, {'l1', 'l2', 'l3', 'l4', 'l5', 'l6'})};
|
||||
end
|
||||
|
||||
%% Interaction Analysis - RGA Number
|
||||
rga = zeros(length(Ka), length(freqs));
|
||||
for i = 1:length(Ka)
|
||||
for j = 1:length(freqs)
|
||||
rga(i,j) = sum(sum(abs(inv(evalfr(G_Ka_iff{i}({"l1", "l2", "l3", "l4", "l5", "l6"}, {"u1", "u2", "u3", "u4", "u5", "u6"}), 1j*2*pi*freqs(j)).').*evalfr(G_Ka_iff{i}({"l1", "l2", "l3", "l4", "l5", "l6"}, {"u1", "u2", "u3", "u4", "u5", "u6"}), 1j*2*pi*freqs(j)) - eye(6))));
|
||||
end
|
||||
end
|
||||
|
||||
%% RGA number for the damped plants - Effect of the flexible joint axial stiffness
|
||||
figure;
|
||||
hold on;
|
||||
for i = 1:length(Ka)
|
||||
plot(freqs, rga(i,:), 'DisplayName', sprintf('$k_a = %.0f$ N/$\\mu$m', 1e-6*Ka(i)))
|
||||
end
|
||||
hold off;
|
||||
xlabel('Frequency [Hz]'); ylabel('RGA number');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylim([0, 10]); xlim([10, 5e3]);
|
||||
leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
%% Extract stiffness of the joint from the reduced order model
|
||||
% We first extract the stiffness and mass matrices.
|
||||
K = readmatrix('flex025_mat_K.CSV');
|
||||
M = readmatrix('flex025_mat_M.CSV');
|
||||
% Then, we extract the coordinates of the interface nodes.
|
||||
[int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('flex025_out_nodes_3D.txt');
|
||||
|
||||
m = 1;
|
||||
|
||||
%% Name of the Simulink File
|
||||
mdl = 'detail_fem_joint';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/T'], 1, 'openinput'); io_i = io_i + 1; % Forces and Torques
|
||||
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Translations and Rotations
|
||||
|
||||
G = linearize(mdl, io);
|
||||
|
||||
% Stiffness extracted from the Simscape model
|
||||
k_a = 1/dcgain(G(3,3)); % Axial stiffness [N/m]
|
||||
k_f = 1/dcgain(G(4,4)); % Bending stiffness [N/m]
|
||||
k_t = 1/dcgain(G(6,6)); % Torsion stiffness [N/m]
|
||||
|
||||
|
||||
% Stiffness extracted from the Stiffness matrix
|
||||
k_s = K(1,1); % shear [N/m]
|
||||
% k_s = K(2,2); % shear [N/m]
|
||||
k_a = K(3,3); % axial [N/m]
|
||||
k_f = K(4,4); % bending [Nm/rad]
|
||||
% k_f = K(5,5); % bending [Nm/rad]
|
||||
k_t = K(6,6); % torsion [Nm/rad]
|
||||
|
||||
%% Compare Dynamics between "Reduced Order" flexible joints and "2-dof and 3-dof" joints
|
||||
% Let's initialize all the stages with default parameters.
|
||||
initializeGround('type', 'rigid');
|
||||
initializeGranite('type', 'rigid');
|
||||
initializeTy('type', 'rigid');
|
||||
initializeRy('type', 'rigid');
|
||||
initializeRz('type', 'rigid');
|
||||
initializeMicroHexapod('type', 'rigid');
|
||||
initializeSample('m', 50);
|
||||
|
||||
initializeSimscapeConfiguration();
|
||||
initializeDisturbances('enable', false);
|
||||
initializeLoggingConfiguration('log', 'none');
|
||||
initializeController('type', 'open-loop');
|
||||
initializeReferences();
|
||||
|
||||
mdl = 'detail_fem_nass';
|
||||
|
||||
% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
||||
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'EdL'); io_i = io_i + 1; % Errors in the frame of the struts
|
||||
io(io_i) = linio([mdl, '/NASS'], 3, 'openoutput', [], 'fn'); io_i = io_i + 1; % Force Sensors
|
||||
|
||||
% Fully flexible joints
|
||||
initializeSimplifiedNanoHexapod('actuator_type', 'apa300ml', ...
|
||||
'flex_type_F', 'flexible', ...
|
||||
'flex_type_M', 'flexible', ...
|
||||
'Fsm', 56e-3, ... % APA300ML weight 112g
|
||||
'Msm', 56e-3);
|
||||
|
||||
G_flex = linearize(mdl, io);
|
||||
G_flex.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'};
|
||||
G_flex.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6', 'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'};
|
||||
|
||||
% Flexible joints modelled by 2DoF and 3DoF joints
|
||||
initializeSimplifiedNanoHexapod('actuator_type', 'apa300ml', ...
|
||||
'flex_type_F', '2dof_axial', ...
|
||||
'flex_type_M', '4dof', ...
|
||||
'Kf_F', k_f, ...
|
||||
'Kt_F', k_t, ...
|
||||
'Ka_F', k_a, ...
|
||||
'Kf_M', k_f, ...
|
||||
'Kt_M', k_t, ...
|
||||
'Ka_M', k_a, ...
|
||||
'Cf_F', 1e-2, ...
|
||||
'Ct_F', 1e-2, ...
|
||||
'Ca_F', 1e-2, ...
|
||||
'Cf_M', 1e-2, ...
|
||||
'Ct_M', 1e-2, ...
|
||||
'Ca_M', 1e-2, ...
|
||||
'Fsm', 56e-3, ... % APA300ML weight 112g
|
||||
'Msm', 56e-3);
|
||||
|
||||
G_ideal = linearize(mdl, io);
|
||||
G_ideal.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'};
|
||||
G_ideal.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6', 'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'};
|
||||
|
||||
%% Comparison of the dynamics with joints modelled with FEM and modelled with "ideal joints" - HAC plant
|
||||
freqs = logspace(1, 4, 1000);
|
||||
|
||||
%% Effect of the flexible joint axial stiffness on the HAC-plant
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for j = 1:5
|
||||
for k = j+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G_flex("l"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(1,:), 0.1], ...
|
||||
'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_ideal("l"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(2,:), 0.1], ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
plot(freqs, abs(squeeze(freqresp(G_flex("l1","f1"), freqs, 'Hz'))), 'color', colors(1,:), 'DisplayName', 'Reduced Order Flexible Joints');
|
||||
plot(freqs, abs(squeeze(freqresp(G_ideal("l1","f1"), freqs, 'Hz'))), 'color', colors(2,:), 'DisplayName', 'Bot: $k_f$, $k_a$, Top: $k_f$, $k_t$, $k_a$');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
ylim([1e-10, 1e-4]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_flex("l1","f1"), freqs, 'Hz'))));
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ideal("l1","f1"), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-20, 200]);
|
||||
yticks([-360:45:360]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
%% Effect of the flexible joint axial stiffness on the HAC-plant
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for j = 1:5
|
||||
for k = j+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G_flex("fm"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(1,:), 0.1], ...
|
||||
'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_ideal("fm"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(2,:), 0.1], ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
plot(freqs, abs(squeeze(freqresp(G_flex("fm1","f1"), freqs, 'Hz'))), 'color', colors(1,:), 'DisplayName', 'Reduced Order Flexible Joints');
|
||||
plot(freqs, abs(squeeze(freqresp(G_ideal("fm1","f1"), freqs, 'Hz'))), 'color', colors(2,:), 'DisplayName', 'Bot: $k_f$, $k_a$, Top: $k_f$, $k_t$, $k_a$');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
|
||||
leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
ylim([1e-5, 1e1]);
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_flex("fm1","f1"), freqs, 'Hz'))));
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ideal("fm1","f1"), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-20, 200]);
|
||||
yticks([-360:45:360]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
Binary file not shown.
Binary file not shown.
BIN
matlab/mat/detail_fem_apa95ml_open_circuit.mat
Normal file
BIN
matlab/mat/detail_fem_apa95ml_open_circuit.mat
Normal file
Binary file not shown.
BIN
matlab/mat/detail_fem_apa95ml_short_circuit.mat
Normal file
BIN
matlab/mat/detail_fem_apa95ml_short_circuit.mat
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
85
nass-fem.bib
85
nass-fem.bib
@ -1,15 +1,15 @@
|
||||
@article{souleille18_concep_activ_mount_space_applic,
|
||||
author = {Souleille, Adrien and Lampert, Thibault and Lafarga, V and
|
||||
Hellegouarch, Sylvain and Rondineau, Alan and Rodrigues,
|
||||
Gon{\c{c}}alo and Collette, Christophe},
|
||||
title = {A Concept of Active Mount for Space Applications},
|
||||
journal = {CEAS Space Journal},
|
||||
volume = 10,
|
||||
number = 2,
|
||||
pages = {157--165},
|
||||
year = 2018,
|
||||
publisher = {Springer},
|
||||
keywords = {parallel robot, iff},
|
||||
@article{mcinroy02_model_desig_flexur_joint_stewar,
|
||||
author = {J.E. McInroy},
|
||||
title = {Modeling and Design of Flexure Jointed Stewart Platforms
|
||||
for Control Purposes},
|
||||
journal = {IEEE/ASME Transactions on Mechatronics},
|
||||
volume = 7,
|
||||
number = 1,
|
||||
pages = {95-99},
|
||||
year = 2002,
|
||||
doi = {10.1109/3516.990892},
|
||||
url = {https://doi.org/10.1109/3516.990892},
|
||||
keywords = {parallel robot, flexure},
|
||||
}
|
||||
|
||||
|
||||
@ -109,6 +109,19 @@
|
||||
|
||||
|
||||
|
||||
@book{pintelon12_system_ident,
|
||||
author = {Rik Pintelon and Johan Schoukens},
|
||||
title = {System Identification : a Frequency Domain Approach},
|
||||
year = 2012,
|
||||
publisher = {Wiley IEEE Press},
|
||||
url = {https://doi.org/10.1002/9781118287422},
|
||||
address = {Hoboken, N.J. Piscataway, NJ},
|
||||
doi = {10.1002/9781118287422},
|
||||
isbn = 9780470640371,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@phdthesis{hanieh03_activ_stewar,
|
||||
author = {Hanieh, Ahmed Abu},
|
||||
keywords = {parallel robot},
|
||||
@ -120,18 +133,29 @@
|
||||
|
||||
|
||||
|
||||
@article{mcinroy02_model_desig_flexur_joint_stewar,
|
||||
author = {J.E. McInroy},
|
||||
title = {Modeling and Design of Flexure Jointed Stewart Platforms
|
||||
for Control Purposes},
|
||||
journal = {IEEE/ASME Transactions on Mechatronics},
|
||||
volume = 7,
|
||||
number = 1,
|
||||
pages = {95-99},
|
||||
year = 2002,
|
||||
doi = {10.1109/3516.990892},
|
||||
url = {https://doi.org/10.1109/3516.990892},
|
||||
keywords = {parallel robot, flexure},
|
||||
@article{souleille18_concep_activ_mount_space_applic,
|
||||
author = {Souleille, Adrien and Lampert, Thibault and Lafarga, V and
|
||||
Hellegouarch, Sylvain and Rondineau, Alan and Rodrigues,
|
||||
Gon{\c{c}}alo and Collette, Christophe},
|
||||
title = {A Concept of Active Mount for Space Applications},
|
||||
journal = {CEAS Space Journal},
|
||||
volume = 10,
|
||||
number = 2,
|
||||
pages = {157--165},
|
||||
year = 2018,
|
||||
publisher = {Springer},
|
||||
keywords = {parallel robot, iff},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@book{schmidt20_desig_high_perfor_mechat_third_revis_edition,
|
||||
author = {Schmidt, R Munnig and Schitter, Georg and Rankers, Adrian},
|
||||
title = {The Design of High Performance Mechatronics - Third Revised
|
||||
Edition},
|
||||
year = 2020,
|
||||
publisher = {Ios Press},
|
||||
keywords = {favorite},
|
||||
}
|
||||
|
||||
|
||||
@ -187,3 +211,16 @@
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@book{preumont18_vibrat_contr_activ_struc_fourt_edition,
|
||||
author = {Andre Preumont},
|
||||
title = {Vibration Control of Active Structures - Fourth Edition},
|
||||
year = 2018,
|
||||
publisher = {Springer International Publishing},
|
||||
url = {https://doi.org/10.1007/978-3-319-72296-2},
|
||||
doi = {10.1007/978-3-319-72296-2},
|
||||
keywords = {favorite, parallel robot},
|
||||
series = {Solid Mechanics and Its Applications},
|
||||
}
|
||||
|
||||
|
1023
nass-fem.org
1023
nass-fem.org
File diff suppressed because it is too large
Load Diff
BIN
nass-fem.pdf
BIN
nass-fem.pdf
Binary file not shown.
29
nass-fem.tex
29
nass-fem.tex
@ -1,4 +1,4 @@
|
||||
% Created 2025-02-27 Thu 01:24
|
||||
% Created 2025-02-27 Thu 10:38
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
|
||||
|
||||
@ -38,7 +38,6 @@ Section \ref{sec:detail_fem_joint} addresses the design of flexible joints, wher
|
||||
In both cases, the hybrid modeling approach enables detailed component optimization while maintaining the ability to predict system-level dynamic behavior, particularly under closed-loop control conditions.
|
||||
|
||||
\chapter{Reduced order flexible bodies}
|
||||
\label{sec:orgfd22661}
|
||||
\label{sec:detail_fem_super_element}
|
||||
Components exhibiting complex dynamical behavior are frequently found to be unsuitable for direct implementation within multi-body models.
|
||||
These components are traditionally analyzed using Finite Element Analysis (FEA) software.
|
||||
@ -50,7 +49,6 @@ First, the fundamental principles and methodological approaches of this modeling
|
||||
It is then illustrated through its practical application to the modelling of an Amplified Piezoelectric Actuator (APA) (Section \ref{ssec:detail_fem_super_element_example}).
|
||||
Finally, the validity of this modeling approach is demonstrated through experimental validation, wherein the obtained dynamics from the hybrid modelling approach is compared with measurements (Section \ref{ssec:detail_fem_super_element_validation}).
|
||||
\section{Procedure}
|
||||
\label{sec:org93ab665}
|
||||
\label{ssec:detail_fem_super_element_theory}
|
||||
|
||||
In this modeling approach, some components within the multi-body framework are represented as \emph{reduced-order flexible bodies}, wherein their modal behavior is characterized through reduced mass and stiffness matrices derived from finite element analysis (FEA) models.
|
||||
@ -74,7 +72,6 @@ m = 6 \times n + p
|
||||
\end{equation}
|
||||
|
||||
\section{Example with an Amplified Piezoelectric Actuator}
|
||||
\label{sec:org1e66a5f}
|
||||
\label{ssec:detail_fem_super_element_example}
|
||||
The presented modeling framework was first applied to an Amplified Piezoelectric Actuator (APA) for several reasons.
|
||||
Primarily, this actuator represents an excellent candidate for implementation within the nano-hexapod, as will be elaborated in Section \ref{sec:detail_fem_actuator}.
|
||||
@ -105,7 +102,6 @@ Stiffness & \(21\,N/\mu m\)\\
|
||||
\captionof{table}{\label{tab:detail_fem_apa95ml_specs}APA95ML specifications}
|
||||
\end{minipage}
|
||||
\paragraph{Finite Element Model}
|
||||
\label{sec:orgce5afdb}
|
||||
|
||||
The development of the finite element model for the APA95ML necessitated the specification of appropriate material properties, as summarized in Table \ref{tab:detail_fem_material_properties}.
|
||||
The finite element mesh, shown in Figure \ref{fig:detail_fem_apa95ml_mesh}, was then generated.
|
||||
@ -142,11 +138,10 @@ The modal reduction procedure was then executed, yielding the reduced mass and s
|
||||
\end{center}
|
||||
\subcaption{\label{fig:detail_fem_apa_model_schematic}Inclusion in multi-body model}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:detail_fem_apa95ml_model}Obtained mesh and defined interface frames (or ``remote points'') in the finite element model of the APA95ML (\subref{fig:detail_fem_apa95ml_mesh}). Interface with the multi-body model is shown in (\subref{fig:detail_fem_apa_modal_schematic}).}
|
||||
\caption{\label{fig:detail_fem_apa95ml_model}Obtained mesh and defined interface frames (or ``remote points'') in the finite element model of the APA95ML (\subref{fig:detail_fem_apa95ml_mesh}). Interface with the multi-body model is shown in (\subref{fig:detail_fem_apa_model_schematic}).}
|
||||
\end{figure}
|
||||
|
||||
\paragraph{Super Element in the Multi-Body Model}
|
||||
\label{sec:org809b5e7}
|
||||
|
||||
Previously computed reduced order mass and stiffness matrices were imported in a multi-body model block called ``Reduced Order Flexible Solid''.
|
||||
This block has several interface frames corresponding to the ones defined in the FEA software.
|
||||
@ -158,7 +153,6 @@ This is illustrated in Figure \ref{fig:detail_fem_apa_model_schematic}.
|
||||
However, to have access to the physical voltage input of the actuators stacks \(V_a\) and to the generated voltage by the force sensor \(V_s\), conversion between the electrical and mechanical domains need to be determined.
|
||||
|
||||
\paragraph{Sensor and Actuator ``constants''}
|
||||
\label{sec:orgb3a075f}
|
||||
|
||||
To link the electrical domain to the mechanical domain, an ``actuator constant'' \(g_a\) and a ``sensor constant'' \(g_s\) were introduced as shown in Figure \ref{fig:detail_fem_apa_model_schematic}.
|
||||
|
||||
@ -217,7 +211,6 @@ From these parameters, \(g_s = 5.1\,V/\mu m\) and \(g_a = 26\,N/V\) were obtaine
|
||||
\end{table}
|
||||
|
||||
\paragraph{Identification of the APA Characteristics}
|
||||
\label{sec:orge041867}
|
||||
|
||||
Initial validation of the finite element model and its integration as a reduced-order flexible model within the multi-body model was accomplished through comparative analysis of key actuator characteristics against manufacturer specifications.
|
||||
|
||||
@ -225,7 +218,7 @@ The stiffness of the APA95ML was estimated from the multi-body model by computin
|
||||
The inverse of the DC gain this transfer function corresponds to the axial stiffness of the APA95ML.
|
||||
A value of \(23\,N/\mu m\) was found which is close to the specified stiffness in the datasheet of \(k = 21\,N/\mu m\).
|
||||
|
||||
The multi-body model predicted a resonant frequency under block-free conditions of \(2024\,\text{Hz}\) (Figure \ref{fig:detail_fem_apa95ml_compliance}), which is in agreement with the nominal specification of \(2000\,\text{Hz}\).
|
||||
The multi-body model predicted a resonant frequency under block-free conditions of \(\approx 2\,\text{kHz}\) (Figure \ref{fig:detail_fem_apa95ml_compliance}), which is in agreement with the nominal specification of \(2\,\text{kHz}\).
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -243,7 +236,6 @@ Through the established amplification factor of 1.5, this translates to a predic
|
||||
The high degree of concordance observed across multiple performance metrics provides a first validation of the ability to include FEM into multi-body model.
|
||||
|
||||
\section{Experimental Validation}
|
||||
\label{sec:org354cea4}
|
||||
\label{ssec:detail_fem_super_element_validation}
|
||||
Further validation of the reduced-order flexible body methodology was undertaken through experimental investigation.
|
||||
The goal is to measure the dynamics of the APA95ML and compared it with predictions derived from the multi-body model incorporating the actuator as a flexible element.
|
||||
@ -269,7 +261,6 @@ Measurement of the sensor stack voltage \(V_s\) was performed using an analog-to
|
||||
\caption{\label{fig:detail_fem_apa95ml_bench}Test bench used to validate ``reduced order solid bodies'' using an APA95ML. Picture of the bench is shown in (\subref{fig:detail_fem_apa95ml_bench_picture}). Schematic is shown in (\subref{fig:detail_fem_apa95ml_bench_schematic}).}
|
||||
\end{figure}
|
||||
\paragraph{Comparison of the dynamics}
|
||||
\label{sec:orgc0ac08b}
|
||||
|
||||
Frequency domain system identification techniques were used to characterize the dynamic behavior of the APA95ML.
|
||||
The identification procedure necessitated careful choice of the excitation signal \cite[, chap. 5]{pintelon12_system_ident}.
|
||||
@ -304,7 +295,6 @@ Regarding the amplitude characteristics, the constants \(g_a\) and \(g_s\) could
|
||||
\end{figure}
|
||||
|
||||
\paragraph{Integral Force Feedback with APA}
|
||||
\label{sec:org4b65d74}
|
||||
|
||||
To further validate this modeling methodology, its ability to predict closed-loop behavior was verified experimentally.
|
||||
Integral Force Feedback (IFF) was implemented using the force sensor stack, and the measured dynamics of the damped system were compared with model predictions across multiple feedback gains.
|
||||
@ -338,7 +328,6 @@ The close agreement between experimental measurements and theoretical prediction
|
||||
\end{figure}
|
||||
|
||||
\section*{Conclusion}
|
||||
\label{sec:org105aef7}
|
||||
The modeling procedure presented in this section will demonstrate significant utility for the optimization of complex mechanical components within multi-body systems, particularly in the design of actuators (Section \ref{sec:detail_fem_actuator}) and flexible joints (Section \ref{sec:detail_fem_joint}).
|
||||
|
||||
Through experimental validation using an Amplified Piezoelectric Actuator, the methodology has been shown to accurately predict both open-loop and closed-loop dynamic behavior, thereby establishing its reliability for component design and system analysis.
|
||||
@ -348,7 +337,6 @@ This is exemplified by the nano-hexapod configuration, where the implementation
|
||||
However, the methodology remains valuable for system analysis, as the extraction of frequency domain characteristics can be efficiently performed even with such high-order models.
|
||||
|
||||
\chapter{Actuator Selection}
|
||||
\label{sec:org3ec4809}
|
||||
\label{sec:detail_fem_actuator}
|
||||
The selection and modeling of actuators constitutes a critical step in the development of the nano-hexapod.
|
||||
This chapter presents the approach to actuator selection and modeling.
|
||||
@ -356,7 +344,6 @@ First, specifications for the nano-hexapod actuators are derived from previous a
|
||||
Then, the chosen actuator is modeled using the reduced-order flexible body approach developed in the previous section, enabling validation of this selection through detailed dynamical analysis (Section \ref{ssec:detail_fem_actuator_apa300ml}).
|
||||
Finally, a simplified two-degree-of-freedom model is developed to facilitate time-domain simulations while maintaining accurate representation of the actuator's essential characteristics (Section \ref{ssec:detail_fem_actuator_apa300ml_2dof}).
|
||||
\section{Choice of the Actuator based on Specifications}
|
||||
\label{sec:org929a34b}
|
||||
\label{ssec:detail_fem_actuator_specifications}
|
||||
|
||||
The actuator selection process was driven by several critical requirements derived from previous dynamic analyses.
|
||||
@ -431,7 +418,6 @@ Height \(< 50\, [mm]\) & 22 & 30 & 24 & 27 & 16\\
|
||||
\end{table}
|
||||
|
||||
\section{APA300ML - Reduced Order Flexible Body}
|
||||
\label{sec:orgeff9b1b}
|
||||
\label{ssec:detail_fem_actuator_apa300ml}
|
||||
|
||||
The validation of the APA300ML started by incorporating a ``reduced order flexible body'' into the multi-body model as explained in Section \ref{sec:detail_fem_super_element}.
|
||||
@ -459,7 +445,6 @@ While this high order provides excellent accuracy for validation purposes, it pr
|
||||
The sensor and actuator ``constants'' (\(g_s\) and \(g_a\)) derived in Section \ref{ssec:detail_fem_super_element_example} for the APA95ML were used for the APA300ML model, as both actuators employ identical piezoelectric stacks.
|
||||
|
||||
\section{Simpler 2DoF Model of the APA300ML}
|
||||
\label{sec:org120c274}
|
||||
\label{ssec:detail_fem_actuator_apa300ml_2dof}
|
||||
|
||||
To facilitate efficient time-domain simulations while maintaining essential dynamic characteristics, a simplified two-degree-of-freedom model was developed, adapted from \cite{souleille18_concep_activ_mount_space_applic}.
|
||||
@ -532,7 +517,6 @@ While higher-order modes and non-axial flexibility are not captured, the model a
|
||||
\end{figure}
|
||||
|
||||
\section{Electrical characteristics of the APA}
|
||||
\label{sec:orga7af5a1}
|
||||
\label{ssec:detail_fem_actuator_apa300ml_electrical}
|
||||
|
||||
The behavior of piezoelectric actuators is characterized by coupled constitutive equations that establish relationships between electrical properties (charges, voltages) and mechanical properties (stress, strain) \cite[, chapter 5.5]{schmidt20_desig_high_perfor_mechat_third_revis_edition}.
|
||||
@ -553,7 +537,6 @@ Proper consideration must be given to voltage amplifier specifications and force
|
||||
These aspects, being fundamental to system implementation, will be addressed in the instrumentation chapter.
|
||||
|
||||
\section{Validation with the Nano-Hexapod}
|
||||
\label{sec:orgba951c9}
|
||||
\label{ssec:detail_fem_actuator_apa300ml_validation}
|
||||
|
||||
The integration of the APA300ML model within the nano-hexapod simulation framework served two validation objectives: to validate the APA300ML choice through analysis of system dynamics with APA modelled as flexible bodies, and to validate the simplified 2DoF model through comparative analysis with the full FEM implementation.
|
||||
@ -586,7 +569,6 @@ These results validate both the selection of the APA300ML and the effectiveness
|
||||
\end{figure}
|
||||
|
||||
\chapter{Flexible Joint Design}
|
||||
\label{sec:org93c9b2c}
|
||||
\label{sec:detail_fem_joint}
|
||||
High-precision position control at the nanometer scale requires systems to be free from friction and backlash, as these nonlinear phenomena severely limit achievable positioning accuracy.
|
||||
This fundamental requirement prevents the use of conventional joints, necessitating instead the implementation of flexible joints that achieve motion through elastic deformation.
|
||||
@ -622,7 +604,6 @@ The analysis of bending and axial stiffness effects enables the establishment of
|
||||
These specifications guide the development and optimization of a flexible joint design through finite element analysis (Section \ref{ssec:detail_fem_joint_specs}).
|
||||
The validation process, detailed in Section \ref{ssec:detail_fem_joint_validation}, begins with the integration of the joints as ``reduced order flexible bodies'' in the nano-hexapod model, followed by the development of computationally efficient lower-order models that preserve the essential dynamic characteristics.
|
||||
\section{Bending and Torsional Stiffness}
|
||||
\label{sec:org582c93a}
|
||||
\label{ssec:detail_fem_joint_bending}
|
||||
|
||||
The presence of bending stiffness in flexible joints causes the forces applied by the struts to deviate from the strut direction.
|
||||
@ -679,7 +660,6 @@ A parallel analysis of torsional stiffness revealed similar dynamic effects, tho
|
||||
\end{figure}
|
||||
|
||||
\section{Axial Stiffness}
|
||||
\label{sec:org05206a1}
|
||||
\label{ssec:detail_fem_joint_axial}
|
||||
|
||||
The limited axial stiffness (\(k_a\)) of flexible joints introduces an additional compliance between the actuation point and the measurement point.
|
||||
@ -735,7 +715,6 @@ Based on this analysis, an axial stiffness specification of \(100\,N/\mu m\) was
|
||||
\end{figure}
|
||||
|
||||
\section{Specifications and Design flexible joints}
|
||||
\label{sec:org2310ef0}
|
||||
\label{ssec:detail_fem_joint_specs}
|
||||
|
||||
The design of flexible joints for precision applications requires careful consideration of multiple mechanical characteristics.
|
||||
@ -784,7 +763,6 @@ The final design, featuring a neck dimension of 0.25mm, achieves mechanical prop
|
||||
\end{figure}
|
||||
|
||||
\section{Validation with the Nano-Hexapod}
|
||||
\label{sec:org4e972fc}
|
||||
\label{ssec:detail_fem_joint_validation}
|
||||
|
||||
The designed flexible joint was first validated through integration into the nano-hexapod model using reduced-order flexible bodies derived from finite element analysis.
|
||||
@ -822,7 +800,6 @@ While additional degrees of freedom could potentially capture more dynamic featu
|
||||
\end{figure}
|
||||
|
||||
\chapter*{Conclusion}
|
||||
\label{sec:org5382fe7}
|
||||
\label{sec:detail_fem_conclusion}
|
||||
|
||||
In this chapter, the methodology of combining finite element analysis with multi-body modeling has been demonstrated and validated, proving particularly valuable for the detailed design phase of the nano-hexapod.
|
||||
|
Loading…
x
Reference in New Issue
Block a user