Compare commits

..

No commits in common. "8a5f52f8cca325c058f1524fb03e49f51dc36373" and "fb616e7fd5cf8595ae11bb96d3febf39d1ee5f98" have entirely different histories.

18 changed files with 1237 additions and 1166 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

View File

@ -0,0 +1,161 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="220.418" height="56.826" viewBox="0 0 220.418 56.826">
<defs>
<g>
<g id="glyph-0-0">
<path d="M 7.296875 -2.09375 C 7.34375 -2.234375 7.359375 -2.25 7.421875 -2.25 C 7.546875 -2.28125 7.6875 -2.28125 7.796875 -2.28125 C 8.046875 -2.28125 8.203125 -2.28125 8.203125 -2.5625 C 8.203125 -2.609375 8.171875 -2.75 8 -2.75 C 7.78125 -2.75 7.546875 -2.71875 7.328125 -2.71875 C 7.109375 -2.71875 6.875 -2.71875 6.65625 -2.71875 C 6.265625 -2.71875 5.28125 -2.75 4.890625 -2.75 C 4.765625 -2.75 4.578125 -2.75 4.578125 -2.453125 C 4.578125 -2.28125 4.765625 -2.28125 4.921875 -2.28125 L 5.28125 -2.28125 C 5.390625 -2.28125 5.9375 -2.28125 5.9375 -2.21875 C 5.9375 -2.203125 5.9375 -2.1875 5.875 -1.953125 C 5.859375 -1.875 5.703125 -1.25 5.6875 -1.234375 C 5.53125 -0.5625 4.734375 -0.296875 4.109375 -0.296875 C 3.53125 -0.296875 2.9375 -0.421875 2.46875 -0.796875 C 1.9375 -1.234375 1.9375 -1.921875 1.9375 -2.140625 C 1.9375 -2.59375 2.140625 -4.375 3.109375 -5.453125 C 3.6875 -6.109375 4.640625 -6.515625 5.65625 -6.515625 C 6.90625 -6.515625 7.375 -5.5625 7.375 -4.734375 C 7.375 -4.625 7.34375 -4.484375 7.34375 -4.375 C 7.34375 -4.234375 7.46875 -4.234375 7.609375 -4.234375 C 7.828125 -4.234375 7.84375 -4.25 7.890625 -4.453125 L 8.453125 -6.6875 C 8.46875 -6.734375 8.484375 -6.78125 8.484375 -6.84375 C 8.484375 -6.984375 8.34375 -6.984375 8.234375 -6.984375 L 7.3125 -6.265625 C 7.109375 -6.46875 6.59375 -6.984375 5.5 -6.984375 C 2.3125 -6.984375 0.546875 -4.546875 0.546875 -2.515625 C 0.546875 -0.703125 1.953125 0.171875 3.796875 0.171875 C 4.84375 0.171875 5.53125 -0.171875 5.859375 -0.515625 C 6.109375 -0.265625 6.609375 0 6.671875 0 C 6.78125 0 6.796875 -0.078125 6.84375 -0.234375 Z M 7.296875 -2.09375 "/>
</g>
<g id="glyph-0-1">
<path d="M 5.984375 -6.15625 C 6.015625 -6.3125 6.03125 -6.3125 6.109375 -6.328125 C 6.21875 -6.34375 6.359375 -6.34375 6.484375 -6.34375 C 6.734375 -6.34375 6.890625 -6.34375 6.890625 -6.640625 C 6.890625 -6.65625 6.890625 -6.8125 6.6875 -6.8125 C 6.484375 -6.8125 6.265625 -6.796875 6.0625 -6.796875 C 5.84375 -6.796875 5.609375 -6.78125 5.375 -6.78125 C 4.984375 -6.78125 4.03125 -6.8125 3.640625 -6.8125 C 3.53125 -6.8125 3.34375 -6.8125 3.34375 -6.53125 C 3.34375 -6.34375 3.515625 -6.34375 3.6875 -6.34375 L 4.03125 -6.34375 C 4.421875 -6.34375 4.4375 -6.34375 4.6875 -6.3125 L 3.484375 -1.5 C 3.234375 -0.484375 2.609375 -0.1875 2.140625 -0.1875 C 2.0625 -0.1875 1.625 -0.203125 1.328125 -0.421875 C 1.875 -0.5625 2.046875 -1.03125 2.046875 -1.296875 C 2.046875 -1.625 1.78125 -1.859375 1.4375 -1.859375 C 1.046875 -1.859375 0.5625 -1.546875 0.5625 -0.921875 C 0.5625 -0.234375 1.25 0.171875 2.203125 0.171875 C 3.3125 0.171875 4.515625 -0.28125 4.796875 -1.453125 Z M 5.984375 -6.15625 "/>
</g>
<g id="glyph-0-2">
<path d="M 3.46875 -3.453125 L 5.3125 -3.453125 C 5.515625 -3.453125 5.640625 -3.453125 5.796875 -3.609375 C 6 -3.78125 6 -4 6 -4.03125 C 6 -4.40625 5.640625 -4.40625 5.46875 -4.40625 L 2.203125 -4.40625 C 2 -4.40625 1.5625 -4.40625 1.046875 -3.9375 C 0.703125 -3.625 0.3125 -3.109375 0.3125 -3.015625 C 0.3125 -2.875 0.421875 -2.875 0.53125 -2.875 C 0.6875 -2.875 0.703125 -2.875 0.78125 -2.984375 C 1.15625 -3.453125 1.8125 -3.453125 2 -3.453125 L 2.90625 -3.453125 L 2.546875 -2.40625 C 2.453125 -2.15625 2.234375 -1.515625 2.15625 -1.265625 C 2.046875 -0.953125 1.859375 -0.421875 1.859375 -0.3125 C 1.859375 -0.046875 2.078125 0.125 2.328125 0.125 C 2.390625 0.125 2.90625 0.125 3 -0.53125 Z M 3.46875 -3.453125 "/>
</g>
<g id="glyph-1-0">
<path d="M 3.40625 1.640625 C 3.40625 1.546875 3.34375 1.546875 3.296875 1.546875 C 2.46875 1.5 2.3125 1.03125 2.296875 0.859375 L 2.296875 -0.9375 C 2.296875 -1.25 2.046875 -1.578125 1.484375 -1.734375 C 2.296875 -1.984375 2.296875 -2.421875 2.296875 -2.75 L 2.296875 -4 C 2.296875 -4.421875 2.296875 -4.59375 2.5625 -4.78125 C 2.75 -4.9375 3 -5 3.265625 -5.015625 C 3.34375 -5.03125 3.40625 -5.03125 3.40625 -5.125 C 3.40625 -5.21875 3.34375 -5.21875 3.234375 -5.21875 C 2.453125 -5.21875 1.765625 -4.875 1.765625 -4.34375 L 1.765625 -2.71875 C 1.765625 -2.546875 1.765625 -2.3125 1.578125 -2.140625 C 1.296875 -1.90625 1.03125 -1.84375 0.796875 -1.828125 C 0.703125 -1.828125 0.65625 -1.828125 0.65625 -1.734375 C 0.65625 -1.640625 0.71875 -1.640625 0.765625 -1.640625 C 1.515625 -1.59375 1.703125 -1.1875 1.75 -1.046875 C 1.765625 -0.96875 1.765625 -0.953125 1.765625 -0.703125 L 1.765625 0.703125 C 1.765625 0.953125 1.765625 1.21875 2.171875 1.484375 C 2.46875 1.671875 2.953125 1.734375 3.234375 1.734375 C 3.34375 1.734375 3.40625 1.734375 3.40625 1.640625 Z M 3.40625 1.640625 "/>
</g>
<g id="glyph-1-1">
<path d="M 3.40625 -1.734375 C 3.40625 -1.828125 3.34375 -1.828125 3.296875 -1.828125 C 2.484375 -1.875 2.3125 -2.359375 2.296875 -2.546875 L 2.296875 -4.09375 C 2.296875 -4.453125 2.296875 -4.703125 1.890625 -4.96875 C 1.59375 -5.15625 1.09375 -5.21875 0.828125 -5.21875 C 0.71875 -5.21875 0.65625 -5.21875 0.65625 -5.125 C 0.65625 -5.03125 0.71875 -5.015625 0.765625 -5.015625 C 1.625 -4.984375 1.765625 -4.484375 1.765625 -4.328125 L 1.765625 -2.546875 C 1.765625 -2.21875 2.046875 -1.890625 2.59375 -1.734375 C 1.765625 -1.5 1.765625 -1.046875 1.765625 -0.71875 L 1.765625 0.53125 C 1.765625 0.96875 1.765625 1.09375 1.515625 1.296875 C 1.390625 1.40625 1.140625 1.515625 0.796875 1.546875 C 0.703125 1.546875 0.65625 1.546875 0.65625 1.640625 C 0.65625 1.734375 0.71875 1.734375 0.828125 1.734375 C 1.59375 1.734375 2.296875 1.421875 2.296875 0.859375 L 2.296875 -0.765625 C 2.296875 -0.984375 2.296875 -1.578125 3.328125 -1.640625 C 3.328125 -1.640625 3.40625 -1.640625 3.40625 -1.734375 Z M 3.40625 -1.734375 "/>
</g>
<g id="glyph-1-2">
<path d="M 5.125 -0.984375 C 5.125 -1.015625 5.109375 -1.046875 5.0625 -1.046875 C 4.953125 -1.046875 4.5 -0.890625 4.421875 -0.609375 C 4.3125 -0.3125 4.234375 -0.3125 4.0625 -0.3125 C 3.6875 -0.3125 3.1875 -0.4375 2.84375 -0.53125 C 2.484375 -0.625 2.109375 -0.703125 1.75 -0.703125 C 1.71875 -0.703125 1.578125 -0.703125 1.484375 -0.6875 C 1.859375 -1.234375 1.953125 -1.578125 2.0625 -2.015625 C 2.203125 -2.53125 2.40625 -3.25 2.75 -3.828125 C 3.09375 -4.390625 3.265625 -4.421875 3.5 -4.421875 C 3.828125 -4.421875 4.046875 -4.1875 4.046875 -3.84375 C 4.046875 -3.734375 4.03125 -3.65625 4.03125 -3.625 C 4.03125 -3.59375 4.046875 -3.5625 4.109375 -3.5625 C 4.125 -3.5625 4.296875 -3.59375 4.546875 -3.765625 C 4.6875 -3.859375 4.765625 -3.9375 4.765625 -4.203125 C 4.765625 -4.46875 4.609375 -4.890625 4.0625 -4.890625 C 3.453125 -4.890625 2.78125 -4.484375 2.421875 -4.046875 C 1.953125 -3.515625 1.640625 -2.8125 1.359375 -1.671875 C 1.1875 -1.03125 0.9375 -0.5 0.609375 -0.234375 C 0.546875 -0.171875 0.359375 0 0.359375 0.09375 C 0.359375 0.140625 0.421875 0.140625 0.4375 0.140625 C 0.6875 0.140625 1 -0.15625 1.09375 -0.25 C 1.296875 -0.25 1.578125 -0.234375 2.203125 -0.078125 C 2.734375 0.0625 3.109375 0.140625 3.5 0.140625 C 4.375 0.140625 5.125 -0.65625 5.125 -0.984375 Z M 5.125 -0.984375 "/>
</g>
<g id="glyph-1-3">
<path d="M 5.453125 -1.734375 C 5.453125 -1.90625 5.296875 -1.90625 5.1875 -1.90625 L 1.015625 -1.90625 C 0.90625 -1.90625 0.75 -1.90625 0.75 -1.734375 C 0.75 -1.578125 0.921875 -1.578125 1.015625 -1.578125 L 5.1875 -1.578125 C 5.28125 -1.578125 5.453125 -1.578125 5.453125 -1.734375 Z M 5.453125 -1.734375 "/>
</g>
<g id="glyph-2-0">
<path d="M 5.78125 -0.140625 C 5.78125 -0.25 5.6875 -0.25 5.625 -0.25 C 5.5 -0.25 5.28125 -0.25 5.171875 -0.484375 L 3.984375 -2.796875 L 3.9375 -2.875 C 3.9375 -2.875 3.9375 -2.90625 4.109375 -3.015625 L 4.8125 -3.5 C 5.71875 -4.15625 6.15625 -4.453125 6.640625 -4.5 C 6.71875 -4.5 6.8125 -4.515625 6.8125 -4.65625 C 6.8125 -4.703125 6.765625 -4.734375 6.71875 -4.734375 C 6.578125 -4.734375 6.390625 -4.71875 6.234375 -4.71875 C 6.046875 -4.71875 5.578125 -4.75 5.390625 -4.75 C 5.359375 -4.75 5.25 -4.75 5.25 -4.59375 C 5.25 -4.59375 5.25 -4.5 5.359375 -4.5 C 5.4375 -4.484375 5.53125 -4.484375 5.53125 -4.40625 C 5.53125 -4.28125 5.3125 -4.125 5.21875 -4.0625 L 2.328125 -2.015625 L 2.875 -4.203125 C 2.9375 -4.4375 2.9375 -4.5 3.484375 -4.5 C 3.59375 -4.5 3.6875 -4.5 3.6875 -4.640625 C 3.6875 -4.703125 3.65625 -4.75 3.578125 -4.75 C 3.375 -4.75 2.875 -4.71875 2.671875 -4.71875 C 2.546875 -4.71875 2.3125 -4.71875 2.1875 -4.734375 C 2.046875 -4.734375 1.890625 -4.75 1.75 -4.75 C 1.703125 -4.75 1.609375 -4.75 1.609375 -4.59375 C 1.609375 -4.5 1.6875 -4.5 1.828125 -4.5 C 1.953125 -4.5 1.96875 -4.5 2.09375 -4.484375 C 2.234375 -4.46875 2.25 -4.453125 2.25 -4.390625 C 2.25 -4.390625 2.25 -4.34375 2.21875 -4.234375 L 1.296875 -0.546875 C 1.25 -0.3125 1.234375 -0.25 0.6875 -0.25 C 0.5625 -0.25 0.484375 -0.25 0.484375 -0.09375 C 0.484375 -0.09375 0.484375 0 0.59375 0 C 0.796875 0 1.296875 -0.03125 1.5 -0.03125 C 1.609375 -0.03125 1.859375 -0.03125 1.96875 -0.015625 C 2.109375 -0.015625 2.28125 0 2.421875 0 C 2.46875 0 2.5625 0 2.5625 -0.15625 C 2.5625 -0.25 2.484375 -0.25 2.34375 -0.25 C 2.34375 -0.25 2.203125 -0.25 2.078125 -0.265625 C 1.921875 -0.28125 1.921875 -0.296875 1.921875 -0.375 C 1.921875 -0.421875 1.984375 -0.6875 2.25 -1.703125 L 3.40625 -2.515625 L 4.40625 -0.5625 C 4.453125 -0.46875 4.453125 -0.46875 4.453125 -0.4375 C 4.453125 -0.265625 4.265625 -0.25 4.140625 -0.25 C 4.046875 -0.25 3.953125 -0.25 3.953125 -0.09375 C 3.953125 -0.09375 3.96875 0 4.078125 0 C 4.265625 0 4.765625 -0.03125 4.96875 -0.03125 C 5.171875 -0.03125 5.453125 0 5.640625 0 C 5.734375 0 5.78125 -0.046875 5.78125 -0.140625 Z M 5.78125 -0.140625 "/>
</g>
<g id="glyph-3-0">
<path d="M 2.59375 -2.3125 L 3.515625 -2.3125 C 3.609375 -2.3125 3.953125 -2.3125 3.953125 -2.65625 C 3.953125 -3 3.609375 -3 3.515625 -3 L 0.96875 -3 C 0.875 -3 0.546875 -3 0.546875 -2.65625 C 0.546875 -2.3125 0.890625 -2.3125 0.96875 -2.3125 L 1.90625 -2.3125 L 1.90625 1.046875 C 1.90625 1.140625 1.90625 1.484375 2.25 1.484375 C 2.59375 1.484375 2.59375 1.140625 2.59375 1.046875 Z M 2.59375 -2.3125 "/>
</g>
<g id="glyph-4-0">
<path d="M 3.28125 0 L 3.28125 -0.25 L 3.03125 -0.25 C 2.328125 -0.25 2.328125 -0.34375 2.328125 -0.5625 L 2.328125 -4.421875 C 2.328125 -4.609375 2.3125 -4.609375 2.125 -4.609375 C 1.671875 -4.171875 1.046875 -4.171875 0.765625 -4.171875 L 0.765625 -3.921875 C 0.921875 -3.921875 1.390625 -3.921875 1.765625 -4.109375 L 1.765625 -0.5625 C 1.765625 -0.34375 1.765625 -0.25 1.078125 -0.25 L 0.8125 -0.25 L 0.8125 0 L 2.046875 -0.03125 Z M 3.28125 0 "/>
</g>
<g id="glyph-5-0">
<path d="M 9.234375 -6.40625 C 9.34375 -6.828125 8.625 -6.828125 8.046875 -6.828125 L 4.21875 -6.828125 L 3.5625 -6.8125 C 3.09375 -6.78125 2.625 -6.640625 2.203125 -6.34375 C 2 -6.1875 1.8125 -6 1.75 -5.78125 C 1.75 -5.671875 1.8125 -5.625 1.921875 -5.625 C 2.078125 -5.625 2.3125 -5.703125 2.53125 -5.828125 C 2.59375 -5.859375 2.65625 -5.90625 2.71875 -5.953125 C 2.890625 -5.96875 3.09375 -5.96875 3.28125 -5.96875 L 4.34375 -5.96875 L 4.171875 -5.203125 C 4 -4.484375 3.78125 -3.78125 3.515625 -3.078125 C 3.1875 -2.265625 2.796875 -1.453125 2.359375 -0.65625 C 2.34375 -0.625 2.328125 -0.59375 2.296875 -0.5625 C 1.921875 -0.578125 1.625 -0.765625 1.4375 -1.046875 C 1.40625 -1.09375 1.34375 -1.109375 1.265625 -1.109375 C 1.109375 -1.109375 0.890625 -1.03125 0.671875 -0.90625 C 0.375 -0.734375 0.15625 -0.5 0.15625 -0.375 C 0.15625 -0.375 0.15625 -0.328125 0.171875 -0.3125 C 0.453125 0.109375 0.9375 0.328125 1.515625 0.3125 C 1.59375 0.3125 1.65625 0.296875 1.734375 0.28125 C 2.296875 0.1875 2.84375 -0.140625 3.265625 -0.59375 C 3.390625 -0.734375 3.5 -0.890625 3.59375 -1.046875 C 3.921875 -1.65625 4.21875 -2.28125 4.484375 -2.890625 L 6.453125 -2.890625 C 6.453125 -2.796875 6.515625 -2.75 6.625 -2.75 C 6.78125 -2.75 7 -2.828125 7.21875 -2.953125 C 7.5 -3.109375 7.703125 -3.3125 7.734375 -3.453125 L 7.765625 -3.59375 C 7.78125 -3.71875 7.71875 -3.75 7.609375 -3.75 L 4.84375 -3.75 C 5.09375 -4.40625 5.296875 -5.078125 5.46875 -5.75 L 5.515625 -5.96875 L 7.09375 -5.96875 C 7.46875 -5.96875 7.984375 -5.96875 7.953125 -5.859375 C 7.953125 -5.75 8.015625 -5.703125 8.125 -5.703125 C 8.28125 -5.703125 8.5 -5.78125 8.71875 -5.90625 C 9 -6.0625 9.203125 -6.265625 9.234375 -6.40625 Z M 9.234375 -6.40625 "/>
</g>
<g id="glyph-5-1">
<path d="M 7.46875 -1.546875 C 7.46875 -1.65625 7.328125 -1.65625 7.296875 -1.65625 C 6.984375 -1.65625 6.125 -1.265625 6.015625 -0.75 C 5.53125 -0.75 5.171875 -0.8125 4.375 -0.953125 C 4.015625 -1.03125 3.234375 -1.171875 2.65625 -1.171875 C 2.578125 -1.171875 2.46875 -1.171875 2.390625 -1.15625 C 2.71875 -1.71875 2.859375 -2.1875 3.015625 -2.84375 C 3.21875 -3.625 3.625 -5.03125 4.375 -5.875 C 4.5 -6.015625 4.546875 -6.0625 4.796875 -6.0625 C 5.25 -6.0625 5.4375 -5.703125 5.4375 -5.375 C 5.4375 -5.265625 5.40625 -5.15625 5.40625 -5.125 C 5.40625 -5.015625 5.53125 -4.984375 5.578125 -4.984375 C 5.71875 -4.984375 6.015625 -5.0625 6.40625 -5.328125 C 6.796875 -5.59375 6.84375 -5.78125 6.84375 -6.0625 C 6.84375 -6.5625 6.546875 -6.984375 5.890625 -6.984375 C 5.25 -6.984375 4.359375 -6.671875 3.53125 -5.96875 C 2.390625 -4.953125 1.890625 -3.3125 1.609375 -2.1875 C 1.453125 -1.59375 1.25 -0.78125 0.828125 -0.453125 C 0.71875 -0.375 0.390625 -0.109375 0.390625 0.046875 C 0.390625 0.15625 0.5 0.171875 0.5625 0.171875 C 0.640625 0.171875 0.9375 0.15625 1.5 -0.25 C 1.875 -0.25 2.203125 -0.234375 3.109375 -0.0625 C 3.5625 0.03125 4.28125 0.171875 4.84375 0.171875 C 6.1875 0.171875 7.46875 -1 7.46875 -1.546875 Z M 7.46875 -1.546875 "/>
</g>
<g id="glyph-5-2">
<path d="M 7.734375 -1.0625 C 7.734375 -1.171875 7.625 -1.1875 7.546875 -1.1875 C 7.390625 -1.1875 7.0625 -1.078125 6.78125 -0.859375 C 6.375 -0.859375 6.0625 -0.859375 5.90625 -2.09375 L 5.734375 -3.625 C 8.359375 -5.0625 9.015625 -5.71875 9.015625 -6.234375 C 9.015625 -6.640625 8.640625 -6.8125 8.34375 -6.8125 C 7.90625 -6.8125 7.21875 -6.328125 7.21875 -6.078125 C 7.21875 -6.03125 7.234375 -5.96875 7.390625 -5.953125 C 7.703125 -5.921875 7.71875 -5.671875 7.71875 -5.609375 C 7.71875 -5.5 7.6875 -5.453125 7.453125 -5.265625 C 7.03125 -4.953125 6.328125 -4.5625 5.671875 -4.1875 C 5.53125 -5.109375 5.53125 -5.578125 5.421875 -6.03125 C 5.1875 -6.8125 4.671875 -6.8125 4.359375 -6.8125 C 3.015625 -6.8125 2.421875 -6 2.421875 -5.75 C 2.421875 -5.640625 2.53125 -5.625 2.59375 -5.625 C 2.59375 -5.625 2.9375 -5.625 3.375 -5.953125 C 3.6875 -5.953125 4.0625 -5.953125 4.203125 -4.984375 L 4.375 -3.484375 C 3.703125 -3.125 2.796875 -2.625 2.0625 -2.140625 C 1.609375 -1.859375 0.5625 -1.1875 0.5625 -0.578125 C 0.5625 -0.171875 0.90625 0 1.21875 0 C 1.65625 0 2.34375 -0.484375 2.34375 -0.734375 C 2.34375 -0.84375 2.234375 -0.859375 2.15625 -0.859375 C 1.984375 -0.890625 1.84375 -1.03125 1.84375 -1.203125 C 1.84375 -1.328125 1.890625 -1.375 2.15625 -1.5625 C 2.640625 -1.921875 3.375 -2.328125 4.4375 -2.921875 C 4.65625 -1.125 4.671875 -1 4.703125 -0.890625 C 4.921875 0 5.453125 0 5.78125 0 C 7.15625 0 7.734375 -0.828125 7.734375 -1.0625 Z M 7.734375 -1.0625 "/>
</g>
</g>
<clipPath id="clip-0">
<path clip-rule="nonzero" d="M 36 17 L 184 17 L 184 56.652344 L 36 56.652344 Z M 36 17 "/>
</clipPath>
<clipPath id="clip-1">
<path clip-rule="nonzero" d="M 0.046875 36 L 37 36 L 37 38 L 0.046875 38 Z M 0.046875 36 "/>
</clipPath>
<clipPath id="clip-2">
<path clip-rule="nonzero" d="M 198 21 L 219.792969 21 L 219.792969 53 L 198 53 Z M 198 21 "/>
</clipPath>
</defs>
<path fill-rule="nonzero" fill="rgb(89.99939%, 89.99939%, 89.99939%)" fill-opacity="1" d="M 36.632812 55.65625 L 183.207031 55.65625 L 183.207031 18.457031 L 36.632812 18.457031 Z M 36.632812 55.65625 "/>
<g clip-path="url(#clip-0)">
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-dasharray="2.98883 2.98883" stroke-miterlimit="10" d="M -73.510476 -18.655668 L 73.51255 -18.655668 L 73.51255 18.657454 L -73.510476 18.657454 Z M -73.510476 -18.655668 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-0-0" x="97.616558" y="10.623471"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-0" x="106.424588" y="12.416979"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-2-0" x="110.493893" y="12.416979"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-1" x="117.654284" y="12.416979"/>
</g>
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -17.009876 -14.173235 L 17.008031 -14.173235 L 17.008031 14.17502 L -17.009876 14.17502 Z M -17.009876 -14.173235 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-0-0" x="98.445021" y="38.699503"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-0" x="107.252054" y="40.493011"/>
<use xlink:href="#glyph-1-2" x="111.321359" y="40.493011"/>
<use xlink:href="#glyph-1-1" x="116.825663" y="40.493011"/>
</g>
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -69.028043 -14.173235 L -35.014055 -14.173235 L -35.014055 14.17502 L -69.028043 14.17502 Z M -69.028043 -14.173235 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-0-1" x="47.02447" y="39.02052"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-3" x="54.29421" y="34.279038"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-3-0" x="60.502107" y="34.279038"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-0" x="53.294272" y="42.403162"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-2-0" x="57.363577" y="42.403162"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-1" x="64.523968" y="42.403162"/>
</g>
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 35.01221 -14.173235 L 69.030116 -14.173235 L 69.030116 14.17502 L 35.01221 14.17502 Z M 35.01221 -14.173235 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-0-1" x="150.746874" y="38.862005"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-3" x="158.016614" y="34.613016"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-4-0" x="164.224512" y="34.613016"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-0" x="157.016676" y="42.244648"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-2-0" x="161.085981" y="42.244648"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-1" x="168.246373" y="42.244648"/>
</g>
<g clip-path="url(#clip-1)">
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -74.160899 -0.00106637 L -109.213214 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
</g>
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054842 -0.00106637 L 1.607673 1.683764 L 3.088756 -0.00106637 L 1.607673 -1.681979 Z M 6.054842 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 33.155048, 37.057531)"/>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-5-0" x="4.848611" y="29.719001"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-0" x="13.944759" y="31.512509"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-2-0" x="18.014064" y="31.512509"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-1" x="25.174456" y="31.512509"/>
</g>
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -34.512524 -0.00106637 L -22.138814 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052379 -0.00106637 L 1.609128 1.683764 L 3.086294 -0.00106637 L 1.609128 -1.681979 Z M 6.052379 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 85.016878, 37.057531)"/>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-0-2" x="82.147922" y="33.251186"/>
</g>
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 17.505644 -0.00106637 L 29.879354 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053845 -0.00106637 L 1.610594 1.683764 L 3.087759 -0.00106637 L 1.610594 -1.681979 Z M 6.053845 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 136.878698, 37.057531)"/>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-5-1" x="132.692157" y="33.251186"/>
</g>
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 69.527729 -0.00106637 L 104.580044 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 217.382812 37.058594 L 212.953125 35.378906 L 214.425781 37.058594 L 212.953125 38.734375 Z M 217.382812 37.058594 "/>
<g clip-path="url(#clip-2)">
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052896 -0.00106637 L 1.609645 1.683764 L 3.086811 -0.00106637 L 1.609645 -1.681979 Z M 6.052896 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 211.348393, 37.057531)"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-5-2" x="189.620843" y="29.719001"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-0" x="199.192534" y="31.512509"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-2-0" x="203.261839" y="31.512509"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-1" x="210.422231" y="31.512509"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

View File

@ -0,0 +1,161 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="220.418" height="56.826" viewBox="0 0 220.418 56.826">
<defs>
<g>
<g id="glyph-0-0">
<path d="M 7.296875 -2.09375 C 7.34375 -2.234375 7.359375 -2.25 7.421875 -2.25 C 7.546875 -2.28125 7.6875 -2.28125 7.796875 -2.28125 C 8.046875 -2.28125 8.203125 -2.28125 8.203125 -2.5625 C 8.203125 -2.609375 8.171875 -2.75 8 -2.75 C 7.78125 -2.75 7.546875 -2.71875 7.328125 -2.71875 C 7.109375 -2.71875 6.875 -2.71875 6.65625 -2.71875 C 6.265625 -2.71875 5.28125 -2.75 4.890625 -2.75 C 4.765625 -2.75 4.578125 -2.75 4.578125 -2.453125 C 4.578125 -2.28125 4.765625 -2.28125 4.921875 -2.28125 L 5.28125 -2.28125 C 5.390625 -2.28125 5.9375 -2.28125 5.9375 -2.21875 C 5.9375 -2.203125 5.9375 -2.1875 5.875 -1.953125 C 5.859375 -1.875 5.703125 -1.25 5.6875 -1.234375 C 5.53125 -0.5625 4.734375 -0.296875 4.109375 -0.296875 C 3.53125 -0.296875 2.9375 -0.421875 2.46875 -0.796875 C 1.9375 -1.234375 1.9375 -1.921875 1.9375 -2.140625 C 1.9375 -2.59375 2.140625 -4.375 3.109375 -5.453125 C 3.6875 -6.109375 4.640625 -6.515625 5.65625 -6.515625 C 6.90625 -6.515625 7.375 -5.5625 7.375 -4.734375 C 7.375 -4.625 7.34375 -4.484375 7.34375 -4.375 C 7.34375 -4.234375 7.46875 -4.234375 7.609375 -4.234375 C 7.828125 -4.234375 7.84375 -4.25 7.890625 -4.453125 L 8.453125 -6.6875 C 8.46875 -6.734375 8.484375 -6.78125 8.484375 -6.84375 C 8.484375 -6.984375 8.34375 -6.984375 8.234375 -6.984375 L 7.3125 -6.265625 C 7.109375 -6.46875 6.59375 -6.984375 5.5 -6.984375 C 2.3125 -6.984375 0.546875 -4.546875 0.546875 -2.515625 C 0.546875 -0.703125 1.953125 0.171875 3.796875 0.171875 C 4.84375 0.171875 5.53125 -0.171875 5.859375 -0.515625 C 6.109375 -0.265625 6.609375 0 6.671875 0 C 6.78125 0 6.796875 -0.078125 6.84375 -0.234375 Z M 7.296875 -2.09375 "/>
</g>
<g id="glyph-0-1">
<path d="M 5.984375 -6.15625 C 6.015625 -6.3125 6.03125 -6.3125 6.109375 -6.328125 C 6.21875 -6.34375 6.359375 -6.34375 6.484375 -6.34375 C 6.734375 -6.34375 6.890625 -6.34375 6.890625 -6.640625 C 6.890625 -6.65625 6.890625 -6.8125 6.6875 -6.8125 C 6.484375 -6.8125 6.265625 -6.796875 6.0625 -6.796875 C 5.84375 -6.796875 5.609375 -6.78125 5.375 -6.78125 C 4.984375 -6.78125 4.03125 -6.8125 3.640625 -6.8125 C 3.53125 -6.8125 3.34375 -6.8125 3.34375 -6.53125 C 3.34375 -6.34375 3.515625 -6.34375 3.6875 -6.34375 L 4.03125 -6.34375 C 4.421875 -6.34375 4.4375 -6.34375 4.6875 -6.3125 L 3.484375 -1.5 C 3.234375 -0.484375 2.609375 -0.1875 2.140625 -0.1875 C 2.0625 -0.1875 1.625 -0.203125 1.328125 -0.421875 C 1.875 -0.5625 2.046875 -1.03125 2.046875 -1.296875 C 2.046875 -1.625 1.78125 -1.859375 1.4375 -1.859375 C 1.046875 -1.859375 0.5625 -1.546875 0.5625 -0.921875 C 0.5625 -0.234375 1.25 0.171875 2.203125 0.171875 C 3.3125 0.171875 4.515625 -0.28125 4.796875 -1.453125 Z M 5.984375 -6.15625 "/>
</g>
<g id="glyph-0-2">
<path d="M 3.46875 -3.453125 L 5.3125 -3.453125 C 5.515625 -3.453125 5.640625 -3.453125 5.796875 -3.609375 C 6 -3.78125 6 -4 6 -4.03125 C 6 -4.40625 5.640625 -4.40625 5.46875 -4.40625 L 2.203125 -4.40625 C 2 -4.40625 1.5625 -4.40625 1.046875 -3.9375 C 0.703125 -3.625 0.3125 -3.109375 0.3125 -3.015625 C 0.3125 -2.875 0.421875 -2.875 0.53125 -2.875 C 0.6875 -2.875 0.703125 -2.875 0.78125 -2.984375 C 1.15625 -3.453125 1.8125 -3.453125 2 -3.453125 L 2.90625 -3.453125 L 2.546875 -2.40625 C 2.453125 -2.15625 2.234375 -1.515625 2.15625 -1.265625 C 2.046875 -0.953125 1.859375 -0.421875 1.859375 -0.3125 C 1.859375 -0.046875 2.078125 0.125 2.328125 0.125 C 2.390625 0.125 2.90625 0.125 3 -0.53125 Z M 3.46875 -3.453125 "/>
</g>
<g id="glyph-1-0">
<path d="M 3.40625 1.640625 C 3.40625 1.546875 3.34375 1.546875 3.296875 1.546875 C 2.46875 1.5 2.3125 1.03125 2.296875 0.859375 L 2.296875 -0.9375 C 2.296875 -1.25 2.046875 -1.578125 1.484375 -1.734375 C 2.296875 -1.984375 2.296875 -2.421875 2.296875 -2.75 L 2.296875 -4 C 2.296875 -4.421875 2.296875 -4.59375 2.5625 -4.78125 C 2.75 -4.9375 3 -5 3.265625 -5.015625 C 3.34375 -5.03125 3.40625 -5.03125 3.40625 -5.125 C 3.40625 -5.21875 3.34375 -5.21875 3.234375 -5.21875 C 2.453125 -5.21875 1.765625 -4.875 1.765625 -4.34375 L 1.765625 -2.71875 C 1.765625 -2.546875 1.765625 -2.3125 1.578125 -2.140625 C 1.296875 -1.90625 1.03125 -1.84375 0.796875 -1.828125 C 0.703125 -1.828125 0.65625 -1.828125 0.65625 -1.734375 C 0.65625 -1.640625 0.71875 -1.640625 0.765625 -1.640625 C 1.515625 -1.59375 1.703125 -1.1875 1.75 -1.046875 C 1.765625 -0.96875 1.765625 -0.953125 1.765625 -0.703125 L 1.765625 0.703125 C 1.765625 0.953125 1.765625 1.21875 2.171875 1.484375 C 2.46875 1.671875 2.953125 1.734375 3.234375 1.734375 C 3.34375 1.734375 3.40625 1.734375 3.40625 1.640625 Z M 3.40625 1.640625 "/>
</g>
<g id="glyph-1-1">
<path d="M 3.40625 -1.734375 C 3.40625 -1.828125 3.34375 -1.828125 3.296875 -1.828125 C 2.484375 -1.875 2.3125 -2.359375 2.296875 -2.546875 L 2.296875 -4.09375 C 2.296875 -4.453125 2.296875 -4.703125 1.890625 -4.96875 C 1.59375 -5.15625 1.09375 -5.21875 0.828125 -5.21875 C 0.71875 -5.21875 0.65625 -5.21875 0.65625 -5.125 C 0.65625 -5.03125 0.71875 -5.015625 0.765625 -5.015625 C 1.625 -4.984375 1.765625 -4.484375 1.765625 -4.328125 L 1.765625 -2.546875 C 1.765625 -2.21875 2.046875 -1.890625 2.59375 -1.734375 C 1.765625 -1.5 1.765625 -1.046875 1.765625 -0.71875 L 1.765625 0.53125 C 1.765625 0.96875 1.765625 1.09375 1.515625 1.296875 C 1.390625 1.40625 1.140625 1.515625 0.796875 1.546875 C 0.703125 1.546875 0.65625 1.546875 0.65625 1.640625 C 0.65625 1.734375 0.71875 1.734375 0.828125 1.734375 C 1.59375 1.734375 2.296875 1.421875 2.296875 0.859375 L 2.296875 -0.765625 C 2.296875 -0.984375 2.296875 -1.578125 3.328125 -1.640625 C 3.328125 -1.640625 3.40625 -1.640625 3.40625 -1.734375 Z M 3.40625 -1.734375 "/>
</g>
<g id="glyph-1-2">
<path d="M 5.125 -0.984375 C 5.125 -1.015625 5.109375 -1.046875 5.0625 -1.046875 C 4.953125 -1.046875 4.5 -0.890625 4.421875 -0.609375 C 4.3125 -0.3125 4.234375 -0.3125 4.0625 -0.3125 C 3.6875 -0.3125 3.1875 -0.4375 2.84375 -0.53125 C 2.484375 -0.625 2.109375 -0.703125 1.75 -0.703125 C 1.71875 -0.703125 1.578125 -0.703125 1.484375 -0.6875 C 1.859375 -1.234375 1.953125 -1.578125 2.0625 -2.015625 C 2.203125 -2.53125 2.40625 -3.25 2.75 -3.828125 C 3.09375 -4.390625 3.265625 -4.421875 3.5 -4.421875 C 3.828125 -4.421875 4.046875 -4.1875 4.046875 -3.84375 C 4.046875 -3.734375 4.03125 -3.65625 4.03125 -3.625 C 4.03125 -3.59375 4.046875 -3.5625 4.109375 -3.5625 C 4.125 -3.5625 4.296875 -3.59375 4.546875 -3.765625 C 4.6875 -3.859375 4.765625 -3.9375 4.765625 -4.203125 C 4.765625 -4.46875 4.609375 -4.890625 4.0625 -4.890625 C 3.453125 -4.890625 2.78125 -4.484375 2.421875 -4.046875 C 1.953125 -3.515625 1.640625 -2.8125 1.359375 -1.671875 C 1.1875 -1.03125 0.9375 -0.5 0.609375 -0.234375 C 0.546875 -0.171875 0.359375 0 0.359375 0.09375 C 0.359375 0.140625 0.421875 0.140625 0.4375 0.140625 C 0.6875 0.140625 1 -0.15625 1.09375 -0.25 C 1.296875 -0.25 1.578125 -0.234375 2.203125 -0.078125 C 2.734375 0.0625 3.109375 0.140625 3.5 0.140625 C 4.375 0.140625 5.125 -0.65625 5.125 -0.984375 Z M 5.125 -0.984375 "/>
</g>
<g id="glyph-1-3">
<path d="M 5.453125 -1.734375 C 5.453125 -1.90625 5.296875 -1.90625 5.1875 -1.90625 L 1.015625 -1.90625 C 0.90625 -1.90625 0.75 -1.90625 0.75 -1.734375 C 0.75 -1.578125 0.921875 -1.578125 1.015625 -1.578125 L 5.1875 -1.578125 C 5.28125 -1.578125 5.453125 -1.578125 5.453125 -1.734375 Z M 5.453125 -1.734375 "/>
</g>
<g id="glyph-2-0">
<path d="M 7.921875 -4.640625 C 7.921875 -4.75 7.84375 -4.75 7.71875 -4.75 L 6.765625 -4.75 C 6.578125 -4.75 6.5625 -4.734375 6.46875 -4.609375 L 3.796875 -0.640625 L 3.09375 -4.5625 C 3.0625 -4.734375 3.0625 -4.75 2.859375 -4.75 L 1.859375 -4.75 C 1.71875 -4.75 1.640625 -4.75 1.640625 -4.59375 C 1.640625 -4.5 1.71875 -4.5 1.875 -4.5 C 1.984375 -4.5 2.015625 -4.5 2.140625 -4.484375 C 2.28125 -4.46875 2.28125 -4.453125 2.28125 -4.390625 C 2.28125 -4.390625 2.28125 -4.34375 2.265625 -4.234375 L 1.390625 -0.75 C 1.328125 -0.5 1.21875 -0.265625 0.65625 -0.25 C 0.609375 -0.25 0.515625 -0.25 0.515625 -0.09375 C 0.515625 -0.09375 0.515625 0 0.625 0 C 0.828125 0 1.125 -0.03125 1.34375 -0.03125 C 1.515625 -0.03125 1.90625 0 2.078125 0 C 2.109375 0 2.21875 0 2.21875 -0.15625 C 2.21875 -0.25 2.125 -0.25 2.0625 -0.25 C 1.625 -0.265625 1.625 -0.4375 1.625 -0.546875 C 1.625 -0.5625 1.625 -0.609375 1.640625 -0.71875 L 2.578125 -4.421875 L 3.328125 -0.1875 C 3.34375 -0.0625 3.359375 0 3.46875 0 C 3.5625 0 3.609375 -0.078125 3.671875 -0.15625 L 6.578125 -4.484375 L 6.59375 -4.484375 L 5.609375 -0.546875 C 5.5625 -0.3125 5.546875 -0.25 5 -0.25 C 4.875 -0.25 4.796875 -0.25 4.796875 -0.09375 C 4.796875 -0.09375 4.796875 0 4.90625 0 C 5.03125 0 5.1875 -0.015625 5.328125 -0.015625 L 5.765625 -0.03125 C 5.96875 -0.03125 6.453125 0 6.65625 0 C 6.703125 0 6.796875 0 6.796875 -0.15625 C 6.796875 -0.25 6.71875 -0.25 6.578125 -0.25 C 6.578125 -0.25 6.4375 -0.25 6.3125 -0.265625 C 6.15625 -0.28125 6.15625 -0.296875 6.15625 -0.375 C 6.15625 -0.40625 6.171875 -0.484375 6.1875 -0.515625 L 7.09375 -4.1875 C 7.15625 -4.4375 7.171875 -4.5 7.6875 -4.5 C 7.84375 -4.5 7.921875 -4.5 7.921875 -4.640625 Z M 7.921875 -4.640625 "/>
</g>
<g id="glyph-3-0">
<path d="M 2.59375 -2.3125 L 3.515625 -2.3125 C 3.609375 -2.3125 3.953125 -2.3125 3.953125 -2.65625 C 3.953125 -3 3.609375 -3 3.515625 -3 L 0.96875 -3 C 0.875 -3 0.546875 -3 0.546875 -2.65625 C 0.546875 -2.3125 0.890625 -2.3125 0.96875 -2.3125 L 1.90625 -2.3125 L 1.90625 1.046875 C 1.90625 1.140625 1.90625 1.484375 2.25 1.484375 C 2.59375 1.484375 2.59375 1.140625 2.59375 1.046875 Z M 2.59375 -2.3125 "/>
</g>
<g id="glyph-4-0">
<path d="M 3.28125 0 L 3.28125 -0.25 L 3.03125 -0.25 C 2.328125 -0.25 2.328125 -0.34375 2.328125 -0.5625 L 2.328125 -4.421875 C 2.328125 -4.609375 2.3125 -4.609375 2.125 -4.609375 C 1.671875 -4.171875 1.046875 -4.171875 0.765625 -4.171875 L 0.765625 -3.921875 C 0.921875 -3.921875 1.390625 -3.921875 1.765625 -4.109375 L 1.765625 -0.5625 C 1.765625 -0.34375 1.765625 -0.25 1.078125 -0.25 L 0.8125 -0.25 L 0.8125 0 L 2.046875 -0.03125 Z M 3.28125 0 "/>
</g>
<g id="glyph-5-0">
<path d="M 9.234375 -6.40625 C 9.34375 -6.828125 8.625 -6.828125 8.046875 -6.828125 L 4.21875 -6.828125 L 3.5625 -6.8125 C 3.09375 -6.78125 2.625 -6.640625 2.203125 -6.34375 C 2 -6.1875 1.8125 -6 1.75 -5.78125 C 1.75 -5.671875 1.8125 -5.625 1.921875 -5.625 C 2.078125 -5.625 2.3125 -5.703125 2.53125 -5.828125 C 2.59375 -5.859375 2.65625 -5.90625 2.71875 -5.953125 C 2.890625 -5.96875 3.09375 -5.96875 3.28125 -5.96875 L 4.34375 -5.96875 L 4.171875 -5.203125 C 4 -4.484375 3.78125 -3.78125 3.515625 -3.078125 C 3.1875 -2.265625 2.796875 -1.453125 2.359375 -0.65625 C 2.34375 -0.625 2.328125 -0.59375 2.296875 -0.5625 C 1.921875 -0.578125 1.625 -0.765625 1.4375 -1.046875 C 1.40625 -1.09375 1.34375 -1.109375 1.265625 -1.109375 C 1.109375 -1.109375 0.890625 -1.03125 0.671875 -0.90625 C 0.375 -0.734375 0.15625 -0.5 0.15625 -0.375 C 0.15625 -0.375 0.15625 -0.328125 0.171875 -0.3125 C 0.453125 0.109375 0.9375 0.328125 1.515625 0.3125 C 1.59375 0.3125 1.65625 0.296875 1.734375 0.28125 C 2.296875 0.1875 2.84375 -0.140625 3.265625 -0.59375 C 3.390625 -0.734375 3.5 -0.890625 3.59375 -1.046875 C 3.921875 -1.65625 4.21875 -2.28125 4.484375 -2.890625 L 6.453125 -2.890625 C 6.453125 -2.796875 6.515625 -2.75 6.625 -2.75 C 6.78125 -2.75 7 -2.828125 7.21875 -2.953125 C 7.5 -3.109375 7.703125 -3.3125 7.734375 -3.453125 L 7.765625 -3.59375 C 7.78125 -3.71875 7.71875 -3.75 7.609375 -3.75 L 4.84375 -3.75 C 5.09375 -4.40625 5.296875 -5.078125 5.46875 -5.75 L 5.515625 -5.96875 L 7.09375 -5.96875 C 7.46875 -5.96875 7.984375 -5.96875 7.953125 -5.859375 C 7.953125 -5.75 8.015625 -5.703125 8.125 -5.703125 C 8.28125 -5.703125 8.5 -5.78125 8.71875 -5.90625 C 9 -6.0625 9.203125 -6.265625 9.234375 -6.40625 Z M 9.234375 -6.40625 "/>
</g>
<g id="glyph-5-1">
<path d="M 7.46875 -1.546875 C 7.46875 -1.65625 7.328125 -1.65625 7.296875 -1.65625 C 6.984375 -1.65625 6.125 -1.265625 6.015625 -0.75 C 5.53125 -0.75 5.171875 -0.8125 4.375 -0.953125 C 4.015625 -1.03125 3.234375 -1.171875 2.65625 -1.171875 C 2.578125 -1.171875 2.46875 -1.171875 2.390625 -1.15625 C 2.71875 -1.71875 2.859375 -2.1875 3.015625 -2.84375 C 3.21875 -3.625 3.625 -5.03125 4.375 -5.875 C 4.5 -6.015625 4.546875 -6.0625 4.796875 -6.0625 C 5.25 -6.0625 5.4375 -5.703125 5.4375 -5.375 C 5.4375 -5.265625 5.40625 -5.15625 5.40625 -5.125 C 5.40625 -5.015625 5.53125 -4.984375 5.578125 -4.984375 C 5.71875 -4.984375 6.015625 -5.0625 6.40625 -5.328125 C 6.796875 -5.59375 6.84375 -5.78125 6.84375 -6.0625 C 6.84375 -6.5625 6.546875 -6.984375 5.890625 -6.984375 C 5.25 -6.984375 4.359375 -6.671875 3.53125 -5.96875 C 2.390625 -4.953125 1.890625 -3.3125 1.609375 -2.1875 C 1.453125 -1.59375 1.25 -0.78125 0.828125 -0.453125 C 0.71875 -0.375 0.390625 -0.109375 0.390625 0.046875 C 0.390625 0.15625 0.5 0.171875 0.5625 0.171875 C 0.640625 0.171875 0.9375 0.15625 1.5 -0.25 C 1.875 -0.25 2.203125 -0.234375 3.109375 -0.0625 C 3.5625 0.03125 4.28125 0.171875 4.84375 0.171875 C 6.1875 0.171875 7.46875 -1 7.46875 -1.546875 Z M 7.46875 -1.546875 "/>
</g>
<g id="glyph-5-2">
<path d="M 7.734375 -1.0625 C 7.734375 -1.171875 7.625 -1.1875 7.546875 -1.1875 C 7.390625 -1.1875 7.0625 -1.078125 6.78125 -0.859375 C 6.375 -0.859375 6.0625 -0.859375 5.90625 -2.09375 L 5.734375 -3.625 C 8.359375 -5.0625 9.015625 -5.71875 9.015625 -6.234375 C 9.015625 -6.640625 8.640625 -6.8125 8.34375 -6.8125 C 7.90625 -6.8125 7.21875 -6.328125 7.21875 -6.078125 C 7.21875 -6.03125 7.234375 -5.96875 7.390625 -5.953125 C 7.703125 -5.921875 7.71875 -5.671875 7.71875 -5.609375 C 7.71875 -5.5 7.6875 -5.453125 7.453125 -5.265625 C 7.03125 -4.953125 6.328125 -4.5625 5.671875 -4.1875 C 5.53125 -5.109375 5.53125 -5.578125 5.421875 -6.03125 C 5.1875 -6.8125 4.671875 -6.8125 4.359375 -6.8125 C 3.015625 -6.8125 2.421875 -6 2.421875 -5.75 C 2.421875 -5.640625 2.53125 -5.625 2.59375 -5.625 C 2.59375 -5.625 2.9375 -5.625 3.375 -5.953125 C 3.6875 -5.953125 4.0625 -5.953125 4.203125 -4.984375 L 4.375 -3.484375 C 3.703125 -3.125 2.796875 -2.625 2.0625 -2.140625 C 1.609375 -1.859375 0.5625 -1.1875 0.5625 -0.578125 C 0.5625 -0.171875 0.90625 0 1.21875 0 C 1.65625 0 2.34375 -0.484375 2.34375 -0.734375 C 2.34375 -0.84375 2.234375 -0.859375 2.15625 -0.859375 C 1.984375 -0.890625 1.84375 -1.03125 1.84375 -1.203125 C 1.84375 -1.328125 1.890625 -1.375 2.15625 -1.5625 C 2.640625 -1.921875 3.375 -2.328125 4.4375 -2.921875 C 4.65625 -1.125 4.671875 -1 4.703125 -0.890625 C 4.921875 0 5.453125 0 5.78125 0 C 7.15625 0 7.734375 -0.828125 7.734375 -1.0625 Z M 7.734375 -1.0625 "/>
</g>
</g>
<clipPath id="clip-0">
<path clip-rule="nonzero" d="M 36 17 L 184 17 L 184 56.652344 L 36 56.652344 Z M 36 17 "/>
</clipPath>
<clipPath id="clip-1">
<path clip-rule="nonzero" d="M 0.046875 36 L 37 36 L 37 38 L 0.046875 38 Z M 0.046875 36 "/>
</clipPath>
<clipPath id="clip-2">
<path clip-rule="nonzero" d="M 198 21 L 219.792969 21 L 219.792969 53 L 198 53 Z M 198 21 "/>
</clipPath>
</defs>
<path fill-rule="nonzero" fill="rgb(89.99939%, 89.99939%, 89.99939%)" fill-opacity="1" d="M 36.632812 55.65625 L 183.207031 55.65625 L 183.207031 18.457031 L 36.632812 18.457031 Z M 36.632812 55.65625 "/>
<g clip-path="url(#clip-0)">
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-dasharray="2.98883 2.98883" stroke-miterlimit="10" d="M -73.510476 -18.655668 L 73.51255 -18.655668 L 73.51255 18.657454 L -73.510476 18.657454 Z M -73.510476 -18.655668 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-0-0" x="97.037331" y="10.623471"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-0" x="105.844364" y="12.416979"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-2-0" x="109.913669" y="12.416979"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-1" x="118.231654" y="12.416979"/>
</g>
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -17.009876 -14.173235 L 17.008031 -14.173235 L 17.008031 14.17502 L -17.009876 14.17502 Z M -17.009876 -14.173235 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-0-0" x="98.445021" y="38.699503"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-0" x="107.252054" y="40.493011"/>
<use xlink:href="#glyph-1-2" x="111.321359" y="40.493011"/>
<use xlink:href="#glyph-1-1" x="116.825663" y="40.493011"/>
</g>
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -69.028043 -14.173235 L -35.014055 -14.173235 L -35.014055 14.17502 L -69.028043 14.17502 Z M -69.028043 -14.173235 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-0-1" x="46.445243" y="39.02052"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-3" x="53.714983" y="34.279038"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-3-0" x="59.922881" y="34.279038"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-0" x="52.715045" y="42.403162"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-2-0" x="56.78435" y="42.403162"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-1" x="65.102335" y="42.403162"/>
</g>
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 35.01221 -14.173235 L 69.030116 -14.173235 L 69.030116 14.17502 L 35.01221 14.17502 Z M 35.01221 -14.173235 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-0-1" x="150.167647" y="38.862005"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-3" x="157.437388" y="34.613016"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-4-0" x="163.645285" y="34.613016"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-0" x="156.437449" y="42.244648"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-2-0" x="160.506754" y="42.244648"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-1" x="168.824739" y="42.244648"/>
</g>
<g clip-path="url(#clip-1)">
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -74.160899 -0.00106637 L -109.213214 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
</g>
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054842 -0.00106637 L 1.607673 1.683764 L 3.088756 -0.00106637 L 1.607673 -1.681979 Z M 6.054842 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 33.155048, 37.057531)"/>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-5-0" x="4.848611" y="29.719001"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-0" x="13.944759" y="31.512509"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-2-0" x="18.014064" y="31.512509"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-1" x="26.332049" y="31.512509"/>
</g>
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -34.512524 -0.00106637 L -22.138814 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052379 -0.00106637 L 1.609128 1.683764 L 3.086294 -0.00106637 L 1.609128 -1.681979 Z M 6.052379 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 85.016878, 37.057531)"/>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-0-2" x="82.147922" y="33.251186"/>
</g>
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 17.505644 -0.00106637 L 29.879354 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053845 -0.00106637 L 1.610594 1.683764 L 3.087759 -0.00106637 L 1.610594 -1.681979 Z M 6.053845 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 136.878698, 37.057531)"/>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-5-1" x="132.692157" y="33.251186"/>
</g>
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 69.527729 -0.00106637 L 104.580044 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 217.382812 37.058594 L 212.953125 35.378906 L 214.425781 37.058594 L 212.953125 38.734375 Z M 217.382812 37.058594 "/>
<g clip-path="url(#clip-2)">
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052896 -0.00106637 L 1.609645 1.683764 L 3.086811 -0.00106637 L 1.609645 -1.681979 Z M 6.052896 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 211.348393, 37.057531)"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-5-2" x="188.46239" y="29.719001"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-0" x="198.034081" y="31.512509"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-2-0" x="202.103386" y="31.512509"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-1" x="210.421371" y="31.512509"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 KiB

View File

@ -0,0 +1,62 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="82.363" height="30.343" viewBox="0 0 82.363 30.343">
<defs>
<g>
<g id="glyph-0-0">
<path d="M 7.171875 -2.046875 C 7.203125 -2.1875 7.21875 -2.203125 7.28125 -2.21875 C 7.40625 -2.234375 7.53125 -2.234375 7.65625 -2.234375 C 7.890625 -2.234375 8.046875 -2.234375 8.046875 -2.515625 C 8.046875 -2.5625 8.03125 -2.6875 7.84375 -2.6875 C 7.640625 -2.6875 7.40625 -2.671875 7.1875 -2.671875 C 6.96875 -2.671875 6.75 -2.65625 6.53125 -2.65625 C 6.140625 -2.65625 5.1875 -2.6875 4.796875 -2.6875 C 4.6875 -2.6875 4.5 -2.6875 4.5 -2.40625 C 4.5 -2.234375 4.671875 -2.234375 4.828125 -2.234375 L 5.1875 -2.234375 C 5.296875 -2.234375 5.828125 -2.234375 5.828125 -2.171875 C 5.828125 -2.171875 5.828125 -2.140625 5.765625 -1.90625 C 5.75 -1.84375 5.59375 -1.21875 5.59375 -1.203125 C 5.421875 -0.546875 4.640625 -0.296875 4.03125 -0.296875 C 3.46875 -0.296875 2.875 -0.40625 2.421875 -0.78125 C 1.90625 -1.203125 1.90625 -1.875 1.90625 -2.09375 C 1.90625 -2.546875 2.109375 -4.296875 3.046875 -5.359375 C 3.625 -5.984375 4.546875 -6.390625 5.546875 -6.390625 C 6.78125 -6.390625 7.234375 -5.453125 7.234375 -4.65625 C 7.234375 -4.546875 7.203125 -4.390625 7.203125 -4.296875 C 7.203125 -4.15625 7.328125 -4.15625 7.46875 -4.15625 C 7.6875 -4.15625 7.6875 -4.15625 7.734375 -4.375 L 8.296875 -6.5625 C 8.3125 -6.609375 8.328125 -6.65625 8.328125 -6.71875 C 8.328125 -6.859375 8.1875 -6.859375 8.078125 -6.859375 L 7.171875 -6.15625 C 6.984375 -6.34375 6.46875 -6.859375 5.390625 -6.859375 C 2.265625 -6.859375 0.53125 -4.46875 0.53125 -2.46875 C 0.53125 -0.6875 1.90625 0.171875 3.71875 0.171875 C 4.75 0.171875 5.4375 -0.171875 5.75 -0.5 C 5.984375 -0.25 6.484375 0 6.546875 0 C 6.65625 0 6.671875 -0.078125 6.703125 -0.21875 Z M 7.171875 -2.046875 "/>
</g>
<g id="glyph-0-1">
<path d="M 3.40625 -3.390625 L 5.203125 -3.390625 C 5.40625 -3.390625 5.53125 -3.390625 5.6875 -3.546875 C 5.890625 -3.703125 5.890625 -3.921875 5.890625 -3.953125 C 5.890625 -4.328125 5.53125 -4.328125 5.375 -4.328125 L 2.171875 -4.328125 C 1.953125 -4.328125 1.546875 -4.328125 1.03125 -3.859375 C 0.6875 -3.546875 0.296875 -3.046875 0.296875 -2.953125 C 0.296875 -2.8125 0.421875 -2.8125 0.53125 -2.8125 C 0.671875 -2.8125 0.6875 -2.828125 0.765625 -2.9375 C 1.140625 -3.390625 1.78125 -3.390625 1.96875 -3.390625 L 2.84375 -3.390625 L 2.5 -2.359375 C 2.40625 -2.109375 2.1875 -1.484375 2.109375 -1.234375 C 2.015625 -0.9375 1.828125 -0.421875 1.828125 -0.3125 C 1.828125 -0.03125 2.03125 0.109375 2.28125 0.109375 C 2.34375 0.109375 2.84375 0.109375 2.9375 -0.53125 Z M 3.40625 -3.390625 "/>
</g>
<g id="glyph-1-0">
<path d="M 3.34375 1.609375 C 3.34375 1.515625 3.28125 1.515625 3.25 1.515625 C 2.421875 1.46875 2.265625 1.015625 2.265625 0.84375 L 2.265625 -0.921875 C 2.25 -1.234375 2.015625 -1.546875 1.453125 -1.703125 C 2.265625 -1.953125 2.265625 -2.375 2.265625 -2.703125 L 2.265625 -3.9375 C 2.265625 -4.328125 2.265625 -4.5 2.515625 -4.703125 C 2.703125 -4.84375 2.9375 -4.921875 3.203125 -4.9375 C 3.296875 -4.9375 3.34375 -4.9375 3.34375 -5.03125 C 3.34375 -5.125 3.28125 -5.125 3.1875 -5.125 C 2.40625 -5.125 1.734375 -4.796875 1.734375 -4.265625 L 1.734375 -2.65625 C 1.734375 -2.5 1.734375 -2.265625 1.546875 -2.09375 C 1.28125 -1.875 1.015625 -1.8125 0.78125 -1.796875 C 0.703125 -1.796875 0.640625 -1.796875 0.640625 -1.703125 C 0.640625 -1.625 0.703125 -1.609375 0.75 -1.609375 C 1.5 -1.578125 1.6875 -1.171875 1.71875 -1.03125 C 1.734375 -0.953125 1.734375 -0.9375 1.734375 -0.703125 L 1.734375 0.703125 C 1.734375 0.9375 1.734375 1.203125 2.140625 1.46875 C 2.421875 1.640625 2.90625 1.703125 3.1875 1.703125 C 3.28125 1.703125 3.34375 1.703125 3.34375 1.609375 Z M 3.34375 1.609375 "/>
</g>
<g id="glyph-1-1">
<path d="M 5.046875 -0.96875 C 5.046875 -1 5.015625 -1.03125 4.96875 -1.03125 C 4.859375 -1.03125 4.421875 -0.859375 4.328125 -0.59375 C 4.234375 -0.3125 4.15625 -0.3125 4 -0.3125 C 3.625 -0.3125 3.140625 -0.4375 2.78125 -0.53125 C 2.4375 -0.609375 2.0625 -0.6875 1.71875 -0.6875 C 1.6875 -0.6875 1.546875 -0.6875 1.46875 -0.671875 C 1.828125 -1.21875 1.921875 -1.546875 2.03125 -1.96875 C 2.171875 -2.484375 2.375 -3.203125 2.703125 -3.765625 C 3.03125 -4.3125 3.203125 -4.34375 3.4375 -4.34375 C 3.75 -4.34375 3.96875 -4.109375 3.96875 -3.765625 C 3.96875 -3.65625 3.953125 -3.578125 3.953125 -3.5625 C 3.953125 -3.515625 3.96875 -3.5 4.03125 -3.5 C 4.0625 -3.5 4.21875 -3.515625 4.453125 -3.6875 C 4.609375 -3.796875 4.671875 -3.859375 4.671875 -4.125 C 4.671875 -4.390625 4.53125 -4.796875 3.984375 -4.796875 C 3.390625 -4.796875 2.734375 -4.390625 2.375 -3.96875 C 1.921875 -3.453125 1.625 -2.765625 1.328125 -1.640625 C 1.171875 -1.015625 0.921875 -0.484375 0.59375 -0.21875 C 0.546875 -0.171875 0.34375 0 0.34375 0.09375 C 0.34375 0.140625 0.40625 0.140625 0.4375 0.140625 C 0.671875 0.140625 0.984375 -0.15625 1.078125 -0.234375 C 1.265625 -0.234375 1.546875 -0.234375 2.171875 -0.078125 C 2.6875 0.046875 3.0625 0.140625 3.4375 0.140625 C 4.296875 0.140625 5.046875 -0.640625 5.046875 -0.96875 Z M 5.046875 -0.96875 "/>
</g>
<g id="glyph-1-2">
<path d="M 3.34375 -1.703125 C 3.34375 -1.796875 3.28125 -1.796875 3.25 -1.796875 C 2.4375 -1.84375 2.265625 -2.328125 2.265625 -2.5 L 2.265625 -4.015625 C 2.265625 -4.375 2.265625 -4.609375 1.859375 -4.875 C 1.578125 -5.0625 1.078125 -5.125 0.8125 -5.125 C 0.703125 -5.125 0.640625 -5.125 0.640625 -5.03125 C 0.640625 -4.9375 0.703125 -4.9375 0.75 -4.9375 C 1.59375 -4.890625 1.734375 -4.40625 1.734375 -4.25 L 1.734375 -2.5 C 1.734375 -2.171875 2 -1.859375 2.546875 -1.703125 C 1.734375 -1.46875 1.734375 -1.03125 1.734375 -0.703125 L 1.734375 0.515625 C 1.734375 0.953125 1.734375 1.078125 1.484375 1.28125 C 1.359375 1.390625 1.109375 1.5 0.78125 1.515625 C 0.703125 1.515625 0.640625 1.515625 0.640625 1.609375 C 0.640625 1.703125 0.703125 1.703125 0.8125 1.703125 C 1.578125 1.703125 2.25 1.390625 2.265625 0.84375 L 2.265625 -0.75 C 2.265625 -0.96875 2.265625 -1.5625 3.265625 -1.609375 C 3.265625 -1.609375 3.34375 -1.625 3.34375 -1.703125 Z M 3.34375 -1.703125 "/>
</g>
<g id="glyph-2-0">
<path d="M 7.328125 -1.515625 C 7.328125 -1.625 7.203125 -1.625 7.15625 -1.625 C 6.859375 -1.625 6 -1.234375 5.90625 -0.734375 C 5.421875 -0.734375 5.078125 -0.796875 4.296875 -0.9375 C 3.9375 -1 3.171875 -1.15625 2.609375 -1.15625 C 2.53125 -1.15625 2.421875 -1.15625 2.34375 -1.140625 C 2.671875 -1.6875 2.796875 -2.140625 2.96875 -2.78125 C 3.15625 -3.5625 3.546875 -4.9375 4.296875 -5.765625 C 4.421875 -5.90625 4.453125 -5.953125 4.703125 -5.953125 C 5.15625 -5.953125 5.328125 -5.59375 5.328125 -5.28125 C 5.328125 -5.171875 5.296875 -5.0625 5.296875 -5.015625 C 5.296875 -4.90625 5.421875 -4.890625 5.46875 -4.890625 C 5.609375 -4.890625 5.90625 -4.96875 6.28125 -5.21875 C 6.671875 -5.484375 6.71875 -5.671875 6.71875 -5.953125 C 6.71875 -6.4375 6.421875 -6.859375 5.765625 -6.859375 C 5.15625 -6.859375 4.265625 -6.546875 3.46875 -5.84375 C 2.34375 -4.859375 1.859375 -3.25 1.578125 -2.140625 C 1.4375 -1.5625 1.234375 -0.765625 0.8125 -0.453125 C 0.71875 -0.359375 0.390625 -0.109375 0.390625 0.046875 C 0.390625 0.140625 0.484375 0.171875 0.5625 0.171875 C 0.625 0.171875 0.921875 0.15625 1.46875 -0.25 C 1.828125 -0.25 2.171875 -0.21875 3.046875 -0.0625 C 3.484375 0.03125 4.203125 0.171875 4.765625 0.171875 C 6.0625 0.171875 7.328125 -0.984375 7.328125 -1.515625 Z M 7.328125 -1.515625 "/>
</g>
</g>
<clipPath id="clip-0">
<path clip-rule="nonzero" d="M 23 0 L 59 0 L 59 29.699219 L 23 29.699219 Z M 23 0 "/>
</clipPath>
<clipPath id="clip-1">
<path clip-rule="nonzero" d="M 4 0 L 37 0 L 37 29.699219 L 4 29.699219 Z M 4 0 "/>
</clipPath>
<clipPath id="clip-2">
<path clip-rule="nonzero" d="M 60 0 L 81.179688 0 L 81.179688 29.699219 L 60 29.699219 Z M 60 0 "/>
</clipPath>
</defs>
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" d="M 24.222656 28.722656 L 57.515625 28.722656 L 57.515625 0.976562 L 24.222656 0.976562 Z M 24.222656 28.722656 "/>
<g clip-path="url(#clip-0)">
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -17.007044 -14.172572 L 17.006799 -14.172572 L 17.006799 14.174293 L -17.007044 14.174293 Z M -17.007044 -14.172572 " transform="matrix(0.978806, 0, 0, -0.978806, 40.869261, 14.850451)"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-0-0" x="29.605156" y="16.461567"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-1-0" x="38.251932" y="18.22244"/>
<use xlink:href="#glyph-1-1" x="42.24719" y="18.22244"/>
<use xlink:href="#glyph-1-2" x="47.651335" y="18.22244"/>
</g>
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -22.139251 -0.00113507 L -40.181793 -0.00113507 " transform="matrix(0.978806, 0, 0, -0.978806, 40.869261, 14.850451)"/>
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 22.34375 14.851562 L 17.996094 13.203125 L 19.441406 14.851562 L 17.996094 16.496094 Z M 22.34375 14.851562 "/>
<g clip-path="url(#clip-1)">
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.051627 -0.00113507 L 1.609833 1.682995 L 3.08644 -0.00113507 L 1.609833 -1.681274 Z M 6.051627 -0.00113507 " transform="matrix(0.978806, 0, 0, -0.978806, 16.420379, 14.850451)"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-0-1" x="5.275943" y="11.11239"/>
</g>
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 17.505652 -0.00113507 L 35.548194 -0.00113507 " transform="matrix(0.978806, 0, 0, -0.978806, 40.869261, 14.850451)"/>
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 78.8125 14.851562 L 74.460938 13.203125 L 75.910156 14.851562 L 74.460938 16.496094 Z M 78.8125 14.851562 "/>
<g clip-path="url(#clip-2)">
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053183 -0.00113507 L 1.607399 1.682995 L 3.087996 -0.00113507 L 1.607399 -1.681274 Z M 6.053183 -0.00113507 " transform="matrix(0.978806, 0, 0, -0.978806, 72.887605, 14.850451)"/>
</g>
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
<use xlink:href="#glyph-2-0" x="68.77699" y="11.11239"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 10 KiB

View File

@ -3,7 +3,7 @@
1 0 obj 1 0 obj
<< <<
/Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D) /Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D)
/CreationDate (D:20250413160906+02'00') /CreationDate (D:20250409143805+02'00')
>> >>
endobj endobj
2 0 obj 2 0 obj
@ -3141,278 +3141,292 @@ endobj
524 0 obj 524 0 obj
<< /Length 525 0 R /Filter /FlateDecode >> << /Length 525 0 R /Filter /FlateDecode >>
stream stream
´½ËŽ-;r,8ß_?P)¾ u[   <0A> Q7JBC5¸¸ƒûûmæîd0beíŒX•”(OØ^ËbE<62>éÿó—ÿpøß?ñÿ…<C3BF>?þŸ¿ürŸðêñ.ÿÏ_QþŒ*Ÿ®ÕX³/ ´½Ë®,»r$8?_±@K|?¡€V·T€€4êÌ<04>ºq%4tôï·™»“Áˆ\ÚwQ uÒv¦Åƒtš?HÿŸø_ÿûwü!ä_ÿ÷_ÿp_ðÓã/|ü?ÿˆògüõwå˵köE!ÿëßÿp¿þûÝÿò%þúë)Fùë?å/‡ÿß½ü¿ÿøã/ü_¿û©¿ÿïÿ¿ö¿x.à'~ú_ý¯øo€ÿü׿ü~ý¿ø¯(ÿóëÿ÷ÿù®ò+úš‚ëÅ®àô™ÿÇ[Þðœ7<C593>¤û]Jƒwýèo|ÎûW‰©%ßÃà]?ºÇžóV÷UZÈÕ§ñ¦OÝãÍðö¯êzH±ÖÉ»|t<>·<çmõ+&ï[Éó9¯Ýã­Ïy{üê9„êò|ÎëG÷xÛ¼x¨-”Kœ¼ËG÷xûcÞ»LVãà=}t<>×»çĘ­>û>ˆ×<CB86>n?·X¡F™®˜7m¯Ý$~n²BK2_[)c*<2A>>ºIüÜf `NØÜÝ|ÇëG7‰Ÿ­èüuŸ>ºIüÜjEW¯³øôÑMâçf+ú(s6º8Þñé£ÄÏíVÌñ:<3A>OÝ$~n¸"æÎeŸ>ºIüÜrE,œ´¡”¡<NÝTÏ-Wìí:<3A>OÝ$~n¹†ðeŸ>ºIüÜr%ŸeÒæâ¦Ì\?ºIüÜr¥à¯óøôÑMâç+…*“¶¸Ö'ñòÑMâç+ÍénÏÚ0ìTêƒæàð’é,ôÛ<C3B4>°>¤.<2E>¥Æå»$í!I<LÎmKž[šã<C5A1>؃»åZ<7,“Ó˜V]ñF¸~rùËBæÔ¾|̹ÁkSâåƒ[¼áÅjï߈—On1`YÈ ¡KÅ…ñ¬×On1`Z„¹àѦê{˃yùäó‡¶%ƯP=FqOƒyùäósY¤Ì£kói/ŸÜb~®‹„
ù<EFBFBD>ÿüå>þåW÷¾Ä<C2BE>¿üJ1Ê_ÿ-9üÿîåÿýׯ?ÿú¿÷U÷/ÿ†oû_¼ ð•_ýïþ#þàÿÿõ¯¿ÂÇÿ÷ËFùŸ<C3B9>ÿ îÿëîò3úšëÅîàt‰Ìÿö-oxÎ@Ò}.¥Á»^ºÇŸóæþYbjÉ÷0x×K÷xÓsÞê>K ¹ú4ÞôéÒ=Þüoÿ¬®‡k<>¼Ë¥{¼å9o«Ÿ1yßJžÏy½t<C2BD>·>çíñ³çªËó9¯—îñ¶7xñP[,)—8y—K÷xûcÞ»LVãà=]ºÇëÝsbÌÎVŸ}Ä륛ÄÏ-V¨Q¦+æMÄë¥ÄÏMVhIæk+eL¥Ó¥ÄÏmVÀæ„ÍÝÍw¼^ºIüÜhE篓øté&ñs«]½ÎâÓ¥ÄÏÍVôQæltq¼ãÓ¥ÄÏíVÌñ:<3A>O—n?7\sç2<C3A7>O—n?·\Ë'm(e(<28>Ó¥Êã¹åŠ½]çñéÒMâç+a_æñéÒMâç+ù,“67eæzé&ñsË•¿ÎãÓ¥ÄÏ-W ¬Ÿ* c^?¹Åü\ ³K_=@ä6ÌÇúÉ-æÏìIÍX#1 ”xýàVˆâ3ûE_¹ú
U&mq­OâåÒMâç+ÍénÏÚ0ìTêƒæàð’é,ôÛ<C3B4>°>¤.<2E>¥Æå»$í!I<LÎmKž[šã<C5A1>؃»åZ<7,“Ó'˜V]ñF¸^¹Åü†e!sjŸ>æÜàµ)ñráï†Ex±Zd½Çû7âåÊ-æ7, ™!tSr©¸0žõzåó¦E˜ mª¾·<˜—+·˜ß´-1~†ê1Š{ÌË•[ÌÏe2»ÏšrŒ®Í§½\¹Åü\ 3X >U,Ƽ^¹Åü\ ³KŸ=@ä6ÌÇzåó{ö yo´ÇßbýÌvu÷ëØC5 ²ü÷-ÖÏ,W+x¤ É®*íúÁ-ÞÏìV_<E280B9>c¨{³Ôë·x?³Z ŸAàöfcùï[¬ŸY¬¾B
¤f¬PJ¼^¸¢xÏ~ÑW®¾BÞíñß·Xß³]Ý}Â:öPÍ,ÿ}‹õ=ËÕ =…a6Önñ~f¯rþÊ©6e3ë·x?³V©ÅÚr Éîwýàïg¶*¥¯ÜcÈ.Øh^?¸Åû™¥JŒbÆØ»=æå¿o…4?³S±â¡ÖRà**íúÁ-ÞÏ,UÄCõÉ»RÍ@®ÜâýÌVExM­…Z“MÞõƒ[¼j¬ôÕJJ>Í¥wùàïg¶
)h²«J»^¸ÅûžÝjñ³q uoz½p÷=«Õp ·7³Ëßb}Ïb•ôRè) ³±^¸Åûž½Êù3§Ú`”Íh¬nñ¾g­RÿŒµå’ýÞõÂ-Þ÷lUJŸ¹Ç<C2B9>]°Ñ¼^¸Åûž¥JŒbÆØ»=æå¿o…4ß³S±â¡ÖRà**ízáï{*â¡úä]©f × ·xß³U^Sk¡Öd“w½p÷M<C3B7>•>[Iɧ¹ô.nñ¾g« ¦JÝÛS>þóç{–Ê=ñ¨òS§MžfhŸ©åÖr<19>s½r÷©'GÞÚñ,j„ëk£g½põ©kGÖÐ?kh-Öni½ð-«;…ï|á#qöc_ìî»ñOïVÃþ™sÎß7 Î~ûŠ³×¾…ž=ÍÜg jªôн=åã?oq~f©Ü<13>*?uÚäi†ö•Zn-—ñ8×Onñ>õäÈ[;žE<C5BE>p}mô¬Üb}êÚ5ô¯ZµEZ?xËêÎDá<44>/|$Î~ì‡Ý}7þéÕŠcØ¿rsÎù;Rò&ÁÙoßBqöÚ·Pس§™ûJ?Ò «þà9{@~^Cúp6üüiÿZïXåo87 Þe„÷<E2809E>¾Iï!}“ ÞCú&¼‰ô÷Yà=¤oRÀ{Hßä7þ>ù»…ôbé·P¼I.ï!}“XÞCú&©¼‡ôMByéÒw‰äM¤¿O"ï!}“@ÞDzRd[(Þä§÷<C2A7>¾ÉMï!}“—ÞCú&'½…ô]>zé›\ôÒ7yèM¤¿ÏAï!=執PΙçXéSc<53>÷á^|<7C> „çªÓ«ß±<C39F>ð\nzõ96žëL¯þÆÂS<C382>éÕ×Ø@x®,½úÏ%¥Wcá©ôê_ü<á$ÙñóçÕ«_±<5F>ð\zõ)6žkR¯þÄÂs-êÕ—Ø@x®A½ú?Ox©=½ú;ëyšŸý‡ „çZÓ«ï°ƒðVîøùs ëÕgØ@x.]½ú Ï%«W_aá¹Tõê'ü<á¥Dõê#l <—¦^ýƒ „çÔ«o°ƒðTŠzõ 6ÚôK{fÝÃzÔ<7A>\™ŸÍÁ]ò°é â»÷æëÄì}ÊK
øò<EFBFBD>nXõ<07>ÈÙÚðõÊЇ³áëO#¨øÏÐzÇ*Ã)¸Ið]Fxé7éà=¤ßä÷<E2809A>~“ÞDúû,ðÒoRÀ{H¿Éÿn"ý}òw éÅÒo¡ø&¹¼‡ô›ÄòÒoÊ{H¿I(ï!ý&™¼…ô»Dò&Òß'÷<E28098>~“@ÞDzRd[(¾ÉOï!ý&7½‡ô¼ôÒorÒ[H¿ËGï!ý&½‡ô›<ô&Òßç ÷<C2A0>žòÏ[(çÌs¬ôŽ©±Çûp/¾ÇÂsÕéÕïØ@x.7½úÏu¦Wcá©Àôêkl <W^ýŒ „çÒ«<C392>±ƒðTKzõ/~žp ìøús<C3BA>êÕ¯Ø@x®M½úÏ5©Wbá¹õêKl <× ^ýˆŸ'¼Ôž^}ˆ„õ<ÍÏþÃÂs­éÕwØAx+w|ý¹„õê3l <—®^ý… „çÕ«¯°<C2AF>ð\ªzõ~žðR¢zõ6žKS¯þÁÂsIêÕ7ØAx*E½úmú¥=³îa=ê[®ÌÏæà.yØô ñÝ{óõaBö>å%»0>ÊÅÞ'¼d_ÂiØ/²Û)hfîFßóX_SÛ'Îö5¯}¢ÜšáîA§nwí§3Ýײå•éQýòÊs½òÊø¤pù á¹PùÄø¤bùå¥By¥|Tªü„ò\š|¢|R£ü„ò\“|¢|Rœü„ò\Œ|¢|R•üþš±RnZ3®…Ï+å£ va|”½Oxɾ.„;Ò°ßd·SÐÌ Ü<>¾ç±¾¦¶Oœ;ìk^ûD¹5Ã݃NÝîÚOgº¯eË+Ó£úå”çzå•ñIáòÂs¡ò‰ñIÅòÊK…òJù¨Tù å¹4ùDù¤Fù å¹&ùDù¤8ù å¹ùDù¤*ùó5c¥Ü´f\ ŸWÊGÐ(/Ï+å£Òçû”—Rç…ñQÍóÂS<C382>óÊ÷ ØùÝ©¸y¥{På|ŸîRÕ¼ð=*o~@x.g^ ŸÔ5? <Õ1¯|
è”—Šç•òQéó}ÊK©óÂø¨æùá©Æyå{Pìü€îTܼÒ=¨r¾Ow©j^ø•7? <—3¯„Oêšžê˜Ío+·…o“r»TL/„<>J§ï^J¥ÂG5Ó÷ /5Ò á£bé„çâè•ðI•ôÂSUôÊ÷ <ú>Ý¥zá{Tý€ð\½>)ˆ~@x.€^ ŸTB¿í?-„»Dþ¹Ôú$OÔ\?°3k<33>õjeî[?L.${âþ3tç\ËéG=¤/vvž¹vøH¯:Ïœ¼¤/ös^87øI_lå<“îð”¾ØÅy!Ýà+}±<>óBºÁ[úbïæ…tƒ¿ôU8èDº+tq™Î¤;|¦/¶‰žIwxM¯;DOœ;ü¦—Í¡gÆŸ÷œ^ö…ž ÞwzÝzbÜá=½î=SnðŸ^6žÞƒú"H»2î š?Vn ß&åv©˜^•Nß'¼”J/„<>j¦ï^j¤ÂGÅÒÏÅÑ+á“*鄧ªè•ïAyô}ºK9ôÂ÷¨.úá¹z%|Rý€ð\½>©„þØZw‰üs©õIž>¨¹~`gÖëÕÊÜ/¶~˜2\HöÄ üWèιÓ<E28093>zHßìì<síð^7už97xIßìç¼pnð“¾ÙÊy&Ýá)}³óBºÁWúfç…tƒ·ôÍÞÍ éé»pЉtW8èâ2<C3A2>IwøLßl=“îðš^wˆž8wøM/CÏŒ?ï9½ì =þ¼ïôº%ôĸÃ{zÝ z¦Üà?½l=3þ¼õM<C3B5>veܤ=;Q'Ê^ÔëŽÓå?êu³é‰r‡'õºÏôL¹Á—zÙbzfüyoêuwé‰q‡?õº±ôL¹Á£zÝSz¦ÜàS}“:Y)·e¥NnÕEÎþ¼_uݼz¶<?îY™Ý…føVÿÏÉå_!}¹_þdü½A8Y}(!F8×-¥\K.­<>üÿücnúw©|¬ |+`ï>üúó¯¿þõ¸çï¿ýú·_þËÿô§ÜÌg¿<67>áÍß<C38D>õõ÷Ãúû¼VBµ¿ånB6üñÕSÏßߊ>¸¿•ª•šøJsãýZ<>\ 9ìx?¿ýý?¿eûÙ÷ó[ªïÞOúèý4ˆh_xª;ÞÎo~ýÇßÍo¸~öÍü†è»÷¿y/å+$‡@þÇØFZÔåƒÖHà¢d¹ŠÔ{…Ÿý:$Jç=²HW]bÑù¸„òúº~†4Á†àÁø iÝEÃ$L éÒ¶Ôwxmx¾ßÝißDê¾áúß6qUY<55>sþ†ò7QB6<42>
Òž<EFBFBD>¨å/êuÇé‰r‡õºÙôD¹Ã“zÝgz¦ÜàK½l1=3þ¼7õº»ôĸßzÝXz¦ÜàQ½î)=Snð©¾H<C2BE>¬”Û²R'·ê"gÞ¯ºn^=[ž÷¬ŽÌîB3|«¿ûçäòGHŸîã<C3AE>?ƒŒß7çºåÏ”kÉ¥’ÿã¿æá¦Jå³`MÀàËX{÷áã<C3A1>¿|üûßsÏß?|üÇÇÿúëŸþ<C5B8>óÞ÷cxóûc}ýþ°~? +¡?ÛßòkB6üñÙSÏ_ÿ}p+Uÿ,/4ñ•æÆû ´:!¸rØñ~~ûý?þ~~Ëö³ïç·T_½ŸôÖûi1оðTw¼<77>ß|û<>¿ßpýìù ÑWï%ñ^Êg:Hþ‡@þÇØFZÔåBk$pQ²ÜEê½ÂÏ~¥ó7²Hw]bÑù¸…òúº~†4Á†àÁøiÝEÃ'$L é Ò¶Ôwxmx¾_ýÒ¾‰Ô}Áõl⪲:çüå?n¢„l%Ì+çÿØÄ™Âgç—öÿÜÄYçWOöŸÎŒwÕ8¹"<22>S}ðEá¨é<C2A8>Ÿx®K|1÷éL)-áÿ`Õ p³$ôÑÃ'œ‡OC\z=ŽÿËFâs.®+‚Ÿ[]sÕ|"ËwÅO—aèR0~üÙ<C3BC>W$ö{hÆu î¥"5âWóß!awÔð«Xƒ§]sS¤Áih5KÃi­†¤Ìß,¤M¥ÁV¤v_šðdxíøºƒ!1«Ö)ˆ\JÕOi.ô¦Hí¡ÂA4žRq ŠuÆZ±ø–Éø¾fHR³;È®•Xi¾7_rW$%¬~ro*;àÿªÝžFWn-ã5O =ÊÙ @ì…O€³•ä®Ö©Ž¥Ê(^¨¸a¸ž£Ç{Æ/oJ<6F>Æ—€‡£ˆ«tQ‰ôOÞÞ¶ñóNš!=ÛPË=aPD êñ:«Òä†<C3A4>ù3½sŸ!Á½wÑ>Ô|hòlñÛ°¾ê-døq¾zƒøBöúƒð¨“zyÞÁ…ÀØ­>g•£! ·ëͨð»]ê—øÇFÅwš@Xbz =$9âÝÙBK`'Æœò>·d^kÇ8ÑaCÄwë§0îù“çcÂgz¯þOòÆ…oöU!Œ|>A<17> Ú(÷dÇ]jM‡JêÍ <20>°6/¹? ïX ü‰gîb,ú •WíÅJÖff²îr1Ö ú<16>{"PáXÄÎr²H*D€{×!ƒ÷ØzÊUNŽn³® `½Ãú‰_ ó×tÔ`hzß á˜‰É¦gòÙÅî âT«¡†aq æ•óßÄ™ÂWç·öÿØÄYïó»'ûOgÆ»Šjœ\‘Ω>ø¢pÔôÀŠ/<׈€ë<E282AC>t¦€”ð°ê¸Yúèá Î<>÷!.ý<ŽÿËFâs.®+Û­®¹j¾å·â—Ë0t)?þìÎ+{‰=4cÁº÷Rq×üwDHØ5|Ç*Öài×Üipš$ZÍÒ°À;­Õ<C2AD>”yÏ@ÚTlEj÷¥ O†×ŽŸk9³:a<>È¥T<C2A5>ñ”æBoŠÔ*Dã)!Ç Xg¬K<>oIŒßk†$8!µ9»ìZ‰Eæ{ó%wERÂê'×V¡²þ¯ÚàiDqõ<71>àÒ2^£ñÄУœÍÄ^¨ñ8[I®ºa<C2BA>êXªì<C2AA>â…Š†ÏsôxïÁøáEðM Òøðpq•.*þÅëÂÛ6~^I3$ã¡gj¹' Š¨T=^gUšÜ0P"oÓ;÷Ü{íK͇&φ ë«^B†ç«7ˆ/!d¯7„G<E2809E>ÔËó.ÆnõÑ )X¸]oF…ûvu|©c\âßina‰é5ôTt<54>äˆwg?-<2D>sVÈûÜAx­ãD‡I¿­ß¸ç-ÏÇ„ïô^ *üŸä<C5B8> ¿ì«Bù|.´QîÉ Ž»Ôš•ÔšA:am^rÞ±@ù ÏÜÅXôA%*¯Ú Š•>¬ÍÌ„eÝåb¬Aõ-öD Â±ˆädTˆ&×®Cï±õ” ªœÝf'\AÀz…õ w ó×tÔ`hzß á˜‰É¦gòÙÅî âT«¡†aq
a`üøf¯®h<10>~ | CþYΆ4ç1sm†Â¾äÚô•@ü‰ßíuÐÄR[³WÒ?œòÖlŽb,ñÔBk¡Ø÷¥fã»OÞ]µñüqï†dš_tÄÀö')Bœ"¸_Ct a`üøf¯®h<10>î><3E>! ÿ,gCšó˜¹6Ca_rmúJ þÄïö:hb©­Ù+é_ Nyk6G1ø€ j¡µPì÷R³qáݯ®Ú Žxþ¸vC2M/:b`{Š“”!N\]ƒ¯!:…üM Ƨý mUN­69tÜ{_j¼<p)Ô@ëäÂ=&B`=¹ÍÔP1L%,G30Êé€<C3A9>:î®uƒº£¤·™Š)[ºN}¿ø{&:8ap÷Ñ ¾Ž^lª\‡sÉ Žèˆ«WO¥êh÷éFæÔ ŒÜ^ªAbMñ*bÐÝ·l—¡RlªÊ˶ÇDà˜ÆèTkGˆ†àõBùÛLÅhñÍ<C3B1>/uÜrëö†1@¸ÃM ¢<C2A0><C2A2>l3Õìp‰QˆO°rì ä¥×k¯rQÁÙL…qiãuA«ÑRu¯\x蘢¤½R¨ÂÞéÛj29Sì:f`õq}Ù [xõ*0hS¶‡Û0óa>%ŒOßÔ\x•5Ù<u\gìÒ18Gb2*L-<2D>§@x»xÅ`jxb˜:Q<>q€°'¼B\F}0ˆ3N‘Ìý¦Íš¬ ©JX%ÕŠ¡÷³ï%b%žŠ¤Õ‰p½„ckLëɈʀžÌkLG1<47>ð =Í­"xÎm@‰ëˆçBO¨pÄxƒšU<1C>¼%}è!bqæÉSI¯¢˜}~€8CV…°R9µŽ€haàæé cdÒ”„yÀ7ý¡^bV«ˆë\]/ïD‰Ð=Þ·@±ahè-ç/ÕVE/£úS> lòJ!¼b߀ô÷ª>C\*l¶ x½A×
ùOšŒOûBÚªœ Zmrèøíi|¨ñöÀ¥P­“÷˜<08>õä6SCÅ0•°!ÌÀ ê¸»Ö êŽÞf*¦lé:õ}üä÷a˜èà„À¯<C380>ñuôbS5à>œKqDGܽBx*UG»OŸ4 L_(ɈîYßVIã½Ô§™&„çµX úE£Ú^,~<7E><>0¤Ø$‚²Ä•½b™Rˆ_S 0D5ƒ°¼8]Ìñ~3Õ˜@?`<60>P)Çe×»é"¿SñÉSµüecO_E<45>¯:w£[8!̺VthpB”E¢Ú%Î.ëKŠ UDô"Â1âôñÀ•ªÆС ±\ NÃZg<ÜnÓÍŠÀ:cUðñ~e¥'‚…*ê#rèpBPQN5VŒ'ä¸"Uƒh«à(¦Ivºh¢‡ÊW.Ü8&‡ÞpZ´8!x=5Tƒ1N £WCˆj<$£0™c,Ç,rÓHG% # fÐ¡Ç ÁWaÛ,…A!«ݧ<C39D>°ˆ"ÇÏT¸ÎFƒÔ¾”¢P¤¼Ð¡Ê aáéöàë"˸ª+ j8
aäöR kŠW)ƒî¾eƒ¸ •bSU^¶Ý<&Ç4F§BX;B4¯Êßf*Fo~|¨ã'·no„;Ü*øÈ6S=Ì ÊÕ°Dd50€(±zòU!ü]³>Þ¶(szUwÊœPoÖ s<>ô20º©¦êªÌ[×ËàbZÕ:¤9!ÌñtHsBâYGTr”æ<E2809D>;A¡Œ¹ÔuadJ<64>ã:ú¦TZÕÇ è<>æ„`'¡?ò4„ŹØ"ˆÊ¼úª\Ÿ>éJA¤¹I(Â>&<26>x€iNˆFç8 Âèâ|'Eš'ZDBpˆ°7ƒtQ{‚±
…ø+Ǿ@žQz½÷*7œÍT—6^´-U÷Ê…‡ŽI1 šAÚ+…*ì<>¾­&“3Å®cV÷— ²…Wïƒ6e{¸ 3†°éSÂøôMÍ…W‰P“ÍSÇuÆnó€s$&£ÂÔÒy r(s"ø¾Mä”eÈCê`ÂD!H—Z!¨G¨ƒD™ÛÈÀü„lA“ò"Ì AId•1ŒNeÅСj<1B>λPʸ U橨2÷jO*cP1h1ù¬ÍHö$Ê"̉à†Õ ƣ¼W½ˆJ ÙAæ0/zÐ3Œ”4…9®VæR²Fm(s"p]mxjªÌ»ZþŠYR eîÔ˜`ðÁòé¢<C3A9>ú¢ÌÉ d
„?¯L O S'ª1ƒWˆË¨qÆÉC"’¹ß´B“Õ4•@ «¢¤Z1ô>aö½D¬ÂS´:®—pl<70> c=ùQг#y<E2809A>é(&¤ç¢ UoÓ¹ (qñ\è ŽoP£ sE'*æMS<18>Ô÷”Ý—i„¨P ŒŠts
ƒ#P·¤=D,Î<y*é]´£ÏgHÀJ¢V*§Ö- Ü<ýÁ™4%að<>@(„—˜Õêâ:—C×ÛÀ;À©Q"t<>÷-Plú“ó§j«¢·Q}‡)P6y¥^±Ío@ú}UŸ!n6[† ¼Þ k±A¦/ƒdD÷¬o«¤€ñÞ êÓLÂsÁZ,Pý¤QmIï¿ÀFRl <04>AÙ âÊ^±L)Ä<>©… ˜¢šAX^œ.f€ø{3Õ˜@_`<60>P)Çe×_ÓE~§â §jÿøÓÆž¾Š_uîF·pB˜u­èÐà„(DµK 8<¯¤k C˜âÜ”@†Ï^…yÓ߃åä”6„/£õ`<zßtèr@pPðú{aÑå„°f}è€,Ê!WQ:<TüªA\˜rÓW_`ìðàŠ‹.' i&Ð!ÌÁ$àõGƒTVº¢œj:V>âBSKRø>:Þ€aÎ¥¿qòÉ`Êy愧~1ˆÂÊB/cfw@•¶¢ª%a™\3G/—E™2OL¡C™|âJcU  ,*ÝFFýR¨ã &6Cü4ƒeÈA£ª'iž©UƒNïÜ(ͱPéЀ߬‘@œspefá_`aR³šÛI<49>Ê¡1«4Ï¥3¤ç ²¥S¯?V쮺Hs 0eI]¯¯¸“6Ïxì^p "Í›.ª™ú®R<1F>^<5E>ZÌÙôÊ‹iN—_!ü©BȪÌiäKVChUæÙa…É:bJ 2njюAF«<46> á*—²ZLnŒ—<¾´
œ \Ö— ªˆèE„cÄéã<C3A9>*U<> C…b¹@i†µÎx¸Ý¦<15>uƪà âï••žª¨<C2AA>È¡Ã AE9ÕX1.Bœ<42>ãŠT ¢­c T˜&Ùé¢ ˆR*_¹ðÃ19ô§E×SC5èã„°0z5€¨ÆC²9 sÈiHUƒ%ž„yâ®*f<00>M„ËfrYu9X0ŠÕÚ²¨hÑåxï:~@Ð\aÂtqÞ$D]ŽåK¯×Íl•¼êrŒF]¼!«.‡:Å£TyhÕå˜ BN¯¢œt9¬ Ãõ­º×мp}:œ 8E?9éò˜1õ½º€¨Ëa┇6™»]ÚI—C]àUªø.í¤Ëc`°@eJi«.<2E>PXœ\‚ô“.Ç-Ï\é']Vä³A«.\&š<1C>Å3Va0¸\R<> ˆ7,á?Bj-­Ê<ÐsPiSýI˜sMHYöÜZ…9žÆŠj@@«0N™òk8 sŒ;ŽÐbÐ*Ìùî¢S hæžZ9ØÇ/S½r¬­Y…9 U˜{&AtYu9ßb°MM']NS7â€$XÞu1u˜€V]î0<C3AE>}W»XóI—;ÖîvU‡€V]ŸBâ­ºÜELŽ¤#£–“.—µ©å´êr&Aycº¢Ÿñ´¦öÿÉA]"§I¥Ÿ•¡þþóÐårj gß:ty¥OÉÿ“I¯CÙt9 ¬T]«é¼.x¦Ë«8K=4CY^é¤þ¤@}‘å•ŽUŒ7è<37>åL`%±Å¯¹E‚û:¼{@‡,¯T½ÅÛKtÈr,„XK£yÑÍ,rtàayQÎÅ3CMÍ謁d\ˆUÈÓQŽ
“9ÆrÌ"Ç1<C387>tTÂ0j|¶ÍRèä°jÐ}ú(r|½A…ël4HíK) ¤ªö„
ªœžn¾.²$Œ«ºÂ¢F€£ \ KDVˆ«'_Âß5ëãm2§7Q…qgÐ¡Ì %ñf 2÷Ho£jJ ®Ê¼u½ .¦UM  Âoa@‡4'„!žuD%Gi¹ʘK]F¦Ô8®£o ÄHÐè'<27>)Ê+… F§ÚçQŠ+·7èår° 31ã[œs…Ã^6Ôˆ~+-¢$^"lD2hŠr X²a¨Æ—U(qåS÷¯åE•™Áx*ªœé-õ ÐTåU &Œ~©ªU€¦èˆªt”b6H'HÀSæ©|ú{uQåXpÒÙ )Ë<>dÆÄí%ÖE³J§Cb¨ejb/ar»B¢¼Õ¬2]<e9g}uµmå•fš«^E?d9xjxýÕ¼xŒI¨`zV9T9SŠ•k³Üow*„µV t¨r@¸
A¥U}¼€iNvúS ¿Hs@Xœ-r€¨Ì«¯Êñé“N¡Dš;t€"ìcÒ‰è<>æ„(itŽ:¤9!Œ.ÎwBQ¤y¢E$+q3HWµ'«pGŠ!‡2'ÏÛDNiQæ€<¤&¬Az„0H”¹<E2809D> ÌOÈ4)/Âœ”DVÃ(àTæP *¨¶é¼ U¡ŒŸ¡Ê<Uæ^íI¥b *-&ŸµÉžDY„9ü`uƒ±à¨0ïUo¢ÒB¶`…9ÌÞô #%Ma„«•¹”¬QÊœ\Wžš*ó®¿bV@€ƒD™;5&|°|º(¤¾(s@rG™ÂœFAщ Uy 銧!×ÇTóTå•)* ŒjÈ!Ê+ó˜Uq@åòdh£cw:¢{XDyaäN#ç
D„yÓÅF 5Æ=e÷i!*£"ÂœÏ+éZèæ„87%<25>á³WaÞôû`99¥ áËh=<04>Þ÷º|…~_Xt9!¬YE: rÈ]”ßj¦ÜôÕ;<x…â¢Ë ÁBšÉts@0 xýÑ ••®(ħšŽ•<C5BD>øŸÐÔ¾<> Ž7 C˜séoœ|2˜r^„9¡À©_ ¢0‡²ÐÛÀ†Ù­¨jIX&×ÌÑËeQæ„ÌSèPæ€ Ÿ¸ÒDG^oQ?Uêx‰Í C™rЄÁ¨êIšgjÕ Ó;7Js,T:4àw@kdçœ`™YøX˜Ô¬ævÒæ#ÓøßrhÌ*Ísé éyƒléÔ»À—ûU]¤9˜2ÁŽ¤®÷WÜIg<v¯ 8æMÕÌ }W©HïN-Iæì zçÅ4§Ë¯þT! dUæ4ò%«¡´*óì°Âd1%P™cÆÈhÇ £UȆp•KY- &7ÆKZ…9ä4¤ªÁOÂ<q ¢œ<C593>þ<EFBFBD>®KL8OQŽ·Ýtˆòò%Qê vIý¢¼pÈJ(‡ÔƸ‡e+¢ã‡]Ç ³ÎS”S Ó1TÏ¿çE•:6òh :T9õ W^T9 |<15>½h¼œÁ4Y06m 1ó<E9 00âøÖ!Ê‹•#ص×E•ãpu©©)$sç„+Ñ&×2 CÓ[<5B>PÈêò0ý<e9 ¼¶±šõ¶èr@îêß3=U9ÃÅ®rj ÔUˆ[6z¡LAOYNÛìöE
W3€Æƒ&Âe3¹<33>¬º,ÅjmYT´èr¼w ? h®0aº8 o¢.Çò¥w<C2A5>û‰f¶J^u9Æ£.Þ<>U—C<E28094>âQª¼´êrL<72>!§wQNºVÐá<C390>zƒV]Ž{hÞ ¸>Nœ¢WNº<fL}¯® êr˜8¥à¡Mæn—vÒåPx•*¾K;éò,P™RÚªË#'— ý¤Ëñ“g ®ô“. +AòÙ U—.MŽÆâ™H«0\.©ÆÄ,á?Bj-­Ê<ÐsPiSýI˜sMHYöÜZ…9žÆŠj@@«0N™òk8 sŒ;ŽÐbÐ*Ìùî¢S hæžZ9Ø/ŽŸ¦zå6X <GF¾˜„²œ‰ZÖrÈòÂœ!Å C3çƒáãÅJæ YÍÂô!<‹Åš²¦<>×bÈ!Ë8äe$ýRXd9 ZšÀ'tÈòÌXŸn0è<30>åPÛŒÍI_aþ‰,ïÔ(„„†i º<ÓÅ«Q“Ú„]žéCqœé¦E—ÓšcÊ¥nÈ!Ë<>@jtuã¹DV¦šahUÞfž§,ç©<E28098>+_5è<35>åÐTX<1E>úN<C3BA>™ç)˱Êt&…Š7è<37>å™0eµ<„¦,猄mÔl`âöKµ\Æ:¼ðž :d9Ý ¨`¿WYN=Øùžô´E3Ȍ展hÐŒ—3à†_ó®r¨r!ji®+U_d9ý2¸„µvƒYNÁZXö ¢½w<T xÁ¼ÖTq`êyªòÄ£æ ø&t¨r¾d¼<64>(ö™Ð¡Êá8Fî‰ÕñÅÜó —'þMOm@‡*g9O„A¬¡C³Þ<C2B3>§þÊ: 1°Èò(\T4è—G Öu$ƒY Ïš¤,V=0ù<e9Ë.ðFÔ:d9½h,ƒÁwƒYé¥c6èødòyÊr)mJÿ tÈr†®FÝ C•ãŠðRžrŒ‡·¨r89c×æ<“ÏS•s¹ãÎ<QÑ„UŽùï1i£Ž'_¤<5F>¥1ùE‡
s@«0÷Lè ²êr¾Å`!ššNºœ¦nÄ#I°¼ëbê0ƒŠ$­ºÜa û®v±æ“.w¬Ýíª­º>…Ä Zu¹˜IGF-']..kSË hÕåLò‡tèrˆ~ÆÓšÚSü'u‰œ&•~:T†úøÏC—Ë©10œy|êÐå•>%ÿO&½eÓ倰Ru­¦óºà™.¯â,õÐ 9dy¥“Rø•õEW:T1Þ C<33>•Ä¿æYîëðî²¼Rõo/Ð!˱b-<2D>æE7/²<ÈMÐe€‡å 8D9Ï 55?s¨r@ðq#ò(ZXT9 OG9*<2A>ªÚ*#A£Ÿ@¦(¯&<18>jŸ[\D9 (r¬ÜÞ C”ËÁ.ÌÄŒOqÎN {ÙP#ú©´ˆrx<72>x‰°É )Ê<>`Ɇ¡:T9 Ä•OÝ¿Ufã©t¨r¦·`Ôƒ @S•W1˜0ú¡r¨r Tš¢#r¨r@ÐPŠÙ <20> InO™§òé÷ÕE•cyÀ<79><EFBFBD>ÎMY$3&n/±.²œU:C-S{ “Ûå­f•éâ)Ë9ûè«Û¨m,¯4Ó\ô.ú!Ë<>ÀSÃ믆àuÀcLBÓ“´<1A>È¡Ê™R¬\å÷v·¨r@XaA‡*¢7èPå<50><EFBFBD>®xrL5OU^™¢ÂÀ¨†¢¼20<32>YDQ.O†6ª1v§#º‡E”Fî4r®Ð!ÊiÙèßéºÄ„óåxÛ=ñ+ºA‡(/Ÿ¥j—äЯ!Ê ‡\`TK ´ˆrHmŒ{X¶bÐ!Ê1~Øu 2ë<E9:Cõü{^Ty¡c#<23>Æ C•SÏàë«qåE•âÀWØ‹ÆËL“3ÏS”J#ŽO¢¼X9Ý{]T9¾w—ššb@1wN¸mr-:d9½…¬.ÓÏSÂk«Yo.„á®þ=ÐS•3\ì*§–@}Q倸e#©Êô”å4P°Í`_d9 ÀsdäS<C3A4>Iè!ËYp¨e½!‡,/Ì2ÑQ :d9s>>^¬t`šÕ,L<>Âs°X ¡)ËaÚ8B|-†²œ<C2B2>CÞFÒ…E³¡µ¨ |B‡,ÏŒ%ðéƒYµÍØ|‘ôæŸÈòN<C3B2>B(AAh˜Ð¡Ë3]¼5©MèÐå™>Ç™~aZt9­9¦\ꆲ¤FW7žKdeª†Vå}`æyÊr¸òUƒYM…åÑ©ï˜yž²«LgR¨xƒYž©SVËChÊrÎHØF À&žaï±TË]`¬Ã ïÙ CÓíÁ€ ^­&ψ¢œ»á h%¡C•ÆæÄfîyªrV¨¹ú€¨Êáÿ Ìx±§ÞMN£Æ§2¡C“3ÅŠEV7Æ:4y`ýCæñõ©Éi>±¼e{²q(25Aª˜<6F>Cc•Õü0ó<%¹§<C2B9>Ó,…Ž@9\_G—[„¨Ésér«dqþBð(ÇœÀ%µ"ž¡C”CT1¬VãøÖ)g<>G…ÕÊzAD9Tz!„¿0ðõ¾˜|¢œa_Ø€TÆ—QŽûÀHÂÒ¤WQŽUº.;‰U:D9Û<39>±v°24y¡¾”5K.MMÎ(<05>¡j/"S“³>ÙáEû0 )[Ⱥ…ò¡É å/þSëÃijiò"u<>¬ÈÔä…9-&c)G¤¼pPÑPhJò ]Â?sÅ æ<>°Å”ÒgT§$/ àÑéŽ}"3R^*•B<E280A2>šá&459ƒMTx{ÂòyhòB§¦F°Vƒ¦&#ÌÔZ2hjr@,Ì?M^¨P%n š¢¼ÐcÓˆ(¡)/Ô^3˜¢<1C>àõ^jlMQ^(E ¯Uå& ‡(õ7ÜtBRÂâ1cŠ,Þ±k:<3A>ÐåŒ1:¼-õ…3ÐC”32éá¹h<C2B9>¡)Ê O4À<1E>Ô°à¢É°ðL^JŒ‡(/R†W-aHhŠr@¸yLuñN MQ^Xò‡U8ØŧC•
ö}uåÔƒ<C394>ïIŸA[d9ƒÌX[‰Íx9nø6ïš!‡*g¢æºRõEÓ/ƒKXk7è<37>嬅eÉ Ú{ÇC…°€ÌkM¦ž§*O<jŠoB‡*çKÆ ‰bŸ ªŽcäžX_Ì=ÏpyâßôÔt¨róD âùj,†ÐT北Ä*(oÐTåŒ#7Œo<C592>½¦ ‡*”ð®|ìÑ ©Ê9è.fBS•¼ ÂÚ&U•LAU^˜Cª\,ªAS•gNd.ªˆ™‚ÆBødB<0¢å¦Ï°Š.œ%ÏÈ9Ù šº<sÁõ×6¡©Ë™zhxÖN—v¦ ÏÆ£"8ƒÔ‰"dë.C"¿‰[S šÂœ¸†)õ#^ž™ª„ë FU*Pá%à<> h
:d9ëx꯬³,<2C>!ÀMEƒŽpy¤Ñ`]G2è<32>å°ð¬IÊbÕ“ÏS³ìoD<6F>0¡CÓÆ2|7è<37>å^:fƒŽO&Ÿ§,—Ò¦dñB‡,gèjÔ<6A>9T9î/µé)Çxx*‡“ã1vmÎ3ù<U9—;îÌMèPå˜ÿ“6êxòE óLÅÂ\­Ú'f ‡0gRªæƒAS˜3Ë…Ãëž9BS˜g¼dŒküŠ<§äg¼œ :™Aº>2=tyæ:Åø脦.gno ¨mezèr¦1Äñ­póTY£Èê'yý`O4¢¥N_-óÎC˜§DÃÁ šÂ<ÉÁÈ,¾$º×ØèóU5œ€¦.Çãà$-I­óΦ˥΀é¢_ÊG¸Ãßǔꚺœ;M{ çP šºœûE$ô`ß*‡.·A3\ε!ñ<14>jÈÔå!J%.•™@õÐå^ª áSÇM]îYxÏÙ .‡<>
Y“_t¨àÕjòŒÈ!ʹ»ŠV:Ty`,hNl枧*‡`…š+¡ˆªþŸPÁŒ{êmÑä4j|*:49S¬Xduc¡C“Ö?d¿(PŸšœæË[¶×!‡"S„ ŠùÖ 9$9£ú0VYÍ3ÏS{8-ÀRè”Ãõut¹%üAˆš<—.w ±Jç/¿ˆrÌ ÜR+â:D9DÃj5ŽOrxTX­¬·D”C¥ _“ÏC”3ì <1B>ÊøÐ!Êñ;0°4é]ÄE”c„®ËNbU„QÎ6d¬ì† M^¨/eÍÒ¯KS“3JAc¨ÚÈÔä¬OvxÑ> hFÊÁ²îC¡|hòBùäÔú0ñlš¼H]#«e25yaNÉXEÊ)/TtÔÀš¼0h—ðÏ\1hJr†y l1¥ôÕ)É ƒxtºcŸÈŒ”—J¥P£f¸ MMÎ`žÆž°|š¼Ð©©¬Õ ©ÉÁ ššË惆ÃóÏC“*T‰ƒ¦(/ô˜ Á4"JhFÊ µ×Ì…柇(ä0h½—BS”JèkUy<55> è!ÊAý 7<><37>”°x̘"wìšN'4E9cŒoK}¡À ôåŒLzx.Z`EhŠò ð HjXpÓ,<“—ã!Ê”áUKš¢~<¦ºx§„¦(/,ùÃ*ìæÓ¡Ê ñ|5ChªrF„Kb”7hªrÆÆ·ÆÞSÐC•JxW>öhÐTå€Ë ™ŸUaéÙ(*ËYø<59>e§Ú3o*gZ—:b|gŠr)æ¤)Q«Î¡1D9u•=ò~hrŠ˜Ü zƒiç!ÉÝ,(M<>Jƒœ°z+¼§R$Mh*r±«vZ/ÐTäþ4n°è´eÖy(òÈÅÞ©­}L;C pøp yŒg,pÁ ©È9úJÓÎCK]µ«Z`@S§*ßÂ}Tƒ(É=kJùÄð:JÒñ—ã!Éy#<23>;}@´¸œÀÙŽU¥vµaÌ:ENëÁ@†–"AuqrZ£Æº<11>:Ì:Ó… _ †©XyܱASg‰1]ƤóPälh‰%µki,¡'‡­çŠá«Ï¢šGgl šš+n0ã"«AS“3k˜ñãY :³Î£|+z̘³µzƒ¦*/>Â4ˆ†P•Ã ö¨‰*¯]U¯&¶<>Ì8yÑkjGƒf ³0t5ex2«&ÇDIÜ$thrnvIÜÇ :4yä.eµ;0é<59K/=wì4ƒ¨É+÷Ù3ü@SUÿ3ëì0}ÝûLé€÷­<C3B7><C2AD>YgÕ§Ä_EG®Jd7œJ=Ê…£~…b°KeyŠX9Š$ ‰LUÞ°k8ŠYç)ožw8'«s©ûwNÀ0i¸žU9| ô‹¹
t3¡©Ê ^Pam“ªJ¦ ‡*/Ì!U.Õ ©Ê3'2— Xµ®'„¸²Õ¨gpqdí<64>@éÐåÌ-ðQº0 ©Ë\b.òN%HBÓå<C393>Q<1D>L;.gÄÎwN2Cå<43>Y,<2C>ƒ*. í7)˜¾3E0ltá®<C3A1>ÑS2Œ·}«ˆ.÷ÜîÔ1ú¬ð$4uy÷²Â†lﱺ¼si„ì :ré ]Î}U°¤y<ÝzË;KäqQ%ê6Ñ剡µ.Ñ…7ƒô BbtØÆ<>Žê¢õî˜CõWg^÷‘ì¾ú¡Ëfz/ûbÐÔå<C394>‰PŽx½e& ‡.ï²ýbIÊM]Î <˜@•œa3ZÎÍ8,¯&¤1GmwÕ8j·¨Þ&g/´!­á/î<>¡¨ !<21>o©/õÌW<C38C>±çµ8'0†0¤¹lv<6C>CÐíúÃ!ÍeÛJo]<5D>+#C™Ë.æÝ»¤#ØeJsnðà»hŠŽa¢QÇÂíj¿ª:c¸Ê3xç¸X3JÑ$ #Xuά¢œùÄǃ^ “Ø°ü$g<>gÝ^6h†ÍeS<65>ÌŒ(]>âæ¬ç‡˜÷<CB9C>}.Uö“дƒÑC ³Ž³;³„\°òe±‡Eç3*© , ¨\Ç pzñø+÷ F<>…;]K“šzLn<4C>è9<39>a@BÕ²b#|Îú_õ·Ê€¦Lg)/.± ¯Uj!L§{ñ±°NŒÑС.g—a\wW©ËîÜ~"GŒáÑ:%X?bè¼½ÆÊĤq¦¥%Ž„ÂÇ«‚ÁFµÞ)4¹Íö’‡@Écabše ÍG}C,º4¯™é¡×¹É$Ó{I<>èÜb¾ºñÑ¡Ø9î°Æ³X«6%;Çr¤k4tÛtó'œ„*§1T¤»‰QµTâdŒxÓ- Z™jÁºŽ™£?©{@+ß}§ÚÒ—mÐÔí0[­×ú?BS·3h¶^ tèv˜cøŸ…4hÄÓ3«0Åž­î¥gÇE¦pܘkÝt#hàªÍ<05>ƒCýñ¦A 7èñ<C3A8>'˜tT¹P(Á"{ëVPYê¸36t(w:n+Ñàr+‡tgÜŠ®ZVÙÜêQåÂàϲì7ÝJ—K¢8ÕZ±E„Ú½°v“±V­:5XMöƒâî±Bà÷¸É§8MÊ´vˆw†ÜXG®•î„Žp:+ƒ¤âC¹ú)œ]OW%t„Ó™2‰cg.!ÙÊ¢m&IYP5^Øu_(ç°Vòa±°Ùe_hÁ¢ã)ZðÈ0}ýøÖï,½ÀTʺÓïï<>ÁÿÄÝ4Í OoŒÕÏÎ"„¦zg)åLSÃÞáÞù~<#ÆëáPï,À…w­W"$iGÚH*‰Ê<E280B0>ê<E280B9>š[ì4ÁTùjJ{<ê<>«n¹jØ·§C¾sš`UšW šò½Ó°á~“]Ʋ1´Kжæ`*ò<>ÃN5Ý—MhÊwüMk˜-šØó¡ß;%Q麧,tÝ
UÄLAã!|2!ÑrÓgXE— ¥döã!%³æ½ú<>9âȈ¿Zì^¦~g&2ÄéŽ#<óC¿ËŽcÈp-!#4õ»ì,ŽòVºaSÀ{ÉÝr[¼ÞV;<ÕGƽûh_k‡§ÉÓ0®ª§Þ OŒuëÉ|àÞ /[~q“µ¨3Öû!â‰-[Ȉ ãMŒÖÑ)ã©Z¼Ymƒ¦Ž'm!/N ±)ä)i°DžT ˜îm^„ g ÷Å<>M)/„g!JΆM-OŒñ‡ Û£ ˜çöYVqaØæš—­µöS×EbSÎSDÍø±8õ¼l =4¡)èE_ኹõØ°©èe«läþÕ®—™IOíÅZάÅÑĦ¦W]½N†MQ/{b<13>PhÙ.*Ë1Ï|5lªzÊ9X騫¡©êåtOÕ»;Ý1Êbz¿à| †M]O,sé"\Øâm
ÎgäœlM]ž9‡àúk ÐÔåL=4<k§K;SÐŒgãQ {ˆi&ÿ‰Me/[\¹uB«£tÅ2iO B$Z)Vt˾QJKè3§Õ¯„mOÕI™b7ìÐöÜËJÖ7¥§KÉܲì1÷EÛ{v¼»fØ¡í™7Ä# ½[´=÷¬rVÕQäÝ"î='(L»SAì<41>÷žÛ0°>jMôËRbôhY gå=¤_áYY%<4C>÷%d´XôèÃ"©e“aSÞS 9Ô}<7D>xU¿u™Ž‡ÂÐ|7l÷ÜyDÁTa¼g¸¯JSsѧ#OŒñË®Õ Äf^v£2éýø³õ Rþ <AÙt+©,6²Ã&hJ”®<45>Ëb3ìP÷ì¦ Û<>5Ný²›”DHŽÝ"v¨{F0™<30>u}|oÆá‰ñõ3+¾®êž{<7B>*$¡÷†-ꞎM  n†-êcšù{座ÔÁéQ‡£(™aô˦Rî0•NxÅ.SOšéfW·l+%F<>àl°öEÛë¹:¡èž€Ü¢íeÿiç”K†ÚžP9OœNïàm/;PyÐMÖá½¥z
œAêD²u·!‘ßÄ­©MaÎŒ 3†®Mâ°l.¥'çYØéÆצº'”h^å²»”Pã®q“Ć¼ç†RŸx‡Ž¬}/ÛP1I°¦é…ÄCàƒ
\CŽ<14>ú/ÏLUÂuP£„*¨ððN¡g4…y¦ba®Ví3ÐC˜3)U 3Ýa*jÙ‰
ó‰Á )Ì™åÂáuÏ¡)Ì3^2Æ5¾EžSò3^Î<04>Ì ]™€º<s<>b|tBS—3·È7PÔ¶2=t9Ó˜âøT8„yª¬Qdõ“¼~°'QŒR§¯yç!ÌS¢áàÉMažä`dß]Ž{lôùªN@S—ãqp¤ÖŒygÓåRgÀtaÑå#\ŽaˆÏcJõM]Î<>¦=Ðs¨M]Îý"z°O•C—Û˜xIÉ .çÚ<C3A7>xŠF5dêò¥—ÊL zèr/U†ð©ã€¦.÷,AIüÍÙ .‡<> ¯4jý3±©ñ‰åÈ]N/sÙcª¾hf%m3lª|úÜ¿ÐíÆ—M¦„0<E2809E>¸ÁA^kȇÌöT'wÈSåsW)L¯fL/[Qq—¶ï
™ŸUaéÙ(*ËYø<59>e§Ú3o*gZ—:b|fŠr)æ¤)Q«Î¡1D9u•=ò~hrŠ˜Ü zƒiç!ÉÝ,(M<>Jƒœ°z+¼§R$Mh*r±«vZoÐTäþ4~`ÑiˬóPä3¼S[û˜v†@àðá@òÏXàASsô•:¶Ä¦<>‡"—ºjWµÀ€¦"OU>…ßQ ¢$÷¬)åÃë(IÇ_Ž‡$çi¬Øé¢ÀíÎv¬*µ« cÖy(rZ2´ ªóˆ“Ó<35>èÔaÖ™.ýbØ0LÅÊ㎠š’<KŒqè2&<26>‡"gCK,©]Kc Í89l=W,_}åÐäX<:dcÐÔäXùð3n²459³†_žÕ 3ë<ÊW°¢ÇŒ9[«7hªò"á#LƒhU9œAÑ0°'žao<61>š¨òÚUeñnbÈŒ“-¹¦v4hÊ!y1 CWS†'³jrL”dÁMB‡&çf—Ä},Á C“GîRöQk°“ÎS“³ôÒsÇN3ˆš¼rŸ=Ã4eQõ?³ÎӧѽϔxßúØ™uV½aqJüUt4qáçjéªDfù£S©G¹pÔ¯P ¶¢ã c©,O+G$‘©ÊÖ²ÆZ` G1ë<"åÍóΉšÀê\ê¾Æ<C2BE>0L®'DU(}0W«Öµà„õL.Ž¬½(ºœ¹>J4uyƒKÌEÞ©dIhº¼qóAÃ"ª£“igÓåŒøÃùãÎ Cf¨¼1ë¥qPeÑå<C391>¡ý&%Ów¦<>.ÜµÓ zJ†ñ¶OÑåžÛ<C5BE>:FBŸž„¦.ï^VØ<56>í=ÖC—w.<2E><>½AG.]‚¡Ë¹¯ ïýÑãV­XýÀ¦Ìç¶Ò<C2B6>«fÌ:_v£bÑ.qÙfJ ÎPÁŠä J_ö£búó°æÔ'Và¾È1<C388>ÄÚ¡õeGêÈŽ+6žlI­ŽçÓ7æÚ'V¸!eŒ¯~È}Ù”Êö£ZòÛTv¥Âöµ¦6,ÛM‰ÁÁ,èóŒË~SÙ—
4<EFBFBD>§[<5B>`yg‰<nªDýÂ&º<1´Ö%ºÃ¢ðf<C3B0>>AHŒÎ[ÃøÑQ]´Þs¨~tæñ;’ý®~èr„™Þ˾4uyg"”#^2ÐC—wÙ~±$e „¦.çL Jΰ-çf¿WÒ˜£¶<03>»jµ[To“³Ú<>Öðƒ{g(*CHãSêD=óÕcìy-Î Œ! i.t»ÿpHsÙ¶Ò[WãÊÀÈPæ²Ë„y÷.é6E™Òœ<¸Å.š¢c˜hÔ±p»F¤Ú¯ªÎ®ò Þ9.ÖŒR4IÂD<E28093>3«(g>ññ`€WÃ$6,_ÉYàY·— šasÙTà3#J—<4A>¸9ëùaæï·>—*{<7B>IhÚ<68>Áè!ÐYÇŽÙ<C5BD>YB.Xù´X mÕµ†Ø”ü²1µðŒ ÑáĦæ'FÐu_WŒºå”ÑIÙ™Êãäô©Dh~n?…ns,êlÙrJ # lª~bÝɱMÕÏ ¨<>Çt8…=§„rÖImØ”ýÄX¹<58>·Õ ›ºŸ{Py5Ú3I‡ò'†¸gÆ°)ý‰Q¢j<6A>Ð<EFBFBD>þÜ„êYc¥ÏáÍÚŸXf-<2D>Sy—­§ÄO!ÑH!±Cü'¢·Q|cYÔ?óD•nÝ<E28099>î>M<>ö&‰Ãߊfê_v°¢4ÖEý3•Hm®{ÀˆêŸÉÄ,»!6Õ?s²°eIkªb<6¡Â<>Õìíî]¨Ä`œ­O†ê?q' kvu­Š}QÿIvAa¦ÛëúO²[ƒTçdìúOr:¬ 8±1-Q¹i5ò°¯žHZv£+œõZ¨IìPÿ‰KžžbÇ~TÙìšñ‹¾ô¤R±ŽTÁXàL\&¿¨æë¸k_O¬‰),ꟙÇc»*±Cý3õˆÿhº™Ø¡þ™»<E284A2>¥eMaÅ´ìJåîU¾<ÜdØ!ÿ™ ³3qâ¢ÿ3ÃÌ®ØA1¥Eÿg†¸åØ<C3A5>hØ¡ÿ<C2A1>aà'¯Ç+Ç”ýŸ9G=A4ìÐÿLIF^¨Jä´lN•]±ô>“ñ-»Se[lq°1RûCìp˜¡„E¨ÑžµîOåÑ^¿¸û54næÔE4Õéðtqº­Zƒ@äp2·CaíÒNˆÑà®}î~ ÂsܸîPeD_0Ö>„¢ÎMZ¶¨k<lj~í<>ÿ™éŽ44wZö¨Ê¶Y 6µpiÙ¤*ûf+ŒJS<4A>"é6Unëÿ%g™Ö$ë.U~ "Ûçµx…ÏgñÌ+ËÆY'wP ã5rƒÄ/îÅÆxÕù“—<E2809C>ªÄh «— VÌË^UbðÄ
<EFBFBD>âó•Ô–„T®c‡8½xü•{ £F‡ŠÂ/]K“šzLn<4C>è9<39>a@BÕ²b#|Îú_õ·Ê€¦Lg)/n± ¯Uj!L§{ñ±°NŒÑС.g—a\wW©ËîÜ~"GŒáÑ:%X?bèüy<C3BC>•‰Iã>LKK 3„<33>Vƒ# Œj½Shrì%<0F>ÇÂÄ4Ë@<>ú†Xti^#3ÓC¯s“I¦÷4 &—èÜb¾ºqéPìwXãY¬U <E280BA>c9Ò5 ºmºùNB•‰Ó*Ò݊ĨÚE*q2FŒ¾n <EFBFBD>Å2ìPÿ™óNÊô7âþY!”•Ð°CýNlÙ]5¾w¨æ9¹ÅOÕbŽügž“µ^MU>v¬zÉsJ,;t¨ÿÂí…|qúVó²g•{e)2«Vù;Ô᮪–õB‡ø/tÖs7ë-c4rg§´(•X¼s ·ÿõïr@#Cé^ÎÏ—¿t'“8þó/¹¯ÿøã/vlaÝOÄ~9o™»€óW¿è¼œ šuãq$¯<>ex´Ëó_÷,ÆIl”Cç†þ¿&éßT6Ä œ™·Ò>f‰C‰±“<C2B1>Œ<>áâß=°¿á„OÆWX§ÄTýHŒ2îÀfe¬½ä¢Þ<C2A2>ÔoHÜ7³<>¡ú×Cz sä3ƒ…˜ÚæJ Ž8ÆMþÑ
¼éÐÈM­Lµ`]ÇÌѯÔ= •ï¾SméË6hêv˜­Ö°îký¡©Û™ ææ¬øÍ<EFBFBD>ýýÿX9ÿýýÁªä0î¯ã¸™p¹ÜKvÌQHr´Ú:}t£—ˆ{NL_Pk\“”xýè&±¸ñ“+ž-ÄëG7‰ÃsâÌ
4[/P:t;Ì1üOÉB4âé<C3A2>™U€bÏV÷<56>Ò³ã"S8n̵nº4pÕæÆÁ¡þxÓ<78> ôxÈ L<>:ª\(”`Š=u+¨,uÜ :”; ·•hp¹•Cº3nEW-«lnõ¨raðgYön¥Ë%QŒj­Ø"Bí^X»ÉØ«V<C2AB>¬&ûAñë±Bàû¸É§8MÊ´vˆw†ÜXG®•î„Žp:+ƒ¤âC¹ú)œ]OW%t„Ó™2‰cg.!ÙÊ¢m&IYP5^Øu_(ç°Vòa±°Ùe_hÁ¢ã)ZðÈ0}ýøÔï,½ÀTʺÓïï<>ÁÿÄÝ4Í OoŒÕÏÎ"„¦zg)åLSÃÞáÞù~<#ÆëáPï,À<>w­W"$iGÚH*‰Ê<E280B0>ê<E280B9>š[ì4ÁTùjJ{<ê<>«~rÕ°oO‡|ç4Áª„5¯4å{§aÃïMvËÆÐ.AÛšƒ=¨|Èwþ ;Õt_6¡)ßñ7­a¶hbχ~ï”D¥ëž²Ðu_(”N<E2809D>Ù<EFBFBD>‡”Ìš÷rèwæˆ##þj±{™ú<E284A2>™`ȧ;ŽðÌý.;Ž!õ„ŒÐÔï²³8Ê[é†Mï%wËmñú³Ú!à©>2~»<>ö±v(xš< ãªzêí<C3AA>ðÄX·žÌîýÐð²åuÆz?D<±e ±¡âi}±Òa¼‰À::e<U7«mÐÔñÄ Í äÅ©!6…<% <16>È“ W;ˈ×<CB86>nÇçÄ°ÖIv`ŽvÓë'7iÓsZfò°8îe6Þõ£Äùbîôõ!±îl/Ý$.ω¹§¸Ðsñsh­Ý$®<> 73p¯µ„V„øôÑMâöœ˜Ž/|xÆ<C386>wùä&ís«U(Faî£sch<63>>ºG\Ÿ[­Â Üo ªQ‰×<E280B0>n?·Z…;Ž¡%yÊà ^?ºIüÜjVÈVŒ0©ÓG7‰Ÿ[­Â<C2AD>ÓžÛÀüÓëG7‰ŸÛ­ÂÂ.v~ÞñúÑMâçv«2ª˜åÜÞdħ<C384>n?·[•.aaÄr.‰§<E280B0>n?·[UY©IJ¼~t“ø¹Ýª¬ƒ`å3·hñúÑMâç«vI©Öxâõ£{Äí¹åª<C3A5>.uhâ6â壛ÄÏ-Wcn¸q«Þ´<>n?·\<5C>ÙËÞ¸'£Ly½|t“ø¹åj ßmša§RÿÞÓyé5}†á!Ü ÉIrkno,üfùè&myH[]X|:V×<56>nÒ>·GÇ<1B>÷Ñsû£<C3BB>¥s×á\¼Ýl˜ÔÏ-<2D>PŸ{×ü¬å0ˆûs ¤ÄçÄÂü¤ñ0©?°A¾¼ô!®ùaûaRb…ÊK7âš6!&õ‡vèÒ“¸æ‡­ˆIý\C)õ¹3qÍ“ú¹ŠêK«`©ÛyÒ!˜ÔÏu”P_“úQŸ`Rf¹.mƒuÂýnÁ$þÌ<C38C>“÷AÏ`Ò~fÅÎ-„k~Ô9´p?â½tñ£ÂÂü™ »4&ó“>ÂÂü™ ;÷&ñƒvÂÂû™ýºôúÕ=ï÷[ü
Ó=¢Í ä>£8°)åeð,DÉÙ°©å‰1þt»btáóÜ>Ë*. û`ØT󲵶À~êºHlÊyŠ¨"§ž— ´‡†"4½è+Ü1·6½l•<6C>Ü¿Úõ6Ó!驽XË™µ8šØÔôªË"£×É°)êeOlâq ógæëÒò·æg<EFBFBD>~…ù3ëuéü æG …ù3ãuiLæ'}…ù3Ûuîí…÷3Óui âG]€…ù3ëué
-ÛEe9Æ`♯†MUO9+uõ!4U½œîÉ¢ú`¿NwŒ²XA¤žÃ78_aS×Ë\dº¶xÂ^$bšÉbSÙËWn<57>ÐjÅ(]±LÚƒ‰VŠݲo”ÒúÌiõ+¡CÛSuR¦„Ø ;´=÷²ÒŸõMéæéD2·¬{Ì}Ñö^¤]3ìÐöÌâ­òˆÞ-Úž{V¹M«ê(òn÷ž¦]<5D>© vÈ{ÏmXµŠ&úe)1z´¬†3ŒòÒ/ˆpŽ¬Å¬&vÈ{ɲZ,zôa÷ARƒÔ²É°)ï)ƒ.hŠê>HÁ¼ÍªŸŠº‡LÇCah¾¶È{î<¢`ªÅ°EÞ3\‡W¥©¹èÓ€'Æøe×jb3/»Q‚ô~|ŽÙz©EÿŒ lº•TÙ<>Ša4%JŒW€"ÆÀe ±v¨{vÓ…íÎ'<27>~ÙMJ "$G<>n;Ô=#˜Ìκ>>7ãðÄøzŠ™_WuϽF’Ð{ÃuOÇ&Pu<>1Í|½rÝSêàô¨Ã€Q”Ì0úeS)w˜J'¼b·©<C2B7>§ Læ'Í€Éì?³_—æÀd~ÒX˜?Ô`熽¢þôéæÏìשo/­Èýv½Âú™õr<C3B5>Ü3Ö>s”´:•;¢à±PÌêúÑ=槞aÓVHkëwí˜w¿ã»ð>u É{é4 Þ- ¦¿IÊýÜ/»ûÑ<C3BB>Ç׫žd_·ìü Å»pÀÒwÁ€-¤ã‰qüJŽÇ.ÄŸë$~ ¢\ãÂKøäò7^Fca óij%n¾K]ï!}“¶ÞCú&e½‡ôMºzéoSÕ{(ߤ©7þ>E½‡ôMzzé5cé»|øÒßæÂ÷P¾Éƒï!}“ßCú&ÿ½‡ôMî{雼÷&Òßç¼·<C2BC>¾Uv[Hß$Ù÷<C399>¾I°ï!}“\ßCú&±¾‡ôMR}éïê[Hß%Ó÷<C393>¾I¤o"]“è[(V'<27>‡ªJ÷ð¡Oü÷â<C3B7>l <×Ï^=“ „çºÙ«W²<57>ð\/{õH6ž
Ít³»[¶•£Np6Xû¢íõ\<5C>PtO@ nÑö²ÿ´sÊ%ÃmÏ ¨œ'N§wp‡¶—¨<è&ëð ËÞR=…C×&qX6—Ò“ó,ìtãcSÝJ´ŒEïrÙ]J¨q׸ŠIbCÞsC©O<ŒCGV‡¾—m¨˜$XÓôFâ!ð‰AÛ¿ƒî0•µìD…Wµþ™ØÔøÄrä.§·¹ì1U_4³6U>ýMî_èö×M¦„0<E2809E>¸ÁA^kȇÌöT'wÈSåsW)L¯fL/[Qñ+mßÞû¢'Æ­Z±ú<C2B1>M™Ïm¥!W͘+6u¾ìFÅ*¢Ýâ²Í”œ¡‚É6•¾ìGÅôça†M©O¬À}c‰µCëËŽÔWlŠ}ÙZϧo†MµO¬pCÊ<5F>û²)•íGµ:†e·©ìJ…íkM-lX¶ƒ5YÐç—ý¦²/Úªk5 ±)ùecjá¢Ã‰MÍOŒ¡ë¾®uË)£“²3•ÇÉéS‰þÐüÜ~ e/ÞȺs}ìÕÙAxª½z!Ïõ°WdáïB-/…·WÏcá©âöâul ;Ú^=Ž „çÛ«·±<C2B7>ð\X{õ46ž j¯^ÆÂs!íÕÃØAx* ½z?Oøû€çÂs¥îÕ«Ø@x®Ð½zÏ•¹Wobá¹"÷êIl <Wâ^½ˆ„§
ÝæXÔ-زå”FTNØTýĺ“c; šªŸP<03>ép Ü«ñó„—ÊÛ«÷°<C3B7>ð\q{õvž-?ÿ¸ìö#wç‡³× 1{Î:ÇžoH¯Éá…óQøå5/¼PîH“|ol»$'<27>´M<C2B4>ö5ï~âÜñh_Sî'ʽ¹÷Ä0{näúãIø—
-{N 嬓ڰ)û‰±r6u?÷ ò.j´gåO .qÏŒaSú£DÕ¡!ý¹ Õ³ÆJ7žÃ;´?±ÌZ §ò$.[O‰5žB¢Bb‡øO,Do£ø<Ʋ¨æ‰*Ý$ûuºû4Ú›$+š!$v¨ÙÁzˆÒXõÏT"µ¹î#v¨&³ì†ØTÿÌÉÂ%­©ŠñØ„J?¬fo¿nÙ…J Æ™ÑúdØ¡þw°fWתØõŸd<66>°¾¨ÿ$»%1HuNƾ¨ÿ$§cÀ ì•ëQ)öÒKíõÊù¤ûå¥êúÄù¤üú éµÞz%}TxýˆôRi}"}RrýˆôRc}"}RlýˆôR]}"}Rfý·¬$+鮕䥘{%}TÕý„ôZƽ>ªç~@z-à^8Ur?¡<—n¯Œj¸Ÿž¶WÂÕÛ¯ÕÚ ã£²í'”—2í•òI½öÊs}öÊø PûoÐw ã.}w­_(…? ¼<16>/”<>ªÁP^«¿ÊGeàO(/eß+å“úï'”çzï•ñAá÷Âk¡÷Âø¨âû å¥Â{¥|Rêý„òRÚ½R>©ñþ¼®…rkp)#?ÉÙõäOlÏ©~|µ<÷ ɧ%š=‘†$IÕYm÷£gßê̵÷zÝ×zæÜà[}³£õ¹Á·úf/ë™t‡oõÍ.Ö éßê›ý«Ò ¾Õ7;W/¤|«oCI+é®PÒÅ·:“îð­¾Ù"{&Ýá[½nŽ=qîð­^¶ÅžÞ·zÙ{&üyßêu'ì‰q‡oõºöL¹Á·zÙûzfüyßê»ï¸+À{ö­N”;|«× ¶'ʾÕëÎÚåßêuKí™rƒoõ²—öÌøó¾Õë&Úãßêu÷ì™rƒoõºmöL¹Á·ú.í²PnËh<C38B>œýyßêº7÷ly~Ü·:²Ã ÍsßêåøÙ\y$ycçôz:ù¯±«"<22>j3•Ù…c“7•+O$<24>α91ö}Öf¨„"¼9ÙÄþƒ®ZËb¥ç¢‡Ýé[èJ^£Ã·´Q°˜H&gÛéþFŒ'özmóKŒUr,8ϧ.ÕÁìGå«”<½c· ÃþÃÉ)Ô<+»³ÿa7¨Ê<C2A8>ÛQ<C39B>ß.ÙÞ¹œýͪ1Ý7y¹ÝOŒngöxäqß<71>E&Ñ<„Z|ÐãÃKHì;¯ßâÒØñ4™{eh¼äžä¤ybG;“Ìf• ï½a/Çu¯ËÐÁ‰“ÙI<C399>ÍØÁ„ÛMTí)C,aÂ7žéŸ yÔ¤gújøçÒ<C3A7>ˆU99BÑJÓ•Ì®ÁPšr\½ÓîØBŸ °Ä–ÛÉëÉï
ŠÓ²V#[ðꉤe7*±ÂY¯…šÄõŸ¨±äé)vìG•Í®ï±èKOº!ëHŒeÎÄeòúg¾Ž»öõÄš˜Â¢þ™y<¶«;Ô?S<>ø<EFBFBD>¦ÛꟹûXZÖVLË®Tî^å[ÀÃM†òŸ B0;g).ú?3ÌìŠSZôfˆ[Ž ‰†ú~òz¼rLyÑÿ™sÔSýÏ”dä<64>ªDNËæTÙKï3ß²;U¶Å#µ?ÄJX„íYëþTíõÁݯ¡q3§.¢©N€§ÓmÕ"‡<03>¹ .h?tb-Œ·dãén!¯ …/éWäÀõ,ìKfØrÌ9f0ÓI_B­`Ð:Kw&¶§’¶¡,ÊäùóŽ=šrZZÔÉ c¤³{ ÏÐgÈäa<E2809A>½ÒZR,vÖ±è0iìfÜñºX+”¥¯¬th†Qç"ï3ŠÊbÄØ?)°k31žû—Z“§NGÜuÓ~½àGc.†Ѐá/L²Ò c“F<1F>bA»ê=°©1,kàÔÒ~æµ;_ +lE¢Ï™Ý庳¶Äðº{q]1ö'nM/“m<E2809C>}Ôçœ8Úœ40¬$Ó¬ÄR€ï^{1 ·wÁð},£A‡QÓȰ7Q;X”֤ϊaG<61>k·ÙóJ&PÃÏà÷a<´c§ÇÐÃÍDÞŸ`0 ¸ÒñµÂ£ëÙ,<2C>ˆYú:fú<4A>òz—¶‰ÄØ5#)k˾ž:¾VñSl#!¬Æ´tËËì Í@£3 FÓÀ !ØUH˜.Hô-4íGMˆ z
k—pBŒwís÷kžã‡ëUFôcíC(êܤe*±ÆææÇùŸ™îHCs§e<C2A7>ªleÁ`S Mª²o¶Â¨4õ(nSå¶þÙ8Ë´¾ Yw©²ðKÙ>¯Å+Äx>g^Y6Î:ùÕ0Þ#7H|p,6īΟ¼ìT%FKX½±b^öªƒ'Vx,a‡úÏœwRŽ¤ßõÏ »½±× &9ì´TÀœ†¹qì' XÎ .¦xÓÄØË$I{é­âðüÀ*†^.QÓèl”{VŒý“0Wi\%ÔÓk±ÎvÄ@À®žšbÇ[„mÕ©Ðù3¥±oÇ°?·˜HB`‡ÝòÒ¸HzÑ@¯iKÞ, ¬ñ¾‚|<7C>æ€ u±`—ØÙT XŠM[ãAÀcvÒŒO6yöU3/œ}±´?†"¡$ð„´ÈA,½{ë…=
¡¬„†ê¿pbËîªñ¹Cý3ÏÉ-~ªs\ä?óœ¬5ðjªò±cÕKžSbÙÁ n/ä‹Ó·š—=«Ü+KYµÊ—Ø¡þ wUµ¬Ç¸¡³ž»Yo£‘;;¥E©„Àâ<C380>½ýÇÊ<01>ÐÔYβÇÁ¢)Ç2ÕþëןíØš ž†ýrÖ,ä+·fò,Å Á”×cA³î^ü+çñÚA¶‰çº¼ñõž¥8‰mrèºÀÌÿuþþ<C3BE>€È†¶<E280A0>/sãÇ´÷i"ÇPbìdë3£qc¼øwÏìo8âSBP]˜¨±HCzœ!í¸!>?ÒŸî«6íÎÆñ¾s@Ûç8¾;)¸¤H‡+±5â7ùGÿ-˜“â7_öwÿòoX4ÿóýbAr¿/÷ø!áòCð;²czB<42>£ËÖéÒ<C3A9>6^ .î91Ýø>­q9RâõÒMbÿœ8qÏ';91[ˆ×K7‰ÃsâÌâV;ˈ×K7‰ãsbê$/G§éõÊMÚôœI<,#ŽÛ˜<C39B>w½t“8¿AÌM¾>$–œ âåÒMâòœ˜Û‰ <0B>?‡Özé&q}L\¸<><C2B8>Û¬%ª"ħK7‰Ûsbú¼pßF6ÞåÊMÚçV«P‡BÌDçÆÐ:]ºG\Ÿ[­Â½ Üj Q‰×K7‰Ÿ[­ÂÍÆ<C38D><àa¯—n?·Z…Ų #ŒEêté&ñs«U¸iÚs˜Ÿcz½t“ø¹Ý*¬ébS‰àç/^/Ý$~n·*ŠYŽìMF|ºt“ø¹Ýªô ƒ•sI<]ºIüÜnU9_¥&<26>)*ñzé&ñs»UYÁ¢gîÎ2âõÒMâç«vɦwâõÒ=âöÜrÕNo:4ñ˜ñré&ñsËÕ¨ÉwéMËuºt“ø¹åjL\öÆíeÊëåÒMâç«-|·i†<69>Jýkç¥1Ôô†‡pƒ$?$É­I¤½±ækšåÒMÚò<C39A>¶º°Äöt¬®—nÒ>·GÇ<1B>÷Ñsû£1¥sÃáW¼Ýg˜ÔÏ-<2D>PŸÛ×ü¬Û0ˆûs ¤ÄçæÃÂü¤ç0©ß°A¾¼´ ®ùaçaR¿c…ÊK#âšövèÒŽ¸æ‡]ˆIý\C)õ¹)qÍ{“ú¹ŠêK—`)ÙyÒ˜ÔÏu”P_z“úQ`R¿g¹.ƒu ÂýFÁ$~Ï<C38F>û“÷A»`Ò¾gÅÎ݃k~Ô4´pßâ½4ñ£ÞÁÂüž »ô&ó“ÂÂüž ;·&ñƒNÂÂûžýº´ùÕíî÷»û ؆IcQ°L°ÒšXöX9+'cQÖÏø
ó{æëÒí·ægM~…ù=ëuiú æG½~…ù=ãuéýKæ'-…ù=Ûun<07>…÷=Óué âG €…ù=ëuiLæ'}€Éìß³_—¾Àd~ÒX˜ßÔ`ç^½¢þ´èæ÷ìשe/­ÈýN½Âúžõr<C3B5>Ü3>s”´0•¡à±FÌêzéóSÏ°i¤µë»6Ë»ßì]xŸº†ä½4™ïÞÒ_$å~îÝýèÀãûUO²¯»u~†â»pÀÒï‚[HÇ+ãø™O\ˆ?×D¹<Æ „—ðÉån ¼ŒÆÂîå‰ÇJþÜý.u½‡ô´õÒoRÖ{H¿IWï!ýmªzå7iêM¤¿OQï!ý&=½‰ô5céwùð=¤¿Í…ï¡ü&¾‡ô›øÒoòß{H¿É}ï!ý&iô÷9ï-¤ß*»-¤ß$Ù÷<C399>~“`ßCúMr}é7‰õ=¤ß$Õ7þ>¡¾…ô»dúÒoéH׊ÕÉãyªÒ8üF@èÿĽx'Ïõ³WÏdá¹nöê•l <×Ë^= „§BÙ<37>î\{õDvžêb¯^ÈÂs=ìÕÙAø»PËÂKáíÕóØ@xª¸½xèÎ…¶W<C2B6>cá¹Àöêml <Ö^=<3D> „çÚ«—±<E28094>ð\H{õ0vž ÛÒ²=F̱¢SÙ9ª°læ¨=<3D>Jð£í6± ÛZ'û±ƒ¥v¿!vô]<5D>ÜdqY<71>
h¯ÞÅÏþ>ใð\©{õ*6ž+t¯ÅÂseîÕØ@x®È½zÏ•¸W/bá©÷êAü<á¥òöê=l <WÜ^=‡„ƒgË×?.»}ËÝùá¬à5CÌv³Î±ÝÛÃTñÒkrxá|”%~@yÍ /”;Ä_$ß;.Éá#mÓ£}Í»Ÿ8w<Ú×”û‰roî=ñðKÇv¹þxþ¥{åzTŠý„ôR{½r>)Â~Dy©º>q>)¿~Bz­·^I^?"½TZŸHŸ”\?"½ÔXŸHŸ[?"½TWŸHŸ”Yÿ-+ÉJºk%y)æ^IUu?!½q¯¤<C2AF>ê¹<1F>^ ¸ÎG•ÜO(Ï¥Û+ãƒî'„ç¢í•ðAõöÂkµöÂø¨lû å¥L{¥|R¯ý„ò\Ÿ½2>(ÔþôݸKß]kÁÊGEá(¯Eà å£jð×êï…òQøÊKÙ÷Jù¤þû å¹Þ{e|Pøý€ðZè½0>ªø~By©ð^)Ÿ”z?¡¼”v¯”Oj¼ÿ¯k¡Üæ\ÊÈOröA=ùÛsª_-ÏýBòÇiÉ…fO¤!IRuVÛý(ÅÙ·:síð­^÷µž97øV_ìh½pnð­¾ØËz&Ýá[}±õBºÁ·úbÿê…tƒoõÅÎÕ éßêËPÒJº+”tñ­Î¤;|«/¶ÈžIwøV¯cOœ;|«—m±gÆŸ÷­^6Äž Þ·zÝ {bÜá[½n<C2BD>=Snð­^ö¾žÞ·ú*À»0î á_â'R”˜;ú¦ì¡´¯ ,íÞ¤cSiXëAê<>Í.µÑ̆ö\ÁüÆch°c|ã yaŠ§Ã4¡ ðÒWJ
ðž}«åßêuƒí‰r‡oõº³öD¹Ã·zÝR{¦Üà[½ì¥=3þ¼oõº‰öĸ÷zÝ={¦Üà[½n=Snð­¾J»,”Û2Z'ßê"gÞ·ºîÍ=[ž÷­ŽìðBóÜ·z9x6WžFÞØ4½ž@l¨ÈSšå8e6 ÁØä<C398>Ê•‡Gçغœ[>kTB½ÝœlbëAW­[ ±ÒsaKI)<29>-<2D>Ý¥Ák†×èð)í‘,&’ɱöÄØ®@¿cÓ;¯~‰± JNçÑÔ¥:˜ý¨|•ò<E280A2>§¡+£wl´aXÂ89€šÇdw¶>ìU9k;êÉÛ%»âRÐ_.Ç~³jL÷<4C>Fb®§öãYÛ™íyÒwgI4¡ôäð[Î맸4v<Mæ^Ùþ/¹'9džØÑÉ$³<>Fe¯{oXÅËq<C38B>åkÀ24DpâÇd6Ñc_6/!ÆNUÛÉK˜ð<CB9C>ÇùçÂ5éqþ„þ¹ô"bUNŽP´Òo%³a0”¦œT/'´;6…Ðg,±Ûvòzè;†‚ Ú MÂ.mÄîJ£*¶Ü‰¢ rVXÉÚ´)VË<)_Þ*1ÖCt)á…ØÒ‰í2;»UyÁ¸Y¦°w<C2B0>bXk†·<E280A0>å(hcg, «OŒ=üØ|Ua¦:L^ýM/V>éòØDSÄuƒJa7έÈÍÙÒ½°9Þ2ì¤6;Ãϱ<C38F>P6,²±ÖGšÊÄI+bPB0b]±$5âDÀŸ¶õÒ±d¶`XÄ”I\uˆ±ýcò±&<26>ªö€ƒÅ•U½谌ɓ£¶ŽƒhÃÁ0,dáÒ°°ñ ˆ¹’ cOïÒ%ýIš4X´´ç<C2B4>gùœ½aÉÃV°ûè˜>`¬ &PÒ{žm¹ƒ×ÁR—>.v#·Ó £ñ‘ÆßÄØÚ§V¹ŽIÏ)é¼<C3A9>Ñ¢Þî(D1aÌbÖ—dd cn†¥±¿jˆ†a-‡!ã[g+¹qêì:ÙFÒºáIgÅ<{±ÚƒŸ<C692>ŠáBÑÅjVz¨M:9²©KÖÌ<>ŸÒê öI1‡×Œ1Q ã<>óAúFâ?°Þ²ƒŠaXû°Œ³#ûTâ2½
<EFBFBD>X£ä-ÙóD[È+háSZ9k= [¶œpŽ̾tÒR<C392>P+´ÎÒ<C38E><EFBFBD>©¤c(2yô¼c{& Gw"9aŒt6®áñùì™\0¬±MZKŠÅÎ:&<26><>Œ;^k…²´Ô€•Í0êï\ä}c†@QYl€['6l&Æ#ßáRëw²—qįnÚª |iÌÅ°£ù0ü…IVšaìÏè£S,hc@ý ìg Ë´•yíÎà <EFBFBD>Â<>«8'˜§­Â ëÒ Ž ¤+Ò3¿€W)vŒX«´á|íÒÁ³Þé¥`nHW!Î/Ï–<¸íVEŒó5•¦Œž<>^½Œ+ö²`w¹¢mè ûÜcpîç<C3AE>6<17>Æ) HæS¢õ™<05>±hŸAb0 38H·S¬ó˜ªIoœía*seÁ 0ïíA³= Ì´çK'ÁÑF­HÓT¨/½cqɉĮ%³™2«bÎE6¤Dm<&<26>ca-:G¿aºœsvyº$xYE‡&nöè É.¶@0׆—ÃnAYºßâ7Ù /Ö1±{r²¡®ôžÔF¼<05>Ã+f6o&CìT7*|Hl<Ãþ½xW½<14>ÍxÉ0xÒ¸°Å•¯Ú®‰û¸¦sì½]k0 ¾å¸ö'f`»iËY<„/IÓð¹K[ã
»<EFBFBD>èsfc¹î¬£1¼î^\WŒ­‰[ÓÛdGcõ9'Ž6'ý# +É4+±à»×^ à ç™í]0|ËhÐaÔð$2ìMÔæ¥5i±bØQàšä¬m¶» Ôð5ø~mAÄé ôÄðcb㻓´“Å<E2809C>Ž<EFBFBD>žZÏ> „Þ@ÌÒÒ1Ó·ˆÿPº„”OØÔлtL$ƆAIY»}ðõÔñ±Š¯b <09>`Ý0¦¥Q^fKhvÿMI0ÚœnÁ®BÂtA¢o¡i+jBìÍSØè<C398>mN0Éaߤæ4Ì<34>c+ÅrNp1Å&Æ6&I:;H[‡çàV1ôr‰šFgǠܳbl<62>„¹Jã*¡ž^5µ#6ôÔ;Þ"l«N…ί)<29>-CØ3†­¹ÅD—žEÒ†zM»ñfé]<5D>÷äs4lV¨ÄÎ~jÀRlÚž ³“>4x²É³¥šAxál‰¥­y0Ù%†%¤EbiÛ“ØSQGX/lOÀLeE<E2809A>nÐIJÇÊY9¹‹Š´~ÆWØ<E28098>1`ŽÝ<0F>ÚÌÎQ…e3GmgT·‰eØÖ8¹ØêˆÍ+µñ ±£å <EFBFBD> ˆ­£.6Gj†A BUí°Œ{-M{`6³dSÛ­33_£<5F>£ÀöÙ#•ÚÉÑ3„>J:+ÙÌ’=¥»<C2A5>c»%X{<7B>kN68RlpÈÞÒÔ+ PbSBŒ*FÑlŠ72¬Þž ®ÙœŒ2J \®Ë±C˜(Ê9™ š<>¥)@Zá<5A>EƒTÀá…Sî°K²vû.´>PpÙiKo뤕 ¢'Ìßd#ðJ«×Ò¸˜3:îé”ãÇ¢>ÃÄFÄ^ž/ÛªãþŠö•'”ͪk£ò¨ÞšBXdE~²½9Ì7þ™š'±ÆXØØ'šýìqO%÷j;Nb]hl¥žéòÉ5H¼ Ü,€×,lÕ0æ~5.Óôâì÷èmâŠÙß®&VÔÜÂøµX #Ó÷æ©IA{ј2eH§<48>^y°‡A? CÙà©ÕÌîPIœ…`ˆH{ûÎ.ÙÝžû»S¼b0T6ÓâZ ³%HKJ¬ xÅ¥³÷]*¥&ƒ0^`S0 CŒ:ëïAxáIx6É+Lg6m<36>áJ
ä&ËjTÿ_¢ÄtØÌ7•`¥}fØ`éô&ÍšJÃZ ÂPïìs©=ž`6´Ý w,þâ.áÈN<C388>u| †¾K€}È:ôx—Öl…ýZ½8ñW¦ÛÊb:dØ´Æ·†(c `Œ ñ<>´eËW8
æ7ã S<¦ M€—RPhºˆ$vWzT±ÛN­³ÂJÖ¦ý°ZæùòV‰±¢K1/ h´ÄnLì”ÙÙ¨Ê ÆÍ2…m{ÃZÓpÛÕ0¼ ,GA{:cÙµX}blßǾ«Ò 3Õaòêçhz±òIƒ§Àþ¡˜T YXüõK”6˜
ÁpnEhÎnî…½Çña'µÏ¾Ž„²aMˆ]´ÒT&NXƒëŠ%©‰'–üÜ«­—Ž%³Ã"¦LâªCŒ<43><>Í0éQ]´ý,î¬êO€˘<9j×8ˆ6<á ÃB† ð®QôJ<EFBFBD>B­>[VŽŽtÐŒðý¨éåÙ±Bk<E2809A>_Ôå\V6ùyŠovl<76>¢/Ò¯²K<17>Ç f—©î”2{2éÞ_—ŠAl>ݸ£ŒîwÆ£¬â~éV)mn×´ wf•Ùáÿ·_¹Óƒg+ºdîD[W²ù}è¤#wéUY0.8‡[Òk‡ÎjPž¿
Ï€<C38F>˜+Ù0¶sÑ'`Ëñ.]Ò¯¤IƒEAÛÝy¶ÏÙ<l»`±…^<5E>郱†Á FSÆX·%I:U:ÜÀ—_lÒ®dEUBÊtÌ ™È)UÙHŸJéaŠ1ˆÈ©³Q¤MeâÀ %f ¦˜®ì É‘Ë<1E>øWúƒÜ—V)¾*½DŽá>€ï/³ &ãoX±Àtƒf÷ÚʵÃ=ê¤cƒJüSy¶˜YÙ³õ£]d&û½N.!]§AM"N«é p¹GG ü'ô5×)B˜€øËfS€S¹ñ«9ÆÆF$Ž<>t•oMÌÂÒl°ptA â£@kEíÚý˜{«âqxÚºŠ\k šÝìGž­:ï…<C3AF>)#ƒr¸FŠ´ÔÍAMènm˜4 ù¨nb_J<5F>çi#ÁÇa·L?˜¡<CB9C>H™èöpwƒà¯ešOè5ŒõØ”2ÊÜ÷„0bFSÔÂvdPsžGÃ6 ¬È^Ÿ![Râ<52>{v§S„¹f\Qº\2Å(ÙMÆÂ5_˜$8<78>Ý1tœ w@ ×ÑWj¡hl㊗,a ø0N/w±ÄØAcGl8è^5c!ì?<3F>ÙÄ5†ï1tý, ¤/8ŠfQ_>ÛPâeàþ¡œØœSœnBK£ìÂlì 3­y¾Â&”0ì6H·Ô %ƒA˜c*‡« ®§IHY!Jad±+¡^$ÔtfƒO 5ÑÛWΔÎ<C38E>G(ihÛT¬4ÜKBŒ
b%m¯çÙ;x,uiá`1Òñsºa4>Òó›»ÚÀà4Ã*×1i7%M·1CÔŸ€_¢Á0f1ëK2 ²…†1I#ÃÒØZ5DðÃ<E28093>ñ­³\Á8uvŸì i<>ð¤©bžm؉aÍÁ×FÅðH¡èb5 «=Ô&MÙÏ%k÷eÈOéòû¤˜ÃkƘ(†qÈù -#ñXoÙ<Å0¬}XÆÙŒŽ-*q^…@aûÊÎUœÌÓVaÐuiG Òi—‰oÀ«;F¬UÚp¾vi^ˆYïôV07¤¡ç—g7ümTEŒó5•¦Œž=^½Œ+¶ ec¹¢è [ÜcpîçäØ_1¥É|J¡>³à1m1H &¡citŠuS5égg˜Êž\Y0(Ì{{Ðì 3íùÒIptP+Ò/êÁKÛXÜr¢%±{Éì£ ÆªX¤s )Q{ŽIÓXXÎÑo˜.çœ]ž. ^VÑ¡‰{´…d[ ˜kÃËa£ ,<2C><6F>ÒæðŽ‰ÝØŽ“½t¥í¤öà-xì^1³o31b§º‰PáCb߶îÅ»ê¥èlÆK†9À³”îÃ…Ý­|ÕNMÄØÂ5… ˜cÛíZƒaðÅ(ǵ51ÛM»Íâ!|Jš†Ï]:WhíÐEìèåØk±°/R3 š¨jseüÖÒ´ýeaKö³mÑš2ó5Ú8 ñNuc¢Ú¡It™-p½AX9tïe¹óÛƒAX{0ŸŠ\|¥Y ª|¶ƒ¿Ø9wáŸø¨¡FBº25¹x,àžýÄ ªœ5žo3.Ríºx²ÿ$fBây©„°<‚¹€â(rLGoÌ,JLú-øNµ4P- E<>ØδÛepBªSdñ
ìœ 1R©<52>=C裤³},ÙXû8vZµ×¸fádƒ#ÅÞ†l+M½ú%ö#Ĩb=À¦x#Ã:€áÝaàÙÛš}É(£Âmá¾›ƒ‰"¨œ“Ù ÙSš¤þ²h<C2B2> ¹öŽûtŠŒóyyPpÔ;œay†92ù4
8¼pÊ6HÖFß…Ö ×ŸÜ Ê‰ý+%þÇV°úR¸bâQd¹>梃WÃŶ“ŽmÄ\ýÌÛf~};šqxÖÅ <Ð.-j9hð8£ö-ì:‰aA[@ˆî_UÅÊ8Lzã®sŽO*;<3B>HêÞÚ°+ïV<C3AF>yFÜ­k.ä0iÝÞív”ˆ\)æÅ„ºF ÁÝaàM„“j<0F>0ý\õªÄ ‰M¨ ­{•[L@ÀÔ©~â°^gÉƧ ˜€€P`+u³?Lw$ÏTê/ 6³r4„™,z„ŠŒ<C5A0>¨TÚô41ôÔèNážÌ»bBF<69>„0³:eÅ1Jìè*…É…ÿ\ bTw-PÀ´Å?-*Lø•´ÓPlD®?z˱+}c]‡FŸ.ST<53>ºR*80Õ“ö¼&TáÕ56¸ll·<6C>a_Õ1!fk—&Z4èbPd&€ã,0&bÉ<62>JÃå9{¸9”{{åÔДçlÿ ƒmÀA)ˆ¬*\Vñ7V7¾Ås+*£HL#a´; <0B>HóIºÀýµ<C3BD>bT…g0üŒ¸²<C2B8>u*lËmÖÑÆP 10x¥J j ÓÞËmAc`Dg×—Ùn7˳­üýÄÕ1ÔDaö@ÎðX‰×*lÅìåÙBá…ºÔU³ÂŸü¯&Â)ÁÚð,ô|£8°T[ìä¬íêaQ¿FÔ—ªª3©\-T=…m³!ùØjžsV37Û$ÖNÒ̸´ 3<Li :©ûÇêíØ:Ü Ù„»È"Ïtd6ˆ<36>>ljRxìs¼P¼Â¥Í¬ÜïìîÌÞöŠ̨—@'θ&éx¬L²³$%È^Rš•qØWV¨dÆ:^´>ôÊ^ö|D¸&i\<5C>ÕÄÜù$S¿M§¼$¾^ÇF¥´¼‰Í×õ¡ÒV¾MŠf˜p#Ò3<¿Ž¹CS”<0F>©rè3’¥«¸/êøÁì€ÂÔá4ªXA-ê
.;íæmM´Aô„ù<E2809E>ì^iõÚ@sFÇ=<3D>r|YÔg˜ØƒØËóeGuü¾¢-å e³êÚ£<ª·¦YŸìló<>¦æI¬1ˆf+{ü¦’{5ˆÍ&±.4vQÏtùáÄ$šÚ ^~,€×/,ìÒ0æ>—izqö}ô6qÇlíMW+jna|Ⱥ+†‘é{óÔ$<24> ½hL™2¤ÓN¯<ØàСlðÔjfc¨$΃B0 D¤³}gƒìnω­Ý)^1*ûhq-ÐÙ¤%V¼âÒÙö.•R“A/°)Ë…!F<>õû ¼ð$<ûã&<26>3ûµGƒp'…;?¸K8²I`Ÿ‚¡ï` ²=Þ¥+[a«V/FüÈt[Ù>L‡ ûUÂøÖ%`ŒŒ±!¡Îv¶ìö ¨c4c\KÙOjÌìÙEDF¹b„Yä»+šæ©f˜£-Œi´¹^aÐÁš9v˜¥èa¼«yªÌ˜c †ÀÍ$‘ƒMWf̹ºÎ<>Ìt6nQ_>ÿ<13>Âáap4Æe½†Z˜0ǵHâ°²ù{eX¤T!p3SÏ̪÷™.Ï°­‰M(Ì:]½™-gs\\
G# ‹¿~ˆÒSÞõ)Ôê³[åhFÍß<>š^n<>Í*!”¡"=!¸øF]Î¥We“¯§øf³ö()ú"­*»Ä!xx,°`vëêÞA)GÞºìýu©ľÓ<C2BE>;Êè~g<Ê*îwF•ÒáPxMpéS™þûÈ<C3BB><»Ð%ƒðK´k%ûŽÑ‡N:r—6•ãs¸%½w謆!åùQ0š2ƺ-IÒ¤Òqà¾üÊ`“6$+Ò£R¦cþ`ÈDNÁ¨ÊFZTJûRŒA¬ô°@N<><4E>"*ßÆ``(1[0…ÆteóLŽ\¶Ä¿Ò/ä¾´JñUé%r ÷$x™ý/ˆ¦4×V®ÝîQ'{SâŸÊ³ÅÌÊž]í& 3Ùê5púp éò8 jpZM<07>Ë=:á?¡¯¹NÂÄ_ö˜0œÈ<><C388>æ8BÒP¾51 KŸÁÂÑ1ˆK<CB86>ÖŠÚµñ1!¶UÅãð´3t¹Ö4Ù5Ž:<[uÞ {RFåð[-*ÒM75¡»µaÒ4䣺‰-)=žg¤<67>d „ýdúÁ }DÚÈD·‡“¼-spÐ|B¯aÔ¨—À~”Qæ¾'„3ú¡6"ƒšó<¶qaEöú Ù<>ïܳ15 ˜"Ì5ãŠÒà)FÉn2®ùø’Ä$Á™À[nÔ莡ãl¼Z¸Fˆ¾BPÄEcW¼d Á‡qzø%46ƃîUc1ÂÖÓ˜M\cøC×ÏÀ²@ú²w3¡Haõå³%^~ûrŠÓM¨`i”]˜<>-áa¦5ÏWئ€<C2A6> á'5hÉ`æX¤Êá*ˆûiRVˆ†Ñ(BYlH¨· 5<>ÙÛSBMôöÕ†³ý¤óâãJÚöÕ+ ÷’£Bü%<02>º1ÑíÐ$ºÌî·Þ ¬º÷²‰\‚ùíÁ ¬=˜OEn¾Ò¬ ÛÁ_윻€ðO|ÔP#!]™šÜ<pÏVâÏ7Œ ©v]<Ùz3!ñ¼TBXÁÜ 9¦£7æ %&ýü§ƒZz§†‡¢@ìdÚí68A!Õ)²x‡\{ÇïtŠŒóyyPpÔ;œay†9Í1ù4 Ío ÂÀâ{PµÊ»Ð”1Ï
×ŸÜ Ê‰­+%þÇ.°úR¸bâQd¹?梃WÃÅŽ“ŽÄ‹ÜýÌÛf¾‹-;šqxÖÅ <Ð.Ýi9hð8£¶-l8‰aA[@ˆî_UÅÊ8Lzã®sŽO*;<3B>HêÞ:°+ïV<C3AF>yFÜ­a.ä0iÝÞív”ˆÜ)æÅ„ºF ÁÝaàM„“j<0F>0ý\õªÄ ‰M¨ ­{•[L@ÀÔ©~â°^gÉž§ ˜€€P`u³?Lw$ÏTꇛÙ9ÂL½ BEÆNT*íwšzjt§ðÌ»bBFzh«<68>„0³:eÅ1Jìè*…É…ÿ\ bT¿Z €iZ *T˜ð+i§¡"Ùƒ\¿.ôcCúÆÞ¹<0E>>]¦¨ ?*t¥Tp`ª'mwM¨Â«klnÙØiþª bBÌÖ&.M´hÐ%Å ÈLÇY` LÄ!•†Ësöps(÷öÊ©¡…);†OÙù;€ƒRYU¸¬âo¬n|ŠçVTF˜FÂhw)ÌšÐÆè¯í£*<³„ág,À•½«SaGnƒ°†ˆ6†Zˆ<5A>Á+UbPK˜ö^~4æAtv<7F>v³<ÛÊ¿ÙJ\#@M´fä <0C>ex ¡Â.Ì^ž-$^¨K]5 üÉÿj"œì¡ ÏBÏ7ŠKµÅ&ÎÚ©õsD}©ê¡:“ÊÕBÕSØ1<>]¶á9g5#€ðcÄÚIš—¶a†ç)<29>A'uÿX½»†4ûoY䙎Ì1ÐÇMM <EFBFBD>dbäH$)ýwÉH)I¢¹¿ÆvÚž³b@£y7Õƒqêœ1OÎìW”õ/3îÔ4À,9Ú<€É4775tL“ãÏÂ'Ó¡&RwÝ݉€åÚã{`­%Ýù™jLV¡Èør0¦c‰û´¨[.>OعªÎ`”º·´xê CŠ<43>žñ„¥²„e³ó‡á¡BI—|†-°ö0X)A¥Ê±ú*€`:˜CL‰ÂãÀ׊Að`ZJ ·;LA0e è0?Þ©Qngà V*µ:0ü^`²€Yg8Z-+Œ!øX]pLÅR"öœ¡6Á†y±8/½¬™R( <>= ҨΠ°îL¨j@ÐOï¸üaF^Hl ö«Uá(k”ç ·3˜=˜˜Úëj<C3AB>K<ä±Dq<44>ÆÂ'ÉZ‰w¬µ ÎGá<03>“ÒP«T˜ÿÒ€Zâ«°bÍô$säÝ…-,U4 NÆ¿Ât°Î·³WT$ËõIÃÀoV>ºF\·hÈ<¦ªbÂ0H:ÜQQ Ï„áj—w=ÁjÜ7ôŽ>ê¶Ôä0È <1B>ÿJ†J<>ªñïJ‡#«_F<5F>oœ©|‰©c´Ä¢Ùgb\<5C>a<ƒ`Ì b6Ãø/kÇÂ8£aºÒ1G®(Y#ÿ̉wS“‰·WÊøn`•åAâíŒV§Üµ¢Gö8&]ÙÅ<C399>ù‰Èl¦^
<EFBFBD>ŠW¸´™•û<E280A2><C3BB><EFBFBD>ÙÖ¾„Yõè$À×Ä£"<1D>•Iv¤ÙKªC³2 ûÊ è5dÌkà¡PFøNW©í`>6Ž²J0,]EäQ`É#Ï1 :2ѸësŠšj`d.Dæ
•ÌÀXÇÖ‡^ÙÆž<C386>÷$=«qU£š€˜<1B>bê·é4€—Ä×áSù…9±ïº>t@ÚÅ·IÑ “&UnDz†ç×1whŠòá1U ðB²4÷Eß*Qa„0u8<75>*·Úýáqb4c\KÙOjÌìÙMDF¹b„Yä»+šæ©f˜£-Œi´¹^aÐÁš96—¥èa¼«yªÌ˜c †ÀÍ$‘ƒMWf̹ºÎ<>Ìt6~¢¾|þ'…ÃÃà4hŒËz µ0aŽ{Äaeß÷Ê°H1¨BàÇDNa<c0«Þgº<Ãv´&6¡0Oètõf¶œ}qq+4?˜Ø¼1ïAÕ*…¦ŒyV$#G"Ié¿KFJ!HÍý5vÒöœ}»©ÞŒSçŒyrf¿¢¬™q§¦AfÉ™ÐæÙL¦±¸¹©¡cš>™5ºë¦øèN,×k-éÎÈTc² C,3߬a&É=ײ¤éª¬®™Vb Äì,MäxÊ®7LÃóvIÒYüŒ>s·™%§OùÒ™ÂR;ÒYÌ<C38C>¸®¤³"Ïoéã{¸¡ÊøsŸúÒ™$מ¢fÏX-¢3¡³Ø—ß«BxUp%ÛøZKºÑupO˜P¬0—&RMò<4D>ÓEû^aŽŠyò&ÉAVÑf…U«Ìbø•÷ÚõAc§G _ÃÊñnÕ"„2'>c’ Œ²©ž§…ítoœî3€G«9>LC€§()L:ßGx…YrQŒAS¦ŒÐ¨ò`\Z“ü,ü5[¢7­…›•ÇÌ´.ffs0¨Èúí%ŒyïbÉœ>ff1ƒ&<26>*“ä°îU,N„ÆðõZ GŒÕ¥IÎblZ½h(—ܚ·"ÉnH¼rè•ë€¸ú^wé'ØÚ¤ùYbõ¬Šu:êZäD¬3ê¤<€éæJ‡U¯s=cŠQPzã"V†Ò—"Úªõu•k ÊÀcXÌVñÍšXh1Ä$ ä’ãÝ‚¥/µÎ*<C 9ñˆ`—»F°\ÀÅbX•ª­ ìœ‹ª×õUäkZ£áa†»]
EÆ—ƒA0EKܧEÝzpñyÂæÈ]uó8 Ô½¥µÄSoR ôtˆ',•Å ,˘ý˜? ºHºä3l<33>µ‡ÁJ *UFˆÕWÓÁbH>V ÓRb¸Ýa <ˆ™Î'HË$“ˆÁ0ÜyeÁ—`t…ºÖhTYæ %¢¼vf½ a,<Oôe‰1Z4B ƒ–Œ¯=Aƒ0€ ñg| sð¿œ& b6åV ƒdÃr<C383>×n¯VrUª;†G“2G…¸{ ¯²sv%æ¶`o5<MŒÑî*çû%ŽN8Î9<C38E>ïÁ!<21><>àY;ŒV«Ø­Ì‘ú›|ç Vf>ØhPvŒ™6+,JX´^„XÃÊ$Œ5ÖšcŠ¼‰¯ªuLx=|!eVHAUâ`Ç”ÑÁǹ¦Ù‚`ü º² †9ê)·Â:Ÿ93 ³”¬EZ‰ž¡øÄZ—q´¸ñU•º•«;£@<40>±IX#®V†eVòÔ¨µd|¬.öfXgÑIÒ/TÈßò˜™"Ç“5!¥kA†aÍdѼ<E28093> *@Ÿ4säÑ*çX*ë´¬¯•9òQ¨#%v\
)[@‡ùñN<C3B1>Âp;_°R©Õ<C2A9>áûðÌ:ÃÑjY¹°` ÁÇê„c*A0ø°ç µ Ö0ÌÅyéõ`Í”B ìa<C3AC>Fuf€ugBU~zÇM*íà3òÊ@bc°_­ ƒ! œžrÊ($38QÇ3äÐ<C3A4> C õàrQ3F1»!B@ÌêÞC2¬0œL«,õƒŽ%N¾†aʶÖ$&^¯¦<C2AF>*säRç­^žHwj˜#ÇrR«”¨zYŽšú˜ß09t)£bx•<78>È:˜ §u««¤î/i`x°<|ëða,šÓ$Xeœûçë81K·ëlûÆèë\Îíå5FNð~“V<E2809C>²$ÕŒSäR¯Ê©E?Ò<>u®†™}
GY£<÷Q<03><>Ùƒ‰©½®¸ÄCK×h,|¬•x'ÀZËÀà|î1Ð8) uбJE€ù/ͧ%¾ #ÈàËÀ˜~´­”¶Âc IÔreŠœÞ‡`pü5¬¢+0ÅJZ§Å†Á„q@VÁ`F*ynË<6E>iR¨±lª÷A4Á+Z ÌZ< §jsþp߃
+ÖLO2GÞ]hѲPEÓà„`<ð-Lgë q;{EE"±\Ÿ4 ùfuá£kÄu†œÁcª*Æ! ƒ¤Ã/*Šá™0|Q ãò®çc1X<31>ß ½£<C2BD>º-59 rÃÆã¿a…¤jü»ÒáÈê—Ñ£Ág*_bê-±hö™W`Ï <18>Í0þËšä±0Çh˜®tÌkJÖÈ?sâ]GsäÔdAâ핲~<7E>Xe9B<39>x;£Õ)w­¨à=ŽIW6pg~"2©·ºA óx(”Á0®ÓUj;˜<0F><>£¬ ËAW yXòȳA ƒŽL4îšÁúœ¢¦Y… ‘¹ÂËÌ7kØ„Irϵ,iº‡*«k¦•ƒ1;K9ž²¤ë “äð¼]t¿£ÏÜmfÉéSE¾t¦¥°ÔŽt³ä#®+é¬Èó[úø~PeüE²`‰¹O}éLëOQ³g¬Ñ™ÐYlƒÛïU!¼*¸m|¬% ³<cZ™%gŠoB°&»+S7,UÆ!9½xü&¯±êK`žÜ3™Yƒ ŸS0úÙÙ3Î"Xcy©ü³B7)žLЗd³£AË™) ¤nSï€å¢jû$ñoÃXøÉœ½”xc†º¦Éhb ¡ËŽ éàÓë(¨<>¡ ýâ£VѨ!n2o$…è¬K5tÃðJó+ZÀÎr!¯"<22> s¸ë\%Öó,Î#ƪ{)bÐs¦µ
ÝhÉ:¸'L¨ V˜K“©&ùÀé¢}®0GÅ<y“ä +<2B>h3ŒÂªUIf1üÊßÚõAc§G ÃÊñnÕ"„2'>c’ Œ²©ž§…ítoœî3€G«9>LC€§()L:ßGx…YrQŒAS¦ŒÐ¨ò`\Z“ü,ü5[¢?Z ?V3Óº˜!˜ÍÁ "ë·—lph0潈%sú˜™EÆ8 š@ªLúW±8FÃ×k-1V—&9ˆ±Qhõ¢¡\bpk:Š$»! ðÊE âê{Ý¥Ÿ`k“æg‰iÔ³*Öé¨k±Î¨[’ò¦›+V½ÏõŒ)FAé<41>k ˆXJ_Š`h«Ö×U®-x|tLc(<03>i`1[Å7k` UÄ<“4<E2809C>Kz¼#Œw 8«pð 1ähXÄ#]îZÁraUª¶b°gp.ªÞ ÔW<57>i<EFBFBD>†‡îv+ð< f:Ÿ !,“L"ÃðË+ ¾£+ÔµF£Ê2)åµ3ëåXØ cáy¢/KŒAТ)b°d|í <04>?ã2ÌEÀÿrš0ˆÙh”[1 ž<>W Ë=^»½ZÉT©îHâî1¼ÊÎÙ•˜Û½Õð41F»«œï—8:á8ç<>6gí0ZY¬b·2G^èoò<6F>3X™ù`£AÙ1fÚ¬°(a Ðzb +dX È°®WVhÏ¡Š©A³!Øùíœg¹é„ RE.µ7ZÖ<5A>aßµ2”Xçu´®w¯bÓ§B…Ÿ1¥8¹ÛªIËq£åh²ž/; Þî]ð¿þ]ö/±VÜÕ!‰—c“<63>¿dŠÿÇþý?Ó ²<>âן÷? ÏDOÈŒ^ásNƒèÿüà þwü˜<:,þüë¯ý lÿß~ýÛ¯?ÿå<C3BF>úÓ~^6ò÷<C3B2>~ž.FL™­þ—,ýó›øýÍ´Ïi(0! ³žÉÑÁ¾>³^Yþ]0Žyƒæu_ŠlxËÜv ¬ òýpý†Ä}wJ<4A>׿.cø×c¬s4ßœ-<2D>*ð|<7C><>rQ7'Ço~NºÚ}Ð.4cÛãx†õ£»ŸwÁì,ÕëÐ<C3AB>y´1X?¹Ëû¼f§Kᨗ2¤8}t“9¸çÌ…~Œ&Ìf'§<>î2?ï<>Ù)iG±…1¯Ýe~Þ³gɺÉî•Á¼~t—ùyÌ.Ëm`¨|´¬8}t—ùy_¸8̾Éáæ壻ÌÏ»øzçÊu:Ÿ?»Ëý¼<C3BD>/ËÓ/úôÑ]æç6ŒG™¿âÙóòÑ]æç6 7A2ãû¤^?»ËýÜŽ1{v<>ÔçÏnrÇç <í:­ÏŸÝå~nËXt<>ØçÏîr?·f¬ÒyLÝ4¹×Ïîr?·gž<67>qÙxÇB)ã>}v—û¹EóŒX]æöúÑ]æ,=åËÜ^?ºËü<C38B>=ó%¿ÌíÓgw¹?°h0×/sûôÙ]îlšoáenŸ>»Ëý<C38B>M󬨺ÌíÓg7¹Ó6 ~íËÜ>}v—û6”ÿ_å‡)<íb=}<7D>áWÜa‰Yz<59>R¯Þ-éir/ûí‡ ¾­ÛÓ6èx;ãÞ£úÀèÕå;r>:¹NÈ?°:B~>Ê.·g'Ø õFG©ÏGÚåöð$;!ÿÀêùåh;?:ÑŽäù³£äç#îr{x²<78><C2B2>jw.GÝåöð„;!ÿ@L)ùùȻܞt'ä¨)!¿œB—ÛÃÃç„ü9%ä—ÓèdÜ“Cè„üCkv9•.·g‡Ñ õ‡Öí|:]n<>¥â-Ûù”:?8œNˆ?´k—Óêð3<C3B0>©ê­ÚåԺܞVGêò¡M;Ÿ^Gæ‡Ö ñ‡öìr¤˜<1F>$'ÔZ³ËÑr ~t¢œPhË.GÌ<47>úÑÉrBý¡%»5Gê''Ì õ‡vì|äœ4'ÄZ±ËÑs`~tâœPhÇ.GÐúÉÉsBý¡%»EGê''Ð õ§úì|>œhÃÇ‘º~hÉNçÄÑœÜ?Nh?´cî™VŸ:ƒúX/§ÿZ<C3BF>ßýC…ú©‡(Ô—ÓFÁüè<C3BC>Q!~ì4ørº!ˆ·jø]^ïç~Ú=ˆ<¾bu9YöÏ\ðžˆ|¸Æ<>Œ7 &<26>[³Xæós'<27>jÜDÒ†Ÿ·x‰=  —‘Äâ–Æ£ÙÂtý&q½…ô÷9ë=”oÒÕ{Hßdª÷<C2AA>¾IRï!}“ŸÞCú&5½‰ô÷Yé=¤g{¿ƒâ}Î{íïÓÝHŸéÞDú.ɽ‰ö]~{í›Ôö&ÚwYíM´ïÚ»hÏm ÉÛ„ù&ÚßçÊ7þ>M¾‰ô]†|í»äø&Úwyñ]´oRâhßeÃ÷Ð^á{\‡Åyãi<<3C>.þ`…sýìÕ/ùyÂsÝìÅ'Ù@w®½ú#ÏE²W_dá¹6öê‡l <—Ä^}<7D> „çJØ«ÿ±ƒðT{õ=6.!” ?­ª}ñ9vPžªi¯þÆÂSíÕ×ØAx.<2E>}ñ3vPž+f_|Œ-”í<Û/þÅÊs}ìo±ƒò\ûâWl¡\š;.å¶/þÄÊS™íÕ—ØAxª®½ú;Ï5µ/>ÄÊs)í‹ÿ°ƒò\Aûâ;l¡l—IövPžëe_|† ”#UªþÂ9ÿ´föCWç‡óx—¼náÉ<}gW×Kþö¹¥ä%s{¡Ü‘Ôý.gŽ!^xÔõDÙñp¿É—ŸYw<ÞorågÒ½Yóy°¥sÚA쇳ç/%Ö+×.á—Bê+çŽ.á×úéÎ]¯uÓWÒ-]¯õÒ/¤;º„_ë¤_Hwt ¿ÖG¿<47>îèþÍzr"ݵž¼Ôg¯¤[º„_°¯¤[º„_ª¯/œ[º„ŸË®¯Œº„ŸË­¯„º„_ª¬/Œ[º„_ª«¯”;º„ŸËª¯Œ
0ÖXkJŒ)ò&¾ªÖ1áõð…”Y} U‰ƒSFäšf ‚ñ/èÊ&æ¨kø9=H¹ÖùÌ™a˜ d-ÒJô ÅÇ ÖºŒ“¤Å]Œ¯ªÔ­\Ýjœ\ŒMÂqµ2,³§F­%ãcu±7Ã:NŠ”~± ÇÌ9ž¤¨ )] šÐ0 k&‹¶´ä lPú¤™#<23>V9ÇR9x X§e}­Ì<C38C>B)±ãR )Xàô”SF!™Á‰:ö˜!‡dZ0¨š1Š Ø<>ÀbV÷a…ádZe©t,qòÍ0 S¦°µ&1ñ~5…T™#— ®?Wy+ã.•w-é^(·t ¿n_(·t ¿l_(·t ¿j_)wt ?Wh_7t ¿f_·t ¿d_)wt ¿b_)wt õ½VÊm®Á¥
8oõŠðDºSÀ9“Z¥DÕËrÔÔ¯Àü†É¡Kë„DÖyÀyf8­[]%uIÃÅàá[‡`Ñœ&Á*“äÜï˜8·Xlj\ºÝg“Ø7@/Xçrn/¯1r÷´j”%©fü˜"—zUN-úÙ<C3BA>¬s5Ìì[”"UA_Æô“¤m¥´cH¢+Sä4 ð>ƒã¯aÅX<C385>ˆTÒ:-0 ² ü$g7t ?U{_-ÏÏw Ÿ‰É…fOÄÁóøÕ>ŽéüAï껬þÕ7{W/¬<¬ïv­^Y7øXßíW½Ðîð²¾Û©z¥Ýàg}·GõJ»ÁÓúnwê•vƒ¯õ_˜VÚm¦»u¡Ýáo}·öB»Ããúf ì™u‡ÏõºùõÂùó^×ë¶× åÏû]ßlx=sîð¼¾Ùêz!Ýà{½nr½pþ¼÷õ}xáÜ>;`gÒØ7»iϤ;|°oöÑžIwxaßì ½<C2A0>nðÃ^÷Î^8Þûf×ì™s‡/öÍ~Ù é<C3AC>²Ò þØ÷Éš…t_6ìä]åïÏûd/[r/Öèǽ²#Ã|"zî—½œ[ÛÙ«/ôÂö⧳•ÿ*Ðìú)Ç5÷1Jy[]šõ•sÒãš#ÏN*]šõµè[rÁÕ¢+ˆõ® ¢äLéÆnYÒ:£³]_/Kο'6ûãI¿Ò ä?¥j<C2A5>­ ÙOϾ®l\ çûcKßÌ“BˆEéj Çww)±
3R™Ìs[L“B<E2809C>eS½¢ ^yÐb`Öâa8UØó‡û´P˜•àYÓÊ,9Sx5Ù]™ºa©2ÉéÅã7y<37>U_óäžÉ̪L€øœÑÏΞqÁËKµä—˜ºIñt`‚¾$C˜ ZÎLI uú X.)J h©¶Oÿ6Œ…ŸÌÙK‰7f¨kšŒ&ƺì˜<C3AC>>½ŽÒ<C5BD>jÁÐ/N1j<15>jbá&óFRˆÎº¹TC7 ¯´1¿¢ì,ò*˜0‡».ÉUb=Ïâ<b¬º—"=gZ«€ ëZqe…ö\ªh™$<<>ßÎyNØ UäR{£eýö]+C‰uÞGëŠq÷*1}*TøSŠ“±­š´W1ZŽ&ëù²ÃàÛ½ þã?eÿRörÈ`þæ8ˆòù¯_Æ—ýÝ?Óý²yâã<C3A2>?ã˹÷aÀÁCÊŒ\q°¸Füã—üOü˜8:$þøËÇ¿ÿ=µÿ‡<C3BF>ÿøøã_ýÓöõ²‰¿¿õõt×0Ê`Ƥð ¥WöÁáQÛ}´Œíd˜-k²´×,N<>á&vt'ç5»+;1(VC¯Qgç;ŠsAØý%¸²ž^ úl†'[Ùùãͧ®]<5D><EFBFBD>ÞX<´T¸µª÷†w%Çs;Å2^SÐF\Ä8ä4²`w´$=“Ç÷Ø—-9~œ‡|»š¼=ËôeÝ֢ʞq/©$ÃÞ»à Mãx(˜d^š=ÊÕwvïc£.ééÂ5t=¸jXbƒÅ˜ôÈùÌ>Žu|m9y¿¯‡á TŽÆ<C5BD>rÂ}ŽMOr'ÄN"3‰ê1RŠôl Ô8.Ù¬çé×Tº56Á{ÂíàST,ö }@ ;z=°}td3<64>Ð ­€åÔh-)ôÂæ2rö},â'³¶T%+†3»ÿI—<49><1F>¹Ö¥/Ï°ôбOQ¾¥½ v·d«dƒ0Ò¥cºôBh¾vçA=e),,㊫6­êlæǃé»8ïxF>þ»T"§†¨-ðo¤bG?+é8F7x_
oô¯²ô÷D`Ñ•x¿ßÿ˜ö> Å%£caï3cÆ39:××göÏ+Ëß°5ø½ìI‰Å@õ0ÎL_}ÄçÛ¿Há¾>-WÇñ¾s@Ûç8¾9)Z<1E>Sàï:;Aþä® ¢nNß|<7C>ô²{£ó%gF$(±Ç¡ 륻}Ÿ÷¾ì,ÐëPy4/X¯Üå}Þù²ÓŽpÏKÇPœ.Ýdî9sdyc³ÅÉéÒ]æç<C3A6>/;…ì(±0æõÒ]æç<C3A6>/{\ìYÌ륻ÌÏ»_vYdä£QÅéÒ]æç½{áØ0çR$s?˜—Kw™Ÿ÷îõΕët>_»Ëý¼{/‹Ò/úté.ósÆ8£Ì_ñçŒy¹t—ù¹ ÃrÆ­<C386>Œàø>©×kw¹ŸÛ1æÌ®“ú|í&w|nÉÀÓ®Óú|í.÷s[Ær ëÄ>_»ËýÜš±6Gæ1Óä^¯Ýå~nÏ<Ãá²ÝŽåQÆ}ºv—û¹EóŒS]æözé.ó<16>þñen¯—î2¿aÏ|É/sûtí.÷ æúenŸ®Ýå~æù^æöéÚ]î7lšgÕenŸ®ÝäNoØ4x³/sûtí.÷6m(ÿ¿ÊÿSxÚ»zúï¸Ã²ô:¥^½=ZÒÓÎã^vÙ|[·§7lÐñvƼGõ†ÑªËÁuä|t^<5E><>¿au„ü|€]nÏέê7ŒŽRŸ²ËíáùuBþ†ÕòË<C3B2>v$ÉófGÉÏÛåöð<;!×î\¸Ëíá¹vBþ†˜RòóAw¹=<ßNÈßPSB~9{.·‡GÎ ùrJÈ/gÐɶ·'GÏ ùÖìr]nÏŽ ê7­ÛùLºÜE'ÄoZ¶óÙt$~p$<24>¿i×.gÔákM'ÔoZµËYu¹=;¢ŽÔåMv>³ŽÌŽªâ7íÙå 90?:?N¨ß´f—å@ýè9¡~Ó–]õ£óä„úMKv9`ŽÔOΕê7íØù 92?8_Nˆß´b—çÀüèœ9¡~ÓŽ]ž#õ“óæ„úMKv9€ŽÔOÎ<4F>êwõÙùT8цƒ#u}Ó<C393>N‡£9¹(œÐ¾iÇÜ37­>uõ±^Îüµ²¾ûGý “>h60.Òê<C392><58>K+6<68>â?µJ6ÉùÜ©i³ <18>^û^Ãf§<é{Qyú5¼¥€ñÞXŸÆ£ÁñØ£6H%&í1µàhl8Úûø`<60>®k ŽÄw¢ÃÝürb«Û¬]=*{ÜçjXÄ]HOSé¦uö,ÒWÅ.x„¢oÒ±B06÷øUv¢aGäXÙÆÆû¦<C3BB>,óèÿ&Þ6±£{<7B>àN¥<4E>$±r´ñ•)¸O¶ÿ0L<30>M6ƒBø$éÉüÄ*<2A>0v—#ân}` µbCŽ$ÝZØ»ÀÇØ aÏpاbØl ξ1Ps0ŽºF°÷'\ùªýZü†1†O˜t"."´ÄÞk[s"xãx µK<sL°¬wЗSlì<6C><žIqçìµ2 Á°³}˜ajΣUĬ³Xc÷ùbÕq½Ñ0‰´™ ±œ)Ä«6ýÁÝx\ÍøÞÑè þ¾ð5™¶!H¯ 6ÝiMÛÁfi¢+<2B>{.GƒØOÖ³3°44*-h#±Î>¯\ÇbÑ"ƒl<C692>,šÍ3%.†™<E280A0>¬Y“¶KiЮ<10>ýý0ÜhÉ4[Á(Ænt˜²IÚ<µÌƒõõ¥²¿_ck4®Àðâ]³AËη£¯´•Â»ÊµyÃ
õSQ¨/gŒùÑÑ¢BüØi$ñåLCo9Êð«¼ÞÏ}µ{+x|Çêr²ØŸYà<ùØBq<42> l!o@L 7d±¸ççÎÕ¸‰>¤ _oñ{@.#‰%-<2D>²…<Þú›ÄõÒßç¬÷P~“®ÞCúM¦zé7Iê=¤ßä§÷<C2A7>~“šÞDúû¬ôÒ³½ßAñ}Î{íïÓÝHŸéÞDú]{íwùí]´ß¤¶7Ñ~—ÕÞDû]B{íY£m!ù6a¾‰ö÷¹òM¤¿O“o"ý.C¾‰ö»äø&Úïòâ»h¿I‰o¢ý.¾‡ö’ßã:,ÎÏààÛ&œëg¯~ÉÏžëf/>ɺsµìÕÙ@x.’½ú"ϵ±W?dá¹$öêƒl <WÂ^ý<>„§Ø«ï±<C3AF>p ¡løúkUíϱƒòTM{õ7vžŠh¯¾ÆÂsé쟱ƒò\1ûâcl¡lçÙ~ñ/vPžëc_|”ç²Ø¿b åÖÜAp)·}ñ'vPžÊl¯¾ÄÂSuíÕ<C3AD>ØAx®©}ñ!vPžKi_ü‡”ç þ–Ó †U§a•ÑG‰IâØLB¿ÆV¬ä3H‡¥´H¢ñÍì=2¾v´j‰ìºÃ9úÆáþÏîÞÒm«eö.†E¶7bKobø=<2]Ý6²ŒFmîŧÝC;;ŸÃX¦.×ÉN* æ^ÜbG{(v;úá«œ@lÄØúˆ]ouj±§²<C2A7>"Á0s1þl±ÿ¥>Nmx†Å̹ Ó´,%ú]qu¶>:ÒQùáŽt!<21>Þã=ÑT ö#»ÄfNYÛ¹Áöå$<24>ª æðO“gó m‡—Úƒª—Î6zX-yvº´<C2BA>ÃP÷Eú«]0¥ë{}{ aYd#)våÒFv…}ÔµÉ1¼t+f †EA»µcwÎ(mØÎyÓ¦Äð#Ùß7!ð0`GØxÝ°ÙVWšñÉ%»lÖÇÆÎL±o#Œ˜Œ²¿LlDéýÇ&~Ùé3íÈ1Q ;Z«Ç~xø »4»tKÂÆкúwºáxÑ)ikäÍZ¢aï=KON/½€1@ÔŒõ̾âAºNÃ
Úßa e»Lú³ß°ƒò\/ûâ3l ©Rõ6Èù§5³oº:?œÇ»äu Ïãé;{¹^ò·Î-]#/™Û 厤îW9s ñ¶¬ÊŽ‡ûE¾ü̺ãñ~+?“îÍš·Ìã,<2C>Ó¾a?œ=)±^¹¶ô¿R_9wô¿ÖO¿pîè ~­¾né ~­—~!ÝÑüZ'ýBº£7øµ>ú…tGoð/Ö“é®õä¥>{%ÝÒüZ„}%ÝÒüR}}áÜÒü\v}eÜÐü\n}%ÜÐüRe}aÜÒüR]}¥ÜÑü\V}e|Ppý¾Ê[w©¼kI÷B¹¥7ø¥pûB¹¥7ø¥`ûB¹¥7ø¥PûJ¹£7ø¹Bûʸ¡7ø¥0û¸¥7ø¥ ûJ¹£7ø¥ûJ¹£7ø«ïµRns .Uà'9»¡7ø©Úûjy~¾7øLL.4{"ž‡®öq8çzW_í`½°íð¯¾Ø»zaÝàa}µkõʺÁÇúj¿ê…v‡—õÕNÕ+í?ë«=ªWÚ žÖW»S¯´|­¿`Zi·˜.îÖ…v‡¿õÕFØ í<0E>ë-°gÖ>×ëæ× çÏ{]¯Û^/”?ïw}±áõ̹Ãóúb«ë…tƒïõºÉõÂùóÞ××aà…s[øì€<C3AC>Iwx`_ì¦=“îðÁ¾ØG{&Ýá…}±ƒöBºÁ{Ý;{áüyOì]³gξØûe/¤¼±/vÊ^H7øc_'kÒ}Ù°“Kv•¿?lɽX£÷ÊŽ ó‰è¹_örbmg‡¾Ð ŠŸNTþ@³×§ÒÜCÄ(åÏêÒ¢¯Ä˜“Òyz´ôOéÒ¢¯•@ߊ<C39F> ®íSA¬wm %'I7öÈ<19>MúâhÁ~x‰\rê=±Ù=˜Ïø•þÿ-UƒlÉ.xzâue»9ÕŸùfžB,J/9´»K‰U(½²û Øî£Ql'ÃlT“¥©fqzø6±£'9ïÙõXÙz<>zœ<ûÝQœ ž/Áµ<C381>õ„ðØ>ÐgÃ0<ÙÈÈNo>uíeLltÄâQå ÂO«úÛð®äPn§XÆk [¼Š"@G;'6`„hsÚÊ“Ø!ÿÙ¸‘ý,³š<C2B3>^ùφ<C38F>ìúÔUÔõ²è`Ž]êÙ³K±©ÿ}f§ÆXJƒ^ýO¯Í± jj†úŸí,{bX}ÐmÑÿlx%òRÇ;°Cÿ³‰›¼»”¶ènW£O¡ßêkÇJ6ÆÅK)OO$Gë*Nì<4E>ÿlJ§ªH³yèP·xl*Z<uHàá°)[u1eN€]LÙóNÖ5@~ñØý´ðÙÊ„ðpØ6Ó©&Ñ^ÑaѪg—7@µjWç~€tx…TðÒaNÀÃpìc ­çeøŒ‹'€×ÊÞk}€Ó ?ÞEÒ%Øá °y!´OÓ¾NÓâ ðAv6½(þ0Bº`þNl: !Œ6LìÖ~8ì ‰<>j.VæÊIš6´îrŠ•Ã!`;ÎÆÆ«Él:°ÐaÞŒ“`<60>V<0E>Žm+-ḽ:ýØ>haü^ìâÈ—~ê<>Z%i fØtØÖv_´K Ætn(A£;…{Ðf´M<E2809A>«/”3ŒJ·»ë‡GÐØÀ”Ρ/K-±EûM/ÑmϾ{Í.<2E>ÓjxUÌÈbû<62>½³+Ç7¢éãàT.Ae_y…~`Ó%¨L<C2A8>`<60>t{TÀ¦Kç¥áæsµ9£1}餎U¸Ô4°éŠƒÑ<C692>\ ú Óи‡dCækºÜvù&jØt ²tkä:W6]¸¨<C2B8>A¶fÇær¸ôÔ`ÖB­e`Ó%`kDHôXçצG@Y „gn3Ûr&.nã2óá°-gÅJÛüÞô(Ññ -»õrxìÄ#êÒ¸…2=ÜtBesÜM—€Î9ëÕ ö†kÖp r 7±é°?G®Ki`0ñ00°ã éÐËN6”Ùˆx¸c…ó[[X 6]1[X·<58>M—ã<>ߊöÐäC˜.†Q¤_©Úš>A¥b
Ú~‡|‘ö쉤Sòø»±å ‡ŽóhoW“·g™>­ÇZÔ£Ø3~K*É°„÷ÅÞ7hÓ8 ܬZ6<>8ÃX³Å\`@Ýá`HC'â¥Øow¸•®%<25>¶>±é ý–íí¸•K>æB´iIñ3ÜL=Œ Wú¸¸ 2ÌcŠzë!n=8,Ç-å<°éTÞ+,a±Gât ›à¦»ˆc³vÌ|:[fK†‰^Ù~֗ʨŸbép `ˆ°Œ$.PÃ<1B>J×"JŒE8 ¶<‡t¸ì~Î/ÛTl«<> ÷i{kÁ¦[ÀçXñܼuv<75> ‰õ£/±l¸<6C>~] 91ÊÀ0<C380>`ÏÙé ¿´ÊáÀxsÓWðãq²kluÒ@üÎÒûેc@ˆÑtÍû fK/î<>­œÙ•¶Ø=´Ã1`svÑ4s%åEZϲÁ9þ­…!Ó+hÒ¯”»¶ì[<5B>^<5E>m²2ñ͆Æ6óìæÎÖç”yqŒ‡~8À 1Ø~Z‡;<5µGXMè7±•¤æN÷¬9<pgzM¼?ps${¦c}—Q08À E*Ý—<C39D>a•àÓÕ…Öœ~ÏÀ¦S Îå<>·k _ú“Aø0=a¨mŒ^A“XµZÃØѱ±}|“ì $t·{ˆ‡W@ŒXÜ VØB˜½Géüa¹<61>ºÄØË2»?®g°Ål7ÚØ3ý0ãÄLm%Á°ÄíÙ.Øp ±[sv)YÜÊH­| öÂÙpg»èá£ÐÇ¥q 0ßäR@ 3n¯n1<Y<¿<0N¬ZU'äHdÿpÅêáðQw6²¯¨ŠcÀ]_„¸¦{3r ó ¿€oS –Ù[ر€ouØô
&™—Ö<E28094>A<EFBFBD>~‡rµ6Ã<36>=ûØžK:¹pÍ]®ØV1&=h>³{c[Î[Ç÷ëø•£]§œkŸcÓóÛ ±ÈL¢zŒ”"<22>5ŽK¶èâ)ú5•níLðžðspƒ)*{<7B>îØ4:²…Gh†ÍÀrÖ?´–ÅzaK9ñ> 8jg·Ùù=:|ÀÄ8+ª bª†SÀ<53>K½¨ÁOÁè8v^n2× ÖC$óÙ2‰àFÄnï‡M¦‡CÀØC¦A80,Àp{›Ì/¶fÅÍú<C38D>Mw€ñ ¬^²” æÅàôãT¯ÔœÞ”#‚æ 4v4ÎÚ<C38E>Ü Ši}Û¤ ©6t,®L^ìMK6 †§Yظ‰‡
ñ•Y©ËÙ=ÿ¤·@Á—Æ\ ëÒ ífXzèØ…§(ßÒT{Z²A²AéÒ']: 4_»óÅ ž² qÇU[Uu¶ðãqô]Ž™w<ÿ] *íRCÔF ø7ÒµM±£•ô™M£<ˆÏˆ…I´1Ûið@¬ð—K¶“hÖw⿵J6ÉÉÜ©i\bÛŒ@¯Ý.ˆ¸Ra³?žt»¨üú1¼¥€ñÞXŸønc<6E>Ú˜4ÅHÖx£±Íhïãs€5²³9±Äw¢Ã=ürbƒÛ¬½<*;ÛçjXį<C384>N¦Ò­êìY¤ÏŠ7$½ïEߤO…`lîñ­ì?Ã>ȱ² Œ7Œ¿vN°ÌÿxÛÄŽ ìp_*Ý#‰•£y¯4FÁïdÓÃÔ¨Ñd3(„+IÏã'V鄱§1wënɨÛp$éÑÂŽ>ÆfØ©ë ;…Ã>ÃfCpv<76>šƒqÔ5?áÊWíÒâ?1Œ1|ÚÀ¤ÿˆô¡%ö^›™ÁÇc¨]ÚÖà™c}i4ÅvÞÉã™´<E284A2>±ývÎ^+ ;›†¦æ<Ze@Ì:€5öœ/VÙ “H[Ë™B¼j«ü<1A>»Ÿ;ÚÛÄï¾&Ó6éÄV;­i "øÂ,­Qc§åh»Èzö6F¥mÖÙÝ•ëX,Zd<5A>­…B³e¦ÄÅ0³Ó<C2B3>u3kÒlI" Ú ¢³«æ‚<1B>˜fÅ؃S6Is§y¤¾¾TvõklˆÆÕ^¼k6hÙïv´à•fRxW¹6oXÁÿÀrzÁ°ê4¬2ú(1I[HèÇعŠ•|é°”ÆH4¾™GÆÇŽ-½vØ(Gß8ÜÿÙÓ[zlµÌŽeѰȦFläM ߇G¦«;ÃAѨ-½øï´ghg¿sËÔå>Ù?¥ÁÜ‹Aìh íËÀ¦'Ðä…f>°HOWÊ¥†1Œ«Ka`Ó æå%ûVÖlt£3<C2A3>‡îl5<6C>¼™Ž@“­©\ÇÃÀT óåÉUf¨aÓ`9 F›‰+–Å<13>vèÀ °Î™µbHÚRXØhþðSe@‡'#ƒÙÓ«ù@©Ð sRá<52><C3A1>&fØá @Z ݆-0• àh …áUugß«‡'PYaŠ±ï̓†­žÎmmk˜ XãG~4×<E28098>è @~ãë•}Ü:3u'™…á °“:ïÙ®Ža\ñúN¢ÃÍ cqÅt ‡q<E280A1>°nq`¬ï“®ÛÌ!@^¥nê'»Ã Ã\ÆxÍÜ*_¤É2\eÍäý<¹dj8ûÅ`kiøîÙ, 0ó€ ÓgxÜF°éöwÆ€Hvð\ãÙ_7vfCó€¦Àägsðdñ8ñ0eXMè]óö!¸§ìFæ]Ã#È£Rf-âáÕ<C3A1>M?€<>­¡>ñÐíî’øŽÌÉ<C38C>É«o~!Ï¡Ù&D?“¿ð'sb”s¼¼øøZ¦º0 -ÝÊ<i^ü4æ1Gf€I`ˆÌb~7ÓŸÓ `j—'vŒt:DÌ™²ûqWR/€¹'ŒÚj6OÒ´øo¸ÂT;:¦w§@»‰÷;œd¦…a>*O ¨Œ°àñ˜Mžn´(K/úMÜ€
ÅþaG\b•ˆí·±×­N-¶°Q$f.ÆŸ "v½ÔÇ©mΰ˜9a:#ƒE°D¿kû­ÎæÑG:*?ü"]¤ãxO4ÕÁ» <C2BB>ÀˆÁ.±…SÖ&n°}9I{*¨9üÓäÙ2H¿á¥ö ê¥³yVKž<4B>.Mã0Ô}®jÄfïKé5Çß^Â@XÙ>Š½¸´}]a÷tmmG /ÝJ<C39D>Ùx¥aQÐ-ÄØ“Ö°hK<8çM[Ã<>dWKüé{‡‘;Âvë†ÍfºÒOnÙeð>6öcŒÝaÄd”õøib#JÇ?¶îËNŸ°¬š5h§@FŒ‰bØÑP%8vÁÃwؽ¤Ù[66ÖÕ¿Ó ÇNI&mÑ ÃxïY:qz錢f¬gvÒkšVØâU:š8±í"DÓžÄùÏv<C38F>ìb™Õ ô²È¶yd¯§®¢®—EÿsìMÏN]ŠMýï3û3ÆTôºèzmŽÍOS3ìÐÿlbÙÃêƒnþg+‘—:Þ<>úŸ­³ØÚ5Ø­´Eÿs»} CSåRzöÿaêzz<01>L¾2Pc—ÒéàYÏÙí±ØÇá­ð) / 1næ¤KùÀº˜\Jo\fР`ÌÌ/ IĦfÍd F/ °vY'Œ`þð*ïœzB39@EÈp¡¹…¬;˜Ný+Ì­¾Ìát'°5³‡¬rN#Í ŠeIæé‡ÐËE]0,N€VX26<>†pÛÊ'€±ØÊaf^6ÖtS ßÉâStà `ì
ýT_ûT².XJÁ°Cþ{z"9Z/qb‡ügKP:UEZÌC‡ºÅ`+Ñâ©C€=HÙЬ)ì]ÊNw²®ò‹Àž§…ÏV&´€‡Àf©˜N5‰¾ððØ~V=»<>°¸ÒžU{9ðð¤¯+¤—¾rŽ€c÷Jh=/Ã`\<üK¼Vv\뜮ùñ._€- ¡}švs˜o€²³Õåx@éðØvÒówbÓ!à`a4_b<5F>öÃ!`ßH ”PsØtئ2WNÒ<°é°-¦õ”S¬p6¶[M~`Ó!€u€ófœë´rxtlV\i ÇÏ«Ó€íƒÆ÷Å> Ž|é¢Þ©UR<55>F`†M‡€Í\a÷ðA{÷íp°”`ü@ç†2°é4ºSø ÚV°é`õ…r†Qéöëúá4¶-¥sèËÀ¦G@ÁRKlѾÓKtÛ³Û^³[à´A•3²Ø~`GÇìÊñÍVhú88U‡KPÙÕW^¡Øt *S °éÀyiøñ¹Ú‚ј><3E>ôOÇ*\jØô †Bšº6<>Ƽ*ÃÙæ1Q?œÆÊð`ðÅ2°#;à ŒÁG¨‰©úáHxc*i#t€eÉ8 Âc^š1¦ù2G€ÑBÞPÌebG@H£LÔ—zø„ìÔÿy€ÃÐè¥?|tfìgŠ€qÏF©d¶1 _x$ kÅóžëZi‡C AZ ˜4ö%MÀ8}¤0Æ°Žðtœg0,ò$ªÌÜÏDC_>°S÷Ã) ØŸwöÂéÞŽ7mK'³÷Ã-`è;Ð%q¦Ha_lƲŒªÔNÇ@íx˜¹y€K ÑLežF¥`8\•îM6‡<36>¹üá0/€„ë3ÃXÃ)gÀô&Æ¥]l<¼ÉCdFîl¡¸d ˜ÅŽ€mx1¡?üÉ|°$bøæÌèyQŒ~­ÐljÐT Æ<>j˜VöÈtѸ>äv"o¬q`Gò 0qF iæ¥ÃK<C383>dÃ)1¤É€x¾ôùÅé&0{E-Þ£Ej]²Œ¶8{cK3ûÃS<C383>|™—Óîæ7§« ‰6ØlKö€ºØœÞ‚¤ö3ºc´%{Àœ +_lž0:4ÜÉ%âíÀìÕÎäs<>p†0ËÀ«:[¶ä%h]´/rɃÀç<C380>Edn¦ø%礥;3Kž‡É ð('
ÅÁèI.}ºê…ihü†dCækºÜvù&jØt ²ôhä:W6]¸¨<C2B8>A¶fÇær¸ôÔ`ÖB­e`Ó%`CDHôXçǦG@Y „gn3q&.nã6óá°gÅJÛüÜô(Ñqýôrxì¿#êÒø ezøÐ •-q4]:çl§WƒÚ®YÃ%ÈEVÜĦKÀ®l¹.¥<>ÁÄÃÀÀŽ3¤C/;ÙPfûááŒÎom\-Øt <EFBFBD>hn¬åŒ;á…Qþh~8Fó˜çŸE1abžÀá60éÖÈú¬(b"Ñt  é60ÿŒá³WÉ\ÿð$q<>ÀŒ·oÆÃq`Æ;@!ZÕ­€³¨ˆ™râÐ,¬Çlÿ¬*Š0ì°ê^Ëü¦Ãw<C383>Ü|€¸iæûgaQäêÈ´¾y w ï<>MÙì!ã]³´ˆ<C2B4>LY«á,?à…ËlW[ä3¬ÝX—Ëøìð ¤Î;ÐGœåE 407,cÀX×p"XYÛ<>»5ãÁ`׬0bv«Làt#¤Ã3Øacœ.ò,2b@ÖŠYðGB
ÆXvl\Ý6]Œöy+Ú9“F~¥öe•Š)p³jØt GxÆŸ3?[bW£Ì(6VqõáŽ1>5ËŒ€a}Å£2Ä<E280B9>Ãð%ÒåêÕÖu ŒB£ÈħxDúMæýÍð9Àr8r:Ìû•FœbL'YLŠ²j83VXÊ^ýZkä˜þö" œ.+ƒ`W~<7E>à©Ú¨²ŒcDØ™üNË”xª¦_àQo„¿( 2<>
à cýÍs<>u‡W€! <0A>ˆ—bßÜátÚúĦ[€iR0ô[¶·üáT.ù˜ Ѧ%ÅÏp 0õ06\éã^üáT.È0<C388>)êOáp èÁa9n)ç<> ò·Â{d!N· ±õm±;<3B>86kÇ̧³e¶t`˜è•M‰a}©Œú)·ËHâ50¼¨t-¢ÄX„Ã`ËsH‡[Àžç\ð²MõÀV±Ú¿<C39A>†Ï±eŸ6µìkŽÏÍŸÎ^±"á#±~t# ·Ó/  T2'Fì9{œá;2“6fØC9üonú
~<NöŠ­NÚ&ƒßYz|õp è1š®yÁléÅo`gö¢-öÚá°±9{gš¹ò<E28099>" gÙÖÿŠÖÂ<C396>é4éRÊ][ö©N¯ÀÃŒ6Y™øfC<66>csyöpgÃsʼ8ÆC?œ`<60>l:­ÃžšÚ#¬&ô›Ø@RsˆM§€{Ö¸3½&Þ¸¹<>Ò±>‰Ë(˜`Ð"•îËÀ°Jðéê kN¿g`Ó)gŒòÀÛ½„OýÊ |˜ž0Ô6Æ€M¯ I¬Z­ŒaìãØØ4¾IöºÛoˆ‡W@ŒX[Û VØ8˜Géüa¹<61>ºÄØÁ2û}\Ï`Ùd´±S6»`Ɖ™ÚJa‰-Ú©]°áb<>æíV²¸ì…³áÎ&ÑÃ- F? <>[)â`¾É­€2fü¼r¸ÄðdñüòÀ`8±jUyœ<79>#«‡cÀGÝÙ¾z¼¢*Žw}âšîÍÈ1Ì3ü¾=L5XfûåMÜÀŽ|ë°ÀX¬ËÀ¦WÀT;{ÌÎÏÑ)à&ÆYQM3P5œ\êE ~
FŸÀ±ßr“¹±ÂÀ ™˜ÏI7"v{?l-=Æ2 Â<>a†ÛÛd~±!+~¬ØtÏÀê%K™`^¼N?NõJÍéMÉ1"hÎ@cã¬]È ¢¸†·Mš<4D>j+GÁÂá
ÀTáµÁÙ´dÛixš…]<5D>x¨Ð± lzMNPhæÓ‹ôp§\jèøº6=j^Þ²ou`ͶH7:xèÎVÈ›é4ÙšÊu< LÕ0_žÀQe†6–“`D±…¸bY<i ëœY+†¤-5€…<E282AC>æ_Utx02˜=½š
=È0'þ¸Ü01ÓÀOÒHè6l<36>©LGc( ¯ª;û\=<<3C>Ê
SŒ}o4lõtnk[ÃdÀ/ùÑ:^/Ñ€üÆÇ+»·3tfêN2 Ã`ÿtþf»;†qÅëOT8‰K4/ŒÅÓÆ}ºÅ<C2BA>±¾Ozm3‡y•º©ŸìG€J kpã5s«|‘ÖÊp•a´œ4“ôðä’©áìG€ ¥á»g³4ÀÌ^dLŸáquÀ¦#PØÕ"Ù/È<>Ž€çÏ®º±3š&?C˜ƒ'lj‡YD(ÃjBïš·Á=ý¸$`‡02ïA•20k¯ìg õ‰‡n¿.‰àØ·œÜ˜ì±ú6°áòšmBô ¿2'F9Ç+È‹€¿¡eª ÊÑÒ­Ì“æÅOcsd˜†È,æw3ý9½¦vybǸÉ"^@§CÄœ){‡q'eñ˜{¨­fó$Mÿæ€+Œ@µc¡czwº´x¿ÃIfZæ£òÔ€Ê ‹Ùäé@²ô¢<C3B4>áÐÄ ¨04Un¥goñ¦®§Éä+5v+<2B>^žEðœÝ}Þ
ŸÒðãfNz“¬É¥ôÆm * ÆÌüðšDljÖL¶`ô+`Ha—uÂæ/ ò—SPOh&¨.4·<EFBFBD>uÓ  …¹Õ,Á—9œ€îD¶fö<66>Uà `¤9A± !É<ýpz`¹(£ †Åà Ð
KÆÁÃÀ¦Àn[ùâá0[9ÌÌËÆÀšNã;Y|Šƒn8Œ]ÁPH+wæÀ˜We8Ûœ#&ê‡ÀX >Xvd”1Øò51U?¼ ÏaL%m°,ù'AxÌK3Æ4_æ0ZÈs™Ø `Ò¨õ¥¾€!;õàp4zé<1F>û™"`ܳQ*™í<E284A2>¥<EFBFBD>î€DLÅ×IÆZñ¼çºVÚáH<>(&<26><>}I0NF)Œ1,<2C>#<ç <ÉÅ„*3÷3QÀЗ,DÖgÀÔýp
vÆç<C386>½0€K®@z¶ãMÛÒÉìýp útIœ)RØ—%[€±ì£*u€Ó1<C393>`;žfnà0H4S™§Q)×€`¥{“Í!d.øÌ `áþÌ0ÖpÊ0½‰qi7ï@ò™‘;[(.Yf±#`^Lèÿ@2,‰¾93úGÞ€F£_ëA4q燦•=r<07>†G4î<> ¹<>ÁkØ‘<LœÑBšy©åð$™ÄpJ i€Gò ž<>/}~pº Ì^Q÷h<11>Z—ì£-ŽÇÞØRÅÌþð$_æå´»ùÉé*H¢ ¶ÆtÛ’=`†.6Fäç· ©½ÄŒî0'ÈÊ wAr‰x;0{u€3yÀ$œ!ÌÅ2°ÆªÎ-y Zíƒ\Áfò ðy`†›)~ÉÄ1/Xa<àQN Ñ "ÜXË £üÑü,&pŒæ50Ï? ŠbÂÄ:<-€Ãm`Ò7­
ôYQÄD2&¢é@Óm`þ¹þá7Hâ_€oŸŒ‡ãÀŒw€B´ª[gQÄ¡YX<59>ÙþYUaØaÕ½ùL‡ï ¹ùq;"ÒÌ÷Ï¢ÈÕi}óîÞÁ„š²ÙCÆ»fi˜²VÃ%àôX~À
—Ùî¶È5¬ÝX—˸vx\ƒÅè#Îò"˜1`¬k8¬¬€íÀ¯5ãÁ`׬0bv«Làt#¤Ã3Øacœ.ò,2b@ÖŠYðGB
GxÆŸ3?[bW£Ì(6VqõáŽ1>5ËŒ€a}Å£2Ä<E280B9>Ãð%ÒåêÕÖu ŒB£ÈħxDúIæýÍð9Àr8r:Ìû•FœbL'YLŠ²j83VXÊ^ýZkä˜þö" œ.+ƒ`W~<7E>à©Ú¨²ŒcDØ™üNË”xª¦_àQo„¿( 2<>
B01®™‡%·ÔEŽ¤jE2N·BÊ° [XW;À£âˆõ[x[T€ B01®™‡%·ÔEŽ¤jE2N·BÊ° [XW;À£âˆõ[x[T€
¦¥äˆ)™Î„®<E2809E>I × SxÈm€Gј7³AÀ€á\H‰ZbrÚ¼€GáBšÊs¸¹¾Ã϶O¥ø(i€‚¿ p8,ÂcN†…šu±x'çŒõp12b<÷º ÁÏE^^àt2¤¼<C2A4>K¨1¶¥‰AG5Æd;œ /[,à.3t,%HŒ@àg¤<67>5H,ŸtLÆÙúA= ‰wmy2Šè£ ¦¥äˆ)™Î„®<E2809E>I × SxÈm€Gј7³AÀ€á\H‰ZbrÚ¼€GáBšÊs¸¹¾Ã϶o¥ø(i€‚¿ p8,ÂcN†…šu±x'çŒõp12b<÷º ÁÏE^^àt2¤¼<C2A4>K¨1¶¥‰AG5Æd;œ /[,à.3t,%HŒ@à6ÒÀŽ$O:&ãlý ˆŽÁÄ«¶<EôQ…ÄÝ©• 8] zr¤5ó_uHYø¬:G(¿§³!•¥x<C2A5>Œ¼ð¨D
X-ºS+Apº,ôäHkæ¿<>²,&ðYuŽP~OgC*KñyàQ‰: …\Mœî†Ô²bå+}\mXŠ<76>6ý )žÅ¼àQ<C3A0>”%ýâÅð <0F>ƒÕºXƒ šàár°ÊWÄ$?ÀÃåÈ tËøÙ´¸tøñîº9§Ë‘éÕ`¶5xÄ—ƒî?ëÉz70/.yÏE=©Ž 8]p­)×6°ÃåÈÌWrwj²_-‹ËWÞóBëx%eq9ÀxÍV÷ þÉt9ÂÅqNË =ý“Ãå`˶Ó*)¯…"ÃåȬcHÄ×.>I_Á¶¸Œ`7KÍ<\v<êuTˆÛ3]ÆðØ-ÐB¯çð8
¹š8Ý ©eÅÊWú¸Û°#ì= R<y9,%Á£)KúÅá0«u±14ÁÃå`•¯4ˆI~€‡Ë‘è>ñµiq9èðãÝusN—#Ó«Ál/jðˆ.ÝÖ“õn`^\8òžzRApº à^S®m`‡Ë™¯äîÔdßZ®¼ç<C2BC>ÖñJÊâr0€ñš­îAü“érãœA{ú'‡ËÁ(m§UR^ E†ËY=Æ<>ˆ¯<\|mq9 Ànš'x¸ìxÔë,¨·gºŒà±[ …^Ïáqf.Y¶ú<0F>ƒÁ¾ü 3—,[ }€‡ÇÁ`_~€Ëæ.g£iz̦w­àáqñ<>0DU‰3µìRèpXsÓIM_êð8ìZE+à²O!ÐRa=U¿œ¾Ôáq0‡u¯Œ©@ÓT—“eÆÛ þ׿Ë&\0×(îÛà_"ñ[;ý%Và?þø ~ðïÿ™®N<C2AE>{ùõç_@ÀM"ƒ„öK?F/<2F> úÇ?ÿð‚ÿÿc<05>™ƒ?ÿúë_ÿ<5F>­­þÛ¯ûõç¿üñOÚÏÓ°ã5òót1ì`ï¤X 6ç¿déŸßü<C3BC>*´Ï<C2B4>iŸÓP¦âf X·>3æ)c@÷ò̼[Yþ†­B<C2AD>ŠŸõ¢\Îd— l9†xaÞMŠFß<46>Öo8Üw§P´1˜<31>!| ë1Ô9˜ïμ‡ÄKfáA”„2ÿòZîí<0F>¿ù9iø÷IŸÐ,ÇrVéuœ>ò·› ~Ð*”»`<60>˜ÜëG÷¹?è*aˆæœ<C3A6>{ýè>÷ÍB¹}*…†dp¯Ýçþ [(S[ðçÁ½|tƒÿ17ÝÏq¤¯q¯Ýçþ g(ÃÛãl_ã^?ºÏýAóã.éë¨ìä^>ºÏý¼ûq sìY{÷é£ûÜÏÛîAì,—…4îõ£ûÜÏíZ`„“™¢kp¯Ýç~n×£H<C2A3>>JsìôÑ}îçv JR&3¶ù¾×<C2BE>îs?·kQêŸOóûôÑ}îçv-Ò98ÏïÓG·¹ûs»}<šu÷úÑ}îçv-Ò«=ÏïÓG÷¹ŸÛµÈÇy~Ÿ>ºÏýÜ®EVç<56>®:ƽ~tŸû¹]ŒÉœç÷é£ûÜÏíZrõ:¿OÝç~n×—Œ¥çÖ²Á½~tŸû¹]K,Õ=ÏïÓG÷¹ŸÛµ$§ÄàtŸÜËG÷¹ŸÛµ4§uz0y&óÖßÓ é÷Ÿepþ!K€hÊÛ<O·Çà =°CŒã|þ~ì Þ#znt„(¶õà@2®ŸÜ£þÀæuXæpÿÄ@!þÀà<C380>3m9@<40>Ìë'÷¨?°7B×C…:>89P¨?07Bíä¬ÀÈ£^>¹Gý¡µñUÎ ¬rò™—nûçJ‰Ózœ g
Ì]Î*F/þÒô8˜MïZ/5ÀÃã(âaˆª&gjÙ¥Ðá°æ¦“š¾Ôáq0$-ÙµŠVÀeŸB ¥Âzª~9}©Ãã`ë^S<> ¦©.'Ë6Œo7xø<78>ÿ”M˜Hý#ë†1ü†Óºü%"ê¿~ý_øwÿLW'ÈoùøãÏ à&A!ù>e»—§Ñƒ†Ñ?þñË þ'þ?Æ õsEêÀÔMð)÷1¼OŸÜ£~. „šuÐ<75>[Š²YÓ'÷¨?³[¡<39>É®A½|r<>ú3Kj•óüªɨ×OîQËkx®Ÿóã<C3B3>¯ŸÜ£þÌAª¬Gÿ µ{pàŸPœ3$õúÉ=êÏlY(YÏúcчQ/ŸÜ£þÌ–faSÀÓMc˜­ŸÜ¢ŸY3FYx_`BZ©×OîQhÍb”“øBªmP/ŸÜ£þК±¢¨ÇÀrq£^?¹Gý¡5cÉ<16>åce“Q/ŸÜ£þК1SkÉP%ƒzùäõ‡ÖŒ;;=÷Æñ®×OîQhÍXñÈ(|ȃzùäõgÖŒGÍÉÑycn­Ü#þÌñ½Ê`^>¹Gý™-ó-=tÏâS'PUXàÊ]6s
:3üåãßÿž­­þáã?>þø×_ÿô‡}= ;^ó;_O÷ÃöNŠÕ`sþ*KÿGÀo ©BûÜø1í}ÊTü­ÏŒyŠäн<3ïV¿a«<61>xâX<󒱌³g©bVî#>ß5G÷W(¶Ñ|Œác\ÛXçh¾9=0ícâ®&VDÉ(ó/¯âÞþÐÉñ¯“Žï4 [>¹GüÔ/Ôe"®G·Ê2±|r<>ø©£¨ã8êá<C3AA><<3C>ÍÆñòÉO”øMžïÇ~XÇÆíÁÓ+´6kåŽ(½Ipl¡8G¶PÌç/Ti±×Û)ùà1)ƒþµ<C3BE>b„IFÀdÅy4e9*Ôé~³Ÿ:‰ô÷©ì=¤orØ{Hß$¯÷<C2AF>¾ÉZo"ý}ºzé›<õÒ7 êM¤¿ÏLo!½Zýo²Þ{Hߤ»÷<C2BB>¾Ésï!}“àÞCú&³½…ô]J{éïsÙ{Hß$±7žÕÙŠ7 ò=¤o2ã{HߤÄ÷<C384>¾É…o!}—ßCú&û½‡ôMÚ{éïóÝ{HO‰î-gG<67> wîàûɆ—ÊÙ—bڤגٗ*Ú¤×ZÙ—òÙ¤×"Ù—ºÙ-¤—êØ—‚٤ײؗJÙ¤×zØ—Ù-¤—BØ—ÚØ ¤×€ÊŠkíKÝíÒkuíKÁíÒkYíK¥íÒk=íK‰íÒk!íKmíÒ—
Ír.w`ÞÇé¿Ýmð<6D>^¡ÜvƒÄLÀà^/Ýç~£Y¨D„¡z˜t6îõÒ}î7º…rÿ Ú—¢Ú-¤õj
d .í ½Ö̾”Ñn!=>wP\ëq_Jtw<74>^ q_jsw<73>^+p_Šrw<72>^Ko_ªq7<71>¾Ôܾ”áî ½Û¾Ôßî ½VÙ¾Þn!½”×¾TÜî <20>Ó3íš•<C5A1>«l?rž~:§#7ô,5|Ÿòš ^(Ÿ%…P^²À+åŽtð7¹öÄ£sžçRly´ßäÙO¤[î79ö3éÖl;Ûpw×~:ë~-Ç^™Õe?¡<•aŸÔc? ¼”_¯Œ<C2AF>ê°ŸPžË®O”OꯟPžË­O”OꮟXÕS™õÊø¤Þú á¹¼úÄø¤Îúó•ãD¹iå¸Tr/”ÏJºP^*¸WÊG¥ÜO(Ï•Û'Ê'%Ü(/Û+å£Òí'”çJíå“’í'”ç
-Éà^/Ýç~£](s[p=çÁ½\ºÍÝÜsnúŸãL_ã^/Ýç~£i(ãÛãp_ã^/Ýç~£ûq—üuaXvr/—îs?oè{_ÆÁ}ºtŸûyÿãÀMˆ<4D>õ²<C3B5><C2B2>ƽ^ºÏýÜ®†X1™©º÷zé>÷s»FjtRʘc§K÷¹ŸÛ5HI™ÌðØæû^/Ýç~n×¢@Ÿæ÷éÒ}îçv-Ò;8ÏïÓ¥ÛÜý¹]>Ý:Œ{½tŸû¹]tkÏóûté>÷s»™ã8ÏïÓ¥ûÜÏíZdyÞh«cÜë¥ûÜÏíZdPæ<¿O—îs?·kÉÕëü>]ºÏýÜ®%/)KϽeƒ{½tŸû¹]K¬Õ=ÏïÓ¥ûÜÏíZ íå“Rí'Zç\™½R>*Ñ~By®È>Q>)Íþ\Ñ<>(7)ºKñ÷Jù¨
TbtºOîåÒ}îçv-Íi<C38D>ÌfÊð¬÷÷ôBúýgœÈàÚ¢D<C2A2>ò6ÏÓîíñ0Hì9ï¿{‚÷ˆž!Šm=9<>Œë•{ÔoØ¡Ëé<C38B>Âî(Äoc¦-'y½r<C2BD>ú {#Ôq=EP¨ãƒ£…ú s#ÔN Œ¬0êåÊ=ê7­<37>¯r``•£<E280A2>ȼ\¸EìŸK(%NëyÂœ"(ÔÏ©s7Á§ÜÇð>]¹Gý\@ 5 ¡÷e³"§+÷¨ß³[¡<39>Ù®A½\¹Gýž% µÊ<C2B5>~Õ‡dÔë•{ÔïY²Àúìçüxàë•{ÔïÙ2H•õì?¡vê÷lY<6C>aæ €¤^¯Ü£~Ï–…’õ°?V}õråõ{¶,0 žnÃl½r:¼gÍeá!|<7C>i¥^¯Ü£~ÓšÅ(Gñ…TÛ ^®Ü£~Óš±¤¨ÇÀzq£^¯Ü£~Óš±fçò±´É¨—+÷¨ß´fLÁÔZ2TÉ ^®Ü£~Óšqk§ç&Ã8Þõzåõ›ÖŒ%<25><<3C>‡<¨—+÷¨ß³f<kNÎÎsk½p<C2BD>ø=[æY\Ä#ôJ(ƒy¹r<C2B9>ú=[æ[zèžÅ§N ª°À”»ìæ6¶\¹GüÔ/Ôe"®g·Ê2±\¹GüÔQÔqõôGÇfãx¹òS'%~‘çû±/Ö±q;BðôŽå<C5BD>(½ÍZ¹#JoœÃ[(Α€-óùËUzìõvGJ>xLÊ m a0Ù@qMYÎ üå¥è{¥|Týý„ò\ì}¢|Rõý€òRä½R>ªö~By.î>Q>©ò~By.ê>Q>©î~⃜¹WÊGUÝO(ÏEÜ'Ê'ÕÜŸ{Z'Ê=®À¥^|a|T8þ„ð\'~b|R0þ8µ¹2mŠ0ø#5û“Õ7;\Ï\;|ª×½­Ο÷ª¾ÙÕzæÜáW}³ŸõBºÁ³úf'ë…tƒoõº‡õ̹Á»úf÷ê…sƒõ]éLº+€tv±N¤[|¬o¶ÉžIwxYßl<C39F>½<EFBFBD>nð³¾Ù{&Ýái}³)öBºÁ×úf;ì…tƒ·õÍFØ3éë›-°Ò ×w<C397>Þ3é®@ïÙé:“îðºþÚÞfWreÉÒרlÒèî€ @­îÐSÝ™ iuêŽôþ€ÖgfN2¸£r÷IÞ[¨›+#Œôs[næ¾Þœµ}5úïzsÊöbôæõæ|í«Ñ'¸×›“µ£°¯7gj/Fà_oNÓ¾}<>½9G{1ú{—<>y5úP¾ë•†½Ø|‡½9°{±ù;g϶v?ë—é"éúæ*]4öִɬ<C2AC>Œ¼iãûÂœ¯ÔýWTî6.þ -Uç~{uïOILý>úb×ßO׫<C397>Û_Hÿ<>·q=ݦ?ü
uºá짎"ý}*{é79ì=¤ß$¯÷<C2AF>~“µÞDúûtõÒoòÔ{H¿IPo"ý}fz éÕêï ø&뽇ôÒoòÜ{H¿Ipï!ý&³½…ô»”ö&Òßç²÷<C2B2>~“ÄÞDzVg;(¾I<C2BE>ï!ý&3¾‡ô”øÒorá[H¿Kï!ý&û½‡ô›´÷&Òßç»÷<C2BB>žÝ[(ÎŽOîÜÂ÷“5.•³/Å´;H¯%³/U´;H¯µ²/å³;H¯E²/u³[H/Õ±/³;H¯e±/•²;H¯õ°/%²[H/…°/µ±×"Û—ºÛ¤×êÚ—‚ۤײڗJÛ¤×zÚ—Û¤×BÚ—ÚÚ ¤/´/Eµ[HëÕ\.í ½Ö̾”Ñn!=>wP\ëq_Jtw<74>^ q_jsw<73>^+p_Šrw<72>^Ko_ªq7<71>¾Ôܾ”áî ½Û¾Ôßî ½VÙ¾Þn!½”×¾TÜî <20>Ó3íš•<C5A1>«lßrž~:§#7ô,5|Ÿòš ^(Ÿ%…P^²À+åŽtð¹öijSly´_äÙO¤[î9ö3éÖl;ûpw×~:ë~-Ç^™Õe?¡<•aŸÔc? ¼”_¯Œ<C2AF>ê°ŸPžË®O”OꯟPžË­O”OꮟXÕS™õÊø¤Þú á¹¼úÄø¤Îúý•ãD¹iå¸Tr/”ÏJºP^*¸WÊG¥ÜO(Ï•Û'Ê'%Ü(/Û+å£Òí'”çJíå“’í'”ç ¨~{ ñß45~m_Ìä¯f>蟆LjJKO5=Ñ?¿ýý?Þ?¿µögûç·¦ÞõOùQÿlÈxvÄQÖþDÿüö÷ÿxÿüÖÚŸíŸßšz×?õMÿl¿Êaæ_—_ýg•cÍx×Ó(¯ aÖúWˆÒŒjþ:u·Á[Rñ¯&IIIý|„ík§ý£!Î ‰<>¯FÛSFUQ¼¯FûSFWÔ¢MÆü«Ññ<C391>Ñå<C391>­ÿã![ÍVêZߘü¯™L›èþ|µù>d<13> ŒÌø›ÿí!ˆM¨ißXüïè†bµMZî~ÎlW¡ø§AHm Ö$hCü:×ä"cEi#/edÃrݺ^a ¡<>ÊÕýÙÄ…ñD—t†ÎÆhÙYmy—‚ö¶9iý2Lß<4C>;2`Èl´gÿÙ}[‡kå<6B>l*ˆ Ó¡¥¶ÚCÖOÓ/M?j<>X M/»ÁB«ÉZ\Id”CÓU¥%ÄK„!é7µ–ј
íå“Rí'Zç\™½R>*Ñ~By®È>Q>)Í~_Ñ<5F>(7)ºKñ÷Jù¨ 4a»¤_F>jsýbê)úÉýl†mâí%¤&…!è·êÕ 1q))Çxó:6ì­è¨ˆ*¹ìœÆÎ2B”¬­5¡£Ê¸ÒOäÍÎó¯(_˜„P`Èìöd÷7,ÈH!PnZ(£!æ·¦±VÃjͦ'XA#m±ª¯åWZõ„GÉÛìåñ«WúÁ•F7)?ˆ»auiú¿°×MÉotÎRf4ÿÚš«+”Â^ì1ë°<E_êX\ÈlŒCǨÔÜC GP -ƒV=®s. ]Ã/¦Z“¶„@ZÓýV&¯6ćW<13>B»ªÔ4 [<5B>qv† ý¾<C3BD>RcΚ&mÌ\JZVÓïKÈ<4B>)<K[5]+0ü¶Î“ r©ßÌ6ƒ€üÛ0 ­ 7—L½E*ÃP¸Æ`_ì„zF-lmÍd‡€Ðî“ kUMïËH÷¥Á+ØZM€¨¶ÅL¦3Ó'
üå¥è{¥|Týý„ò\ì}¢|Rõý€òRä½R>ªö~By.î>Q>©ò~By.ê>Q>©î~⃜¹WÊGUÝO(ÏEÜ'Ê'ÕÜï{Z'Ê=®À¥^|a|T8þ„ð\'~b|R0þ8µ¹2mŠ0ø#5û“Õ;\Ï\;|ª×½­Ο÷ª¾ØÕzæÜáW}±ŸõBºÁ³úb'ë…tƒoõº‡õ̹Á»úb÷ê…sƒõUéLº+€tv±N¤[|¬/¶ÉžIwxY_l<5F>½<EFBFBD>nð³¾Ø{&Ýái}±)öBºÁ×úb;ìÿOÛûìÊÎY¾s?ÅyïHQ$<24>F]Ýå ôô~³FO]5°G÷ý<C3B7>»~AI©LŸ<4C>ÊoË.”ÏÉu2CâŸ`,F<>ëdô¶õâ ì£Ñ;øÖ‹#°'£70®W½<>FïÚè}$]<5D>Fï`]/ÎÚ>½ƒw½8e{2zózq¾öÑèÜëÅÉÚ“ÑØ×3µ'£7ð¯§i<1F>ÞÁÀ^œ£=½<>ƒ½JÈ<½)ßõHÃlÞÁÃ^Ø=Ù¼<C399>³ÈG[ŸõÛtÑt}¾K7!²7§UþcþÕ3ú¦•[ìàx§î_¹[¹ýùbª¦ÎýòîÞOMLý>cçßOç»<C3A7>ë/´ŽÿÌÛ¸ ¾ºªß^Cü'Mõ¯õÉL~6óFÿTtRSšZ*éŽþùíïÿxÿüÖÚÏöÏoM½êŸå£þYÑñl¨£ÌOwRÿDÿüö÷¼~kígûç·¦^õOyÑ?ëײùëô5Ùf9ÖŒw=|€ôñœPf-¿jG•¦×TòóÔ];oIEÆ_M“úñës§ýŒÑ<15><>g£õ.£¨*˨HÞ³Ñv—ѹhÓ16Úo2:½°õ?n²Um¥.å…É¿ÉdêØDøçÙæÿ¼É&BA<19>ñ6ÿ×M6QPÓ¾°ø?uÅ¿bµUZn~Îl“¡ø§Ahm ×$hEý:—ä*}Fj#OKφå²6½ÂJež“aSšÄ]Ó]B½f?dµ6ôy\ ¾ÛÛæ¤õË0}wìÈ€¡³Q—8ûÏîÛÜ],¯g“Ù@uX˜E(¥–º~š~É°lRóÀjˆZMæÅ¥Dú²ú!«4…z‰04ýú4/†eD¦BMئé—Ñ<E28094>Z]ÀØ°b~r?«a«xûZ“ÂPôõj†‰˜¸”c¼yé+öf„TD•\wNcgê¡J l0ÜQÍ+
VºÖšRe\é'òjçùg¤/LC(0tv[²û&t¤P(71”^Qóa¥d lA$m²ª¯é+M»ü wB1-Åtû~Ø0 Ô<>m®]è•w&TºÛ«öQÖTê.—LÐÕ%ë„©i„$W¿Û5ûÀô³z@ÿžGC/ t¯r5ÅJ0ÄǶÁYÏÐG´ú}ÇÈch¤qUM5SëÛ¸IlÑK,îiÀëÓX¹„X_z´E3­>\†Ay•½žý}û/´úºF«0$“ÚºähßnR}GÃ&T•÷s{ „ú, [5³ËX½M†éôñôBZI=?1übÙž×2C¦o¡JaL=~hD¥u9Dú²)jvMRó `Å¿²aáš³¶Ó ¶KôåT5™Õ®è«¹e
Ê£¨ä­Iörÿj…~pI¥ÞLËânX™ªþ/ì5“òë<C3B2>³”Ñ¿:ç⥰{ÌÒ-OѦÒ'W2ë}òZJn!†#¨„ŽA³×9Ð&â—MT­Ê [B M“ “Wëâó©Ç!^µ”Ô Ðqév† ¿ŽTcΚ&µ<>\JšfðKè<4B>)<Kk1a+0üÖÆ“ r©ßÌ6ƒ€ük7 YÝuén.™|T†!qÅø ŒÁ>Ù õŒ\Ø\«é!Þ'V *šÞ5ÑîK<C3AE>-W°¹˜ÑØ3]˜fLŸL (°ÎpG6lQ¸ŠˆiZL¸/é‡ Ó@±AØêâ…^yg*AKs{Å>ÊšJÍUò)ººf<C2BA>05<30><35>äòW`h˜~Vè_Ãóh„ðU.&Y †úØÚ9ë‰V¿ïy Cƒ4® }¦Q¬Ácò}`<¥ÖÊbØRV$ÏB¡O¯„9äDõëÕ§âšÐMs…U0M;µIŸ˜{ ÜLÊz w¹ÎÀ:=„ç´Œ<C2B4>ÆÉ6íeäùÔ44êÌu<C38C>¡Î'lj=\ºÖ¼’æ÷È °„2škS¦µ˜6_Aè1§õZ µo%0¤ù´~VòÞvÍËÄPæSïxohmqiW6´v]> ¹«­Ú¢´…<«§5'Ë<>íª|šsZw‡®·6Q¾¾ái„%SŠs· M¾Œð]F·¢•¾I>=g3¬ÀIûæ<C3BB>ÙL“]YK"äenŽ!ÉW7\<5C>þ¢…=QǺ)ò™Úò¡=o#0ÆfA>ó`Z[Öžç÷|ž/Í05—rwær,Çj†Ö+"²9<C2B2>ŒÚmc9æ(H®çZ|2àž½gÞ*j\\åVªcEÎ %““ã,(éþÅù«<C3B9>ÒžF\` <0A>Ë<EFBFBD>å˜Aå£ÖbhÿN>0y7<79>#Sg+!qhyÉŠ¶U-=°]†l¥í\UÏ„
£É jr}+7©ƒMz‰É= j}K2—kS¶¨&Ö‡Ë0(ϲײ¿oûB¬¯i´ ŸÆDÁÏÍÞC„¯2Ę¢Eìæ×:Z95y¿ì¢£ ½`Â<>ÁrŒ»P§Ž´ÀàHJgÔÝ4ÙÖ­<C396>Àà³~ÅqÉ“§µù“ß³Pq±~\ ñ=ýëaZ·ÝÅîÀ˜?uÁçÈõj­×Ê:üå*Ú{
C3©ÎSŽöm¦Õ—q4lBy?W°<42>ÀÒ°Y3{é³·I7¡>~Ó’^h+©ç†_C-Ûbê½ÅÅŒÀÐé¨ES<>"Qižv•¾lšM“Ô|ØâŠ_Ù0<C399>pÍYÛéÛ4úr*šÌê —ôÕÜ2‰¾Ó(Öà1ý>0žRkåbØ´Ìhž„DŸ^ sè‰ê×OÅ9!œæ«`švj“60÷@¸™”õ(îr<C3AE><72>5zÏi;<3B>“uØËèó©&ÏæM©kÔ™ë5a¸t­yKß#GÔYlÀÒh.N™æÅÄùsš¿-m]COëg1,ëmç< i>õŽ'ùºÖ×veCkæ»Z-J@kè³zjPsrÙ±MOsN âæÐõÖ¦Ê×V<<3C>°dRqî„!Ê—Q¾ËHâÄÒ·ï¡É§ç¬†-pÒ¶úcVåCXÖR†(y™¦chò•W£¿háAPÔ±f|&w†~hËkŒ±¹  Ÿy0­-sËã{>ϧj˜šKK¹;s9Kc5CmÙHFs$—†ó 1>ðÏÖ²‚ o5.®r]ŠcœAJ¦? &ǹ ¥ûóW©=<3D>¸À*B—+Ë1ƒÊ•G­ÅÿB|`ònG&϶„Æ¡å% âVei<65>m:|`3mçB¨z&dø4&ì¡ð\]âÍ1Tø X<EFBFBD>…é)¶²ÄSV“Þ+Œ­¿fŸ¯x.žQ<0Ö¶äz2<7A>º{™åè<C3A5>T«® ûˆßÕ½Œž¹Fz_»¿yCtbAIT9²mBôŽ¦<C5BD>îr`Œõ¬wXþ5Wâíº)îuTÉÀ4¡·5º®ã¸4XŽÑ„¬+Ì;8€°µmmÎWV²<56>!i5µ5ݱƒ |©I¡µqbĬ<C384>«Ëµ(òÕ4&«˜ ý‰:¯·´°<C2B4>€yˆàC3¯ Y®á+7½Ml—öNÈ<4E>ŠÄy| ´S <20>%-BÙ%@±žF;º~>ñˆP&[ V<>ù„%tdÁdW}¢MÀWýfFÃ7°<37>h<>±Ðj¸ö4ØÎÀ䇗â‰MPЮ· é›Û9€-zZ¹WŸ'h#O¦q f°zp€Ä¶¢F\w±M°<4D>P" á wä<C3A4>°<EFBFBD>$„<>µåá®8oÐüÑhÝØÎÀ8MYÆÒã1Ké< ± xŒë&…â<E280A6>€AzƒƒÊŠ+³#°<>$d­Wd‡G@; °‚¹¡Ð­T iBÞ4š0æ‰s@»ŒwB ÜÏÚ¬<C39A>í, !@®WA¬×°a,@=­'Añ\d»… )“_ج AÑÄ:=R HèºCÀ=š<>{M<16>Z…kÄ{L,lgT|Z¸p¸Þ¤'W¤Tæ`<60>#âæ
CŒ)ºh<68>ÒøZ#ÒBl1£§&ï—]u4!L¸ÑYŽqêÔžæ%0ø:šÒy7M¶ym=0ø¬_q\òäi®þéïY¨8Y?N¨Ä„úžþu7 ±Ûæjw`ÌŸ2ásäzµÖkeíþrñ=…?¬ÇÂôë2ÅSÓÞ[Z,~Í>_ñ\<%ªx`®¬mÉõd/„÷2ËÑ®© V\.6É3¶/¾î²{As<41>ô67óŠê2š¨rdë€èMǸË<C2B8>1Ö³ÞAXbù×\‰·k&¹×<C2B9>%Ó„^ç躆ãÒ`9F²Ìˆ0ÂæºÖ1_YÉ6@„¤ÕÔÖtÇv€ò¥&…ÖÆ<C396>³6®.×Z ÈWÓ°®bBÉxp€Dô'ê<OÞÒÂ6æ!Í<ï€d¹†¯Üô:°MÛ;¡C*çñ%ÐF€4´e´sÅzíûùÄ#Bl",˜FP”BL<42>Ó]õ‰N 48g\õ›ßÀ6 5ÆB«îâÓ`žOl*@Ø9€v<E2809A>¸ØÆ´øhÑÓÊ=û<Aypˆ0ƒ•<C692>5âš«mm ¹#<23>ì„m ¡|¬E(wwÅyÝ9€æ<E282AC>Æ@]éÞÀ6ÆiÊ¥O50sYÏB,(ã§I¡8$ “Þà ²†âÌìlcÝáÐƬà@n(„+7<E28099>&LÁ†yâЦã<C2A6><C3A3>÷³6s` H(<28>ëUPë5¬ POëI<C3AB><Ù®áÂ!CŠääV+CP41<0F>”ûNÂîp<>fà^ƒ¤Zàæñ ÛXEŸ.®7hÇÉ)-c°Àqs %Z!MßÅ<C39F>Õ2ï,€5]>J:X€¦å¼iI; PXˆ¾»¼š¿9­_lz<>@Z<µ?»žqö<71>v@¥çîʱ` P«0¬å ¢1<31>ph_oOÎ<>m,@K¿^C<ªGC- HÃj]Õjí_+ÆHê1KÆÅ« ÝiØ !ÁD~åñS¨žm,€”½­g>BØ%,€˜L]܉…0^\Þ…T?Á¢ÂÓ:¾¶±Ôú«augæ[ð¿Ù]ÍRw_ˆËë<12>†™!< ÷.…ÊCo,ÀbQ¡Ú{lcëè[&ïØÆXžå÷OßY<00>Òˆ)g÷lKßY¯ ×Z<15>æÀ6À«O¨g÷^È2kÚÀ{~1âñþ-ù³Ûh6<>ïm4Àºë@­Õ—  ÐŠmÍ™&’Ì %Z!Š¦oqgUÖƒPB ¦ëÓ§BI' ÐT#«Z¢œ7•t°……Ȼ˫ùC<E280BA>' Ðù‹Í@/HÅSû«Ëgÿè z. ¶“µ
8Äy0EZ×= 3Eæ ü…¢<«ai§ ¤ ™ÌüÛh@*Èû“ ˜ab<61>àØiág6À˜^ˆ™jüf6" Êà„P*dX}.”¼æɪN<C2AA>³™*óljM°`y-ôëlç…ÛÔ¹™{âÇN6…mD ±—)¾UÙÊ+;°ª-Â䌃T„7Á´OZõ½ÍÖ<C38D>(~emìÚ<C3AC>mDÿ‘™4D½]lCG“Uye)ÊìÈ®<C388>mT€:&<26>DZ¹Èž`òV ÃZž £,€Cûz{ºp lgZúõâQ#ªì, ¡ «uU«µ­ P ©Ç¬¯6t§a7„ ù•ÇO!z
*<2A>è¨yñ—Fhñ|ŸëºxÀ%lSå+ZÃDÆ÷ 6\©OԌѵ}g8ÚL¡FŸr`Ó8J¸ÖÀ6&€óæ† ßÁÖig`Vn ÂئÇmucZ3sõ¦Ææ›ü …QE'¾<>¶Î_Ç$ôî1r`PY³a”&ôâ»^ÂÒœ!\¶¯Á3¨€-M‰ÍÅøVÚ©[ôru=0ŸC¶(ë*†Ð4²ÖdÌÉ)X¯†ibªÿ| ˆõeÈpƒéåˆqÆ÷X$õÏ[Adj˜¹ÔxܸX"¦jÎ6…m\ÀV^ïnk`[ô/[õ¨—q\H”ø¸´éoÛÝ0ÅÇøÃÝŠ Á*M¶z´¥!Ðúµ:¦9bb9:Qáb˜ï>øâ&l#†iUì=š¥îd¬›†¸‡[Â62`˜Ù<11>Û† ay°fd@Ë]`ˆÂ6ámô¤¤%ž¥ÐówW´¢ˆ®Ì<C2AE>ídL½¥ßÛÙí¢µ¨»D8ãg´uƒ›|Ͷ³0ÖõØûcÞŒŒ€õÓ­U³Ç¼)Þ* 1Ks!„°ïé©vŽ<>9 ÊþæÔ9\€<>«&{ÑúëÎô â ×ØÎôõܲoªabãüˆVÚ5‡½ü°O­ŒYs¿¦ðCËÔ” S ¦Yï½Wã´‰½<E280B0>f} QãÍ~R Š\·bÔЖKoÁ[>€V׿Á%åÀv*PM~ZË<5A> Г³Ú:¨œbîØêYÌ«öU¯§¶ŒõR1Nö°—göñ'. • ¤I¨ðÍãQ…ø[F€A¬fa/%°‘°±¯E@¬¿´SÊi5¢ô¿þ”íÀ˜‡"êÈØÎ4åÿz_Ý÷ ƒ (ê*†ñ<E280A0>^<5E>Õ¾§ð%ÕSxs`¾Ée˳á¦0a­-<2D>p<EFBFBD>Úd\ 3Tñ¢ZÞÕ k@*<2A>loŒ<‰aþÑ쉴ä¹€þ¢ÈÙG<C399>°Ð ´³RöZ´žùa—d²þa2qq'Âxqy
¦nWkØKµd\ 7 êµb®>wƒ ,Yl$ OÛüÚÎlPë[¬n†µƒ˜oÁÿfw5¥,_ˆË[ HÃLÁž†…ûPBå¡w`±Ž¨P#¶³uô-Ówlg,Ïr<C38F>ÖÝûg,€GéÄ”«{¶2À+ȵ6Å£9°<39>ðê âÄÙ½ªÌš6ðž¿ñxÿžüY„í4€<34>£ÕH æ÷v`Ýu¢ÖêË<C3AA>ÐHHÅöîLEfífLѦÖuÃL<C383>9h¡(<28>ÁjX:h)C&³?Âv<1A>**Åþ¤<C3BE>AÖ†¯A—X#8vZø™<C3B8> 1SßÌFôOœJ… ›Ï…š"À<ÙÔ òo6SežM­,O¢…~[í¼°c»87sOÃCüØɦ°<C2A6>$ö2Å·[9`õ V5£E˜œq`<10>†ð&˜VòE«¾·Ùvůì¢Í];°<>à?R8ÓÀv"FY<46>†¨·ˆc²*o,E™Ù-°<>
£õÎG9 ‘Ň¬Ó²<C2B2>J*×b±…§ñE¹å#ÐØU/èyk`;€DˆO@• [l@Áž^N!•/<07>ÜÈ ¯.šÍG<C38D>È€œW7~¡IIšÊ b\ [Bä—I„ ¿F×[Ы(Ï<> (Xßl<C39F>WÃÖ-™D­a;€ýªAä2ÖÀv2<76>Ùž#âAa«_csÓs”¹:ù˜ F€´*;c)* È¥Û/BkbºÙÖ Bÿî'E54•|ø³u±3œÉÊ\ ìÀ²E™u<E284A2>^íG& p´ÎÓ:ÅCö=!`”¨©©‹¯¬Â:¡«ø u]ÓjÖ"[Ö§¯†“<E280A0>†IËÜXé„ñ“ì%UÌé#šýÎÔzjŸyv?Úç#`¯»ç¯<C3A7>m)åÔ8ËâÉ°èªÖ±ÂÖÓÎäÄå—ÙrØ`&@/~8yÀvz<E28093><7A>7sQú¹mÛ<6D>½G®É£a'%s`[JO*vÈv™?Ër`Z ôîjwQl»mL€ PÿNc§¶3Väؘ€VÂîÁ¾ <C2BE>°h,±Î:¶y…7]­é¯·~E\”Æ9f÷Τè7"€;n»¹uçæT-wï/^< 1÷–$è7Àî•¥î<C2A5>Š PǤñ87Á ™ÀLÞJA¥5/þÒ-žOãsÛŠ\ÂvQn°ª5Lt`~*`ÃE<C383>úDÍ];&€£ÍjŒ%¶30<>£„k lg8on¸l[&V´rk¦Àv9n«Óš™7µ06ßäoX,Œ¢(:ñ}´qL2Lë)P<>µFi¨¾ë%lR ÍÂeñ<“
Ûy>í0‡ØNÝxe¶#<15>Þ<@^¦`luÏb[´ƒ°9W5¾çhÌ~ภ¶÷º/lûn< Y²±âÅÛxs]]ϲ“¼ñÛzñm¶ãlа-Ëy<74>°ÕÙ$-Õr¶”@qàlÀë¶ó¶Võâ%~r>ЦE¡4ÖÜÛë; `èãµ&k°<>0¼sŽŽí4€!¬Ø†Ç6,ï4@<40>Ø©â:´Ó6ª³ç'Ûi@'î—++³cË<63>°/>§iñ´4ØNØO×CfD~Ûi€Uvh©™«¯h@'Iícá<C383>t2lšjó†í, h)þz«±K[/kA7‡çØƬ'³úcéþzug–Öð šÛX€u—`<60>íeAdQä"Fªi¯ šXÞ­UR`{]<5D>µ{lA9¶×©ýäÛ³þ<C2B3>¯`)"yIõJ dc`zó¹•i lc4<03>v÷\0é·½*ˆ&ÚSR`{U0…$¶ì8¶W9“ÑȸY*p« ØÒ”Ø\Œo¥ƒ
Ù 4>  XJÈÔ-ÔðXÊlc–àÓ|šÅ9,Àò6}[ l°K'juë¾½´†ÔjÒ×äæò¡*hf_bËIYbu+ ¢Â RRgi5°½.h&óÓG) ‰Ü-#`YVÍÏX0À¶”X×O6?0Š¦ÕR©°úm/‡¤24 Ð žKR „ÂVÚÌOd­Kñ©@¶~« âçõuc`ë¡.ˆŸo³hÅÜÛëÈu«wµFÌ<46>í…AúVûiš»?e=ñ#‰í¯x»º³þ"–©^O9°<39>ð—…ëþÆ;4£¶OfÿPëCT`<60>í…Aüõó5¬ÛGrÍEQD÷<44>…A((tª)Ï<>í…Aü…²ëêc­ëÁì/Õ¶Û×À6À_v¡ºeáøëƬübVœçEJTjlI+ÛàøË”×À¥A3ûÊ<C3BB>ëØ¡6ˆ ±Êe¹Ï×_µA,äB§Ø^D²PË]šs@ b%k]]<Rá¯à/rPŃo«{1×¹÷¶Ž³©ö/Ã÷+zõ§\ŽµAlùŠVÌúë¡6HkCcsߧyúcmq9YÃÊN¨)*jŠ¥ÀÈ–`×hñ=«0L¬ÃÌÂñ+#)`•OZ棚Å~f¯ bW×ÆnìPD˜T,b3¬kƒ¨c”?Y|¨ßkƒHú±{ås•Dý „)H'ùiPÛ™€•Ë¥9 <39>Xõ™­Ñym'`9 €±E/W7ó9d²þ¡bM#kMÆœ|<7C>õf˜&¦úÏ·€X_¦
k ë‡Ò atˆüìØ^”Ù¸í”ñ¤ÀöÚ jëvfÈÏlD¬©µæj©:°<>d+¹/#øÛˆ€•þiö{·’¥×›ÏŒÒä“‚¸…AvTSduGJ~+ "MÎÙÛìmI~+ ¢®Q“‡qØ^DšœçÍÕ3ï,ÀÊ(ïk±m<C2B1>í¥A¤ÉÕÎÕs<C395>f~Ð05žÂ+Ë#ð3 °rO­LÅ6óƒP%*”¢ +.M$š‡Ê¡2(St¥åÅ3|`{eŬكÕÀöÊ ¸â ~ï»õP”‰v4rª<72>1ô 7˜g~<7E>ERÿ¼Ø
4ªz¬âC7¯"$é«òYy<59>߬;°ß)ÛžW`[Š±ÔØVD=±¾¦ŸµaKQï( Z”¤eÏ£aô[iåËœb @°ÆDhÑš}ç”KÏVGãa¦<61>u`eÖ ª SÃÌ<C383> ÆãÎÀ1Uw¶)lç¶òšvwßÛ¹XÑ¿ìÍ£^Æqp MPâãÐ.¿mwÃTók w+.k4Ùæц8\@ë×æ˜þåŒ9XˆåèD…«a¾ûà°<E280BA> ¦UqŒhv<E28093>°aân ÛÉ€aZdg@"lO6uåÁº-w<>i(Ý}„°]wÛ0-)©Ä³ #šbþîŠVÑÕ5°ƒ €©·Ô‚ó{ ]´ Wl€¶bp¯™Â6ƺ{Ì›™°þcºõfö˜7r Õ[¥³t÷BÛñž><3E>ڰᘳ ìoŽ>½™céĸj²¹­¿\@Ñ ^pÝ<70>\@YÏ=û¦&v.À<>h¥ÝrØË¿bö‰¢•1kî×À~h™ZaŠÁ4ë½÷Z1.<2E>IØ iÖ÷p­èö“ZP亣¶€ötX"I¾x+Þó´ºþ .)vP<76>f:ðëˆ<C3AB>ÔVO\€ž\ÕÖAåsÇVO1¯:6½žÚ>0ÖKÅ8ÙÃ^žÙÇŸ ¸€Vd<E2809A>&¡Â7<C382>Gâﱚ]„½ÖÀfFÀƾ±þÐA(§ÕˆÒÿúSö`Š\¨#G`Ðü•ÿcsß/ . ¨«ÆwFsÔÆ‘À—4Oá­<C3A1>ù&—-Ï
íø °<>€‰søhF~« ¢¬[m`{m *>à­"{ÔQF.Š<>|;Ö*¹GmùKM²) «ÜbsÀ${e ^8ÝŠÝ3Ý£ZžlŠäÙ"YSØF¬¸ž»E½Î Ü·òüe+ôÂø퀪#šµs¼^>0Â2<C382>¦¶:üÃ<01>®@u¸i«ßL€CZ»¯zÝÿ`U'jô{àÇ®ÖÆØþÒâµÆ€S¼ºT«ôßÏ?|{nuþõŸvºb<C2BA>¬e;aÌŸ|PL²i÷_ù{œâÛ²Ó­ÏÇÅØHÒÚ­ÆÓ‰3>ŸëÇ<E28098>cuqM]ñÑÏsŸ †»üÕwÀ„í¼·V á%õŸ@f¨âEµ¼«¶€NT ÙÞyÃü£ÕiÉ?:sýE?<3F>³<EFBFBD>:a'. Lݮְ—êɸÔkÅÜ|î X²ØH<46><C3AB>r" X ¸¢%:¦g#<03>T®Åb…§ñE¹ç3ÐØU/èy[`€DˆO@• +'6 `O/§<>Ê—HnäˆWf@÷Ñ#2 ç5Œ_hR¦2¨<C384>ùe¡ïÑõô*ʳ†ì 
C­ý"H£PmXùÛÙJÿü%L¤…JÅ7^¦}n&g7ZGom3æà2±™zn³ù‡Îèáfaa¹@7<>îY:WKÙGW<47>Ycdz-£yÃû¸c<>Ñüîô¨C•Ð¨•Ñaþä·AýO>=~óƒ¦C|]Â\Üâ‹­ÎeÜ´õðÑûªÏ× ‘—‚½Ö¦!øôðÑû¶¯‹˜+ø‚â‘Ç<>½oûºŠy)”j]X6Å؇<C398>Þ·}]Æ\7†DZÇMÕÇOÞ·|]Ǽ<C387>Î-ÝÉl˜>~ô¾íëBæb{,ûÖÞ°}øèmÛËtÝv# ¬¥<C2A5>·vüè}ÛóeÛ+%é-ûÖ±Û~øè}Ûéºm…?ì ÔMBîøÉû¯û´•L<E280A2>ÿ<Mc¤=|ô¾íë>m¥ŠsöÃöñ£÷m_÷i å7;äÕ°íDDK‘Åš|kAØA`¿j¹Œ-°ƒ d¶çH…xPØÛ¯ˆ±9€é9ÊÜœ|ƒ ¬#@Z•\* ÈeØ/BkbºÛÖ Bÿá'E54•|ø³uq0œÉÆ\ìIJE™m^g& p´­Ë¶ÄCŽ#!`”¨«©«¯¬Â¡«ø u]×jÖ#[6_ ' ‹–¹¹Ò ã'Ù4**Jª˜ÓG4)úƒ ¨õÔ>ëê~t¬g&À^w#ÏßÛSË©qJñd<> XtÕÚÜaëé`rârÉeµ6؉ ‹.°<>¥^gçÍ\”~nßv EïkòhØIÉØžÀ“Š²]æÏRNL@<>Þ]­â.Šm·<6D> êßiì´À&ÀŠb†ÕÐjCP8<Øt<16>ë¬c<11>÷Wx3ÔšþzÛ¯ˆÒ<g"ÒìÞ™ýNpÇý0·<ÀœªåîýÅÛ‰tF€†xqoIì^YêÞ©¨°ƒàÓNsˆíÔ<C3AD>°Yf;RÑéýÄäe*Æ6÷,¶E;ysMã{<7B>Æ'€»`{oøbÀ¶ïκ%^<°<>0·ÙÕõœ!;É;°­Gßn;ζ½óÛ²\'A;x[<5B>]ARiþ“«¥úŠgÞرƒ°µª¯ñ“ë‰0-*¥±æþØ^?hC¯µX£€4€á<E282AC>#ptì  aÅ6<¶aù ÄN5·5 ƒ°Q<C2B0>=?ØAq¿\Y]+'À¾øšâii°ƒ°Ÿ®‡Ìˆü:vЫìÐR³6ÿ^=Ñ€AÚdžC dØ4ÕÖ;XÀ Ð"Rýõ6c6¶^Önϱ<C38F>XOfõGþzí`–Öð šÛY€u—`<60>eAdQä"Fªé¨ ZXÞ­UR`G]<5D>µ{lA9vÔ©ýäÛ³þ<C2B3>oL`)"yIõJdg`zóµ×e lg4<03>öð\0é·£*ˆ&:RR`GU0…$¶ì8vT9“ÑȸY*p¯
1d9®aûøÑû¶¯û´•ôjZÅ,ÒXÐ>zßöuŸ¶rÚvæÜϼ<C38F>òãGïÛ¾îÕVŽƒr«Dš·÷>~ô¾íë^M\þ«ñð2 ð‡<C3B0>Þ¶]®{5q‰}¿-l?zßöu¯V)²üÎ&éüðÑû¶¯{µÚ¬ÇËÝÂöñ£÷m_÷kµ["Y¢3l?zßöu¿V{û²Ú”¶þ>~ô¾íë~­à·¥”¶ùµ‡<C2B5>Þ·}ݯ5>½µÖçu Ô½oûº_k“W, /&—ò9=ݵq<C2B5><71>o¼c§_´SZ³<5A>ÊV7)Û‡<C39B>Þ¶¼N-×)·Flô?zßòuoµ÷âhç÷,]÷M~hÿñ&cL^ºÀØl_÷MnûáBãZ®Ýcl¯{&³|º×Ó—®36Ûx¦y}ºÞ¸–‹·íO<Óút˱پr¹±ÙþÐ3=^viηï86Ë×ã-·üxç±™¾rÕ±Ù¾oY ìéâZ.^>Œíz=Þò£x<C2A3>cûÒÄfû3v¾“Øl_¹ŠØlæÓÎW[ùù•‰Íög>í|C±Ù¾r1±ÙþÌ«<C38C>/*6ÛWî'6ÛŸyµó}ŵ\¼¦ØlæÕÎ×Gõû·›íϼÚù"al_º?Ølæ×Î÷ cûÒ5ÂfûC¿vºVØl_¹MÛíC¿vº]¸–‹— Ù 4>  (…Ò2u…KYƒí,À|šOK²8DzX^Цoo<6F>M`éD­n÷÷€Ž¢ Ò<>ZMÆÜ\>U­ìKì9)K¬îeAT4Jê,­­d~Æ,e!»g,˪ù ØžZðÉæF1²Y*V¿ïå<C3AF>T†TZ²ÁkíK
›íýÚéa³}åna³ý¡_;Ý5l¶¯\1l¶?ôk§+‡±}é¦a³ý¡_;Ý<l¶¯\8l¶?ók§»€á;W®6ËŸyµó•ÀfúÊMÀfû3¯7_awí*¥<>GaˆZ.êA˜å«¼Ò׌Ç[çãhìû—Íc¹_å•>š¯´¶Ñ|ÇMÖ/2…?÷Ë>BÞÞg¸üÌK\"(*¨09ÿœ‰ï6n1úÝ~Â-F÷nò?qx½ËiÞÔnêôÑÏÛ|Ú‡yÚšùyçaIù<49>]£ðs×ú—W¿Çè7 õ{Œ~“I¿Çè7)ô{Œþ6w~<7E>Éoæ7ý}¶ü£ß¤Éo2úÝâqƒÑïò÷ým6þ“ߤáï1úMþý£ß$Þï1úMÆý£ß¤Úo2úûû-F¿ñî0úMFÿ£ß¤òï1úMÿ£ß$ïï1úMÖþ&£¿O×ßbô»<ý=F¿IÐßdô˜™¿ÅÄ™íqÇH™&¿—êŽtïñ£;Œž+|ŸŠ~ï0z.í}ªö½Ã蹦÷©Ì÷£§jÞs}ï&ÏU¼O…½·=•ï>UôÞaô\·ûTÊ{Ñï6en0úT%üT8|‡ÑS}ð¹bø“çºà§Rá;Œž Ÿj„ï0z®~*¾Ãè¹ø©*ø£çÚߧrà[ŒžŠ~Ÿê€o0úýÞéFÏ%ÆOUÇw=×?•ßaô\TüTg|‡Ñs5ñS<C3B1>ñFÏeÄO•Å·?•ß`ô©pø©ø£çŠá§"â[Œî¶n2ñAáðGëÇSç4uCd<43>KøÖùê FŸ2Ô£÷袟3Ñg£wd©_Têqï-Íû¢àÁè-Íû"÷ÿhôÞ"€Áƒ IˆR¼à©ŠühëR9ù%£<>åã6/Ô_1y®?Ú¼T@~Éè©`üÁè•ÊñKFO•âF¯”Œ_ò³<C3B2>%âGWjÅ/™<Õ†?ؼR$þgÖ“£w­'çJôƒÑk%éWŒžKÐ<4B>F/Õ¢_2zª=0z¥ýŠÑsÑùÑè¥êóKFOÕæF¯”<C2AF>_2z*30z¥ÞüR4tª/?½Th~Éè©°üÁè• „PØJù‰¬5 
ó?÷=½+î;—±<1F>^ªg¿bô\¿~4z©<7A>ýÑSáúƒÑ+ìWŒž+Ö<>F/•®_2z*U0z¥fýÑS<C391>úƒÑ+Åê—XË©8ýhôR•ú%£§ªô£WÊÓÿ ?{0z<13>8×Àl^*†¿dòTüþ`óJüéÓ£­›ö(P€:Tþ¨‰G.öhë.ö|”÷dóç¹Ø<33>6ïàb/ÞÀÅ^œÚ=½<>=×}´y{qN÷dó.öróéÁè]O<E280BA>\ìÁè-\ìÅqàG£wp±ç€OFoàb/?½ƒ½8ù{2z{qä÷dô.öâ¬ï£Ñ;¸ØC¾'£7p±—ÄFïÚ$~äb<C3A4>Fïàb/Î?½ƒ½8D|2z{qzøÑè\ìűá“Ѹ؋óÂ'£7p±<1F>ÞÁÅ^œ>½<>½Læ<½)WöÈÅlÞÁÅ^D>Ù¼<C399>3ÑG[øÙ§ËÇÛÔÅK¸ìÂrѨiÎóÀæÜM<C39C> <0C><9¿˜‰mfÃdœ»ŠkΫòÍ)°¼–\ÖeØsq¿\×>¤z Ä¥¢ˆ¾ÄZ6OqY°0¿Ÿ{XÛ™€6 ÀV—ô!ƒ‹Nãòº€Æ=òi^·ŸtñǪœ¾ir6é¹üåPÎE¥<>—sA×ÀŒ"Go7™ÌS`µ6ýŸ©ê–©kˆÒp£yoWñ;†¶`<19>ÙúÐââý^Æ›·^âêú¥…s5º ¶ 1<>÷ßœšs 0ô3c Œ‰ì¤<>uÔì¢hÇJO%V¦^iÖ;C#¬•©áR?&7‡rnš{¯ãä—]„Lœ§äÖÆ+peÿ2¾×Ôɵöñ dë÷º ~^_7<>êøù¾ŠV¬=°£.ˆ\·zWkÄØQ¤¿hµ_uøS¶Sa?ØþŠ·k à/b™êõ”ÛY)\÷7ß¡ °}2û‡Z¢ ì( ☯aÃ>k®Š"†t* ¢@A¡SKy ì( â/”]7[l]O`i¶Ý¾¶óþRØ…–…ã¯;°òUqž)Q©±'¬lƒã/KÞ;•­ì+C®k`§Ú &Ä&—å>_±p<C2B1> ]Z`GmÉB-wiÍíD€Š•¬uµx¤Â_w&À_ä ªßV÷b®<62>¢rï}gSí_N"†ïWôêOYεAlùŠVUÌúë©6HkCgsߧyúsmq9YÃêA¨)*jŠ¥À&È–`×hñ=«0šLlÀÌÂñ+3)`•OZ棚Å~æ¨ bW×ÆnìTD˜T-b3¬<33>kƒ¨c”?)>µA$ýؽò¹J¢~R
5-.³¼´å ªgØÚ—Å4KÀJ©Å[C£L<>«6Lã9¹<39>>ùonæF$e¼ÞJ'õÀJKÍKô^ã¯>8…õ¤ ¼ýä¦ÿ´TæíÕõG—^C¨OÛ«ë#—ËëËêB³<42>i¦EsÖ£Ô¦a©ôdP+TûÆôrÑû%°^§nâÞ<C3A2> »¥q¹féÚÆëå„~g`šè+B"<22>Éc­µÖ徺)„;VšS¬M5¬<>¬L=Û¶jTÍ19Ú5ý<35>ºå<C2BA>•Å9Áv5^ÇæêŠ`u¯ž¶wG LJYŸåvò”zï§ørñv¡²¡½Í°i ¤“ü4¨LÀÊȈåÒÐN¬úÌVƒè¼~°…5†<35>Si<53>0:D~¶e6ne<)°£6ˆÚºƒò3;ëj­µYªl'ÙJîë ¾Áv"`¥šýÞ­déõæ+#…4ù¢ nÄ—ÖSa<53>ÕÙÜ‘’¥ß ƒH“sö6{[’¥ß ƒ¨kÔäaœv&çysóßÌ °2JÅûZl{`Giirµsó\£™Ÿ4L<>§ðÊòüÌN¬ÜS+Sd±Íü¤T‰Š¥(Â<ÀŠK‰¦âP=UeŠ®´¼x†ì¨ ¢˜5{°ØQ Áï}·<>*ƒ2ÑŽFNó1F^<5E>f¡ªÇ*n9tS|!I?yX“ÏÊ[üf;x€ø.Ùö¼ÛyX©ÆRG`{iõÄúš~Ö†-E½³4¨(:¨IËžGÃ$é÷Ò Ê—9Å>€$ýä`<60>‰Ð£5ÇÁ(—^­ŽÆÃL;ë<ÀʬÚñA`;çðÑ(Œ,ý^DY·()ÚÀŽÚ 46'|À[Eö¬ ¢Œ\;ùv¬UrÏÚ ò—š
}\°šÔëˆö†Àêì_Kb<u2 ·€äåL uù¨xT¬jN[`šQÕ͹RÖ<E280B9>ù¢rÐë©®8æXÕQóð,úã4û€è 4ó<ú@¯ºb<ƒJñJئh`U?/׶}oš]m]döK«Ç¬a6^\ƒ8¹S&<26>µ¬m{qôTR dR[L¤Ð0DéåKê˜^ZgÔR5°MÈÓ \M´Ê!MŒ†ŒÄÀPI³™N±i“³]ÆôR¸²”èƒúUú4÷ñ dS@V¹Åæ€I2Ž6˼p<º»gºGµ<Ù$ɳE²¥:±<>Xq=wz)œ¸ïäùë^<è…ñûTG4k×x½|> `„e™Mmuø§C<>êtÓV¿?™´„/^õºÿÉŠU'jô{àÇ®ÖÎØþÒâµÅ€S¼ZšUúç¾=·ºþõ?ítE2ÿÎ cþ”¼.ß(Îü“gkþ׿ü{œâÛ²Ó­_<C2AD>ÉÙªC9Û<39>8n©îüz°G.ŠðŸœ«ÃhêŸý>7ª0Øú_„i”ªM3ÿv53þÆk(žH…bÅ^§ÿ ;9ÛÜÑZúl³1ËÂŽêµÙÖ?uPg%ñm!ìj¬‡·²G9«X@|x÷¼5†w"1pÿyÌÇŸƒžaýá<)mÊÇ2^ÌŸü7¨ÿÉçÉo~Љïk™dü"Rkk<6B>Wn½|ô¹üó}1óJ¦¨¯÷e*?½|ô¹íûjæ
)—ÃOüníÍ4¥ÛênZñGRSê¿ãQæܦ5VJÒÌO£ëä>æ60yf9àáXôÖŒFÃ8ê<38>Èøxó5$ŽÛõ} «ìK@}6>o®& ¿2M_r<35>Ù˜éE•ñæ+#ÂZ¬ºz$â„ÍÙÕ[Ë4Ëéd&~¼Âºæj¼`«¬å<&×*½¤Àh îPÛ‡…Â\ub`òά¸ŽíÚŽ Õ°ÎUÓÓ«œS<C593>ǧRl£@¤ Ì%t[Ѥd:|[äsÍûíÕÕ¸mHª–íÍ\TS/[Q„+ÛO§Ñ*HƒjéýZ4¦ÊÒÊ¡¡>°4-s@»2¨A! ¶òÌ«crSØ¢AÅ£ l2°º(Ðz¼A16o”º/sŽÙÊ9°%¾€PD™bÜh„<68>7`±OþvTîS„<üJ1àÇÜŒcZf\tlvlèxr ~ÁõHhLÛç<C39B>>·}_μVêµ@”]:öå£Ïmß×3Wä<57>×yeõù“Ï-ß4¯äuëpV¦Ï}nû¾¢¹h•Ë¾Ç7mŸ>úØvYîÛîdƒlë>ÒÎ}n{½m{£6½gßCvÛ/}n;Ý·­8ˆ-¶kÉ<6B>?ùÜò}Ÿ¶òѪ<C391>—eŽ´<C2B4>>·}ߧm”s®~r`Ú>ô¹íû>M1!†,Ù5mŸ?úÜö}Ÿ¶gM(Fš ÚËGŸÛ¾ïÓ6ŽÝ®Z÷Q~þèsÛ÷½ÚƹP®—HëþÞç<C39E>>·}ß«‰ÔÿªU„¼.S üå£<C3A5>m×û^M¤âØx Ûç<C39B>>·}ß«5ª‡,ѳk;¿|ô¹íû^­u+Ëñº·°}þèsÛ÷ýZ‰Hñ Ûç<C39B>>·}߯µÑÙVmJ{Ÿ?úÜö}¿ÖI­õRkßýÚËGŸÛ¾ï×:ÙŸÑ{ë¶ê§<C3AA>>·}߯õ“É;–¦“KyËž¾\"µs<C2B5>ƒo|bgÜ´S{·ËÞvMÛ—<C39B>>¶¼-7-·%<25>÷Hlôž?úÜò}ouôâlçÏ,Ý÷M~zÿõJcLÞºÉØlß÷MnûåfãVï]hlï{&³|¹àÓ·î56Û?ðLëöåžãVo^ol¶♶/×›í;·›í×[<5B>#ßùñeÇfù~¼å_/?6Ówî<6Û÷ã-«…½\GÜêÍ[ˆ±ÝîÇ[~&ïõVblߺŒØlÿ̃]/'6Ûwî$6Û?ói×;Š­ýÎÕÄfûg>ízU±Ù¾sC±Ùþ™W»ÞXl¶ï\Tl¶æÕ®·zó¾b³ý3¯v½¿8
K~DKB<4B>¾“[™¦©˜ÆÛöêúïZÆ÷´Â©Æ«kzÏ.ZP Ô"Ní}`¨ï™j˜­jB6¹Ð*P“6å1‡Ô!î¿ ¢‡.ů ž½¸—+Ìô>ü ª?¿¶ØlÿÌ«]oÆö­„ÍöÏüÚõbalߺOØlÿЯ]î6Ûw®Ævÿ¡_»\3ÜêÍÛ…ÍöýÚå¶a³}ça³ýC¿v¹tØlß¹kØlÿЯ]îÆö­+‡ÍöýÚå
ºèÙ"°]SÜ0¹Æü{é+1×ñê «Q]+KèÛ9&¯ÜêøžWÓNãf»oTãÉéLZŽ·WŸç\k@:rþ<E2809A>Ë ÓÔ ¤ñê b³}çæa³ý3¿v¹¾sç.`³ü3¯v½ØLß¹ØlÿÌ«ÅÁwØ]¿Ë"g<>àY!¢Õ›Âfù.¯ô5ãõúù8#ûù­óXwy¥<79>æ×»­m4?q¥õLáŸûe!ï3Ü~æ· Š
.<2E>ú5lAÒ4Õ4fWãçĈc¥SN<^=W…|e|ÏeµÆôÊ.Ùk˜²ÊøH+C!lUo¥;UxTDª#zÏcžˆz…6­f§œŽ Ë<>WP¼×Ö<C397>­ ÊÙ£Ó5Pf'`ݼÓp,ú• BŠè¾Ô<C2BE>®Èf˜bÁeñÉ€ê¡zNh Τp<>æl&Es˜C¸º<C2B8>CË°0ŸÇ/‡ñâ *LÎÎÄw
Ç:bVƒ&áè[õ¯¡Ú¬'<46>çXÐxƒ]<5D> L}n+O`#ùQ<C3B9>;,¢suÌ.Åñ ñAÇroê®Ñçs¸ÇЕ·<E28099>¡9+¨L´ Ë:0±ëâB˜V¿M»ÀÔ¬ÏX´Ñ¿»““피Y<C2BC>Bœ,îŽW@äÓurÁär\-Ë1y§j)0glcz)Bž\á° ~ˆ€é4¦—‡Ì)°…ØF§kuVè;ÖÐImczÉu†.jAýph˜:¶¸Çy1âDüfß`k98‡cŠ gŸÎ¨*0©W¸µ8ÖÐÓ<>Ѹ–À øˆ@ýP«<16>òÅ}q1²Ú¦Þki`C™Ô¡,"Ör@â„}žmz<6D>i,.ñvõ rl˜^ÝI<X…aÑ¡Û]Lü°úaǪ"°âßc·ͼ<12>‰Ø<E280B0>«ÚÛêœü ¢c:c$‰·(\^¶¯…Äà?üì­†Êx<C38A>M„uM_a‰Žír˜ÅÔÍ£L/äšoå¨~è¾<E2809A>ÀÖæɺ<™ ê:/ÓKËþ/PgßiI³|Äì.ÁÕÙŠ©2ŸÖxE=šj6LýpÁ<70>ÇCîºÉ`™äÚÇoæÁîÁ…V·Àçf#;%»W­7Œýç£`:ªc¤öx õÃÙbÚèsÅÁ» <EFBFBD>ýn?á£G7ùŸ8Å>ä4jK7uùèÏÛü²óekæÏÛ¼Kêpì>…?w¿ÿwyõgŒ~“PÆè7™ôgŒ~“BÆèosçϘü&iþ<69>ÑßgËŸ1úMšü!£ß-ý.)ÿŒÑßfãŸ1ùMþ£ßäߟ1úMâý£ßdÜŸ1úMªý!£¿Ï±?bôûï £ßdôŸ1úM*ÿ£ßäðŸ1úMòþ£ßdí2úûtý#F¿ËÓ?côýCFÏ™ùGL\Ù<>Ôeñ ªà(A÷^?zÂèµÂ÷KÑïF¯¥½_ª}Ÿ0z­éýRæû„ÑK5ïµ¾÷ “×*Þ/…½<E280A6>½”ï~©è}Âèµn÷K)ï#F¿Û”yÀè—*á/…ÃO½Ô_+†Ÿ0y­ þR*ü„ÑkAð—á'Œ^+<2B>¿?aôZü¥*ø £×Úß/åÀ<C3A5>½ý~©~Àè÷{§O½–©:~Â赶øK¹ñF¯EÅ_ꌟ0z­&þR`ü„Ñkñ—ÊâGŒ^ꇿ”?`ôKáð—Zâ'Œ^+†¿?bô°õ<C2B0>ÿˆ`ýñ”ä5MÝQ[à6¾íf¾ú†Ñ/ê“ÑgÒ¯™è«Ñ'²Ôoª:—<03>¸Ö÷æ}Sðbôæ}“û5úl@Aù`A¢¶?^ ð¥ŠülëV9ù-£¯åã/6oÔß1y­?Û¼U@~Ëè¥`üÅè<C385>Êñ[F/•â/Fßò³¯%âgwjÅo™¼Ô†¿Ø¼S$þwÖ“£O­'×Jô“Ñ{%éwŒ^KÐÏFoÕ¢ß2z©=1z§ýŽÑkÑùÙè­êó[F/Õæ/Fï”<C3AF>ß2z)31z§ÞüV4t©/?½Uh~Ë襰üÅè<C385>
ê‡cùwL¡çÜz`xú:<3A>ÎÓ×ä[J`Õ•âãDÎÇLGþPÌÁ½4ÐjÍç<ZŒilùO‡f<E280A1>&ÀVÎENt´-GC¯&¼zà ¦'ט¦žyÌ-=qñ<71>§öa ó¿÷½}*î»±Ÿ<C2B1>Þªg¿côZ¿~6z«<7A>ýÑKáúÑ;ìwŒ^+ÖÏFo•®ß2z)U1z§fýÑK<C391>úÑ;Åê·XË¥8ýlôV•ú-£—ªô£wÊÓÿ?{1ú<10>¸ÖÀŸlÞ*†¿eòRüþbóNüÒ§g[íQ  ü£&^¹Ø«­'¸Ø×£¼ž½9Ãûjó .öæðîÅè\ìͩ݋ѸØ×㺯6àboÎé^l>ÀÅÞn>½}jó镽}„½9üjô .öæðÅè\ìÍàW£Op±7'/FàboŽü^Œ>ÀÅÞœõ}5ú{sÈ÷bô.öv“øÅèSį\ìÕè\ìÍYâW£Op±7‡ˆ/FàboN¿}½96|1ú{s^øbô.öæ ð«Ñ'¸Ø›Â£p±·Éœ£åÊ^¹Ø‹Í'¸Ø›ƒÈp±s&úlë~öËÀs‡mâ%\va¹hdŽ4×ubk¦Ì†`žœ_
_ÇLö7¦Àiñ<69> AzŒ¨sj„ùyÌ-õŽf¶?¦â±¥!=}žˆ¬Ý¡ÊØ8©?æVJ>Jk9(´aš¹#(Aü°Bææx¹vM¯%0Ñ}ÎbØ<nDü°¨OÆhwíHûIdµžï-=i© ÌT7³a2Î}Å-ç‰5ùæXÞj®[™ö\¥ä?_nÛ˜š½¦biHã"4±µ‰­KZj`~Q÷´¶+3íb$<24>m®íC]œÎåu•m]'Æ…òiÝöŸtÇšœ¾‰s¶è¹üå<C3BC>ÐE"¥Ï—se×ÀJFšcÌ·[Lï)°ÖºþÏäu ËTŒ€uÔi¸Ú<”É÷;ùCd°ÎÇìcŠ qÿ¨óÍû¨q‡}ég]ÇÄC<C384>´¦óñKwn<>&ªl<C2AA>1½ƒ²®zÊmbu¤š«Ë¨ÉÄëË!ÖëÒq©CB7­c´ù
ç‡ö¡V󼎹¥×nº#Ë(ï ±<12>©0da Ú‡7\†= ~â³ÀØ!jKÌ.9aŽïåtŽÂ;FÄêÃñC½Ðš4¯¾7 â\4ú\á×*3°Îú>õ­ò)xŠ Ï<>ÉÀêñÒ‡“f[<5B>É%®ÇøCú<43>å5:½UÓeõ7`_9™„x`šóÙ;éCM:±ŽÀð´®õ Ö}{"ÞA/dž„a¢-3¬1¹SiÄ9¥A•q(1Vºo`8Y[â F¥LAq‰ RG®” S4Ì~N<ã¢N.þ¸f²-6‡6Én0$ÛMQÛ±m3¬Šú´¶ÆIóðnqåR;ñæضocÔ¡m{h“i7L\ÂL0dÚ=.£ÇFG ØÓÜ1 òË®F&ÎSsï󸻿Ìïuurkc¾BKÅõK/'u=öQŠ‰—€ÕÚªI?¶…X˜Wm˜æsr3}ò߬ÜÎ<C39C>ZÊ|½<>N<1A>Õ¾ÖKô^ç¯>8…<38>¤ ¼ÿä.U:* %ÕuuýÑ5ØÀÐËþêúÈu3ÀFÙ\q60Í´hÎvÖÜ4,Õƒ j…|ßœ^5w;s 6Ú2Lå;°)hW:÷kn}¾^Ny¦‰¾¡(˜<ÖÖz`Cîk˜T¸cµ;Å*ˆ«¡d…v}`êÙ>±Mƒ ñhŽÉÑŸ´¯éoÔ-O¬—æ;dy[Kg€µE¾zÙßUfc•ÛÉKm¾ŸâËâíB)dG
±z`éZXbjµ9Ô&…„Ú½ËCöÖG0¯,Nñ2ë:¾VùO¼\5Š¾†ÌHŠù®þµïd¦ ÒnÏŸK¾ßàs_¯ê/PiÕä¼(c ®ÑáU<01>Ö™2¿r$þµš[/<2F>ùîat¹8¶)Á¦HlÕƒ•˜ZmÐ9^\Œ…½ÓÜ#-1yß ‹¨=ÞaÆfû¯\=¡WgÙÛÞkêäŽiÍÓRZãŠm†ôÀšéoçxöí‹óÔ"Æâ²<C3A2>MCüLJí1µŒÍñ,ÿ#‡<11>^}|û;(Ë&ÎÏ)Ü]ýÌ[,Ö„:kš|ÍÆ®;ÂÄ<C382>©…FÿU4¤q3Ñïr˜K.ÓW„¤xˆI<CB86>Xaˆ¿§ý¾öؤS,&7c<37>æX4®cr«M6Ls½&'…éW¶!±Ú©t÷~EœE¡$N"0=sÛ°Uñ¦¯ÀV8{baŠç4@c~iÁ[³¬"-jy óÀä¡ìvÇ k}­ñ zŸaËB¹`-©×Qï1 ¥ÕÕ¿ÄxÚbbnÉË™04êòQñ
<1A>´œÖŠ]Ö1ùÂäCPX.Á7Ú,cRE º{§ëײˆ–[K;)wlÖÄòNÐ_!ÐÆ6 ³øÞ1Æ@ž—°§°¦¯ñ¾ý&š¼}Ž-“FdO¦'溗90R-2ç<32>®èqN\¬Ëž¬2LA¡ÖÑšò¶<C3B2>ä˜üI-ã{ŠIÕž1Á˜&d<> CcUc‰ VŒ!9/&Çèûó†-ÍXR`¶Ÿcù†@´â1Óv/<2F>e—L³faB8P¹÷É Lî×S7L)ú¨îÂò†M[9~¦ú/âf¦³©Zf †5£Éþ È-»š;XÓ(6Á¶À4£šs7¤móEä$Ü Ò\ẕ¦%¢åéYôÇeõ1
Çšm2 LDs÷(Ló¢ÄMaŠ±¦1ZH~ôÄôZØÚô Ô—§Q§À´o®p¬„Ç7lÑzÙ}ÙÖz2nƒ4p-@U”…È3Åôð-Å_\Xä×¼ÓÕ7¬t%0áQwL¿hyèØ%8rðrf1Qäkd™ÀÈkN=û+èV1БÓ\»\M4­.«?Â1hÕ[,»6xKôä”uõx¥Âa%y?Í7_lªKQëŸÇcÊé¤ê1WEŠšDIÌ/H˜ç<E2809A>ÙÖHŽù•«sEŠšÔD„<44> J4ë:û@¯¹t<ƒJñJšXA\4°¦Ÿ—kÛ¿·¬.»Î-÷Z=V ³ùâÄÉ<C384>ª0y¬²õýÅVI=0ôJÐK ¬˜Z¡a¨ÓË—´´Î¨¥Z`»¢§A¹™z•Cš=‰‰!—f3<66>bÓ.g[æôR¸RjôAûU“ú4<C3BA>ù
áJÈ΃ÉwÉ]ÆüJž0%jv:—€ôæSlÝÕW X§Ù_asèŽ)¨cÓÆ;=•y ÉêgÀþ )×ÃOünÝÄ¥[ûænZñGRSê¿óQÖÜ—-VkÒÌO³ëä>Ö>1yf9àéXôÖŒFÃ8ê<38>Úø|ó-´Ž;„~ ’«% ±Œ7W“‡˜_]_r Yô‰Ù˜ GÕùæ#ÂZl˜Ìz$â„­Ùe\ë²Êéd&~¼Â¶Õî²¼`›¬å<'×&£¦Àh òP<>Û‡•Â\ub`òά¸Ž"€ŽMù°ÁUËÓ›œÓˆÇ§Rl£@¤N̵tÛ§d:|+ò9Eó~u5n_Ò¢ª€esÍd Á6¤áêþæÆi´
š ×&«_ÃC¦ÿ§÷J<C3B7>qÂuojè']dXe_œÄ\`šLÔÁ¶PF0& ¡Zºg¿V<C2BF>©ZF@9ÄÔ'––²tH„ÚP`Ϭ±:'W5éበ*mbkè<C3A8>µ¢@oñÕäؼQÚ±Ì9f+çÄJ|!<21>²ĸÑoÀbŸüí¨Ü§yú•jrÀ-0Ž¹Ǵ̸ú6Ø¡"ìØôä–üˆ–„}'·²,K ¬˜ØÛþêúïVç÷´Â©æ«kz¯®<C2AF>Z Ô"Ní}`Èð™|˜­jB'¶¸â*P—6 2‡Ô!î¿+ꇮɯ ž]ÜKƒUfú˜~<05>ôlØ!.n˜\cOþ½ô+1·ùê…Õ¨m<C2A8>ÕBwŽÉ+÷6¿çÕ´Ë|…ÙîÕxr:ãýÕ×<16>†ŽÜCš¯ çzCÕõi¾º 4 +h¦æìÊbüœʉç«ç¦<C3A7>¯Îï¹¾Öœ^Ùµ{ S@ÖibuJƒmê­Ôc§
DŠÊk`u1jä½>ó·j¥_…ľm³Ç<>NœÄ¾|?þß±Å=b`•äâL?¾íÚTÔä»Z4&ØLR+&‰ýÂfEtû Uœbt*(SÿL=&˜þ éí[%$öÅ”çºVËÆGIìWžþ(“^!ÅZCbÞ£<C39E>çý¤õ5æ×Râ[‡½FÒú½ÃuŒø¶nCjñuhf«ŸncŒ´>RõÉ:]XcDzTbcÆ!…ü5†-YýUc*<2A>iÊÈ<C38A>Y{5ÑHºí… ¯±>ùÚLV_Œ‰ EÇ(ÿèîÇÈêë¡à:†kœÇµX´F~ÊÒ€`r.…XÇ1}¾&w:Â:]é¤lÆùê-×WÈêßåu,©&Òdõ»¹ŽMucÛdõå<4V«#綢y/¿cÓ]IÅ°³û[Òúrð[KM¥H%Õw'<17>Üû×Ä\4Õ·®$×x=EdîVr <EFBFBD>ŠZu`DïyΩÕì”Ó1…ùù
¦e`dHê·…ÅÙŸrÛlþ‡]Šå1¬M.aZ<61>´<30>mf&úI<49>ab.Š»õ®<C3B5>1«Ô$õm3Ñ&×Lô©±â=$õɾç˜Fd<46> múŠ¬S SDÎm*<2A>‰~êƒèu$Ûج2¹çÕßa¡ädöTIýâç˜7R Š÷ú6±­ ¡=;]eu² 6Ì;MÇ¢_ *¤ˆî—úÑ¥Ù S,XŠOäÕsBcp&-€[4g7M²œÃjÀÍ}¢†•ù<±*8ŒW86Pµš4 Gß ùf=Ù2û|¶Ä2m`ês[yÉ<E280BA>Šîa<15>ksv)Žï¨:GWwÍ>_Ã%8†À”¼} ÍU¡@³`º"‚È`(ÛÄÄ®«{aZý
LËŒˆ‡7Ëû[$§?\ža¶ÿê!þË1:[ÒìùÃd.Uð$õ5øˆpS«B§ŠVÓµt_½¾æ#5:]¡¦(€/ÀdõµàO1Mä†øfIý¤Ùœ¢Ó5gZŠ].²ú+Iïñ=6×»‡%ÂŒQÍ1eç ¯†) “˜^”0²9˜ú\?o.æ’!_Í_ÁËœ<><C593>Õ—·òN'¨ù_+#%`XÒœ}Ê’Ö/æëyΉ<C38E>b+ 2¬²¸¨q-ó(LS€¢<E282AC>Àb‰_cª¯ËÀ¨érŒ¸‡!h˜˜¥l~Ml^X>09fEP50Ö™êžSÿ0ͶUÌõ@úRñÕ¼¾zA.£9Vmㆼþ(ã2 ú?­ëyŠ¢ ‰M<E280B0>«]Éë4ÕjóK˜¢<CB9C>êû/`ì^ÙÛ¦¥FP/Ĭ6½º1CSsL„ÒÆe L><ŠÙÀHÅYù˜†&óø^¯<>ÐÛß@³Âö­ #*šòœü' ¡[‰ ¬-Íþ”{Z©­Q4<51>Éw¨«£Ó3ið^K`Yt€ÊÃÔj÷©&f´â<C2B4>ËÉ7yÁÄ\R<>† Sèá5NŽeM(#†iŽ«£RÊ<52>{.r,ͱ|y)ºœˆŸÍÜÀØ5ê…ée´Rº—“‹«ÞÐ`6Cg˜aÛK7Òä˜æ“m <00>ÍÕÀ<Ô`z"uÇRý7<15>™^`ê†É7åÁˆ_ÕaŽ­Tíy}&˜œkµ¿ƒHOÌ%es †)p<>èÎÀ"×íï @p‰Š'°µ âv<EFBFBD>©YÏXDÂ<>»“í¼YÐD\,îŽW@íÓsÁär\6Ë1y§f)0glsz)B^\ê°¢ˆé2§—‡Ì)°Â?ì³Óµ:+ô]ë¦ö9½ä:C µ"ƒ8ÅL+nÀ1E^L…x¿Õ7XÀzÎá˜"ÃÕ§32ˆ
†i@Cž ê„n3×E¤¯ÆbÓ<>[HÉ:¦UGC¿¦Õ˜]ºfe )n-Ž-<04>Á4d´n50>"<22>AÔª¤å¥¤€¼¸ïO".FVûÄÔ{=MlJ”:”EÄzHœp¬«M/0<>Åo×NrdžéÕ<C3A9>ăÕQ¦ÞÕTöp¬)«þ=vÏ«ñ˜¨Þ¹¼mµ­ÎÅ":¦¡3GxÂå²-´ÿÃÏÞjˆ!ØBX71Ñô èØ¡YMÑ<úÄôB.þVÏ2ˆŽ¡ìlm]¬Ë“é¡nk™˜^ZöK¼@[}KL¤%­ò«C¸—i«&ƒÈ|ÚâõhªÙL0Ä‚<03>‡<”Á2 ÈmÌß̓݃)
XÉëÛV@ lž|OÖ±ây3j.×i|­Q‡H.õ\ª†ÉçucMþžó±I^ߪãH¾±—¡±Û m„o<EFBFBD>)ÎÍFvjv¯¶¢_oûÎGÁv™TÇ8Híñ2ˆ«Å´ÑçŠ/wUdçòï˜Bϵ<C38F>Àðôm<C3B4><6D>§¯É·ÔÀšKÆÇ;ˆœÏ™Ž¢˜ƒ{i ÍšÏF¢Iy:TŒilùO‡V<E280A1>&À6ÎE.t´=GCo¦Ÿ¼yà ¦˜¦žyÎ-=qõ<71>§Šb
ŒÜ¢¸Öàs¾7½×WÈÂTtlbÑÍ%0¦+‰]Ãt/Vë˜8†BÿI.øt·¹Õ#DAD‘½ %_ÇLÿ7¦À©øN<C3B8> =FÔ9uÂü<çzG3ÛSñXéhÐFŸ'"k÷FÈ3vNêϹ•<E280A2>RÇz
D1ü?q¨ ¼A¬Ì`ž¯±§`¶$_˜WrúòÁšÚn+CaZÎ<5A>­QiX¢¯¦ ëQ>aé]ù[Ðäô;«aulªìuû”$§Oþ¬3¹ŠG6á‡Á|=·ÉÅ-Å­{3µ(ªžêêX¯³ˆÈ1uÎjÉ1°•YQS@š¢Ý³‚ä{} S8£šLq¯Ü¦­è`Z—‡Z<E280A1>ëvÛÇðßl¬dY4ÃÔ”‰î©Hê[=drì0†'rÙ:™ ™˜Z¹ø“ô/;r9Y·®d™´Ä¬-°ì{a¼slaÕÁ$Á(bïñv$õ}[j5¬P<“}Š³ <>iÙÒ¢ÚæÔÛ¦ÖJŠÁr†ÍøIÛò3LQ•Æ‡E”`4 ðh ˆBоØÔ*l×ÎÄ¥†AбäÉ1¹|…fe³<01>R,˜Ây g]KÞò m˜ JPAl<41>¹5^A®]Ó«æjš³ÏY »Ç<C2BB>¨ VõÉí."i?‰>£Öó£¥-UáüAÔjž·9·ôÚ=Bwôå4Vâ1µ†>lEã†eÚÓà'> Œ¢^bvÉÁps~<7E>(gpÞ1"V¶¨ ê…¶4¡uó½aç¢Ñç
+)}ùÝ2ÙÌ"o®ñ¼5IékAàW…ÙxÖlëq6¨‡É>YÉèË FC/Ô çˆœÀJøvòW/<2F>îY± ˜ÜºbpÑdô»í_eF{qú¤Ø‡ˆ¤ÄFÅìž<C3AC>„>}žmniÍ,<p|M½¥7·Ûb…qjèh/.«,ÞÉâ<C389>Z+ä|C¬ußÉ5L¡F«Õª­$ôå¾H°6)|µ4Ç඲ S$A&Ù÷ðÀz²wÇô„Æ “'±a7¸LÌ]± H„hm\ ÓðÒÿ´<C3BF>iuK%Ò+9<>Ú¸•Œ¾Equ²óekeÇkš ÉÙ3\Ga?v|¯¯Ôr1»Šèj'G'¶wŒ #>&Áfû¬`Ü![³k!Sóã`>8±¹°u&³Ï rúÙöàxÂzʽ­ÒÒ|N491YIê+ŽN­ù;(¦R0ã>Ž¤¾BnR³6ƒô`¶t8äÛî~ÓÊË}ˆŽYM˜ Ø&¹½Ôâ ˜z=Óø†¹?HU¯*ò#¼ÑðU¤ôå×û—ŠËZ¤ÀäLvQ"8׳dÛ Së<RP&<26>d{+ýfÅ&¾¬m¯ã˜þc:Ö -“‘€« ¿6ù‰ Ö÷e¤ÀªmýMÊSy L6<>Ð@\4ÛFL.qµ<Ljœ(oÑé½™@«¿ûÊÉ´ÄÓœw)60Mm-#0<­~ ßžˆwÐ˱!a˜hËŠkL.ÅTqNi<4E>̆ÕᘠNÖJ¼Á¬”©H3Ø uDáJÝ1EÃìçÄ3urõÇhÄ5m±9´kwƒ¡ÝnÒÚŽíÁ`MÔ§÷[&Ýûâ¦vâͱ}ß ,Çþ¨CûöЮ×n˜¸„-™`èµ+z,³ÇFG X‰iX#0<>t-,1µú²“Â*ŠíÞå<C39E>¡ë£H˜W'‡x™m_kü'ÞM®i_CVôÅ|7<37>62Sk·çO<C3A7>%ßopŒ¹¯Wõh´jr^‰±·èð¦€@ëL ½_9<>ÖÌ­×À|÷0º\Û$á S$¶éÁjL­†Hè/.ÆÂÞiî<69>X¼ï„EÔï°Á8mÿ•«'ôêl"{»À{M¦Ü1­yZJ[¼CµÍ<C2B5>X7!îïÀ¾}užZÅXBe6°eª@ƒÉBm#¦q 5ž¥âä0¢Ó<C393>o…bÙTšã9ŇˠyÅšÐV-B¯ÙÂØuG¡80µÐ쿆˜4n&ú]³ä:1}EAHŠw€˜
ûZ/¾&°½2¢úpþ.Uql£.&0{ŸjóÖ$ ½2v*õI†ÁuÄ­üõ¸÷¶z˜¶°á ÑÈ2jH˜ëzwšäôç(SØÐbMÕjaí\,¯=S¿˜PýŸÍ.6Y-¡;¾§6oT˜ÚÌëjXIé79•Éf—ÑâÌï&¯e»â6ó8cí"¥¯%¾æØâ玬1…ã“eÍJ½^õô;PÔ“Î1aÍ7æÀ(ÅœVFíÒ,<2C>5'AÌ Y ŠÄ0êö“WøiáôË䙤ßiìÀð¡,é>I4E&¯käRm  X\6Ñ'»©Ý19óÂp1 †,‡^ëvn€äÀBz/ù‘0c-êqTøR >nîÌ.2õë<û![ }Ú9a,èP ¦õc*¢ìôúb9ñEkF LÜb5æ Æ›âîãZ®8éän¥uLþ5­Žj=ÛX軲ÑF2úVð“ý|¬ÞZ<ƒVÊ먼#Òœ[ˆž¤¾þm¶ãXB.W»øÜ"©o%Žä˜L”ev_ÈêgKª½2'q4Óc1¡»,WŸý |JÑïÛˆMj0Åbr3öhŽEã:&g±ÙÑdÃ4×[òpR˜~e<>JwïWÅYJâ$Ó3÷Ûojù
£Îãçi|Ï ¹'¦xN4æ—Öœ±5Ë&Ò¢×0LÊnwq ²6¶¯ ¸%KËi­8Ôa“/L>…å|±êj1V MÔ@¡»wº~-h¹µt<C2B5>rÇVM,ïýmlÃ0ù1ïc 䵄=…5c7ðí7ÑäXlö9V<16>ÈžLOÌu/k`¤ZdÎ;]Ñãš"¸Øʬ2LA¡ÖÑâò¶<C3B2>ä˜üI«ó{ŠIÕž1Á˜&d<> ChUc<E280B9> V<>!9/&Çèûó†•n,)0ÛÏ1Á|C ÚEñ˜‰¼×À²ëƦYS˜Ž%äî}2“ûµ]ÇÔ KŠ>j‡Â¼aË^ΆŸiþ¸™%Âlj„J鶱`X7šìo p¬Û&ÃÄ´Htw<74>Â4/jœÑ¦k™£…ä7AOL¯ÂÖ¦gØ4 ~yu Lëamñæ
ôí8V&DéŽ;i²úFþÎöeÖÀxŸdçÞäé´Z<C2B4>R` Çjx|ÊÖËáËž°>©q¤<>Ëhj¢,Dž)¦„¯Tqa_óNWß°ÒÕÀ<C395>†G*Ü1ý¢å¡ÿÃ.Áƒ—3‰"ÏØ"ËF^sÙ_A/°‰<C2B0>¦ÀˆœÖ6|àj¢iuÙüYŽÉ@oÞbÙEÂs@\¢'Ç ¬›Ç+ SXüäý4ß|±i®I­<1E>)§“šÇ\ Mj%1¿ a
ç4{!áZ­¡ i}½«mÍÉAst„ë<>y]}ž8IÒìˆ\`š½2Ar 1øWê.¬© ú¥Z¨Ö<>ü»öˆÁ™Q¶®1½fjÊWŸ÷Žù:Η®NäXW5M´ sXs¶CŒÁ ž'f[#9æW>­Î MjR6*„«¡?&ß%wó+yþÁ $©Ùé,é͗غ%«¯°-«¿ÂîÐSP·™
LL€4¼cÎÍ|¼“Ù§\¨(ÌìÕ6c€†iÝ)T~ÑïDÈT T§3Ä^9çr<15>Ïžìcƒh²Y °“f2û<32>âPæW¢q©Ké)0oxæË•ú<E280A2>çŒúØG&¡¡ï¹?‡eª%;øítEnž§Ó¯ùÏ,Q°ŒpŒ´¾zDA×j“™½£ÚãÅõ×dÇÃý&1ùL9GçcÄžVúIjߨ‘:¢MaZÜ=k<> ¯E%œ„Ïì»·Ï'ÑÿˆþˆÈå¨V;<3B>aÖü$ X<>ØH\é÷g<C3B7>Ë$[™µ$øùÇVߌci¦¤EÓ°Åø«l£yÁK"x³p¡Žü>°¸åAòÂ6h`yÊŸ4y46ú(ÁâP+”æ—ü 4#9µÂåý(“Ó¶üõ‚^ý¦<®Ï°"TÊNí{l·hy·ä%^YaP °auÝCC²úÙ&°¿fÂεÉê·ðP†éÿé½R`ÜÆ¢pÝúIÖØ'1˜&u0<75>ÊæDa“HQy ¬£FÞë+kVúUIìÛ6kpÜõäÄIìË÷ãÿk$ט`úñ}צ!+?Ô¢1ÁVZ1‰HìW6+¢ÛW¨â£SA™úg1ÁôMoß*!±/¦¼¶-°Vw>Jb¿ôôGYô
Œ]Èd§±*Ý/8rl%ˆ­ìÛÁÁ*Wâ=ÄÎ#y:;<3B>ŵâ•UÏŸ“ÍZ…3vj#U;<3B>@­ÕX<>å ì<V]mÉíáHËŒ³‰¤ ¹»²¬§‚ -­ä™–€â1êÕ÷éü|™d¿¸<C2BF>= [Ek~‰ïBÂ20ê_ëvî­néJñ×/"XÅÂ-v|©”r/NZŸD1Ͷ‡¢<E280A1>RáßÀ´E.çHÙd.þæ¢-‰vINØ ûë8ï'­¯1¿Õß:í5ÖÝ®cÄ·mÇס•­<>1ÒúhÖ'ëta<74>ËP<><50>ò·¶dõ7MŒ¥¦)#?fíÕE[ é¶l¼Æúâk3Y}1&6£üc¸#«¯‡R€ë®q<C2AE>o.ÖbÄâoÐ;ù)KɹTbÇôù–Üét¥“²ç«_´\_%«_}—×±¤NX|H“Õä:¶´<C2B6>m“Õ—óÐXq¬Íœ;˜B2-m=ÙôbWR1ìêþ´¾üÞÒbS)RIdõÝÉäj÷þ51Mõ½¥‰à-^O™†»•œi˜ú½°8ûSîÍÿa—by k“K˜V'- [`û…Y†‰~Rd`˜˜ân½k` Àæ5I}ÛL´Éµ}j¬øfI}²ï¹¦9bC¤¾¢%ëÃsJ`¢Ÿú z]$É6ökLîuów(”œ¬žª ©_ýáóFJ<46>i™ñðf)yì¹ErúÓåfû¯B<>ÔŸé°£3°VÏç&s©ù€'©¯ÁG„ã˜â<CB9C>XU´š®uøðøêõ-0©Ñé
¼¥ÎYƒ54Sa5ÊÞkq1½K¨#Y½_!z¬%f×Än<>Ñ 5E|&«¯‰i"7¬À7Hê'Íæ<14>®9ÓSìrÕßHzÏï±¹><,fŒj<C592>y5L™|À¶Äô¢„‘ÍáÀÔçúÙØzzs1— ùêþ
Ò­ü·ù¬lEcÀ‡49ý¨úgÕÖ¯*”Ïn æϾø"½°¤À<C2A4>ª]÷‰Šv?.¦·†ž&[+9ZD-a2®@Óè<¥<>pÜÀøAK °°¶ÐæèVÅcòŒM[Øxn“ §7Ùi,(…B äwº€<C2BA>3<Üè@±§ÆW ^öà섬¾ü°¼•w:™@ÍÿX<>)ÃFàêS´~5_Ïs.ì[Y<>a<EFBFBD>ÅE<C385>k™GašíK|qŒ©¾•‰Q#)ÒåqCÐ01K9ØüZؼ°4|`rÌŠ Z`¬3Í=§0þaZm«˜ë<CB9C>ô¥ê«y}õ‚\Fw¬}ㆼþ,ã2 ú¿ly‰¢ …M<E280A6>™«ÝÈë4µfóK˜¢<CB9C>æû/`ì^ÙÛ¦¥FШĬ6½º1CSwL„ÒƲ&Ål`¤â¬|LC“ˆy~o´Aèío YaûÖ†-yMþ“€Ð­€Ä¶žVJ<7F>=­ÔÖ(šÇä;ÔÕÑé™4øh5°,:@å<>ajµû23ÚðÀŽåä¼`b.©-Æ)ôð'Dz&”‘Ã4GƒÕ€Q)åN‡=9î¿Xy)ºœˆŸÍÜÀØ5•ée´Qº—kÞÐ`6CW<7F>˜a<CB9C>ÛK7Òä˜æ“m <00>ÍÕÀ<Ô`zU"uGiþ
Hÿ°Y.[1†Ö¼ I {rúPZjM¹”<C2B9> §bÖ˜¾¥öb—<06>87¸a±y°Yí½i%§¯ŸìÜß«ûȬð¾dE‰nOAüÚ—<C39A>qDµso‰\žsqNN_ž×ä<C397>XÉAxÜHRBhÕl™Ô«âËÙ7RIêk¬kÔûz±ßá´ÓŸãø\¢X¿Î¹ðÀ(4Õè˶˜P¬JfØÂn… »Í£Q`bN °Ñ®­4l€ÉÞÍØß³ KaǪlRÔW«Lvk±ƒ±SL1r¶º^F'~¤û‰S0q&Ïv°Buê.¢5WŽ=MdÇ,º%m¿Ä69}Eù¶Ë4ÑT<C391>(UùLQ±bA8ùýyö—«_^+´úÄkYì¹&Ó6¨}¾®;'#£/gn9<39>2±Üˆ¢1_ò?Р‰&¿'Èòîyv¿<01>­KXõ33É°®1Zý¸ÁŠSNT`Øo®TÀj*ûN=éü5Û¹^ß$šœ}N ÈÕŽL/0uÃâò`įê0Ç6ªö¼><4C>µÚßA$ƒ0ß¿'æ²9ø.tg`ëöwP X¢â ¬G­aÐ<>¡ÛÊu©Ã›±Ç4ä
kãH—Gv×<s¸ÎžÐw«—ŘˆcKI÷\tÚKãÀšxãVöX #×F-k$Þ¬PÛK Àäàì&…_^AE·Öñ=Q'ÂR?¢FîÑ,$ôE f?õf £T ŒL[ò³XÈËdöÑÆ!<21>ž,ïV<C3AF>Vtä1*ýŠJëj§²«ŸÖST£ÀÀònp¤IÑdXÔ‡ùýH]ulá>Ÿ´X¤¶Úî¨WÏ8F:°øa¬f êC”¾íX}5,<2C>£°Öí¤ôWJ{,ÿTˆâ'þÀÖ­Ì_Ž þ^âý˜3<CB9C>CI³­¾¤e»ê­Ä=F˜ß²òö<14><Šm<C5A0>£<>ÂkXÛŽl€U¼ˆ×R¯ÍX¦"f—œŒþ™ù8¦èpµ[8À OqŒ<> c „\Ù7¼ÉØ…<C398>[À¶ðÒ±µúù?¹$È\+~µÆJJߪRéua<75>ò ¿ô ŒÛŽʈ¡X: 0õ¸FvŒƒ+lóƒÒ÷¿zó˜cA$¥¯^±uÕ/$Ë9m°C…„<E280A6>êô>EÚŠ”þê7öëâæ;ÿ—ªoŒ0‡”¾+;! f{Bâ$¥O!¿Æj<×Å‘Ò'žµsoÍ@sÔ©€if“t_<ÕpþNJß.,#hÔîUæ`ì@d;Õ¨®b“ȧ:)};ÏCr Q»Y»-<2D>öØÂæûñP°eÛ}f"ÊË?U†7<E280A0>EÛ² 8y ßJJßŬ²aÄ_= azB=Hu¬O;µ"¥¿PµÍþ¥æŒÜ(^Ié7ß½5Œ‰¾z=¬|¶ÃXšœôŠSõ`T—6;öÆ„J)<29>9DJ?ÂR-½~]GXOF¿De%*pŒ$z´4éýyáÃ)v_ìÔæ…V_;3ØFxÁª_>ëÉ<>ÓH~<7E>Ñ_í< Aö¯Ù#A«-é³A#<23>îí̬í1>û<>¿Tòù-Ê`ÀÔZTò$VµZÝ¿,B=oÚzÖ5Ï<C38F>ÅêdgÍ6Ã4Nm<1F>¹Õg«€<C2AB>ÛžóýWv/;å‰ÝR}<7D>mGõÀ(çôÍ—ý¬dTD=½cò \/<2F> ["ú3ÌÎuNÅμu®rñƒY<C692>Ùî¨<C3AE>z뜎4¶c~ýY˜Î¶Ö4Êù+ùüQð«.åœjöƒ½@y j¢âôu³ÆêÅîèYjqs…Ëø7SÂ6Š<36>k,ê÷ã¬\ò„˜ÞœZ¸Å0yL¿"lµûoltpÛ¥<îþ,r°6„sܹXìYSKX¯·½ýÀ<C3BD>¦K~ð,s@¤Ô±F¶ÓX<C393>{<7B>4"ê<1A>"ÒjU(<28>ñ¼Fr­ÍÏë¼Ú¡·Þ¿ü°Å;îÕŽbuŠ–Ô}<7D>ŒæY8ôÁQÉÓÖ•lþ:ùæ"X!XXç>‡¹<E280A1>ïÉ)³³P…Ùe5Þ#Œl~3~kÐêëi hܸmw¿+È!¬­qæ-3åEâìŠ\=tLy°:EIžcQ*ÃxšŒ°#0îPZ Á´b<C2B4> ùJ2Ÿ]%μ<C38E>Q€ê×UTÛ— ÒªA<C2AA>Ká^º˜~<7E>zénS) )YÇ´êhè·À´³K× £Lañ#y}Û
<EFBFBD>*Ùü¡‰5Æi¨ˆÀäÉ W1 s7ï[õ@\5B eµMÓL³Š”ű<55>­Ér+¼ÇÀuw»¬,vÝœ·tùò:ôÔ k=œ¢¥Éy§n}N¶Ðjž—ÀD ;U†Q NÉ«a+üŒ³‡ŽÉ%·ì%`v@¦Á6<C381>zfõ÷«Ð]꜓C¶ôP`[¬S¬0Þ<30>²ÊÅz<C385>j>îC¨$ôÇQ|°C`FIÏÄá30¢ªØ%—°jÀRó<52>Û¯Þ¹ñC „¦…ƒ®q,œc´{œX# ¶rð-3ŠÉø¢JF_mDe¨aš”ó< HüAaµ;P§ŒÆ/3«V­2¹0 ]E™a3×YÝQõáN>iv:À°Îr<>zÁìç9÷Ä}ñÞ£{¦NÜ1X*C)°(â^ “ו¥`ê* ¨<EFBFBD>­ïÉ:V=oæ¯@Íå¶Ì¯uê©Â¢ž‹@Õ0ù¼a¬ÉßÀ3c>6Éë[uÉ7ö24V`[<5B>[TWÃ:|Î÷¦7òú
»(9÷bºJFߎÍd´Q(>N€QãŸüzå>jÑ4lÄÂHbF>L“´Z<18> SZ¬ZÞ1bjª ƒ 4/‰ãÊ«__ ìØO<<3C>É„¨S£ØLž»Ëw-<2D>ÙÙŠbjk,%BS˜÷HŠ«³_"g˜Lˆsd¾<>ù‰ŒxNŠ:š¿.ËQœ0ë^Æ;4¦:7òùoÖ/+<2B>²ñÐ줸(NvgøÊ,nÿë<‡±WPÇ¿ÆýjTœiav1¾9ÇîEP`ZV¦†arËr<C38B>1<EFBFBD>ˆÿ«_5f·€/á|Á4I}CÊowk) *sK<Õ8ÂÈvÐ?ÛèÖœoFo+ùü—Ge»ƒ"o<13>Í·•£ÜÌ-†÷8±6sóÃä휨ð—UÛ<55>ò{ËiKÛ5K,K`viG@u\µdÿvþˆ ×õcãè1Pö­)Dz|<>ÉÙT;¶±K0» ‡õÏŶàí¶ÛåiWö-„qjXýí G0­Zµpä l垬æ~t¾æ'6 óJ6Ÿv¤óÇ®pNv«ÞìÙi »rÒG Æl\¡¦ú"%Ë͆ùq4ë¤óEÕ<H<>M ¿â¬* áp·a8SÑbïýSý†Ýf÷ýLÑ Æu-|µ õgæ§_Œ ÖØç̘8É8×VIç^XŸ³³4¥Hi=waùÄ}ͱ¸VÏ1¶IV'¾•­E¿<45>`1 úßFS·ýHZ&EÆyÝxu¦áJ[¬édžu%¡ß<C39F>ú0L]e§Ø³¸v²¹ÅÊ¥µÉÙfµ<66>L8¤FxææŠø" }þÓ  m~m$ÅïD<C3AF> "<22>|j ¿§®W<C2AE>Ÿ©¤Œ-0­b 8(!fv¸Ƙ-XÑÏX ˜fªßàXOøë©…þBÇòêbµ%‰Òbý L=³r+Pu¾:¾¶Ý2³…~”"ÚHYlãL[2Œ;hü 5ÇQ5 µqOiX¯lš˜_†b­è[ØQ †UΆôÄæ¾Ç ‡½ƒÎh_±;'èñìuúqŒÛªÂÈY: Œr¿Âx+ûök%Ÿï#³aMÝ<4D><„#<23>¿2˜[L&­„ìóFH:@Í6™òŒ¸’η>'8§6F>¿ù H°Ì]x“uzµÛ£”LÎIñÐÒ ËÄ¿Î{Éæs+_·>'d[6þJ6\3<>È4¨†c5¨ºËƒˆü­¾JÌï~ ‰aÜ1/1lÙbÉâX·#KŒœZ+¦ B¢FC'ZŒd>e×Ù:<3A>y¶Ž½(°Å¯Êk†5î»X žg.ÃàbÛï¬äò¹6ÍôUØÒd³Ú»œT¾ß“— «”u~¤òSµ"aóñ>¿J*ß6#™\%:ãL9Pñ³oyqO_£FˆK ãj¦)È9™|-Év^+3 ¹eÕ³Ö`"¨Væ”­¢Fä²Ä'ùâ»4Ôîf¹ZEBÌ-æàP­q¬øÁÙ°²ûK2ùqå„AêR*c¼MX<4D>f¿ÒBë Y˜ŠŽ-,º¹Æt%±k˜îbu±Ž‰c(ðŸäOwY}1B¤AôÙ«À@#Éÿ
VÆý¥`šJãB80V8S'£Ú<C2A3>¸†qÉ+Ã<>©ÅüÄ /îh-³¿²1Ÿ ³ëuÌIå/ÕŽ€¦`f£ûV:ÜIª,†q-Tö­,?“ÜÔHYÓ€4ž;'<27> ¢`#ò†qÇ«Uû8ÆE{ïÒW« ÷@™™Ë:ÔßP˜ý§]HmÛT¹˜`µþ{ÎËñOÓý×_þ®ü·¿Yå´ÝŠýë<C3BD>¿ËZ#dóƒ"I¢ÇYW3ôïÈø_ùÎŽ[tþÇ?ýŸÿ&w8ÿ÷_ÿ÷×ÿû/ÿñGü|ùe÷Ê}òóè°p¤ý¢½H+;[響D¢VßVÁï_¦}n†E¿îm3æ¦b<ýÄoÛìO\kNr#vô¸Ûb¨ÙýK\ŽÉî½>úäîôéÅõìc¼þó0†÷q=Æ:£ùÍéA9š c‰¼M!ˆeôpÿ“O<E2809C>ßüä¿ý?ÿ/Y€ÿüÿþBÍX/¤žÞß)<29>Þ‰çm¿·² >zëêy³<79>Ñ$ÝÐeþçÃ'ï[Î×-'2w\L³e²‡<C2B2>Þ·½\·M„¢ÕÄn!ÛÇ<C39B>Þ·]®Û¶È,ênÃöñ£÷m¯×msÊ<73>cënûøÑû¶ëuÛv4QÎ0ÛÇ<C39B>Þ·Ý>°Í­yæÇ<C3A6>Þ·Ý/ÛV¶ž§÷ãgïZÏòI×­§õ4Á>zßöu¿FBØæ³m¼‡íÃGïÛ¾î׸´3LÒa?~ö¾õë¾M+ßtžä<C5BE>Ÿ½oýºw“¥vžæ<C5BE>Ÿ½oýº£Hü<Ñ?{ßúuG©¶Ík"«Íúñ³÷­_÷qbz=Š#Üaýá³÷­_÷r³¸Ëy®?zßö^n.Ëy®?zÛöü<C3B6><C3BC>×ò4×>{ßú^Nnüi®?|ö¾õüÜÜÒÓ\øì}ëø¹<19>Ó\øì}ëø¹%ŒÓ\øì}ëø¹Áþyd ïØ^mé¯yÕ“"ÕÆPv.òŽ<C3B2>zÑN¯[PX¯ŒvÑÎl{Ã5¿és¥ñŸè¥ÑŒo™J¸!3uÒ?Ææ%Ùc3þ<33>:È¥ýº$l¦?pAfú¤‡\ÚEd3þ<33><72>ºÈfüŠ²ÿÀ¹ñG}äÒ.Ê"ñOýÏ£Nri×äÍôA~ÔK6ÛWdÍø1ÆÏÆVwuE¹ØŒb™ñ“”qiŒÍø‡¾ì,ilƯ(c<èÝÎÒÆ¿¤hlÆ?ông‰ãÒ.*›ñýÛY긴 ÂÄÊ æùëq
ÇfüCÿv<¶»õ¯(›ñýÛYúØŒ_Q<6ãú·³qiEˆÍø‡î¬JŒñKbÄfüSwR'6ãWD‰Íø§î¤RŒñKâÄfüSwR+6ãWDŠ1¾|êáNªÅfüŠX±ÿÔÃ<C394>Ô1~I´ØŒêáN*ÆfüŠx±ÿÐÃ<C390>„…¡9Wô„Íô‡þí,0l¶¯è fkò…y#§/¬©í¶2¦çØE<>†%újٱ冑ޕ¿µMN°Æ^·OIrúäÏ“«zd~Ì×s\œÁÑR܇7³X¢ê¥mŽ5ñ:ˆSçlÛ˜-¤):<!H¾××0…c9ªiÁ÷ÊmÚŠ¦uYq¨õ¸þá°} ÿÍÎJ¶<4A>E3LM©èžŠ¤¾ÕC&ÇNc¨s"—­“Õ<E2809C>…©•«?ÉøeG.ëÖ<C3AB>,“–˜­}/²¦Á»Æ&XLŒ"öoGRß·¥6Ã*Å3Ù§ˆ0;À@Q˜--ªcbN½mjm¤,§aØŠŸ´-?ÃUi|XD V´ðÚΠ …l€Gc@ŽbS«²]»ASÄÇäòšY Ì4J±`
›ñý[ _¡uËUúÑ—YNmñùñ£÷L_e”±€<ÊØ—öøÑ{¦/“LÓ<>"Ù6¦ïÐÆ~•Cü¹ŸöQòþ.Ãå§ö?e+|<7C>ŽŸ1ñ¸¥p‰ónÂ-Fö^ð?ÙÉzÙx'ì¼ÐTnÂÿtƒ‰m·eÛx¹ÁÈyTq£Èd·Íýœ‰oæ·ý}¦ü“ߤÈï1úMnü£ß$Åï1úM6ü£ß¤Áo2úûü÷=FO¾ÿßçÖo2ûû¤úMFŸM¿ÉèwiôÌ~—?¿Ëì7‰óÌ~—1¿Éìw©ò»Ìžâµ;Œ|ˆ¿Éìï3ð7ý}êý&£ßåÜo2û]²ý&³ßeÙï2ûMzý&³ßåÕï1{J¨ßCND®Ø óж¸<C2B6><C2B8>­Ç<C2AD>n0z®Ú=×ñÞaò\­ûTÀ{‡Ñs™îSåîFÏõ¹O%»w=æ>ÕêÞaô\ûT¤{ÑS)îSuîFOÛ-7˜x®ò}®ü½Å쩾÷©ä÷£§ÂÞ§Zß[Œž |o1{®ä}®î½Çl;{„óg·˜=×î>×óÞbö\´û\È{<7B>ÙÓéFžJŸË„o1{*¾Åè© ŒÌ;ä1œu9,yÏ+l¤ôåwëb3¼¹Æ[òÖ$¥¯<05>_fwàiÔŒ­ÇÕ F&ûd%£/7Î9<>Õðí†e¯6.<2E>îY± ˜ÜºbpÑdô‡í_eF{uú¤Ø‡ˆ¤ÄFÅêž<C3AA>„>}žmniͬ<p|M½¥7·Ûj…qjèh/.«¬ÞÉâ<C389>Z+ä|C¬ßÉ5L¡F«Õªm$ôå¾H°¶(|µ4Ç඲ S$A&Ù÷ðÀF²wÇô„Æ “'±a7¸.Ì]± H„hmÜ ÓðÒÿô‰i K%Ò+9ÍÚ¸<C39A>Œ¾Equ²óe[cÇkY ÉÙ3\Ge?v~olÔr1»
ø©0ø£çêßçŠà[ÌžË~ŸK<C5B8>o1{®÷}®¾Çl{r §Ïn1{®ð}®ú½Ãìž®<C5BE>?ÞA®Wú~H®~<<3C>xÊ/tcïv+âµDó£çÌòÑèµó£§œòƒÑ;˯ò÷ˆpZÓ„oiàW¹ûG³·4ñ«¼ýÉì½üf:6Ó”ü®‡NŒžËÃ<C38B>¶.Õ‰_2úXþ`óB}ø“çrð£ÍKuá—ŒžÊÀŒ^©¿dôTþý`ôJø%oûXö}´y¥þûÉS¹÷ƒÍ+ußbUy4zתr®-?½Vd~Å蹦ühôRqù%£§Zò£WŠÊ¯=×<><1F>^*&¿dôT;þ`ôJù%£§šñ£WŠÇ/ÅD§Zñ£ÑKEã—ŒžjÄŒ^)ÿÑߣѻ¢¿sAúÑè¥Êô+FÏ…èG£—*Ò/= ?½R‰~Åè¹ðühôRú%£§‚ó£W*Ï/=š?½Rq~‰»œ Etm<EFBFBD>#Ë Û;Æ‹„“`³}V0î<30>m‰ÙUAäÔü¸Ø€.ì_¶Îd`õDN?Ûï@XOY£·5I}€JZšïÁ‰'&I}ÅÑ©wÅT
Ì<EFBFBD>F/Uš_2z*,0z¥ÂüO°´G£7ˆsûÁæ¥röK&OÕë6¯”±<C2B1>@=Úºi¯vK=n•ÿI6öê´îÉÚ|ìÅ9ݳ՟gd¯N螬ÞÁÉ^<5E>Í=½<E280BA>•½:•{6{/{q÷dõföê$îÙê Üì_lI=˜½mKêž=š½…Ÿ½:ô{2{C{uÜ÷löŽöê ïÉì,íÕß³Ùxګýg³70µWÇzOfïàj¯ôžÍÞÀÖþÅVòƒÙÛ¶ ÛÉìŒíÕÙá“Ù;8Û«SÃg³7°¶Wç…Ofïàm¯N fÜÇÔWÈMjÖf<EFBFBD>Ì–‡|Û=ÒoZy¹Ñ1« “ÛÀ$·—zdS¯gß0÷) æUE^c„7š¾Š”¾ÜòcÿRqY<71>˜œia%s=K¶Ý`05¼šÁ eòH¶÷·ÑïVlâËÚþ:Žéß1¦c½Ð2 x°¦°¯<C2B0>êkÛ+3z ©çïáRÇvêb³÷i6¿hM²ÑÐc§QŸd\GÜÊ_<C38A>{o‡i… _ˆÖDʬ!aZj¬ëuÜiÓ_£LýaCˆ5U«…µsµ¼öJý~`
ŸÍÞÀÜ^<5E>>½<E280BA>»½:|2{{{u.ølöþö/R@fïʳ=R¸G«wp¸WG<57>ÏVo`qÇlö£µüïÓ}À)ÎMhápgõ? :\ ¾~õuÊÅeÑÁ6©J°ä]Üb9¥âP.mÊ.= ¤_,ÕTŽ¸.í]¿<>¬£T?XpÝæÞŽZÂR{E†Ì±MlV(ëwÈõС²ÛÆ›ž°¸iG¤³WdµC_)U`r Oi˜Ú†r`»ú ʨϻ¾AoË®È ¶Öíæs°ÕDÃ&¿hÝ´§ì¯€0þµ©¡°´"ê“ç†êÕ¢²›"{l—[â6øɤüIVîQÍY K¨ÙMS Lk p[?—Ï«Ëû<12>°~¡¦2qÅœ]ZŸCÁ¬šXóҳ߃¯G]jÉK`ÄÝ_o˜S`´Ù/ä§ß\¯su ”oZ´Z¶Þ˜†q¿Z×90×U3U„Ž†Eë.†ÚMm0D%ÁüRÿ©¶pg~ZÓDQû¥9°6™d<E284A2>ë ÌŠ]C†³3¯Õ²k1õ¹–Œô’-Í`»r#h˜º ئe FøR[[;j„.R ¢=z5Âyœ É5»ŽÜa`šA-/ÝUø‡\·oX:H•d$ˆº)ζégZÄÔ‡"+òj®2±¦Rsr{š'©°s” C@ÏÙÓt*kA£ÊŸS™æ”ÛÕ„MC ©BýjË®“<C2AE>r<EFBFBD>«Šé¡×Ét ²‰F¡áÓxW¢š ,Sv¼ÚNSïhOázcr#®šáخɆև:VŽ,ÖW¤€ë€(@mÏ»hE)X¿fÊ)<˜f˜+Æ€É?¬i²îC¨ÇttS`êz“«rÑ°ê<C2B0>Rͽ 6»Ødµ„îüžÚ¼Saj3oh¨E`#¥ßåT]F3¿˜¼–íŠÛÌã@HŽµ”¾f”øšcÅÏYc…ãeÍJ½^óô;PÔ“®1aÍ7æÀ(Å\6FméÆZª“ æ…,PEbuûÉ+|Á´púeòLÒï4v`øPtŸ$š"×5r©¶†<C2B6>¬M.èÝÔye¸C<43> ;7@r <72>ÞK~¤LÁX<C381>úAœ¾H<>[³Lý¶®~ÈN :ÕbiýXª(;½^,'^´fÔÀÄ-6cÞ`œ±©îþ0®åŠ“NîV:YÇä_Óê¨Ö³ý‡BßÕ<C39F>6Ñ·Ÿìçcõ^Ôâ´Q^Gå‘æÚ{Dô$õõo³ÇÊr¹Úâs¤¾•8`2Q9|Q «Ÿ-A¨öÊœÄÑL<C391>Å„î²\}ö+Œ<06>Ÿ—ù=+зãX™D¥;î¤ÉêGLù;Û—Ùã}<>{“§gÐjAJ<41>)œÓì…„kµ*êØ5BÒúzWÛš“ƒæè6óº8ú<q¤Û¹À4{eä@bðoÔ]XSWôKµ$P ¬!ù ï:"gFÙºÆôZ©)ß|Þ;æGèt8\º9c]Õ4ÑÌaÍÕ1r+01ÒðŽ97óñNfŸr¡A °²WÛ<57>¦u§RùE¿!S-ÐœÎxåHœËUt¾z²Œ ¢Åd%ÀAšÉìwŠC™_‰Æ¥.e¤À¼á™_,Wêž;0êO`™„†¾çþH–©–ìà[¶Ó¹{žL¿æ <³DA@™ái}õˆ‚®Í&3{GmÄë¯ÉŽ‡ûMbò™rŽÎLj=­ô“Ô¾Q#uF´¸Þ(ŠJ>8 ŸÙwïž/¢ÿýËQmv ¬ùI;°‘¸Ò﯉Â7<I¶2kIðó/Žm¾ÇÒLI¦a<C2A6>ñ×ØFó—D"®9ðfáBù}`q˃äÂ6h`yÊŸ4y46Æ,ÁâP+”æ/ùA*hfrjƒËûQ&=¦mùë½úL1
$RLÕäp€¼-ÑpâÂy…!{ÕMÄ°M“) khMîÿ1Ä3ϦdrJ+`¸MÓV+hæMÕ;¡ïº³`꟦A55ú„ˆXÒ¨®1p»\„Fƒ©ÃYœŠFææiBY^35 <0A>„å³Ñ"â"€ò]Ý¢<>CïÚÔÅÈ›¿|$M=ž¦*š1U,qzkM"¶®!(O§5fñ÷@¹äÏ“¾bÝðW×”3<E2809D>—µ™¦­w”š`ry{]åqrPË[WßÅ7R“ÿD¢ÕTgh½¨\B<05>QŠBoqµHÃv-µŒþr6O—/ €Ùdolªiä-ÉÜ“<C39C>%&©<> ;x\ŸaE¨”<C2A8>Ú÷ØnÑònÉK0¼²Â »<>ÉNcu6T†_päØFÛØ'¶ƒƒM®Ä{ˆ<>Gòtv«ž?'›µ
@\ï'ÀÆPEˆ‰/ •/‚œštɾ‰ŠzüRÒ:À]ÄÌ°uµöwSôÆá·Y®¥Æèñ²©ÚùY+L9PsÏåˆ fö \ÑÝ@ý +û^RÐø.ÎA) !l×X} têÓ¦ÒÓÄñgÒ\P‡N8 [ä§KÍÀ£×1éÂŒìŠæ‰«Û0ym·µ%”r㳃¶PBùEÁb<C381>Ævµ{ö Õ­z/Κ gìÔFjv<02>X[å ì<VÛlÉáHË̳‰¤ ¹»²¬§‚ -­ä™J@qŠ˜˜U õæût~¾Ì²¿¸<C2BF>= +É¢5¿Dw!aõ¯m?÷Ööt¥øë/"XÅÂ=v|©”r/NZŸD1Ͷ‡¢<E280A1>RáßÄ´E.çHÙd®þæ¢-‰vINØ*¼¥­Yƒ54Sa3ÊÞëq1½K¨#Ù¼_!³ka·ÅƒhVþÛ}Vöª1àCšœ~Tý³jëWÊg·óŽ<C3B3>g_|^()p§j×ýC¢¢Ý<C2A2>Ë<EFBFBD>é­¡§ÉÖJŽQe˜Œ+Ð4:Ï¢G)$70~Ð(,l•-´5ºUñ˜¼$cÓ6žû¤dÈé-v <>.`ó 7:Pì©ñ•Ò?ìËVŒ¡5oAÒÂ^<5E>œ>”ZS.e é˜5¦o©½Ø%†A'Î îXlÃ2«½W mäôÕã<C3A3>{ã{í™ Þ—¬(Ñí)ˆßF™÷A4;÷ȵé9»prúò¼&Äú«pHÂãFúB«fˤ^_®¾JR_c]£Þ׋ã§<>œþÇçÄúuÎ…F¡©F_¶Å„bUB0Ã
<EFBFBD>³; 0ù®¼PCÅ<43> B<>uj}æÙÊÌ“)6jp®æ«|è—6I3$OWýÃØE7<45>((q!²ŠÔ¥u`U.ѤzåµÜ/Þ(3!̬ß5}f¦‡âý?3ób»<62>hLÏhV×ñ"y×QDÎ{鶬޳¦ÀÔL×ö\B<>j ;³¥˜¤<§Ñ4zóµ6ÔfÚðœÌ<19>n`aŸK jE 5«Ú¸K¸. M´:{œk ©-ZñºCD‰yŽ§eh§¹¢´†Í)Sx5P[MHÔh`Ú? Lc@ÃB<C383><42> A¹ÌÖƒnô:#®¦¥rÉ”ã)(ïÚ6<C39A>ˆbû¦f ¢ãÙÅ쳉:zZ±‰&¢U ³¯T¢Ë:Þ¤í<Ézôës Ô5ëçXìÚ§mLÌ5ŽÆàê;@Ð~.ÍϦiç€|kÍÑ72``íSË© αð8ï|Pó}h ¸ÛîÜnŒÀ^sˆ©˜vJ˜ÆQ©7N@Ë"ôUê6óF »Z&ì6<C3AC>N<EFBFBD>‰9<E280B0>ÀrD»¶Ò°&{%0š±¿gA—Â6ŽUÙ¤$©¯VYì<V±ƒ±SL1r¶º^F'~dø‰S0q&Ïv°B ê.¢57Ž=-dÇ,º%m_bœ¾¢|Û<>ešh*ÈÔ€š|¦¨Xµ œüþºú˵_^+´ùÄëYì¹&Ó6¨}¾n'#£/gn<39>2±Üˆ¢1_ò?Р…&¿'Èòîyu¿<01>m¥N¬ù™™dØÐm~Ü`Ã)'*0ì77*`5•}§žtþí\¯o
ÀäcÈ֎δ@9ù)µœ(g€®_·Î܉…-;/`ô=l1m¤¹ZY1~7<><37>3`p­ò6O DýÙI&¤séŽ9Ê?¯„¨CÒ°ä³<C3A4>WA·sP9`F Õ 7j`etÌl¬Z7<11>àF´TÑŒ©ñM åâL M®>'…õy¤Ëˆ#»kž9ÜHçOOè»Õ¥q¬ÄtÏ5@§½4¬kPÕ‰7n`<60>Å0rmÔ²FâÍ
½ :ˆªa¸ µ½´LÎnRøË+¨èÖ6¿'êDXêBÔÈ#š…„¾ˆÁê§Þl“aª<E28093>iK~ y™Ì>úÄ8¤3åÝ*RÒŠŽ<F%£?SQiÛìTvóÓš`ŠjXÞ Ž´(šÌú0¿)²«ŽîóIÅ"µÍvG½zÆ1Ò<31>ÕcuKP÷¤ôýhÇæ«a…µn'¥¿QÚcé ø§B¶íeþr\lð<6C>ïÇœéJZmõ%-;¼Po#Öq0Âü•·§€äQl DØ~d¬áE¼zëÆ21»ädôϼÈÇ1E‡ÝÂ}Š#x`ld%äʾ±àMÆ.|ܺ¶‡—ŽmÍÏÿÉ%Aæzõ«56RúV•J¯ ”gø¥o`,Øv$€PF ÅÒ<01>©Ç5ú³c\aŒ”¾ÌøåÐEÌc<C38C>”¾zÅÖU¿<55>,{læ´Á6ªÓÇi+Rúß$~TÙ¯ˆ_ìü_j¾a0ÃRúZ¬ì„0˜í EŠ“”>…üv«ó\GGJŸxÖνuK­¦™MÒ½x«áü<>”¾\(3hÔîUæ`ì@d;Õ©®b“ȧ:)};ÏCr S»Ù†-<2D>öØÂæûñP°²ï>3åeªŸªÃÀ¢‰mÙ\¼„o#¥ïbVÙ0⯠†0=¡¤96ƒZÒ/Tm³©9£7 ‡7RúÝwo c¢o^<5E>+_í0&'½âT=եݎ½1¡RÊsÒ<E28098>°TK/‡_·֓ѯQF‰‡¥
AÔ¾¶oÆ #‰-Mz-\b˜"ÅîÅN½i^hõµ3ã<33>턬ùå)°á‘Ø ý°ÌäýÍÎÄaÿ=´Ù’¾4øŽhÞÎÌ
ÌŒ.hêEz¼HÛ)Ó]<5D>nV¨x!*ÑSjÄ®ò?}ØÆ4Q4”hòXŸ Zpyòb·y-á j h@7ó[(1k*”<>m,!iµC¸kJ±ÊæéËÝÖ  GI}Š( =ÂÁ’©ëÙ<02>¨è²gΠèû Ñã³ÿñ/<2F>|~<7E>2•¼‰UmV÷/PÅ›¶žƒ Íójg±ÙÇ•C³Ý0<C39D>SÛG`n<>Õ* ä¶×À|ÿ•ÝËAyâ°T_`ûQ=0Ê9}óåE?+ÙQOï˜|× $ÃJD†Ù¹Î¥Ú™·ÁU.~0+0ÛµSoƒ“ÃÆv̯_ 3ØÖZf9#Ÿ? ~Õ¥œSÍ~°DMTœ^£nbµÃX£Ú=¥U7W¹\€¯q3%l£Ú¹†À¢~ß1ÎÊ%O8€éÍ©…+†Écú)`Ýc£ƒÛ.åq<C3A5>gƒµ!œãÌb±g L>L-a½Þ<C2BD>öCš.ùÁG°ÌÚF`ÄÙNc î5Òˆh[@ŠH ÆóɵF6?oëf‡ÞÆøå‡-Ö€ØqovkPtPÒð=V0š§pè-3§­ÙümñÍE°JdI)°*È¢3°Á}ë˜ß“Sfg¡ ³Êf¼GÙünüÖ Í×Óмq#Û~W<>C
VãZÎ;SH°¹ÚÉêTx§µÎd²fÛ1OܸB+ çrhÓ—ÿjòjÜèX½içK(¾ jˆz½ LªÆB¬_Ú<1B>»ð™a.„:™h“žGkŽ)Dh>ƒü;2rZXbT<>Äl벆+ ô8L-€0°3ag#žÕú_,F*²†I ¯œaG1n€m`<60>O<11>¢<EFBFBD>gÚR[W{dåÙs8¼îÄ!™ûÓSª°À ÁuV¡dšâ5)Þ²îÔ!ÙTT«çˆTMmPìÁtiKˆ´Qz«0Ò§ñ͸ƒZ<C692>Š&"tÍÇ920<>zo„;Ì2¤”úuãpûN[rDŠ""¶ˆK1™ÛÄád<C3A1>Ÿ>\·@‘‡·!+/=µ):eÁAH¨“Õc1dü«< ª6xLƒ#éïyH<77>7~u6îÀä4ŒWÍ:ÀÁlî)fk®k˜‰¬¢w<C2A2>ØBš8èàý¬»Q0=š–Öˆ~Ø7"ü@È°‘¥œ·/nÌW Ù=•±$šŽ ÁÖ'öÏä%ܨ`]'9`sl`Šgæ[vê<76>ÐlŒúѬ˗ÇÚt%;}&©Þ<>_2Æ<¨q¤U1V6þ¾² ´Tåv»k.ÕB¨Ü~5Έ L?iGÂüy2âñ1îÐ D´zBZζ7Iz7uÁdJ¤™î ôXcñU\&î]ÏA8ÑE®SÐ]|yQ¸¾4ï/šÀø¦wðÖþ„c1ÙX†<58>Ö6ýZ¬Z8k¹[ñAÕÓ÷|0jùÊ!¥iàF9íê­È«n ç«œ†MÈñx­b;ã`r*üÁ©Pa*ÛŒƒo˜~f`„íZ@²MdO<>ÙAâ<41>q c,®.þSŒ ß<>¥(pÊ%pg,¥AºP÷ÔïZ¨€ 5û¤Ã;Û ‡–[û2†q±<71>Zµ,îQo$‰§ì#<15>Ï<EFBFBD>p Á| ªIËÓp†mßÜ Ò‡jùe‰&XŒoLlÖ¦„ö¨\âT7pã<04>Š)”<>Á7&ô{“)^$Ì1Pæì|ƒ@?Vcw¡Ï±kië«ÜuŠõµ <ÍR®æë…it…ó@êsãÙvGi„<69>,©¦üJg.è<>—ñ´ë<C2B4>odxƒúnD=P©ÕÓÙ#<23><\b€;ã0ñTÌ5œ2ŸÉ¤h}α{8EÄXÚ<58>p,¦ÁbÍ@G5—¤?÷" l羚hÇGË"½^MDU ù<>dSh€;ßP¯+ŒQ¯¸Þ! |ÃdÁ‰C«-96ŸÖé@7ôRßeYŸ¯“Ñ ¹fq±;~þ"ë¼Ó ,$ÛBß°- A”®'ÍÙ« <Ð<>d{ŒÓØoä¯p6y€¾…è¶W:ÀßÐxÑâœsÍG¶AæAþ9Å<1C>÷îlƒ—Œ}ÓtC<74>¬?)ô p9Ž:ÙD˜×èg<C3A8>;á¨Ü[°6ÚwÂQ5¿šú} N±ᨚ_šk<C5A1>þ p'U«„Lh!ؾ¹ŽŠÈû¶ë+p=Žº諱cj|1GÕr¢éC l'µ™ŽïâGcÖá¨:é‹£ êN8„É£5K"Îþ9~#ä«â³yŒÊv …ÖPÒ/´î„£±³º,$«ìÂA^N~¦]FjB+\³=(ÄÞÊö½<C3B6>n4 ™WAÕñ;Ýh¦Ô­à>~UàN7¶=<3D>dàN7šyl£©ÑµpFG2˜6²AuZ]MG\'p'<1B>ÍFEï1^5Ðv®Ñmâ/=-`ndC Õ yínd£³µÑ4Ê®ÑQŸÎd>ów®!°«Wóˆ]©ùÚ¸™!y¯ÔYØN5:+Õr40Ük2PA·BüpÌö;Õèä|hŒ†jÙ©5½¢îu`;×àPª})A`4_v®Ñ+Ï£X=H“iã5Šää¦e€;× õ¢F_SDÚšj;× A=®é\¸s<C2B8>N&Ò¦sàÆ52Y”ÙcGÛ!Q1A}_OàÆ5ò$þÀ<C3BE> sÌX<C38C>{¢Bàjaå?}'™d)üáïn‰Š W¬'/ãaû—ºŒv”µð-u‰hZsOTd×sÉJ X{çÌ[fË‹ÄÙ¸˜ò`m‰<Ç¢T†7ð4aG`Ü¡´ƒiÅžò<>d>»Jœy£Õ¯«h¶/¤Uƒ—½t#0ýõÒÃ0¦R5²ù•C[2ŒÓP€É“W®bænÞ·ê<C2B7>¸j„@Ê j,¦™f)ű<55>mÉr+¼/e<>ã `Šº‡]ÁV]7ç-]yz†uŽ.ÑÒŠÅä¼Ó°>'[h5Ï%0ÑÂA•€aTSòjØ?ãì¡crÉ={É&˜Ѐƒé_°M§žÙüýt—:gÇä<C387>-=Øž+Ìw ,@¤²X¯SM2æ}<08>„þ<Šv
,ïG|ZÐæS‰™'pOT<4F>µð ïgËT T¿ÏѸg*ÈLÈüØá6ØF¶ }Äò[´e[¢B ,kÄnØF6ØSϸÂ5z„ÂA6lÃ]aj.á¨,d#OÌõ•­¾>ÀA6Àêjî­ l#2G»j`äøⲓ @EpŒöy€»”ùÌöÎjÄ,°<>k€­Ôjä˜îÔ<6C>Y£'Ë)Æ ¢¾`P °ÒK²¿è…Ãjñ,<1A>¸îT°Ì"<#a$ð<>ÛPûÉû¤íåêN52v—¾pÏnlD[%\ŃjP@­  ®aÕÕá»T#“ÐDÝõƒj®QÃâ`ß¹Fžq$Z„Kl­Qa0¸F¶]~5Â:žµï\Pã)m=5Á5Hýh¨Mi™Ô ®>`€×ȶ¯…gŠ*ƒÁ5åê'Ñâ>À<>¨­4qÇžuƒk.U#s—M¡Á €¶¡°D@H¥A<C2A5> Ê÷5!W"ø<>md°j¦öÁþ´hldƒÜ˜ÂìÂå3ÜÈ Æë{àF6,«¶°1Àe'™ýx-<[¤D½Á €uéD<C3A9>ë÷*'Q#™×<E284A2>•ŠƒA6å<>Ô<× Ü <0B>Ø>£{FR‰¥j<C2A5><6A>̦»\ÐÞë¡Ô)YžÆ¦ÍÛPL¢®ó†íÅN Z @g_¬;ÛdE¨#a@åÁVî$Bª¥k™U¸± @Öš-<ó0 Á(éY8|FT»$`óV Xjr_ãÕ7~h<>Ðô£pÐÒ5Ž…ƒsŒv<C592>`¤Á6¾eF1™?@ÔÈè«<C3A8>¨ 5L“r]— ‰?(¬a”Ñøef`ͪUf¡«("3låúOk[ «;j>ÜÉç—n§ œ!÷¨Ì~žso™A<Š÷ÕØ+uâŽÁRJ<>Ew1L^wV©«(L*vQr"1îÅt<C385>Œ¾›É.h£P|ž£Æ?ùõÊcÖ 8¢i؉ „‘ÄŒ| ˜&i³0 ¦´Zµ¼cÄÔTAé^Æ•?V¿.¾@Ù±Ÿx“ Q§N±˜<>ï*<2A>ÙÙŠjjk,%BSš˜÷HŠ«³_"g˜Lˆsd¾<>ù‰ŒxNŠ:º¿.ËQœ0^Æ;t¦:7òùo¶_Veã¡Û-Iq)PœìΆq•YÜþ6xc)® Ž3úÍ6¨8ÓÂìb|sŽÝ À´mL Ãä–åc ÿ7¿jÌn/á|Á4I}CÊowk) *sK<µ8ÂÈ~Ð?ÛèÖœïFoùü—Ge»ƒ"ï<13>Í·<C38D>£ÜÌ-†÷<±¶róÃâ휨ð—UÛ<55>ò{ËiKÛ5K,%0»´# 6¯Z²‚;Ä…ëú±yô(ûÖ”cY>ŠÉÀälšÛÙ%˜]ÐÃúçb[ðvÛírŒ´Â85¬þö„#˜V­V9ò¶qOVw¿H:_ó†y%O;ÒùsW8'»Uoõì4<C3AC>]¹Hé#c6.<2E>PSý"%Ë͆ùq4ë¤óEÕ<H<>M ¿â¬) áp·a8SÑbïýSý†Ýf÷ý,Ñ Æu-|µ õWæ§_Œ ÖÙç̘8É<×ÖHçW^XŸ³³´¤Hi=waùÄcͱ¸VÏ1¶I6'¾<>­E¿<45> ýﳩûq$-“"ã¼n¼:Óp£-6ƒôŠsúÐÝN}¦®²Sì<53>Y\»ØÜbåÒÚäl³ÙN&R#<ssE|Œ„>ÿˆ…v¿6€âw¢N<C2A2>H>µ‰ßS׫ÇÏTRÆ ˜V±BJˆ<CB86>0®¥1f Võ3VC¦™ê·86þzé¡¿<C2A1>æ±¼V¬¶$QZlX9
žÄ'6™ÇæéÄA7²í¬£m܈êƒQòÄƺ\b‰gª¶¢§ÄˆÁ©ÁÆnt#[½j%¢³ÆY9·²§D,U ìm€ÝPÌ ©°îp/|‚Î+ð^r¦aŽœM;D˜÷&à^ú”ÙöV<ø€áljdù†øf:”?±{®f&JàF8 ©å¹mà¡j†×(Êá)wÂAN:ïÔ ìP¥Q·&_€7¾AA„X±:1Ç7—c I\Å@«;wÀÁ7Àð<4C>Š ø WâWËÎ7¬ÄFQîb€ƒo€5¿:2 ìP¥©˜"Kkàºó +"uµFà¡Šý=-ÄËxVfѨv÷U<>¥PjáNAÁõUÅê`<CáÝó(ÄØvÆaÕ^rVc§ðPÕØ.m™pcٶȵÌS<m?VD߶q¯ièD¦y€‡¨N.B}ëÛ ƒtjŪ½lØÆ9(ÑÑa<C391>ÜŠ¢„•‰'<27>ïÍ;çSÇNË\¶WE±=nk|1í”<03>­Í“e€{]ûãZÐ×1(_œÃê#ó^k1S¿°UF±S´geÁå¢ÙF;[©ó¨ŒbVÎy<C38E>]$<24>ñ<EFBFBD>r˜ð ¾}¼år(<28>¢¨Tÿ/Eœ>{àâ”êQ«f.‡Ú(¶™õ¢¸QŽl[íjœeêÜ){âZ7×DõÂF9Ø OIoÌh<C38C>;å`‡\qC<71>ÂÀ<>r°C®¥c„r3å å`‡\#”¤÷7ÊaåÆZIêhÍ.Íàä…à 2ÁÔ35ç«ókû-9[èG)¢<>”bËaÜAã—¨m9Žªm<>{JÇÄFcÛÔÄü2k³D'XaG<61>Vu8Ò ›ûW<>̯Žf ~:£"¾bwNÐãÙë
ƒæ_ÿiÅAæc7ÑïyÓ#8€þhÎ÷¿þòwýè¿ým±úuÆæ¯?þ.# Cšÿt0å ZÂÖÕŒýû²þWþ‡}…¥é×ÿüõþ®ù¿ÿú¿¿þøßù<7F>?âç˯™ÆO~žA¡õ@óYKðLªgXùÛÙJÿü%Øc¦îo~ãeÚçfH©êeäÚom3¦$!H9·Ù<­ü©2³*—¤0¾ÚæAšÆuó¨ á³OªÙ¦qÍèÓ‡<C393>|ÞcÐ3¦ßœ(rl°Úþe¡b?e¯Êžã>E~ós¦ö‰¬`±;wÕjþ¹õo^Ûeºn[®Œ 63GÌÂöñ£÷m *h;þ¦aûøÑû¶?Ðd¯[¡ ,õã·-2T…³t&å~•ñV<>í×F>ß+FVúº;yG:c˜LZ Ùç Œ<>t!<21>šm2å%q#<23>o}NpNmŒ|~÷<13>`™»ðëôf·#F)'˜œ“â¡2 ËÄ¿Î{Éæs+ß°>'d+;%?¯™@d™TñTÝåADþ6_%Iæ¿„Ä0îƒXK ˜D²8…6ìÈC<19>SëÕ”AHÔhèḐì:[§3϶¹Vüª¼nXç‰ ”ì±µ™àyæ2 .æ°ýÎF.ŸkÓL_…-M6«½ËIåû=yÙ°FYÐðáG*?5«!¶žïók¤òm3ÉU,Ñ<67>ªŸ}sÈ{úü5B\hW3-AÎÉäkI¶óZ™IÈ-«žµAµ2§l5"—m">ÉCìÒP»g˜åj˜ƒSµÆ±ê VÃêá/ÉäÇ•©K©Œñ6a5ZýJ ­s$(œX<C593>÷—i*Í áÀXáL<C3A1>Œj?àÆ%¯ ó/\ÜÑZfcc>f×ëÌIå—fGÀ S0³Ó}+$UŠa\ •½Fl/ËÏ$75R¶4!<21>çÁÉcƒ(˜àˆ¼aÜñjÕ>ŽqÑ^ñ]úf5á(3sY‡ÆJë_ÿÓ.¤Þ,Žá®i+2~Éævú“_=ò¿þåßõƒÿå߬rÚnÅþëÿ.\h=<3D>¬”ô$Š‡ ͦþë?d<>ñ¯ü§Ç->ÿÇ?ÿúþ79Äõÿëÿýëÿã_þû?Â@ýËnû™´X8Òÿ¢ÍHN;ÿvµ3þÎ$*öm-üþ…úß1ÄâƒÿHO·³TÑž~ä·-÷7.8çšÒØÛ[<5B>"3츉eeÅÎÁ·ïß„<C39F>¡å<C2A1>pVŒÞžFô1ÊçÈgl8Y(Ns™,Q¹%ä±ì<C2B1>¾?îòéò›Ÿü/ÿ×ÿMNàþÿBYš/¤v9Þ)]Þ‰ûçm÷·±'0Õ“_>úè"z³<7A>í$ÝK¨4ÿóå“Ï-çû–y<®©Ù¦NÙËGŸÛ.÷m¯hm±;ÉÃöù£Ïm×û¶-N*Ü°}þèsÛÛ}ÛœyàPÀvØ>ô¹ív߶<C39F>M7¬Óöù£Ïm÷ØæŽ7"„¼óóGŸÛ·m+ Û®Óûõ³O­gù¤ûÖÓv™à/}nû¾_#=lóÙ¶áÃöé£Ïmß÷k\>jJ&ð0<C3B0>Ÿ?ûÜú}ߦµo¹Nò×Ï>·~ß»ÉR¿Nó×Ï>·~ß¿Q2~<7E>诟}ný¾‡£pÛæ5ñÕnýüÙçÖïû8ñ><>î°þòÙçÖï{¹ULæ:×Ï}nû^n­å:×Ï}l{ý<><C3BD>[·úe®¿|ö¹õx9¹ñ/sýå³Ï­ÿÀÏ­=}™ë/Ÿ}ný~nEqä2×_>ûÜúüÜŠ.Æe®¿|ö¹õø¹Éþyf ŸØš^­Œ÷Üê‹>ÕÎP.ò‰<C3B2>vÓÎh{PØîŒ~ÓÎj;<3B>Ó5ésÁñßè¥ÙŒ™J?pCfꢆŒÍ["Èfü<>¿¨"×þ×-1d3ýd¦/êȵßE6ã?ð@nüU%ÙŒßG6ã?p@nüU-¹ö›"Éfü§þçU5¹ö{bÉfúA~UO6ÛwD“Íøb,Œ_<05>­
þdØ>~ô¾í$k·+7‰ï7Û‡<C39B>Þ·ý<C2B7>¦  ãÞÍ°}üè}ÛH 뎎±ÿAˆeÆ/ÂƵßÔ36ã?ôeW<65>c3~G×ãù‡Þí*tŒñ[úÆfü‡Þí*x\ûM<C3BB>c3þCÿv>®ý¦Þ±ÿ¡»
R?.ß ÛÇ<C39B>Þ·ý<C2B7>bj·Â…ëkÞl>zßöuÁT2¾Læ9çaûá£÷m_×K%­Ådžœ°}üè}Û×ýš%~4™­¨2l?zÛözݯYúC“¹± ÛÇ<C39B>Þ·}ݯ‘`2³¿1l?zßöu¿Æ†÷i~?|ô¾íë~<7E>MáÓü~øè}Û×ý{¤Û<C2A4>üaûøÑû¶¯û5­çùýðÑû¶¯ûµLîêq~?|ô¾íë~MÜl—ÓÛÇ<C39B>Þ·}ݯe6Úç÷ÃGïÛ¾î×;mð0¿>zÛv½î×Äõm2—uÚbÖãGïÛ¾î×6™ç÷ÃGïÛ¾î×dÉBœÖ7Û‡<C39B>Þ·}ݯ-Û´^®Ìæº\ÔÞXH¿Òå¢XR,Jì²¾m窮sÞÒ?T¯û¡½¢ß3tÝé˜!<>\X<~òžé|¦Ù Rà-'ÓÂôñ“·L·\Ž™ž<E284A2>·s™éù•\fú<03>ƒé©oèÂôñ“÷LàpÌôr¼¥ËL/®æ2Óúi>ÜÔeç÷¯ç2Ã׃( å‡OÞ3}=†2Óm>^<5E>…éã'B™iªƒöë³0}üä=ÓŸy®-©ý ÛMûwt<77>ÍøýÛUÙŒßÑ?6ã?ôoWmâÚoJ›ñz¸«F1ÆoIñŸz¸¿#QlÆêá.šÅ¿%UlÆêá.ÚÅfüŽd1ÆËO=ÜEÃØŒß.6ã?õp-cŒß06ã?õpMc3~GÊØŒÿÐÃ]d†¡9wÔ…ÍôýÛUnØlßQ6ã?ôo!;|‡Ö•»ô1¢5®¶®œ ÛãóóGŸ™¾Ë(cyµ¯ýõ£ÏLß&™>¦_%³mL?¡”ý.‡øç~ÚGÉç» ·ŸÚÿ”­ 6*:þŒ‰×-…GL\w1rôÿÉÎÙËÆ'aç<61>¦rþ§Lì»-ûÆËF®£ŠûE»{îÏ™ø&aþˆÑßgÊŸ1ùMŠü£ßäÆŸ1úMRü£ßdß1úMü!£¿Ï?côâû0ñ}ný!³¿Oª?dô÷Ùô‡Œ~—FÈìwùó§Ì~“8Èìwó‡Ì~—*Êì%^{ÂÈ·‰ø‡Ìþ>ÿ<>ÑߧÞ2ú]Îý!³ß%Û2û]–ý)³ß¤×2û]^ý³—„ú3ÔáBäª<C3A4>7¥‹ØIØzýè£×ªÝkï&¯Õº_
-L?yÏôg¾lYçã5Zfz¾pw™þÌ—-¥¯ÒÂôñ“·L÷Ï|ÙRãuZfz¹p‡™þÌ—-e>^©e¦ç ÷h™éÏ|ÙbÅëÛµZ˜>~òžéÏ|ÙÂi¦ýŽ+L?yÏô‡ÞÌj¶{®0}üä=Óz3 xŸ0z-ÓýR¹û„Ñk}î—’Ý'Œ^ s¿Ôê>aôZû¥H÷£—RÜ/Õ¹O½l·<`âk•ï×ÊßGÌ^ê{¿”ü>bôRØû¥Ö÷£×Þ¯E¾<45>˜½Vò~­î}Æl¿z„ëg<C3AB>˜½Öî~­ç}Äìµh÷k!ï3f/[¤OùRüµLø³—bà/õÁ<C3B5>½T) ~Äèµú÷kEð#f¯e¿_K<5F>1{­÷ýZüŒÙþÅ1\>{ÄìµÂ÷kÕïf<>tmüñ êp¿Ò÷‡äê<C3A4>ç/ùerÃîH¼—h¾aôšY>½—b¾côS~1úDrù]þINËršŒà# ü.wÿjö&~—·¿˜}6ƒßMÕfYßüð‡£×òð³­[uâ·Œ¾…¿Ø¼Q~ÇäµülóV]ø-£—2ð£wêÁo½”¿½S~ËÛ¾–}ŸmÞ©ÿ¾eòRîýbóNÝ÷ßXU^<5E>>µª\kËOFï™ß1z­)?½U\~Ëè¥üÅè<C385>¢ò;F¯5äg£·ŠÉo½ÔŽ¿½SD~Ëè¥füÅè<C385>âñ[1Ñ¥VülôVÑø-£—ñ£wŠÅÿFô÷jô©èïZ<C3AF>~6z«2ýŽÑk!úÙè­Šô[F/è/FïT¢ß1z-<?½U<C2BD>~Ëè¥àüÅè<C385>Êó[F/…æ/FïTœßâ.—ó³Ñ[•æ·Œ^
Zj+œÈÓÇOÞ3ý¡7£©[2- Ó‡OÞ3ý¡7 a¢#œprÓÇOÞ3ý¡7£Bn¿÷ÊL— —]™é½ÙDá×bIÉaúðÉ;¦5(>2­G>Þu8~òžéϼ™ÂªÃeTX>|ðžáÏ|™¨•Ý9ei·|üä=ÓŸù2xÌ%‚Æ =׈“GaëñòRÂÖ 7šá«ÌЗ‰z¼Ñ–‰Ã'ï¾J}W»3­<33>ÇŒq|øä§n{‘éû±ö±ñöÁÕ'6ªI…=ÇŧŸ»4ðqCà<13>{·˜ØÚß¼§ßdÀoHø¹fr ö§;LŒ<4C>Ø2¹ÃÄãhê£÷(!û©«û~ŸÌ¾Çè7Yì{Œ~“¾¾Çè7yëŒþ>a}<7D>Ño2Õ÷ý&E}“Ñßç¦o1zöúw˜ø&ï}<7D>ÑoÞ÷ý&Ó}<7D>ÑoRÜ÷ý&·}ÑïÚ7ý}6û£ß¤±o2ú<18>Ýaâù=F¿É<C2BF>ßcô¤ø=F¿É†ßbô»4ø=F¿ÉßcôÄ÷MFŸñ¾ÇèCªûDmíwHaŸjgŸÊiï0z.š}ª£½Ãè¹Zö©€ö£ç2Ù§ÊÙ[ŒžêcŸJfï0z.Œ}ª•½Ãè¹"ö©Hö£§RاêØŒž6Tn1q.³}ª¼½Ãè¹¾ö©äö£çÂÚ§ZÛ;Œž+jŸŠlï0z.¥}ª®½ÁèS íSYí-FëÙœ>ºÃè¹jö©<C3B6>ö£Ÿ·˜8Wä>éÞaô\ŠûT<C3BB>{‡Ñs îSYîFÏÅ·Oõ¸7}ªº}*ĽÃè¹Üö©÷£ç:Û§ÒÛ[Œž Ë_ŒÞ©0ÿ,íÕèCâZÅ~²y«œýÉKõúÍ;eì?H žm=´WA»¥wÌÿI6öî´îÅÚ|ìÍ9Ý«Õ?ÏÈÞ<C388>нX}‚“½;{5û+{w*÷jö^öæ<îÅêÌìÝIÜ«Õ¸Ù²%õbö±-©Wzöjö~öîÐïÅì íÝqß«Ù8Ú»ƒ¾³O°´wG|¯fàiï÷^Í>ÀÔÞ뽘}‚«½;Ð{5û[ûO¶_Ì>¶•üJØ.fŸ`lïÎ_Ì>ÁÙÞ<C399>¾š}€µ½;/|1ûo{wRøjöæöîŒðÕìÜíÝéà‹Ù'ØÛ»sÁW³ð·ÿ$ôbö©<Û+…{µú‡{wùjõwÎf¿Zû<5A>ÿýr'ð@˜s—]8Ý`ýOƒN…o¿Æ¶äê"é`»p%Ø ò.iœRu(×¾d¢Ò/ÖfšG\ž<>¯ßÕjÅÏ"6¤\Åyô³2<C2B3>°RÛhˆ9¶kå­
lŸjnï0ºMÏåõ¬ôó<EFBFBD>Üéü|Òî“ž7Œ,¿æ•£À“ Äœ<C384>Eþ•#»Â¸¨oB>‡<ýËó—[X¾ÚßN/ÎvêQþ̻ԯäoº\ò[¯ÛmåPý­ívÁŸl·÷-ýËv{qþöu»õ2ÝÜn,üÉv{ßÒ¿l·§SØ\Uøµ<۪ܤ7ç‰{$D wIu.Ò|z)®Wj«)¤/»7gÞ0ÿ¦ÙÞ7P)cææ<C3A6>ÒOàŽÉ9/¯~?ÿÄï/ìÑLxúýå'~Ÿ¸—µ2pŸ ”Ÿ0€|W<»Z¨ÙMDýÕ ¬?ðûܹǣ¾øùú?o·­g®8|þýö¿Ï<C2BF>%Üiób€Nÿã'~¿r+5¦ÏÏßà÷×ú•“œÁòâ÷âù¹TbyñûÓ|v…Â;Å?YBôÁ¦÷Ÿø\ªÆ­.v_M½X³vÁä©HíhòRµÚ…-ëSyÚÁä-uj/Š´/FÙÔ-Mû¢ðÑè<1D>û¢øïÁè½e€=9¿àÕžOŠ-]:2vÁäé„ØÑ䥣bWL>ž {0yåˆØ“§aG“—Ž†]1ùxìÁä•#aWL>œ{°xá(ØGþxòë`ñÚ°Ï׎“7­§CfG“—N]0y:\v4yé”Ù“§CeG“—N—]1ùx˜ìÁä•SeM^:MvÅäã᱓WN]1ùxhìÁä•ÓcW¬ÇÃbG“—N<E28094>}Ó=˜¼'¦;ŸK;š¼t@íÉÓy´£ÉKÓ.˜<<3C>C;š¼t íŠÉÇógD»`òtîìhòÒ´+&Ï›=˜¼rðìŠÉÇsf8»B|Ï—L^;hö9×z0y8e;Z¼r¦íÁÓ¶£ÅKgÙ.W]-Ý´Ç€¬Þ¤À­,?Ê©^\¿ñhëVõââ<C3A2>G£wðªWnœŒÞÀ¬^\¶ñhônõâš<C3A2>“ÑØÕó'?ϯ^\­ñ`ó†õjéÑè]H<E280BA>$ëÑè,ëÅ<1E>FïàY/nïx4zÓzqoÇÉè \ëÅ<C3AB><1D>Fï`[/îê8½<>¸¥ãdôÆõâ~ŽG£wp®W½<E280BA>FoÚì=Ñ®G£wð®<17><½ƒy½¸äÑèÜëÅå'£7°¯×~<½ƒ½¸ðãdôöâª<C3A2>“ÑK>ŒÞÂÂ^%e<1E>Þ”óz$b<>6o`b/ny´y;¸mmlì·%n&;<3B>Ö”3ho•Š¬Çò\²~™ø{¡Dáý eýFy ªTv÷x×VW$HvŽ†Èc¨-¥fs yÄ* ÓRÛDìÐBA§-zW;½úÜ`[ÛïAÛLBlñk×MypÉþ
·÷ î¾ZiÈ“<C388>§²£ú¯ÊÜÞ7‡ˆ/µ¤Mègÿ¶\ëOÛê_ë“<C3AB>ünYØ£tXrJ“ ãÜÑG¿5ðó}ô[s?ÜG¿µõª<C3B5>Ïúh66SŒ}Qaõ}ô[?ßG¿5÷Ã}ô[[¯ú¨|W&ø×ék²ÿÌr²O{ø !oœRGߟ¯¥÷ŠÚ×så]ç=)ÑÐc(¢äðßx†…_?duA¼{­k~aõE=ØY%nUq¾g«/ªÄ~È*ú‰4ñ«w}QÛõ3V§Æ^zýŒ±jkw)/lþû]6éË Êg£ÿó.£H~eT"_ý_wE ]­ûÂ䇕uÏâD}úrE6?o"ZÂjÿ4 Ñ·Ò*Õú‡µ&Û€›ûŒæ[ž–ž Ëemz‡504ßÊ<'ÃL´tvHaH¾õšý\øÚŠt<C5A0>¾n¯“V3è«]B Lšou‰ëŠØ“+®j'ÿŠâ[šì.)'«‹ Cð ]YÃä]¥Õ± H ã_[:zK[ ¢>yíh`Å<>ÃôÙs`‡øwÃ/&DàO²¡w<C2A1>†N1,¡m·,-0­-2ÀÝý\E¯.%:aû…¶ÊÂsv…}= °fÒÍed¿_<>ZZÍ%°]ðÍn̯H9¬)°†*Úê×óÓo®<6F>'wôk‰adPA§G{¡lë<6C>i·ý§m[s•5ÓH(ZôáҨôCb̯ø_j`…ôÓæ˜&ŠÚ/­<>õÅì\}`U좜ƒy­Ýªi9ȵd„˜li;tAÑÔiÀve[0—Vlmhº4x/ˆþ<CB86>è=´ ×y&$7´íâ‡<C3A2>iõl·kçfÿ<66>Ë÷ K'áÌ<E28099>ãÃôçÛÕ´M;bSŒ•±5לØRm9¹=Í“TÙ9ʆ¡L ç<1C>i:Õ­¢XeúÏ©.kJ<6B>ZI©†p¡~µgWÍ@ÇÆ5Æ<35>ôÐÛbªÙ$¤PtÉ<74>i¼« ÑP);Þl§i ”¨p½Ý1¹×ÐpìPhCùC+GÂ@ÉUA ½ç]´¡¬_3L3ÌõcÀä´X÷!Ûcªº)0u½‰×¹„XóGiæÞM a¦fâ8@Þ–(:qí¼B„Á&iØ—Åô„„u÷Hâ™WÓ5AG¥Où0ܦ)-ƒUôæ<E28093>0Z0õO× ZËcAR ,iT·¸C.B£Á´â,NE1 së óò!÷‚Ì|6ZdàIjP¾kC4pª_û<5F>º4™cë/ˆ§iŠfL#Ë@œÞÖƒH¯kˆ¤ ÊÓi<C393>è$×ÜãyÒ¯X7üEäÕ5åL®ÇÀ²uS¸õŽR,.vo k>.jyê»ø&²jòŸ¶š<06>"­m%4Ñ¥èõV׎4ìPV˨1gÓót°üÒXMǦšF^Iæž ¬1I Tâê?v†*²ÜL|½öxÄÕô %û&*Zò¥¦m‡¤#˜2¦ï<C2A6>Ãï«\KÑãeÓ¸ó%²!^˜ æž¬ì¸¾»<C2BE>úA×ù½¥§ñ]œƒn²Ø®¸úè86µ¨M3dSÈñgÒ\P‡.8 [ä§ë˜ÍÀ£×1!ÃŒæ‰kÝ0ym·í%ts㳓ÒPBFÁb[æ4{õî){áˆÚ¡7ïÅUs@!rc¶c§&ß•· j¨¸“Aö±-}ìÃ\ [™y1ýF ÎÍ|•ýÒ.p†ê¦»è%.$CPVñƒº´M¬ÉE Áƒp¯Ü¢ûâ<C3BB>²¬ú]Skfz(.Ñÿ+ó7ÛmDqzEÁºÍɇª"âÞe ß²yG¬šK7^Ûs uªuîÌJ5<4A>yN£iôæ jmhÝ”â9™3ÝÀÊ.>1@´:ÚVmLðt-´¶zœk i­x "¢Ä¼ÆÓ2´ÓÚÐ]Ã抰©Ë½¨‡­È‚&k40í¦1 a¡GH$nP¤,k€í¤"½­H­i©,yr<^Û¦QkQìßÔŒA<»´}Ö"ÑfO+6ÑD´
³vç9$íú²«½­e*5»¬0ÔÞú4/†eO«ëü¢T=ÔÞJB¯¬.C °{“Z £’|¹;ah½i0ÃÔÈ®jê/^úŠ½òÕtçæâi}EémêSi†•žÔ쮺Ææ¥~"¯v¤մ,«Mô:Ù<>S¦h*.‡ô5ZÅèÐ<C3A8>J”G'«ÑZ¾Ze %Da ½æ5a.!?ä¼{3‰7}ű"kSu¥ÑÞLá­7»ü5÷:²¡cþ”¥[ö¢M¤ük}—”ZJv9IÇJˆ26ëyÕ·s`› ´þJœòÅ&HÓ„ž´þÉlPî Aú9 tT =Ã&k“)†štGůP­]ûȱ$¶ÊqUÉîžB<C5BE>=©‡¬UÀP“^žd6}EE 6l<36>ük7lÕìqß4%“’^Õñ† ­U‡ì“Ý©3«ñ´¸WkJ t¤åêAú¦Å„X7úìÂÌÅt0¶Æ4†Èðd2™<32>u<>`5<>ï-&!<21>ôÆMÈ%N½¶ºŠ¶ä™V¥KHÛUK3ÜT=<1E>úz—O†4ç<34>HÚä£<C3A4>ô«ú·­&¹hÉéik.¹†vôÊÀ-3J¤&•\#³¡Ah<41>FúðþµjÂÑëÌå¦Ü¸.µNC8Z¿ƒ95Z÷¡X ‡aXžeAC°ö…ntC&¼ €<>« šÆ{gÜ ûRE®/ç5 D£ 0 ßTIS7Íh~Óò`µ¡Ò\†WCØsdê=RV<52>!ÍI ¦Œœš5 dö•ZUtÙæôƒ `<60>š}³<>ú«ýkƒƒcg`S 5 <35> €¹âÑ\ã ÈÛ¯µûù"À´\<00>om9š@àN lcé.3bàN \cá7p=ø æûT4p'¶Ý7¹Ü<19>½æ”S100Í£REö«¶%læ<6C>€É+"Ñ:&Æ<>mÕi<C395>ròKê9MPΕ¿a<C2BF> +/`Œ#l1¥¤µYYŠ†1~7<><37>;3`pmò6O D ÚõI&„téÎ9Ao„¨S©Ò°ä³<C3A4>×D·sP;9`F µ 7j`eTÍllZ7 ŸàN´TÑŒiñMä åâL½¢AˆÆa¸ô
âáC0º è9·:»ä1ØRCfLÃ[SÖ6Á6¹hõ¾æ²Üo2WÐGn´àex®Ü&Í›Oɱæežs­¡­W"E%_¯Q—ŠÉº§ÙäêåÖ«c U]×Äs„—™ÐÖpïS¬ÑCj2Oâi ¬Ã^F'Zí0yoÒX™Šy.0d¢ñ†C×·¤ñ=ÒFòáÕ0ÔS÷Á¢±ƒHô¢™*ŒÊz-e.Ï †F4tÁ°¬·<C2AC>ó40$¢sªž÷Cg6{§3‡@4"´.=´†l§g 5'—Ûä¡ËÄrÈaøè ÕÔ¡ÛŠ11mn<6D>YËxÏøy<16>µe^·ï¡ ]Ñþ[ §mõǬ& <0A>b¯eÑ“5eaÇP†FÃÜ0-;(Û;ÖLšÅÚ°Yó³åµÆØ\®fÂûê_´<¾ç}ª†©¹ÔîˆÍå*µ/v•Âô5QAE¬LX[\[ IhðªÏÖ22ÂÖ*rï¸Êu)Ž-ò QeÇä8—™ Å‚|¶ÂŽÐ<C5BD>«h®¯}5 ½c<¼aó. &÷¦qdµ`K(m[ª² ÊYØ& 6ÓvójïÀŠ(—Ö¸Vv -hý”AZÒ¦yJãk<C3A3>8 ©3-Eê- >ùëe‚Öþÿµ½M²$=Ž$¸ÏSÄæµñŸ\ÎbjÖ#Ý7ªZt®æþ"£ 'AW´¿öoÆ
€$ÌÜ¿xÏ<ª²*#\àHtÁ&uÄ<75> chØp> ÌŒ®(ŪEF¼H?(Ó]<5D>nV&¨¸•è)5b7ùŸQ&¶sM %š<Öç„ ¨œDž¼šàmÞjø<02>ÐÝüºÌš
tcg¯Ú> chÎ+!|'a!èM?1Óù«#3!ö€Æ¿aÉf^Åa÷V^G´‡TËЗ+l ç'Áð5ö”E:@gYXEt^͸Ãî׫»ý3ÀŠö)Ž‚ÐŒ}Ø×Ýü9“`¥÷ÐõÍ{?ÇÒù“ì´ŽçuBœlÅàݱCo2Œk=ေg54v³·ëÒ÷¹³<C2B9>*1Ølê:Ö@ç“Ð×Ä44±Eˆ…VÛܯôÏ'€õÆsA•§…-@ìÀ¦€qœ=Vøü鎵° ‡4„Žäd†³ÁžÃ¡#<23>ŽMˆÁ׆ÚÔ¥)¼ÅóçôJñ—‰­ÏXÍ<ë”8ZVŒPÒG‰À Ãj‡ORuã±údÄúA>`tŠ`û°Ú GŠ#XÚ ž¿™à²ÃÈ­Šk[ [ ô0Ü0]d)o«ˆUy[ 7lŒË[ f[FNÇT6ȼ<C388>+<¶(«° ŽÔǶ(\ 6xyCUqªÀåÆh•ÓkØ¢Äxû6Z3Œ<33>™±ü~ÁÕó4:^ú~M8€8²x(üÖ5µ¯bÀ·ŸE»½Z@j †J0q<30> rЀá}D'ƒÌVòI¨fäN0lQ¬/ì=xÅݾ7„`¦ù$Xk¦Â<C2A6>ÑîìËÂÊxaj¤46ÀxÓ;£!"”<>M2o´_<E2809A><5F><EFBFBD>[€u…:ÍTx>6 €Ž‡™ÃpÚbÉAh@ÏLðc²ðöL´X« ub;KHZí<5A>ñZR¬²yùånKkP…£«¾D”†:áä É´öl<C3B6>ÎTt92gPô}…Hq-׃)$Ø\Hf<48> *¼ÓZ‡B7éÚl;æi;WHpã\M`úå¿š¼š¥Æ¦ÁGoÚùÒ Š/ˆ¢eor“j…¹ë—vÂÀä!ƒf˜Ë¢âõ+¯(ÖSˆÐ|2ùwDå´°ÄÜ3=B¨‰Ù¶²…+ ô8L-œ0°3a'g#žÕú_¬F"‡I ¯œá@?n;m`<60>O<11>¢<EFBFBD>gÚRÛ6{D—åÙs8¼Ä!™ûÓSª°ÀùuV¡d
0t}êÔ6 €· EV`¢”4å¸Y\ü&ž£ë›[,ûì‹A­ˆY³ýÐðµhÿy|´Iï0Ð'ibä, Ì¡ l0ò¦™=Ô³La0lÑ€,¯?l ò¢™ íiWƒºå<C2BA>À펅ÃT}£ŠÇªÒ<C2AA>ÍŒÀ‹„Æum­¶hÓø0.0hºDrÝ4€‡»ð*ÝJqˆñÍ¡^˜‰§·Õ#¶xﻀ<C2BB>b„@mÓæÒñöcªàÜ6 `Ê;Ó1oÙ ¬3xCT5ô…±V§×—û¦€/rÒ6F2lÑbPExU{Àº1òåðQ:<3A>Ê ª-<2D>Mø Œâ5)Þ²Ô!ÙTT«çˆTM{PìÁTjkH˜´Sz«2Ò—ùݸƒZ<C692>Š&"TÎç20<>Æè„;¬2+"¸s8<73>ã Œ-9"EÛ Ä¥˜èmâp²ÆϘ®[ ÈC‡ˆÛ<CB86>•—^ú<1D>Îà$$ ÔÉê±² þM™U
Э <Éô÷<C3B4><$d<ÙΛ¿ºw`rFŒ«ˆfàä³u×<75>5Ì$WQ¿Nl!-tð~Ö¿Ý©˜MKkD?ì~ ëØÉR®ûwæ€+Ðì^ê\MUP<55>ûgò à îÔ°mIO°Ç960EË+z󎕃:$;£~6kùå±6]ÉNŸ ì†7ä—L•1¯jiUŒ•<C592>¿ol•æ Üîpf¡ZÈۯƑ‰é'íH˜?OFJ>Æ
z¶xßR¢0ÄÊ!<€ÄXõsÓ [<€—uÀa`%@ClñÎf5¯ß 0+9¸¿»rÍ`Ÿrµð.2áNó{pE°P<C2B0>«U°¸yWÌ’ÈÔ.QŸÔ0ò€Ð¨lx<K8¥ÄØ<C384>pQg:MM=*`Tø§Ü d”ðªn†6àF©˜(8kìxÆ´òàÌÔD.8QŒLF>ËæÃòCV¶ l1<6C>œ…tƒâý^ÙL@*i`…+ý9ÅÈ7±ÁãÑÙƬn&›À Ú Ú[L ˱Õ¦†-&@Œ¥BX¢:.M˜_U3€l5lsL&Ö#>Ó<>Yšp<C5A1>DÏ“ÔU ê»wáÂh©ú°>kÍêqƒ§ Ç‚Š‡ #>0¿G. Ë…ó å Í£S;àÕL,ÞG2lS<6C>Bw!EêVÃ6ÀœðJ.0#ùÌʦÀ`Ÿ`^uú€ HX/HÌÙöâ.Poà®5˜L—4#Ú½ƒkoYÅeâž1<C5BE>Pùœ„•ä¶ÝÅ—W…ë¥{áдÆ7½ƒ÷ôÏ ÅDd6ZÛôk±j Ü àªånÄ<07>Oß;ðÁ¨å+‡°¦<C2B0>;åH¶«·!¶ºƒÈŸor69 Çóy´ŠŒƒÉ©ð§:A…Yj¨l3¾ajš<6A>¶kÉ6Y<=fÆ<>ª±¸ºøO<C3B8>`0.|ꔢÀ9(—Àƒq°`@”&éBëS¿k¡¢Ôì“Nï ì ZnYìëÆÕvjÕ²¸s$¾(^²<>Tä>wÂ<77>"ó9d¨&­{^LÃó H ªåK‰&(Æ76kSB‰T.qi;¸ó NE‡ŠêÄà j¾Éô¯EÖ¨
42©%ƒÑLM‡ƒoP7|½Âƒ{¢Q4˜1sd¢`0|ÜHÉ0rxYA0+Œ"Qcb ž¡¿,+¾ÆÍh ªÕ Í¸`~s²§Œ_º‡¸Q€á¿±äÕߪdî77 s¾A ‡k±»ìçܵ´õUî¶ÄúZ¡f)7óõÂ4ºÂy ü¹ó<C2B9><6C>³4Â@<54>¥3 ªäu>ívâÞ ¾Q <C2AA>ºz§K ð`&¥ª€¹…SFþ3™0­Ï9v—ˆk?ŽbŠ¼)6Ñ „p4sIúóYÒÀ¾¡á«9€|´,BìÍ$UßH6…&xð õºÂõŠëÂ7L$œ8T±Zɱù´-'º¡—Òø®¥„?ߣrÝâbv6ýüE¶õ XH¶…¾c{(]Oš³ëWÉö—¹?²¥3ßÈ¿ÂÙä žøbØ^éO|CãEkpÎ-ŸÙùçsÞ{° ^2öM<Ñ 5²þ¤Ð'Àr"m±‰°nÑÏÂѸ·`ë ´ „£i~uõ{ N±Õáhš_škƒþ ð M«„Lh!Ø¿yŽ†äû¾ë+p;Ž¶諱cj|1GÓr¢éC­ªoñ£±Û‰p4 <0B>ôÅÙí ÂäѺ%;gÿÏ
0lLÌ_ sQñzêâäÌïÑJ¶$ÅnX9•!Up ¿r€MñÙ:Ge?ŽBk(éúÂÑÙY-…d•ƒãD8ÈËÉÏŒ «ÂHMh…ë¶%8zÝ¿wÐ<77>n!óÆ2h :þ Ýt»Üǯ
6NUWº l“®ªÌEÜ«a  <è†À~$<24> <èF7oi<aë‰mt5ºÎèHÓN6¨NkEÑtÄu²ÑÙlTôãUíàÃ&~9h£p'¨.ˆmOp'ƒ­<C692>®ñP>q<><71>u&ó™'xp <0A>C½šgìJÍ×Î5È É{å Îª1X©ö”£<E2809D>á^“<>
[¤n/|<7C>E ºâ‡cÖ°?¨Æ çCcD0ÔêA5Hä¨éuo;¸‡R5èk £ùrp<72>ÑxÅêAš˜L;רQ$'·” \ƒÔ‹}Kikªõ¸¦s<C2A6>àÁ5™HÎy;×ÈdQV<51>ì§DÅm*ǾžÀ<C5BE>käEü<45>;Ö˜±<02>D…ÀÍÂÊ9~ÆA62ÉRøÓß Ü ®XO^çÃŽ_è2fØQÖÂWZ‰hZsÿHTd×sÉJ
­ÍA¹„ù©,%kÉÅ1¿Æå.‡Y*†¬ª»U«<55>°ªþåt:ª„1 &¨w€iøA­/ÜYl€Ìâ6,ͱ`à$0ôêoÑûZl€¬ìôHjÛéÁ%ã]µ €Ú4 žÿ0LGS¼`ðÿc¶g°ÅôÝy?J%¶ÙFp~oÓŽ lÑÔãðJ7àXP¸Cm&°MˆÑ®k€žØJÈüq»uõ$à!“•L§¥«†`g ¸ Ôžº<C5BE>Ú<EFBFBD>åh˜Ò ¤oëEJ¦Xtd€ C6#ÑÀ6†E|Pu¶ÉU%¦±'<27>ªÁÿßdö&V<>ÉK_f„u£À}HØûÅ0¸0SG Nv½Î«†`†³&Üë<C39C>ŒŸQŒd ËOb…CuÃIm­t±Hg$ªñõYùj+üª¤dØæ´ˆÃB©À6( [c¬<63>Ëji¬'V¯WÔ¿jUØ|œ¤~/ŸY× X(6!Ü7uH[Ûù*x ûàéÃf>€|>(5Q­9.À[¬(ì}ÊîÉ@`Yv˜Ç€92p0P7FUÝߺ<C39F>xçE0~g4¥AmìœÍ%>Æö2yãK£\bž±×:<ü ."/ ™Ä•æ9“…«—D~<7E>IO\ª´ê0jÐæ¹JpŒYÁô£ y´¨y2@G^gÒUÇâùM°”0í 0O$>N®ºw # ³$¾8 ì<>®r`b|˜ÍRpCã£Ó“°<E2809C>ÆT®øb™O£F¹'ÏàÃaXZj˜c$4Ys°ÿ[®Ýlü/W§îy%2é=v@×Õ„\Êk¿À¦<JP/†¡üddS_¼´ì<C2B4>D¨aTlœ{ñzáæÉH¶Ù@¤›—i>eul ¬Z .Ûl räðÑ°Í"§ktP}öeN6yÐ!J ¾z6Œl ˆãf)h̲SÃÍ<C383>_$¯ CíYïäpþ‡ž ÅÂfÒ a·Å¨NªDö s\ ‰ŸÙªÍëð\†¡AÏY ØÊ p2]ÿcBƒ¾ë`|.1í”0«j^ÆñeÞp”åpÀÎMSŒ¿Èø <C3B8>Q<EFBFBD>R8<52>º¤™¡ßTŽÆ'U¤#x*€u ,ïG|)(u©ÄÌx$*ÈZø†w€«e*ˆŒªßWËè­<2d&d~îp l#Û…>bù=Z€²=Q!P5bwl'ì©g\á=BaÁ$¶á®05×ðTæúÆVߘà$`m3÷V'¶“ ™£]50r|±dP£}<7D>à!l¾²½³1 `µ9¦;õ{rcÕèÉrŠ1ƒ¨/˜T¬Žšì/zá°Z<‹…Æ#nÕ¬«ÏL <å6Ô~ò>i¹vP<76>L†€Â2¶ Ù <0A><>h«†+£¸`R
ç­& ´10:“Ü&x<78>å; sTjtlÆ@FôTc <0B>œy«µbŽ ¨õ4RcS…úÉ5¬º:|W`“jdRš¨;£¾`R À-jX×È+ŽDp<E280B9>­5* &×ȶ˯FØ泎ƒkj<¥}±§Æ ¸© µ%Í “ƒÉ5)ÁLpçÙ6òµð,bQe0¹ \ý"Z<&¸s ùµ•&îÜ“£Î`r ÀÒ42×h
0b ŒÆLòÁÔQø¹x`Š~æ0ÅVV [IªRÐCÌôY²£°xwŒŠê(æè Wˆ¹Í°Mh-,&XñT W8ÔÛÅ3ÒO3´Šm&P9'•UúzõË£8Ÿ€5«zfŠ~1<>Ê1Úâê&•™VÉÝë7Gè;biŬêúE¿„Vë†m"À¸—ÛCÌÐ/"@‡MbR6éÝ8^…ªFW™YD€ÎUÃú6˜Ã†õàj €m"Ð$ÝØ¢^£Ol@×Õ¬!¬í&|óís&´‰€-ÃdèÄ6`°³ÃKÊM2HR  vr+`¿<>…m"@//^ì'ƒãt %B* lP¾¯ ¹ÁOl'€M3uLö§Ec'äÆfW.Ÿ™àN65îXßëw²aYµÂnÄËA62ûñZxöH‰zƒI6[D<>Û<04>*'Q#™×<E284A2>•ŠƒI6å<>Ô<× <
keEý%fè`,—Zë<5A>A!¶ycÀÉ<GÅ6Î ´y-wƒ ¨<>,BˆuS<>Û<v[ ³ËŽt¹ÝðÈš˜&¶y#êxÈ$<24>Ÿ$õ¸² <EFBFBD>Ø>£{fR‰¥j<6A>̦»\ÐÑÛ©Ô)YžÆ¦Í'ÛPL¢nëŽÅN Z @g™_lÛdEh3a@åÁ^î$Bª¥«,“ª ÜÙžùOb€ Ìss<73>tâ¤ÙvÖÑ·nDõÁ,ybc].qÌÄ3Õ{ÑSbDà´`c­ÑYã­¬œ{ÙS"ªPö>Á<>n(f<><66>TY÷'x>AçøL/¹R€0 GΦ"Ì{ð(}Êl{+ˆ<>pv5²|C|3<>ÊŸØ=W3%Mp'€•ÔòÚwðTµÂ‚[åð”á '<27>êvª€RŒ¨‰Û/À€;ß  B¬X<C2AC>˜ãå\EW1ÐæÎpò 0|Slb§"(~Å•øÕzð +±Q€»˜àä`ݯŽL;•Ai*¦ÈÒ¸|ʈd]­1&x*„bO q™/²|ÃÊ,†Õá¾B£êµJ-<((˜àN8¢¾ªZL€§b(¼{ž…¸ûÁ8¬ÚKÎjîžê¡:Ûe«-óîŒ#Û¹u‰§çŠ(B öïûÄvÎá5 ƒÈ4OðT5ÈE¨o}Ûb¥~a@­XmÔÛ9#Z",p{Q”°ºðäñ½õà`êØ¥¬ubGUÛã¦<C3A3>±ÅÓA9ÙêÐ<)<ê¢Ø×¾Íy@ùÂäV<>Z•ú…½2Š<32>¢#+ 6)Í6ØÕJ<C395>geû°rÎ[ì"iŒ”ÄOØðó-Ë©4Š¢Rý¿qúê<C3BA>S«Fm
©ðž`ÁŠÏ R8˜µžj£ØfÖSˆ
À ìàN9²mµ«qÊ2&xPöĵ
U] ê…<EFBFBD>r°AžߘÑÊÁ¹â†…!€å`‡\KÇ åVÊvÊÁ¹F(Iï î”ÃÊ<C383>µ´Ùš]šÁÉ ‡o­ýO+>êš'ÓxžÞÏò*<2A>ÿõ/ÿ®ü/ÿV¬v<C2AC>×?þ](.šFX»ÙbÖú¡‰8pΘú¯ÿ<C2AF>5þÅ¿ò?ìú((MýãŸý?ÿ›‚®õÿëÿýëÿã_þû?Â@ýk¥ ñgZ4Ÿµ¯¤z¦<7A>»ÚçEØe¦òoýà…úß1DZU/$÷þpË11 DêµåÖålçouˆœæz!Dß³Q—ÙgQ@¶ö->üIQÛòîœwŸCûÐÇ ŸŸ¡ýé\QggΧ©Æ±ùSöÂì5þà3å7?gb`?Q¬vín¢`ÍŸãå#·þÍ«`».÷mËqÇfæ”YØ>ô¹íè
¹¤@âRÁÆ[ئ<01>ž"E_¯ Ú¦¿Å‡iÚ>ô¹íÈ
<0A>ı$`ÑEá)¶i­\Â|䡯×  %Ó š sIò!¬ð&ú!É ¹++Àð3¶§Ò•Ä|ý¢¼ë^G%¶ió6ÉbPŠmÛ 6 `Z³Ò Ù4@, x{9ªa !f¾ubÃáh“Y;)ElÓæÀà“ˆÙQlÓ€!Aßb9·Ä|ý¢̹%F(…P# €Aˆš«ËZÄcئLña?QüòÄ„ý¢Tõ²}{3lÑ&á¨<C3A1>”«APÚŒU\r4€Ú|g¥ˆm0X.Â’:I¬Û4€*?Œ§VyÙå˜gÅþ4ƒAl'Sß#1ŸoËŽ*ÉTÒúÌILØ'qN“æƒCéG4„¾°T93œ`­À|ý¢T½øºÐ bÕÑ€Aÿ=€W„nئÌvc甃a»0Hôkã̓ú”Í•ÿ²·k0'š‰Y<E280B0>É°Eˆe^P<ß¡ <0F>@™ÔÀ>X±]tÐ%oB}òTs<54>Aú‘+ ¢ŒØë1Ãvm˘ ²Ý­h—2mŸ?úÜöTÛ°[7 ñwÛ§<C39B>>·ýYAöæÕaûüÑ綠*H…ü¼3lŸ?úÜöDS‡Õ6(bßònûôÑç¶ïk¦ôe2¯9OÛ/}nû¾d*™-&óZç„íóGŸÛ¾ï×,÷£Élu•aûüÑǶ·û~Í2 šÌ<C5A1>¤]Ø>ô¹íû~<7E>\“™-ŽiûüÑç¶ïû5ö¼/óûå£Ïmß÷kì _æ÷ËGŸÛ¾ï×Ø&Ý/åÛç<C39B>>·}߯i ¸Îï—<C3AF>>·}߯eÒW¯óûå£Ïmß÷k¢g‡¢FØ>ô¹íû~-³×ö:¿_>úÜö}¿VìÀÁËü~ùècÛí¾_Ý·É\·e<C2B7>}nû¾_+ì3¿Îï—<C3AF>>·}߯•dùÂm[úØmŸ>úÜö}¿Vöi]îÌæVnÊï,dÜiËzÓJŒE‰<45>Ö<EFBFBD>íÜ•v·Cºã‡Ú}?tôO´àg†î;3D>帖 çO>3ýŸƒiö¨xËÉô0}þä#Óý.ÇL¯ç ºÌôzãV.3ý<03>ƒé¥<C3A9>/éÂôù“ÏLÿÀá˜ér¾¨ËL—·s™éúe=]Öe×Ïoè2Ã÷ƒ( —ÑÏvÉòË'Ÿ™¾C™é¾žoÏÂôù“ÏLß¡Ì4BÇ Z˜>ò™éŸy®œÔq¦ÏŸ|fúg¾¬lëù&-3½Þ¸>ËLÿÌ—•ÚÏ·iaúüÉG¦ÇÏ|Y©å|£–™.7®Ñ2Ó?óe¥®ç[µÌôzã*-3ý3_V¬~}¿Y ÓçO>3ý3_V8Ðt\s…éó'Ÿ™þ¡7³2…ýª+LŸ?ùÌô½5-­We„éó'Ÿ™þ¡7£iX>-MÓ§O>3ýCo¶@ÂDG8ää¦ÏŸ|fú‡ÞŒ"¹ãê+3]oÜwe¦èÍj¿Šå%§éÓ'Ÿ˜Ö øi=òù
à¦k‰úIXÅÀx{5lb™a¨!y¸$n§póºx#IbÐ<16> l¢x¤jØ®bÁGv] ÛÕA“d*Ku~Œ®:è`6™ÙУ¶ªƒ¦ aîbH-&Àš•»šÕSIt<49>' ©jc âA¿¹Î«Ä¢£O™]u/†Ï<E280A0>Š†íê ¨,¼73õ¾:ˆn9ó:•MXUD®ˆ- D€|ínAB ¤f¦ˆbÝY©}‚™·Ì±]Äš)]»É°]D<>Šxl5W$ Ž]VsÀTýª¢Êê _ʼn-*À08éL ,¨Ãù“ÏLÿÌ)¬:ÝG…åÓŸþ™/µ²k§,óï–ÏŸ|fúg¾ s qIÏ=âäQØv¾¿Ô¢°íÆ¥¥fø.3ôe¢<EFBFBD>oB´eâôÉg†ïREÇÍ®M«kNsŸ>ùS—½Éôý±ö±ññÁÝ'6ªI='Æ—?woàë†À#&^÷1±·¿yÀÉ€_ðçšÉ-ØŸž017JbËä ¯£iP<69>>¢ŠìOÝÞ÷ûdö3F¿Éb?côôõ3F¿É[?dô÷ ëgŒ~“©~Æè7)ꇌþ>7ýˆÑ«×ÂÄ7yïgŒ~“ð~Æè7™îgŒ~“â~Æè7¹íGŒ~—Ô~Èèï³ÙÏý&<26>ý<EFBFBD>Ñ×èì ߤȟ1úMnü£ß$ÅŸ1úM6ü£ß¥ÁŸ1úMþû£ß$¾2úûŒ÷3F_RÝ<52>˜x!jÛxB ûR;û¥œö £×¢Ù/u´O½VË~) }ÂèµLöKåì#F/õ±_JfŸ0z-ŒýR+û„ÑkEì—"ÙGŒ^Ja¿TÇ>`ô²¡òˆ‰k™í—ÊÛ'Œ^ëk¿”Ü>aôZXû¥Öö £×ŠÚ/E¶O½–Ò~©®}Àè—Ú/eµ<65>mWWpùè £×ªÙ/…´<E280A6>}Ùø|Äĵ"÷KîF¯¥¸_ªsŸ0z­ÁýRû„Ñkñí—zÜŒ~©ºýRˆû„Ñk¹í—
Ô7<13>J²Œ<C2B2>ÊÄ<13> Ü'Œ^ël¿”Þ>bôR`û¥æö £ûô,ïg¥‡äZç7‡!¹RzM\2RþZ7Ns=ù¯œÚÆ]}
416{}3bÉjk®:gŠ6¶Ëƒ+>+y¢a»<(H% uÄÒ±‰¡Î¬TW7†™úIŠ¨%ìó,þ"±E¤ø<C2A4>ÞaPcÎL=Þ=H%Œ÷<C592>ÖíkÁÉÉPlªª”™úUÄEÉM:šÌ³­â Ö6bûp¥ƒ€e>qjú)¤Œ°(E×mJ°þü²i¾Ø"Ä0zzi*±¼‰€Ô{cn=2ùÉX%+kAlTò"R\™jÊúµ²‰1l¦"®‰bH1+·žé?æ¡& †aÀªVÕÍ<ý$¬<>ÕÈ€êæéáiæô2u¶bo©Úo¶M¤Ä÷Hõ2l<11>"*Hhê0l©(f”'7ýɾˆ ‘ñô°{ê3O?‰€Ô/ó8)Fa& e@6¦o76(R*ÄR„±‰€ÔY³EE.ó{ ©J³r21Q?™€Ôuƒãô.Áb c{(÷½Å¤Ž;j@G¾&(R*„—KªIñVÂgÖ :äéß¿ü±…ò«¿ùíôæh§åï¼Kû•üM¸F—;@~cë}»mœ«´ÝnXøíö¹¥ÿ´ÝÞ¿}ßn£.·Û ³Ý>·ôŸ¶Û—ƒØÜVø«|µÕ¸LoÍ WIˆ<V®“Ü¥ù奸a©o&F<>~ÙÕ9ë~zù7Íö¹<C3B6>F3—¼1<C2BC>þ„®™\sy÷ûùOü~a<>fáÌû—ß/â÷¹»l<C2BB><6C>ûÅ@ýP0àÇúT u»Œh¼{<7B>íü>×îñ¨o~¾ý<C2BE>Ÿ· ×~ýýþ~ŸkK¸ÖæÍ<>?ñû<C3B1>™¨1ýúüãüþÖ~å$gPÞüþŸx~(o~ùï?»?á“âŒ?YBôƒLŸ?ñµT<C2B5>]ìÊšv³fí†ÉKÚÙä­[Ö—ò´“ÉGêÔÞä/fÙÔ#Mû¦ðÕè<13>û¦øïÅè³e€#9¿àÕ.¼ž;[ºudì†ÉË ±³É[GÅî˜|=öbòα&/'ÂÎ&o »còõ$Ø‹É;GÂî˜|9öbñÆQ°;Žüõä×Éâ½#`?_;^L>´v\<>MÞ:mvÃäåpÙÙä­Sf7L^<>MÞ:]vÇäëa²“wN•Ý0y9Dv6yë4Ù“¯‡Ç^LÞ9EvÇä롱“wN<77>Ý °^<>MÞ:5öó˜îÅä31Ýõ\ÚÙä­j7L^Σ<C38E>MÞ:˜vÃäåÚÙä­iwL¾ž?{1yç Ú “—sgg“· Ý1ùzÞìÅä<C385>ƒgwL¾ž3{1yçÀÙâóz¾ìdòÞA³Ÿs­“Ï<E2809C><C38F>ËQ¶³Å;gÚn¼a;[¼uívÕÕÙÒC{ (ë-
µYÙ@l1©vOÔèêÖ渙@Z!,p-Ê'¶˜€T×ÏÕ¡Ø> @ TÓ!cÊ~ bmk°×Kî€@ÆrÌ¡fÞ;<03>˜²ŸT@À†­_%¶¨@Q”µ81e?™!ËTm½ƒ¿š™Þ9<C39E>øö4køõ_r¼"“­Áù·ü)ucŽîOYÒJÿý¯ÿ´ó\õ—lÈôzr,,ô€¾<E282AC>|<LÿË©¾ãV&9Â?²³sipN>û}š.¶þ‹~«ÕæeÑÇUÌøƒ×`P0³^ñ¯Óÿ@ÓñŒ¾Ç‡‡-ó}†T/Ãv=ùñI¡Ý4.,~Êrü»˼JÎìWþàØ7…ïÛ9ÙÞ y/î¹à¹¤ºGÚì¦,ç.ÄEçŸôL7Qý“îßüàÿø¿ÿ'Ïxþ×ÿ÷¯ƒ5­óuðhû<68>âå<C3A2>ðBô/é¦Á“š×p<C397>>úÑM_"»ß—-=Vºb²ýG?—=îËfš#‘ï³ñéé£ËƲ¸-›õð{^<5E>îOý\v¸/»& Üjù£œêÍõ¯¶ž`Uo.Þx5ú¯zsåÆÅèÌêÍe¯FŸàVo®Ù¸}€]}½`ãbóÏó«7Wk¼Ø|„a½ÛDz5úÔ&Ò+Éz5úËzs‡Ç«Ñ'xÖÛ;^<5E>´ÞÜÛq1ú×zscÇ«Ñ'ØÖ›»:.Fà[oné¸}€q½¹ŸãÕèœëÝfï«Ñ‡6{/´ëÕè¼ëÍE ¯FŸ`^o®y5ú÷zsùÇÅèìë͵¯FŸà_o.ü¸}€<>½¹êãbôöæ<C3A6>£<>°°wI™W£å¼^‰Ø«Í˜ØÛD^m>ÁÅÎ%ng[;ûm‰)O§-åŒ&ò[µ¡ìQ¾V†l¿Lÿ½R¢ðy…ÛçÐw߬4ä<C3A4>/eGí?+sûÜ:¾ÔþkBBû·åZÛÖøµ}±“?- {µƒKNi1mœ'úè·þ|ýÖÜî£ßÚz×Gåg}´š›‰Æ¾©°ú}ô[¾<7F>~kî÷Ñom½ë£ú]™à¿.¿ûÏ*'›ñ´§:
u<>YûO~.9Þ—Ì`&è´PZí?ú¹ìô<C3AC>lø¦l÷ÑÏeçû²YÊ[ Ø{X+ÍôsÙå¶ìÊÒôž4€¬²Oý\v½/>ãmµ¾õŸü\ò}<7D>V™ü‡÷/ev&ÚôsÙ÷uZ­ÌèÁ<C3A8>ôsÙ÷uüA Ç) $òùUÆh~}­¼¼'%z E”þ›Ïð¦ðëY-èwomËo¬¾©ûCV‰eUœï«Õ7UbÈ*Š4ñ»w}SÛõg¬.oŒ½)ôú3Æš­Ýµ¾±ù_Ÿ²‰R_ÎÈP~5ú>eÕ¯ŒPä£ÿí)£è¡«uߘüaeÝe¢u,¿\”ÍOÆŽÖ¶Ú? C÷­öÆFµþ!Z­É6àÖ±"û—2²a¹n]ï°†ì[]×d˜é®.) շѲŸ ß:Z.Ó7ìusÒjfuµ%ÄÀ„!ûÖJ\WÄž\ua;ùWDßÒbwÁˆL¡9Ù\ëSšoHË&<26>ìB­Žµ™µ;·´°¬¡j7Ê!ø´Õ¥¶ìb°Â|ËZ ˈž6—úE¬z
L×”í?ú±ìx_§UfYc½ˆÓ <C393>>ú¹ìû:­òÈmàùŸ°V¹ÿèç²ïkµÊC¡¼h"†õÞþ£ŸË¾¯ÕÀç¿J/G6Ù§<C399>~.û¾VkÅEÝL¶ÿèç²ïkµÆÚ!ÉòsÌOý\ö}­Ö:F­z3Ùþ£ŸË¾¯×Ú<C397>4D”t§Éöý\ö}½ÖprnkÍ·ÿèç²ïëµN¿çRúÒk§<6B>~,;Ý×k<C397>©ŸÑ{¡.GÝ}ôsÙ÷õZw"ïHšZ,<2C>÷ÌéåZ©ÅA6ßø‰œtSNé]‚•½Ëùôý\r¾)¹ÑÇGdõú<C3B5>~.ù¾¶Ú³8Çùgîë&=¹¾æXnp¸s»±È¾¯Döå¶ãVn^r,²ïë&•}¾ôXdß¹ëXd B}¹û¸WSvþD7Õ—+<2B><45><EFBFBD>Eö‡ºé|²¥;|²H¾ïqi"ú|!2 n݃,²ï{\"ûrEq+7o&Ù÷=.}¹©˜²o]P,²?Óa× )ûÖ=Å"û3­v½·Xdß¹®Xd¦Õ®×K ü<>[EögZíz±È¾sy±ÈþL«]/3nåæÆ”]>Ój×;<3B>­ úçWìÏ´Úõaʾu¹°ÈþP¯].¦ì[w ‹ìõÚåÎaʾuÕ°ÈþP¯]®nåæ<C3A5>Ã"ûC½v¹<76>˜²o]<,²?Ôk—ˆ<45>û‡Eö‡zír±È¾s ±ÈþL¯]¯%&í¸u±ÈþL¯]. ¾Õ„dY+SpTÓ{“Ú £’| Å;aȽi0TÃÔÈ.lê/^dž½úk(èÎÝõÓƆØÛ2Ú «#©Ù]x<>ÍKýDÞì"´IÉYÖºèu²§LÔT6\Aõk䊢ÓÂ5ÅþÄG«Ñ*¿Z¥„¢°Ždó0—¡?½G7•7}ű*kKs±ÑÑMämt»üA÷¶š¸¡cþ”uXö¢/¤ükãP•*5»¢¤c5t [õ¼êÛ5°]SZÿ1NùbK¤eARZÿd5(<28>„&ýRªECÏ°ÅÚdI<64>!(=ò«Tk·1s,‰­r\U²»§<C2BB>dOê!k0¥·®'YMbQƒ [ ÿÅ6 Û4ûCß7-ÉÔ¤7u¼aSnÕ!ûbwê¬j<-îÍš)iù°f<C2B0>¾éD1¡×<C2A1>Ä%»° k5)̉m1Í…¡3¼˜Rf`ƒÁŽ€#X±£æñ½b*ÒI?lØbâ2z` i{AžÉUºŠ´´¢É­A5âñ¨¯wea¨sN•D ]AH¿ª/yÛjb šœ,<2C>ž¶åšk`ÈGo ܺ"FjjÉ-02iT!ï_k¦½­\.aâ<61>[im™ÚÑú̩цÕÀZ8 Ãò*ƒhõ_HGw”Â+ع™¦y`¼wÆÍ°/UåúrÞB7šÓ°Uóºø¦JZ†ÉFók¡æ:1¼Áž#Sï²
¦è;÷SrýL«]ï ¦è[׋ìÏ´š]|‡ßÕ»<rú®­Ül!ï2Kµç+éíŒìÏo¢Éw™¥®æó}ײšŸ¸æúM®ðïý²®<C2B2>Gn?s¶ËËXç;ÿŽˆï ÕhNJ1eäÔ¬QПšÑMϵ·ÕU<C395>ÁJ ¥U0 oMYÛüÛ£ÕûšËr¿É\IBZÅÑŠ—á¹r_4or`<%ÇB [ʺæÖB.Z¯DŠJ¾^£.USvO«)ÖË­º. æ/³ /¬á>X§‡ÔdžÄÓ@Ù¦½ŒT´Úañߢ±²Tó\`(Eo9a‡®¯¤ù=ÒFòáÍ0DÔÓðÁ¢±ƒNtÑLFe½2WèC&º`XÖÛ®y™*Ñ95Ïû!5½ÓáS#ZWŸÚB¹Ó³…š“åÀv…躰r>:h3<68>è¾áfÌG,»[`Ö2Þ3~FžEc­¬Ûþ=ä¡òŸ`zÚ7ÌfêЈöZIYv qhdÌ Ó²ƒ¸½cÝ´¡Y¬ [5?{ÞF`ŒÍÒq5 ÞWÿ¢çù=ŸèK3LÍ¥Îp/@l.W©Å¸ØUhÓ·HF½b0E`½¸¼<ªÐ2àUŸ½g”„­UäÞq•[©Žyƒ„®²crœe%CQPÐVز` Ùõml†!yŒ‡7l=¡ÁäÞ4ŽL³¬„ض¥*+ªœµôÀv=h°•¶[7{VD¹¸´ì!åÚ\kØ1ä õSiI[Ö%ͯuâ,¤ÎþÿÚÞ$Y%GÜÇ)üýJæaÙÎ^7UÝ ‰2sQ±êû53T;¿'æ®™‘îÆnU0Àa¶°,ºÓ×‹Ò ó˜Ô|2Œ­ aÃù(Ð<><C390>íj[7Œ­ 9¯„ð<E2809E>ˆ o<C2A0>¤4ýÄDç¯Ï¦Ì„Øÿº †%x‡aÜ?XyÑæcÉ]_.³ 4œŸäÃS”äì)³4<C2B3>°Šè¼š1ÄøqƒÝ ;¨p¯ VVhÌŠóÀ²¶*9hÆÖíÅËêÿœÈ°Òoúæ•íŸCnüI6[Çóö2 Î<>bðîؤ7ƵñÀض»ÚÛ5iýÜØM• lñ6u<36>Š k ñIèkbsØ$Ä|-uìWúçƒÀzã¹ ÊãÄ& æ°)`F<>>?FºamxlÃ.=¡‰ál°gït¤£[|m¨M]šÂ[Œ0ØìúŒÕ̳nQ‰¡Ia…ÁE}”°¼0¬vø$E7@ÌÑ/ðêð£SÛ‡Õ^I8šPÁâbØðüÍ—%6@ªE\+زdØdÄ ‡á†é"i1XE¬8×kRål2€T±1",·×}l2b˜l9Eb^ ñ>¬8hðhؤ¬Àr€:Rؤp1`ØàåuUű,
<EFBFBD>ý.¢ðˆÐ=Mª;x×K×Se<53>?zBèK,æžyBèue²ÇÒ m0¿I®?#ô¬ú3B¿I§?#ô›<ú3B@Fä7™ó‡„þ>eþŒÐorå ýÎ~< ô»Ìü3BFä7¹øg„~“„Fè7Ù÷g„~“vFè7ùö‡„þ>ÑþˆÐï½¼'„~“ÖFè7ùüg„~“ÈFè7üg„~“ºHèïsö<73>ý.YÿŒÐo²ô õéùGD\ŸÜÃSЇñ G1Âwþè ¡×2ß—Êß'„^ë{_J~Ÿz-ì}©õ}B襤÷Zäû„Èk)ïKuï#B/5¼/e½O½ï¾Ôó>"ô›°ÌB_J…_ª‡Ÿz)¾– ?!òZüR/ü„ÐkUðK¡ðB¯åÀ/ÂO½Ö¿”?!ôZüRüˆÐKåïK1ðB¿ ž>"ôZgüRzü„Ðk<C390>ñKÍñB¯•Å/ÅÆO½–¿T?!ôZKüR^üˆÐKñK]ñB_ª‡_ k N¯a“ãíØhÕ0>fÂòûWÏRéxéûUáâÈâ¡ð#X×Ô¾ŠMßN|møNhR©A€ÊÞÄ5R€ÀA†÷M 2[É'¡š‘#8Þ°I°¾°÷à7û^
ŠŸz-~©$~DèõVÄï:]†:ï>b?®ü ¢ìƒíÿﵡO¹ó2»_ñø €™æ“bµš
?îuyGDþêo~ü¥Ïå?õž¼!ŠÔÊ»ðþžr”ß û‡¡keˆ°^z{hènˆøÓ¡û¹¨º7‡Šÿ¡¿*ü. FW¸±/ +àMø¡b_ãMˆPr$Þh¿ 69ë2uš©ðä €Ž‡™ÃpÚbI^h@KLðc²ðöL4Y«
ãõ%ÏŒÜ 8p?—ô<E28094>ãößõ<]“4Òñ•ÙÙ„'±ÅyE¥]²q}-6:áå¿xB^ ]xÇÎ<Íþ»%wCDcñuâa„Wñ¼” åwÒß‘ w¥³ñ׫„üw$¤"͹„_D”¿#w£à%ài?6N¼0·ÂÕ}#áM¿Ü$È5ìú*àMkÜ°Û˜†7Þ´Áý@ïÀí•·f¿Hx×…ö ììr°>öõÞ4Õý@/3<>Pù<>„¿ólµßHø´µëÏ 0tmèÔä €· Ea¢”4¥°X\ü&ž£é›,ûì‹A­I³ýÐð%k z|´Hï0Ð'q`“¤$=Ì¡ l0Ò¢‰mÔ“L¡7lÒ€$¯ßm Ò¤‰=íiW½ºå<C2BA>À펅ÃT}¥ŠÇªÒ<C2AA>ÍŒÀ‹„Æu­µ6iÓø0.0hºDRY4€‡»ð*ÍJqˆñÍ¡^˜‰§·Ô#6yﻀ<C2BB>b„@uÑæÒñö}¨àT `Ê;Ñ1¯É ¬3xCT5ô…±V‡×—Ú¢€/rÒÚ{4lÒbPExU{À& `²º1ðåë‹ðQ<1A>J¯ª-õEø
@þfÑÓ·n<óK‰]ßÅ1÷jíî½V×y¡·Êì¯…uNè#vo*»Ô![!×#Ãû¦xñ,ô‰á}S·xúp#/幑^Kûë•Œ/g༬[‡áî½~óBo<42>»%ôrêí$ôÎñ·;B¯ÇݼÐ[çÞn ½œs; ½sàíÐó·“Ì'Ýn)÷ËÉ6'óÞ·?±('¡OY”ë9:/ôÖ<C3B4>º;B¯è¼Ð['éœóBo¡»%ôrdî$ôÎÙ¹;B¯gå¼Ð[‡æn ½; ½sZîÐË鸓Ð;Çän9a—cq^è­óqâù<C3A2>„>äù½ÂóBo<42>Æ»#ôzúÎ ½u ïŽÐë±;/ôÖù»[B/çíNBï¼»#ôzÐÎ ½uâîÐË »“Ð;Gín ½­; ½sÆîYºœ©sBï®û†vú¸žàó2ïå»#òztÏ˼u†ïƒÊ//ë¡(EÞµk<7F>½¹ä,ë 6öæ*’³Ð'ØØ›;H.B`co.9 }<>½¹uä"ô6özÝÈEæßgcoî9É|„<>½ @<40>„>€:³±³Ð'ØØëLÎBŸ`coî19 }<>½¹Àä"ô6öææ³Ð'ØØ›+K.B`coî*¹}€<>½¹¤ä,ô 6ö6P|úP øÂÆÎBŸ`coîB9 }<>½¹å,ô 6öæö“ÐØØkOÎBŸ`coî;¹}€<>½¹èä"ô6ö憓“ÐGØØÛ„ÎIèCù²3;Ë|€<>½¹Hå,ó 6æË輬ØØKû"‰­6ã¹ÑÆ¿ÒtŒ=?Ø £©wiÂAŒMÓjf/1öõ(Z™Øn½Â~ ¥³£j¬Eh위ÿ_p°àïÈú'V*»£5=ÑÄæ>°(F6$=øâ8š8¿…mÕr<C395>q ü³Œ/ü­HöBéõ¨lÐgØHÇ`‡SB¥ÆÙz¥ìɵ'­´^ÁÏUm^KŒÅã<C385>M ¥e4—6ºÄvo&6¨e3µý•4aT6iQ,µŠvb%ƪ)ˉúöÅîbGŠHlÀã_j×ðŒ(- ‰Å/)<29>•Ó¶•MuXß• ª5Ô®‡bÙ3I¾^b§!Js¶ÕæOŠ¥œ¥£`£hçabµ—ZûPŒ]à­-ZeǶվM:¯™%–¨Ó›£g«+.ã8±v°ýªöþɘ»8öÅG,I[ѧŽaX1 v4c"¼Ûì9C¬%Œ¦4Ì<E280BA>øj÷zÌþס«* †½WI 1ØëP"…ÙÍ“#65`êlrcsÀƯl Э
$÷[°‘(tz<74>ÆÐÕ8°4þ&W%ÚS¬JŸ7°Fé<ÅžN)`lòØÄ7I‡FéÕöu>¢aO‰‡Éi'­Ö ëM,j R}u6~m<>'…c{®”¢Aø üªtb<>y,2DŠAßà]ew¬òÑžeÀ´ûu+{œ=G‰aöñŸ¨Ý³ŽÙ<C5BD>Q±^D—hC.,Òž´SeKKŒÒ`— iÖ%M‡ô[žVöâ«á;øI!†Ä0ÚL€a¼¸ÃÈ6ŒÚplè0DÃø\¹Z32xµÅT P€A~²û;u*ûÃÁýŒ¼»€mÊØJû=*]zó&Á"Û<>f<EFBFBD> À¥Ztà‰P+MZ0V*wvVŒÜ\ìÕ˜Ãì+H s[zàœëÐ}ÜÁ†a3aȸ¹ØÿÑzÚ V°ä0 £)ÆþÁÖ\˜X…omv*0†QÐQ1ø€l $Xu­"Å-Uåh¦§¶õv¹èzÅ0•o ƒ~ÒNr••æc¹Ùo†¢R^è¨5Ë”óIÚì¶Z9~1²»¾þO5bT9FÅ  วl´#×Ñ´'Øø˜Õa‹Í‹¿•‰­^²Ä0ýÒ>Ë0x8utô º6yßR¢0IJ,‰ú‡¹i†MÀË:`Ž0° !6yg³šæoúŘ•ìÜßM¹fö°O¹Zx™p§ñ½É¸"X¨ÇÕ*XX<€+ fI¬a“$j— Ojy€¯T6<žŒ%²RbìÀI¸¨<13>¦ª0* üSn2Jø E7CŽLœŒ5v<cZŽ<81µ<31> N#O²ù°<À<>•mL %!Ý xY¿—<13>JXáBN12<31>Ê G¬óxt²1+ À&0ˆ6vÄ&Hrì_µ©a“ ¨ŽK&€åWDÁŒ0 [ [\“‰õˆÏtgæ*\ Òó$u1ƒúîM¸€0Zª>¬ÏRz\Àài± âáDÈ<C383>Œï‘ Èrá<CyCóèÔö<C394>
cZ"3ÄÕß°f{ÒeK[šŽXdqZÈ0C0vQ¬Áä:·W„OUrKOgÛ^C[ÐòuIãFÇÇ2èŠ`}·³öƒƒýƒð¦ßbEx.InÁbLl¤©J€måf³ié¦6€bj£ÚµY1výM¶<C2B6>0s]Û²þªë/js&ö0¿×âë;§#u¯¦å«OS¥Kœµ`•>fŠ,®!v»†ulˆæ3èòaW{½ÚÜòàÖm<C396>ù ÒKŽ ðj&ot [T Ó]ˆ<>ºÕ°E0'¼’ ÌH¾³²¨0Ø'˜W<CB9C>>`¤ FjÉ`4cÕ¡ÆàÔ _/óÁàžh 7R4Œ\^Œå
ذͤÑ)w|Ôlþà\Añl6j…²yhÒA»<41>ž%ä†iÀîV…DwfpH7÷<37>ÉÄŸ¡H£›¡ŸØA½Ã¯««;1t¨¶*  ±­Å½‰a`'¤E7V<ÔæPóÅcÑ<18> m±Ù₪6ˆ³¾ÕÒ<Ao•¡&QÄñØ$.WZRŒWÓW CÈEÙ†»P파ýÜ ãa@Q¿ <0C>vÅ4ŒžAg[uBkKËâÊ•ê‹à»óZkPÅv3ê”ÁŒã(ú=XÝÐiVÎXtU.Ò¤²Ë"Ê)c±{¥„ªô¨ÔÞï".PáeMö¨ç€k ŒMHÃTÅ0åð<C3A5>"3Û f6aY…‰ñµáhÃR<úsÖÇd<C387>JŒQb£ôÌ^ò2´Á0¨F¼ÛåÎ>q´:±Õ­>ÓŸ†òmAG¾q`§o ÿ;Ü'í¯^¥IåÁe5É6¬ÁGX<E28099>ÒF] ö¨„?Í~£„†z =KÔ˜Ø䀰gè/ËŠ/aqÚ&Ì,¨j1hq®˜ßí)×î!n`øo,yõ·
Í°\rfÓ@`l0<6C>eu, Ëj))ÕVq¤'<27>N— pƒ{R<0F>*gôV­­¶Äž<>]_œÓÍ/ãÌè<1C>¦¶†=*¡ëéCëËui@ö¨Ä\³Õ›`Ê|½Û<>Ü]…M"aÿšzïìQWàî;ö<E280BA>aX¯ +«+vpñººdìQ <09>z4Êäeí×m~¯`\tʇó=€íîÖÀ"mI•(våj„ßÕ<>dácyÃNÓk0O_ŸÃ^<5E>=*É©ØÌ&ö…Ì[TX6oåªÍ¬‰o†èrcËolW°«6© TÎ%Ì}€1¿Q°ÄÙXÍ_ 2ËéûF†í-Lk±VáÄØôR\nl&l˜fò@?ìúÆ9Oll /ëÅ0¸pY¸·{ÀÃ<C380>:êÄ0|ØMœs,*¶âÄßõ7¥™tÊR—8C*!'Qxo¶zÖ—ƒ) ؉ýűã1Q¶ç€`1;œní«¡S- ³É)ÞLÎŒU #KÓȸX®È.‡ba“a°e*<óÜŽú[Ñ0,|¸Šœoé½z+×Ìè<Û]sk1Iš$ ƒÍÎ< Œ»cD•Úî˜^”x%Ö(¬Œþ$œž.!=ÖdÎ\ÏG<C38F>†ivÎ8Û<ãÝG ÙFƒûÍ<EFBFBD> óç»aYÂ\T<™žº89ã{´5J±VNa@• œE<01>SÕ”n[d€«*q·bØ"™Ê¹À©Û d<64>Lkãè gƒ0?E¥Ä`-¹8Æ׸ܥà0ÉBÅ<42>u·J2VÿNG0Ôõ0 ?¨uã…;“ ƒYì݆¥nl8 ½ú[ô¾& +;<RW:@°GÉxWi 6 ƒ€çß ÓÑ/üÿ<C3BC>ìYº°l1}wÞ<77>RCö†-6@ ³…ß[t€ã[4ô8¼ÒEΩͶè1Úu Ð ™?n·¦ž<dÒ<64>¬£è´ìl”ÚSRí² SõÍa½HÉ àÂÅ<C382><C385>H4°E€a;ªnàªÄ4¶¨Q5øÿ ÃÞÄ*0yñËŒ°n¸{?÷Áà„a×ëì±jf82k½ÉøUÀHšü$V8T7œÔjÐL tFoPŸ™ ¶Â¿¡JŠ†-.@ŽØ-”
£;j¢eêŨNá5´°)jh»¶0“a˜Z4n,v:/¥[»fbg{c¬žÈÚ¦¾RשFfȪ° :‡¬–Ùð"Ãá¡ëüTüƒ‹Ý¹“ôA®¢ì@$¦œ±7 (…*áÂÞÔ`É0O LlžT7´ŽžÈ ñ +‡m}ÙH{xÛEÅàó.Œ&Æ[3Ú,ƒwP"»øeq¾<08>\g +ÈôÀ\B%ƒðcEâ7Y\¬Ã`ϳo£Ák¨<1A>Â+t…#猳Õõ¦UÀJŒàtYDìÛ;=•ÂhÜÅÎgd¸fÉK]-v¹,áx ,“È„Äç1¡˜õö µ®|Yêe9Ñp?Ì…!„'>¤ƒp5 -Î*ÒnœÆÍ0:hâÊÎââêAÇ<>Ô êf*‡l´i­\²€ØÃ^ ·BŒëÖ™ l<EFBFBD>Ì°5ÆÚ¸©ÆzhÕ^ðzYý«Z„ Àljê÷ò™uý"€%aÂ}S‡´Ö• Ç°wžŽ0läÁç<03>RUëÆXb…½£OÙv2àYÖ‡¦Á1`p Ôõ^T÷×&dÞyŒßéUiPí+'@s‰<73>±½L^ÿÒ(—˜gìµß«ÈKCq¥yNdáê%_cÒ#—*­:Ì;&¡´¸@*cD0ýÈk-èG; #¯3êªcñü"XJ˜vŒ†¼T B˜''Ý;†‘ ÐYßöNW901>Ì¿&)¸¡ñщiQØ@e*W|±Ä§Q£ÜâÎàÃaXZjØÆHhæ`ÿ·\ºØø/^® ÜÒL
ú”ãËzFGÙãÑ©6`Ú€›ÓÍ v?<3F>b•…?r¨n€ƒ'ªŠ¼ èÁª¼ÙÐmyUžÙß $Ò{쀦«¹”W~<7E>Mé²W/†¡üd`S_¼´l—D¨aTlœ{ñzáæÉH¶Ø@ —i<eÙØ@ )òXµ\¶Ø@àpäðÁ°Å§«7P}úeN6y<36>¥_=F6àÅq³ä5fÙÄLÁ©áæÀ/×ø®ö¬5r8ÿ]O<>ba3é<06>°ÛäT'E"{†m\ ŠŸYÍkß¹ C…ž³0°™à,$ºþn@<40>¾kg|.2í1«j^ºû2o8Èrp°sÃÔã/2>(d¤N§.ifè€ã…ññ^i÷;À:…óV¢ÚIn<KÇòí†mTjtlÄ@zØ©Æ:9ñVkÅ6*Àˆ¢S<18>™äƒ©£ðs3ðÀýÈaŠ;¬¬Ä6“  ˜é³¤<C2B3>
. ÀàÝ1*ª£˜£ŸT€^!þäVàI¶°˜`y§M¼Â®Þ~Ï; ý4C«Øb…sRXE¡¯W¾Ì1
Œ;—¡L<12> 1,B5DŠ%LqƒW&˜7ÉÀZ€fÈ2åÀ0Bðd©TXh3hút=º’[`ØQÒ²Z¬F1Ԩߕ©„ö:Cøú5xa°ÃÒ‡Ÿ'†ùW **F/ãªtÊ`Á¨•‰A.îT3[dk£è,±=š-u@+oÕ!`Vqí±dâÂ`xÔõfø.Bùšñ©å š!ØëÁ²bb±L»aXÅFºÐ3Yv¤Ò?¤£ÅÍ%ñ4 pPß»ògB°¦UlëI°RÁÇ1% ãð X³ªg¦è'(£%®,"P˜i•Ü½¾x݈}G,­<>T]2C?‰ãWPÐjÍ°E÷Úö3ô“Ða“˜”MzÛˆ¯LaE£«L<C2AB>L"@çªb}{̾†õàëj €-"P%ÝXƒ^£Ol@×Õ¬!¬í"|óms&´ˆ€-ý`èÄ`°³ÁKJUÒKR y vr+`¿÷‰-"@//ží'ýÆè(dÖÊŠúÌÐOÀX.µ“A!¶xcÀÑ<GÅÎ ¸x-w… ¨<>,BˆuöC<C3B6>[<v[ ³çKhr»¡Kš˜&¶x#êxÈè%<25>%õ8³<02>
ÁëÆ.±Åµ•À$¢n.rè}ÊÆisÛÜ­\¹uCàý±wMÞªDëaxkŒ-÷#$teOýßz×”VèRXk€cW Z=½a0ûŒKLˆ!#®L@˜)Ù8tD°¤àªa51"ØäßÅ0ì<30>Ò¸ÿ%bµÝÙÊ†ï…—Ê µ/Ø<>b<13>µãË´H-ewHäI1|«JTŸbJíU#À°ùaÁ¸µ€UÝò(MJE„`ø›•íÇN v¢b^i  WLýsn-ÚÈXWh²IX1ÊÝUYƒHJ¸Ãæ<C383>¾âÖ"síqÖXéXóÒ8˜AÅ£XL \<5C>û*<2A>óžûÐH8GœôÈÞß ‡ŽgË ,ìí, . êÅàÕÃBˆB¥¯Àøœr`Ð •!:qqX<71>ÏTÇŒ¶<03><>†é_Q`ô»„ÊÒÙju/³¨)<29>­Ê€¾lÁàˆ¸Û<C2B8>¶$±í:fMZKìNM;<3B>Å}oððA<E28099>¾cã´gÞ0K«M—y• œ°CüQ:®àÉkåÃZe-/–¾æƒýKâAã“÷AargÐïÆZa¤<„gÃõåmða­ çQêÀ¼ C<>A½ÂÁ׊P.oõ@W@j©Üû ýVî l ¬(E+³o;°Î ë+#G$?X3'abЬø·¼2Èr1¬3%ظ½`õ±ðw]Ò<>¤ú¿¬Ò=vàÞÀw¸½h¤ñKÃ\ÉÎ`WÄDÆ,E&ØY”®ßƒ#6°áÁô–B,äê¿2Ìì9¾¨aY¦€.«e°R°u;w<>¸W íc-BÀÔFRÝn/Ú#¨üu~<7E>UTØ7Š èxD2{=³¤!fqÓh;é†E€'ç¬ÃÀª€ºêú¦º½i™´†B=ó^È]„%ƒ:ÇhÒ?6 ü¦JV̳B°ŒCÂ3ă•J§ßÂ~JV±òèÕÖjŽS§Ê 4cxÈÆû ðŠÑ~‘º>xUŠu—~é +<2B><> n.(<ì<q5£¯ºê)Lq³™£÷Û¹æMª¶6nTO¬Ã¶cK€<4B>6‰^Á ÉiaQKÄ-S/aŒ¤•Ž ƒ¹D1¨cìµ×<C2B5>…5|šñ0ÆÏᨠaª¡È8"ÐqZS`C8Û<38>½UôÍsÇ»¨0Ý<30>—=<E280BA>¹Pwnnk‰jfÙï ΨêÙ!÷Õg& <0C>1dM/LÉC†°)°(<18>:£éVÀ¿âÄ^ÇøÃbË<ݹ±¸;é¾WeÀSµµ+Ö X«fݱ¤¿@§EÙIÜ-¬L1Åët™³*L`<60>þÖ0þCÙ­úêùK(Zâ”cÕ°§à2Ñ0>£U’Èä)F&4H¨°²ñ àHºÁçì²$X•è¶.•A× Ï?¯Äú¥RëúVb<07>¯a3Ò†êcÊ?•`­„cyóKËJk<4A>A&¢(† ÁÒ¶)ª;&û„…4xãƒNQ£S†|<7C>©>I¸N¨€¨iØ<69>ë4D8 `B~<7E>ÉHC—3² tùxh )óž`Áòž*º6Ú’Kob4zZLˆd}½"4@Çh€E…§Ø¢´r󑺾^Ýh-™nÐhØ Â
ØGžÄch»½9ü!I%r <72>AÃceNh¨×%<0E>¨Ý,´Àt<g®7Ìc²dÎ`~ƒ¶œÅ¤ÜÆX'Q72“ñØ :Ì\RLc ñ ³ñê<bÕ¦ `ÞšdΉ<C38E>NÁ¥æÞ†Áû`X6dÍx¸𙥴I Z-À¥˜F[¬äÒHб²Gá­ne<6E> à1åÂN÷ž1nï-IhO1¨Ø’cf<A¶!ÔƒÌV0zü°bEuyЀZÉ£&™¢#7Á:S eè+`[ˆ8´Žö+S"ÄRç߸·XGlÁq…˜2¥‡ ®6¤Q#Þ€mpH¦<48>Xµ²ÃÈ`™Ì`¶ Û©ÄfÞ¼a{eÁà”CØc2µƒ¹d|ÖP4{M Î=ü¤Õ×X^ÐËm~¯Ñ= CÏÉrSK) ¯¢¢Ü<C2A2> ?c{*]‰Ì×OÀ»îuTa0o-¥Ø¢°-É”¿`}Ò&‰ %1+Í<>EIJ€·gW [4 Ó­ëÝF˜ÌZI)b0ŸDÌŽbt úf˹Eæë' `Î-2B)„’i BÐ\]Ò"ÃûÉñË#ö“PÕËömÕ°I˜P„£Öc*-@mkÒKPqq£Ôæ++ElÑ€ÎrÔIb<49>Ø¢TÙøa<µÊK[N€yVìO3ÄVR 3õÝ#óù†±ÁÖÏ`NdÂ>Šs5ìssÁúÂRåÌ,r„ HY·óõ“PõâëB3ˆ<CB86>túï¼Â7Ã<Åä […A¢_+oÔ§¬[i<73>ñ/{»ºh ˜õ 4€XâÅãšð ”I ìƒ`[¥AŽ.yê+X—<58> š3 b×<62>¶Ò *È€½¢7lÕ±Œ)˜¨D€%P Œ·Ã& †êâv<11> 7¯‰7%mi)ÜÀ&
1^)ÿŠá|ã‹€;œ ˼†ñbÐßð+ó0 V¶I §„\Nƒ^<5E>ÙøT©~“`PýXú5Æ{“{ó<>Á¤k¸J1ðlûªUëØòšÈ$†Ñ­ä§QÏ7¹o"%ÃðV0 ÌšÂÿëðž<13>Ubt„š<12>FrÓ…Ûjºis Bø½BÞ<42>¥ÍÜëtpõªIcÁà‰r.å)™Ð::ÔQ .ÃVu >°ëlتrL¨,Õù!lÕAŽÙdfC]5lV <C3AE>M&Àš•»šÔS‰t<E280B0> é©jc ¢£ß\Æ<>Ub“£îÑѧL[u/†Ï<E280A0>
úfþi7¬Ìœ>1üc"Ž1¨--™!ÆZ˜ò,ò®]8«Ì³aˆH•ç3Ϻ¡&“.Ù ñl ÃÏA3m>eø ŠA)`(ñÅ:N¬Œ&;U°<01>Ó4ÊNlÀ>Ö,9éƒáòlåí<C3A5>C- ¥9TĪè×CϺ<1F>‰h]ÔÌÇÏ´H•òŽCǺðÈ ôIÔl!“x°jX*¾)…\¸Â<C2B8>aðC³ü1Òy¨ÃØ”ÃkR£Ã¥{<7B>ùxX”Ö$+Me¢Ú—øJ ÙL †­ê ¨,¼73õ{uÝræuË‹°ªˆ\[,6ˆ!øÚÍ‚„& ÖIÍL…²²3o™ b«:ˆ5Sºv£a«:ˆËgñØ«[u<>h,8vIÍSõ³:ˆ*«1|KÂà¤3ý)P[L@*É6¦ÏL@*ÐÄØìµÅˆ­¬oÕAÀ8#P´É°UäYñÑYÉ [åA^(±«#Ý"³RMÝÈ¢–°Ï“ø‹Ä&<11>â?z‡^<5E>93õxw/•d0Þ ¬Ù×üV$'C±IŠªRfêgqky$7êh2Ï6ƒXÛˆíÕjØ*øıêoÆŤ<>2À¢d]·1."ÀúKò˪ùFb“Ãè饩ÄÒ"RïéúØzdòƒ°J4Öب¤I¤¸40Õ”ôkybØLY\Å&<11>bVn=ÓÌC "@ ÀU­ªyúAX;«‘Õ9ÌÓÃÓLÁëe"ólÅ& Þîc±ß¬H‰¯õ2l<12>,*Hhj7l©(f”'UýÉ6‰ ‘ñô°{ê3O?ˆ€Ô/ó8)Fa e@6¦o×ÈR*ÄR„¾ˆ€ÔY³EEÊã{“ d©Š£r22Q?˜€Ôuƒã´b“ c{¨í{“ H98vЀ,<2C>| &<26>¥T/U5’â­(…Ϭª£²<C2A3>Ød©ÑÕ­Ma1<61>,µBXàZ”Ol2©®«C±u@€(3.¦CÆ”ý< @ ÄÚVo¯·ACÍ,ý~@ ¯ tdÊ~P9tÞµ~•Ø¤YUPÒbàÈ”ý`„`,c±õN þjbzçrþáÛÓ¬þ×ÉñŠ åŸ<C3A5>}v¤*Ëá«ÊqÆŸ²Vþû_ÿiç¹Ê/Ù<>ñõäÝÒ<C39D>y¶!È Lx¬¯Ç{°4Iþá”<C3A1>Lƒwò¡.·ö‹žëÕÆuÑî.§ÿÉ0.˜X²øƒj"ˆ)yFàÃÓ#—øFŽqÕÛÈÝÏA~~\Ç3ÿ-Ž¬îÃãî¾@²¬\À><=ŠMAî]ã3[½ÿÞVôZåcåsmÿp³¤:Ú*Ë ñÕù'=ÜMTÿ¤å7?ø?þïÿÉÞÿõÿý˱¸f{½Q¸½^ˆŽ&ý5¸Tã>®ËG?ºòKd·sÙRÙc5,&{ÿèç²û¹læ;"‰¿P/ýX6űl´4[Þ_>ú¹l.»D
µØÓÔ€ÌÀÓùbiö-û})OT ±Ž9í<39>c- „…M2÷°žÃÔÍÀ|9˜ ì³° CŒ5è„ 7ZïŸü\r8—̨&xµp[½ôsÙñÙŒàz<C3A0>ô ÙÛG?—<>Îe³¦·dÐx?WÚþÑÏeçcÙ…5ê-j$Ye_>ú¹ìr.ÎuöÀÝ?ù¹äs<C3A4>VX« õv&zÿèç²ÏuZ)Lè !{ÿèç²ÏuC
7Æ ×<EFBFBD>½ôcÙá\§¦[CÏà]>ú¹ìs<C3AC>VxöÖó <20>Ÿ«|ÿèç²ÏµZáéPÞ8ü|ïý£ŸË>×j ö_9ƒ”g—Lö壟Ë>×j5oá7“½ôsÙçZ­²ˆHÒ=nŒù壟Ë>×jµñaÐò7“½ôsÙçz­vÉGÉ{šìý£ŸË>×k•÷.¸æ|ïý\ö¹^k -·”szíòÑ<C3B2>eÇs½Ö˜ê­µîËtÔ·<C394>~.û\¯µM䉤¡ÅRÏž^î—š<64>ŸÈ‰‡rrkµlÕMçsÿèçÓ¡äêÂ(Õ»ôsÉçÚjÍâçŸI:×Mz„ÿzß±\åprͱÈ>×M"ûvíq͇·ìsݤ²¯·ì“K<E2809C>ºÉ——K<E28094>k>¼û˜²Ó'º©¼Ü…,²O®@Ùê¦ë•È÷üñMÈ"ùÜãÒŒôõfdV&]ˆ,²Ï=.}»«¸æÃ+ŠEö¹Ç%²oWSöÑMÅ"û3v¿¹˜²<CB9C>.,ÙŸiµûÆ"ûäÞbý™V»ßc,Åð'׋ìÏ´Úý:c}r±ÈþL«Ýo5®ùð2cÊΟiµûåÆVYýó;<3B>EögZí~Ý0eÝ2,²?Ôk·[‡)ûè²aý¡^»]>LÙGw‹ìõÚí⚯ÙêµÛUÄ”}t±ÈþP¯Ýn$Ù'‹ìõÚíbb}r±ÈþL¯Ýï'&í8ºXd¦×n7SôÉEÁ”\>Ój÷ƒ)úè¾`ý™V³ûƒOø]9å£VpoQóa×|Ê,Õf\醴ò?¿’^$Ÿ2K]Íׯe5?qßõ\áßûe]!?Ž4?s²[=ÿŽˆïÂ
Óå<,¹¿8 0IQSÄLÉ%ÉË&É"Øê„?ó΀„`XŠ¤#Ƹ5 k^«8Ô±KØ<C396>` U5µTÆÍ™ãFŸ³ öÀn$ý4v3 •€<E280A2>]<14>a­ ¯×z ¨ûùxæA˜Ùae@Œ¦fƒ·Y£E2Ø\%«Í`>ô¥³´ÖQ²¾Ü1(<28>Âê$)(Z9b K±r˜ÌAse˜'¬q³p¾aÑ_Äâhâ <EFBFBD>ý.¢ðˆÐ5Mª;x*÷L—‡Se]?zBèK,æžyBè}e²"ÇÒ m0¿I®?#ô¬ú3B¿I§?#ô›<ú3B@Fä7™ó‡„þ>eþŒÐorå ýÎ~< ô»Ìü3BFä7¹øg„~“„Fè7Ù÷g„~“vFè7ùö‡„þ>ÑþˆÐï½¼'„~“ÖFè7ùüg„~“ÈFè7üg„~“ºHèïsö<73>ý.YÿŒÐo²ô ÝÓó<C393>ˆ¸<>';Їþ G1Âwýè ¡÷2ß—Êß'„Þë{_J~Ÿz/ì}©õ}Bè­¤÷^äû„È{)ïKuï#Bo5¼/e½O½ï¾Ôó>"ô›°ÌB_J…_ª‡Ÿz+¾— ?!ò^üR/ü„Ð{UðK¡ðBïåÀ/ÂO½×¿”?!ô^üRüˆÐ[åïK1ðB¿ ž>"ô^güRzü„Ð{<7B>ñKÍñBï•Å/ÅÆO½—¿T?!ô^KüR^üˆÐ[ñK]ñB_ª‡_
DÁ°žgi)1©bc™ž1ÁÁ² <31>ÐœYŸÀÝ ñôå$$žB j,…`ò°:@“A´«Á’ u!ˆaF{ͱZúB<13>|Ø[¨®!4´êPÅà¼Îz‰Äâ~¤&"`{νÅ0Ë›­iƒjœAÅÊ|ëz7©A#‰Kž¤" +Ý!Þt§åuŒ-ôa°@<40>-… |S¾ºnIÆoñÈ|'-õK«š ÉÍðŒÒêÁ²R“„h<E2809E>¬v<C2AC>ce~&­/d£È{f&ÁdÅ2<32>qÓ¯<C393>Æ°¶»Ž2ó÷•™®¥ ƒw°©ÝXˆÁpªŽ2ßTëK ÓC[2|S:<3A>!V»æ]ª<><C2AA>9¼õ0èxÑ&”šÄŸ«08.UÌÂKÚI«9ˆÖ%FËŸ™*R°ß^Ó÷¬¶(Íj^cÓJÅ`«$nµ²ñ°l”`ÃRv÷*]¯ÿjqnAóÿ-¿û“¡þû_ÿiõÕ_Qêˆß\  ­ö:=¥ë5XÇ/²#ÙÒ¿¹@fî³ßgþœ ¬‚Ž)¦h]ãu\ÅŒ?x ©/’¥òýëô?<3F>ƒée¸<65>žÇ£Ãµ^ ŠŸz/~©$~DèõVÄïZ^úä/Abc®ô îÿï½³<1F>»óV»_Á}ù7½<‘¾Ú›ixùOM(Dñ¦Zy^ä“]þ<>°ºš»k¹Õ‡†î@ÄŸÝÏEýãн9Yü<0F>VáwQï1yfä$üáÀý\Ò?ŽÛ|×ütNR<4E>î+±Å O
¿q¶ó5<C3B3>R8ÕYýÓ0áé„l+‡Y?(¥§<C2A5>ãýÅܶ¤÷BÞ{.x.éî‘^f<>§f'‰å<E280B0>Z)O\ÿ¤»ä7?)Í8?hè ÚÊê×ÌÚ;Üì?úyóÓû }a¢¾$wYf·ÿÉÏ%ßoç;"ã}¾B<C2BE>GºOý\öýv¾#±:¼¦®¾L§<4C>~.û~;_G®k…ŽÉöýXv;îË.Ì¥­æ0Ùþ£ŸË¾ßÐwTžq<C5BE>²<EFBFBD>ÙcçôÑÏeßoS>xDv^MÙ˾ߦ®^·÷ù³ŸK¿ß¨ÿ´^6ø食˾¯×Lý,ŒÝd»<64>~.û¾^ƒ¹£ÿG'2Œ%Üösé÷u,ßqÝäçÏ~.ý¾vƒ¤~ÝæçÏ~.ý¾~cIÙu£Ÿ?û±ô~_ñ´Gö5]«%Ýösé÷u\€ßð%¡„Ø—ôÓg?—~_Ë0±ë^÷ý\öZ.0M{Þëþ£ŸËþ@Ç…Z^öú鳟Kÿ@ËA<C38B>¿ìõÓg?—þ<E28094>ž ÌŽ]öú鳟Kÿ@Ï…Þ_öú鳟Kÿ@Ï<>¿ìõÓg?—þ<E28094>žláßž-ü@Ö˜Z-<2D>÷¼êå ïb(üDN¸)‡%"æµëfÄr <72>ëVÍ7<ýñ<C3BD>^Ú³4‡ñg¢>PC"êrq”œÀºs_”ÿ@ ‰ðËR~ëÞ(þ<>Ráç¤Dø<44>û£Dø:H„_.”’Þ<>{¤Dø*H…Ÿ/áwî“áŸj óS"ûƽRÜ,Š¾^4Åê[÷K‰ð¼,~¹ûIJî\ù$Â?p²Døå¨Òo^ý$Â?Ôf×» (üÖP"üCýv½J„ß¹ bó®J»mãþZìxÂ[€ñ„¼I:ó²<C3B3>q¨ýwKî@Deñuäa„Wáïˆ(¼<> ¦wâß‘ —¦³Ø«„ôw$Ä,]¹„_Dä¿#‚—¤à%ài?6N¼9·ÀÕ}#áMãÜ$È}lú*àM<C3A0>Ü°#û™ú7ÞôÃý@/Ãm…×g¿Hx׎ö lñâXûúoºë~ <20>·š¨ˆôFÂßyvÚHo$|Úãõg ³è郃[ÏüRb×VqÌY­Ý‰Ð{uÝ.ô¨Ìî$ô}/¬Û„>Ra÷¦±I²r=2¼oŠ¯BŸÞ7u¡i%׿^Éørn—utîDèýðÛ.ôèÜÐÛ©·Ð“ão'BïÇÝv¡GçÞŽ„Þι]„žx;z=àvypÒíH¹ßN¶m2ÏŽ¸ý‰E¹}Ê¢ÜÏÑíB<C3AD>Ô<>½ Û…<1E>¤;z?9· =:Bw$ôvdî"ôäì܉ÐûY¹]èÑ¡¹#¡·Cr¡'§åŽ„ÞNÇ]„ž“;rÂnÇâv¡GçãþÄó»}Èó{9„· =:<3A>w"ô~únzt ïDèýØÝ.ôèüÝÐÛy»Ð“ƒw'Bïív¡G'ÞNØ]„žµ;z;ZwzrÆîˆ,ÝÎÔmBÏ×ý C»}ˆBÜOðí2OŽò<C5BD>ˆ¼ÝÛe<1E>áû òk—õP”"­Úµ¿ÉÆÞÜHr•õ{sÉUèlìÍ$7¡°±7—<37>\…>ÁÆÞÜ:rú{½nä&óï³±7÷Œ\d>ÂÆÞ .BŸ
J„¨ß®wCQø­+¡Dø‡úízG”¿s5”ÿP¿]ïŠáw®ˆáê·ë<C2B7>Q~ëª(þ¡~»^ãTúÍÛ(<|ªá.×9•~ó'þ©†»\ëDá·nsáŸj¸ËõN"üέN"üS w¹æ‰ÂoÝî$Â?Õp—ëžDø<44>[žDø§îrí“¿sÛ“ÿPÃ]¯"Ù¸uë“ÿPÃ]nd¢ì;1‰èõÛõf&ʾu!“ÿP¿Ù M7ˆ]‰w ¤ykç:Å[»s1§ˆ¾Ë)Í€œïÿ+ýæµ"ú6ÍÔ5}¾]LÖô—Š½Ë"þ½ŸÖUòó8Ãí§V¢Ê^Ž¿ÛÌóTxDÄ5žðˆ<C3B0>= ª»å¿wïߌºXüå +Þ2C/O¹®*VØŒa%hIÄ7)óG„þ>WþŒÈoäÏý&;þŒÐoÒâÏý&þŒÐoá ý}ü¡Ýÿ€ˆï³ë‰ý}Zý!¡¿Ï§?$ô»DúCb¿Ë ?%öÔùCb¿Ë™?$ö»dùSb/þÚB¾MÅ?$ö÷9ø‡„þ>ùþ<C3B9>Ðï²î‰ý.Ýþ<C39D>ØïòìO‰ý&Áþ<C381>Øï2ëψ½¤ÔŸ¡g"WyþzŒ¡'`'&ëüÑB¯u»×JÞ'D^ëu_JxŸz-Ô}©Ý}BèµB÷¥h÷ ¡×ÒÜ—jÝ'„^kr_Êtz)Æ}©Ï}Bè9Üò„ˆ××ÚßGÄ^*|_Š~z)í}©ö}D赤÷µÌ÷±××úÞgÄö«F¸ˆØkõîkEï#b¯e»¯¥¼Ïˆ=‡HòRüZ(üˆØK9ðK…ð#B/uÀ/¥Á<C2A5>½Öÿ¾Ö?"öZøûZ üˆØkÅïkð3bûb¸ˆØk<C398>ïkÝïbwºÖþø"D<>jÆüu¼9¨YxIVˆ¼©$ÿ @]ÙØUèlìÍu&W¡O°±7÷˜\…>ÁÆÞ\`rú{ssÉUèlìÍ•%7¡°±7w•Ü„>ÀÆÞ\Rrú{}(P|ccW¡O°±7w¡\…>ÁÆÞ\rú{sûÉMèlì͵'W¡O°±7÷<37>Ü„>ÀÆÞ\trú{sÃÉEè#lìmBç"ô¡|Ù•<C399>]e>ÀÆÞ\¤r•ùÛËèvY°±—Y*„#{n†kÇ<6B> ¤û°SGq±5éÆAŒÝÓJbS16øÈ ZØêÁÂÆ ¹±µj¬}…ÿ¹/8XðwdýË…mÒªžhb—X”<58>u‡õQ>Â…p®ŠóÙ_-µz×#½~þ…¿eiGæ(­¸ÂN}†õè:[<5B>Ê%Œ,ű9cÐæ´Òƒ?W´-1<16>7v/”Þ-ÒeJúé[MšØ©ÍÌÔöÒ„^Ø­E±X»ÏÚ›©Æ$'êëÛŒ¹,X‡-Ç¿Ôö3àAz _R +§m »ë°¾+TŠ/MŲy6[“f}½È†NB<>.9ì¯%] )ICFÁ
l•<EFBFBD>í»r=±ùðÆ=`ð|"ïÁÔÿÛ³¡ŸÈ_ýÍ<C3BD>Ç7Oñ,ô6Ò ˆï"wZà†nÈõ<1B>Ý :t?õ<>C÷æ€ðû¡K7ª?:twDüáÐÝõ<>o†®~å7Âèk ^ËijÓA.$Ân—ò®ïÕ+occ˜·oðFž°§ÿnènˆh¬¥æ½oDÄ¿#‚—ô^[ú*!ý<01>ƒÇó_$ä¿#!±»¯ö|#¢ü¼æ„W@çÆ©ËÍGãÝKÔ¿"ˆ¤ýßhE@<40>+³x7â«„þW$dÞZU[|³\<5C>ÿóïHh¼ˆ†%®¯ï0þŠÑÙJç<4A>„¿ó<0E>÷ ñ 8FÖÄÄJË¥´®ÛÁ[´ÂÖm³<6D>´ ž3K,R§W9FÏžW\Æa`Õ±«6J˜»Ð>Æ.䨽ƒ‚ã©%× =ÄÎÖflG„wÍgˆÕˆÑÔ<C391>f·9_mc<6D>Ùÿrºª`Ø+p•„¡KƒMµ3m=‰a9bcY'¦Æn76ìËî@r¿;ŠB§{éKpbpU¼ÓæbE¾<>5J *6wŠ“`“Çn¾QZ5JS¨Z±¯“ †%<%& ¦-µj5¬aà¥Y6± ½HõÕÙ¶zžŒ}ºb á'ð«Òrˆæ!Ë)}ƒw•ÝåXå£ÍË€i386îV,´<30>Ãìã?AÛh¹Ñ™Q±E—hg.,ÒµSaoKŒRg» éÚ%݇ô<{Ÿ6å+‚á;øI!†Ä0Ú¤L:<3A>¸ÃÈ{v Úy¬ë0Ãø\©XW2x¥†X ëP€^~²íwê6Šƒûxwû•±#”6~"”<34>öM:AžK5ëÀsP+Uz1*w¶X Ü\lÚ˜üh0H sçœkÐ}ÜÁ†a3aȸ¹ØÒšÛ ±ä0 ½*ÆFÂÖe˜X<CB9C>ozÔVmv*ІQïÐA1ø€l$XÙzFŠ[ªÊÑ0LO©5è;DìrÑõŠa*;Þ"ý¤-å
Æ7£ô}vÿÃÏê>þf<C3BE>ÒGg­n<õµ6®ò*Ìñd÷êk ÜUè#]q¯Åo¡<>ƽ«=„³Î …†ö;|d€ßÕ^Ä>1ÄïjÏb®>Ä8~µãFûëUˆ/‡Û¼¬[§Üî½jóBo<42>n»%ôr˜í$ôΩ¶;B¯‡Ø¼Ð[§Ùn ½^; ½sŠíÐ󡵓̧×n©øËa5'óÞ©µ?°+g¡OÙ•ëÉ8/ôÖ¹;B¯'â¼Ð[Gã„óBo‰»%ôrî$ôÎQ¸;B¯'ß¼Ð[Gàn ½œx; ½sôíÐËI·“Ð;GÞn¹b—n^è­£nàÿ<C3A0>…>äÿ½§óBo<42>«»#ôzŒÎ ½užîŽÐëñ9/ôÖ9º[B/ÇæNB»#ôz\Î ½unîÐË1¹“Ð;çån ½<1C>; ½sNîsBï<42><C3AF>ûžvú¸žÁó2ïÆ»#òzöÎ˼uïƒò//ë¡hE`£„a7êÿM>ö‹´'Ù»{F.bŸàdïn¹Š}€•½»[ä"ö ^öîV«Ø˜ÙûD®Rÿ>7{w“ÈYê#ììÂR'±<>…¥Îí"ö †öîÒ’‹Ø'8Ú»ëJ.bŸ`iï.*¹Š}€§½»¢ä"ö ¦öîr«Ø¸Ú»kI®b`kï.$¹ˆ}¯ýC8ù$ö©pò…²]Ä>ÁÙÞÝ}rûk{wëÉEì¼íÝ}'W±0·w7<77>\Ä>ÁÝÞÝqrû{{w»ÉUìüíݽ&g±<67>0¸H<03>Ä>•k;“¸‹ÔXÜ»+T.RŸàq¾ï,í&÷ÒÑ`ÆçŽa<C5BD>g%§ÍS ¾Ã˜X<CB9C>ÎÒ#Àõ¡,ÂòÉþ!ÍÔ~{¥M¬AcGÃR©KË8Ŭ鲲ÓÐû³”BžH<C5BE>ºg·ÃÂ¥c1<UÖã‚…Þ»\ï@¬%Â>¿j“ö`ÌýÆ<C2BD>ÖùrÚœÕ0¾·8†ÅÐd [­<> Ã<H× 뵩8 ;¤gaÚÙ2ÏG9¤ ¡a`Póu¾Á<C2BE>YÐÁ¬‰ä2¤Ðªa«¥š`}à½[1¬c™°CêÄèaÁ¤?ß(L ü57Ãð˜…=¹ Âõù5Lyg7Ãz·¼<> ºWGÅØØ'V0“…÷¦½FÃ:-&m¿«_1T-çU JZ»ˆ+¥—ľ»†©ŠSl7<6C>U,æ!ý¡{eÉ$<24>£ªƒÝÈ Â/²ÃÕ|½ZëÐe+í^Û\<†Ívd½²EÏ·¯ÎW¨œ¤aØnU-Xé¡ØÚdÙpÞ¹y`%Q_<51>͈°¤Õ¡b<C2A1>}¬ cƒ×ܳ­v©¶ú†E¥ÃÙØ<C399>(cY÷9œÚOÎ0¼líì­X²¡ˆI#+®È Uéa¬×fiYŠl:fØj¦XÔÆKÄØ<C384>¨<S1±Ò•ˆƒÇ“¤Ë¯a½ c£c6sÖŽ{ºiÛ´'«õœa6='¶Ú.¬q…9{¢dؤ{n7ÃrÎ6*ù+ÛpNŒý»aº-£ý&;èýZq}^ÂÖ<C382>.ÄÀALçÞã ÿ*]ÈRµßôY7¥¼<C2A5>+%É”óIêh»Z8~!°#»¾þO5bT)Å  à¸Çdh¶ô%×Ñ´'Xÿ˜•³‰ÅæÅßòÀfSYb˜~é£e<œÒMz<4D>±-âê¯X³-ê²¥<C2B2>ÍUG,°8Í'ƒ.[ƒÊ<C692>(Va RÛ+À'ª¹<>¥¹³m¯®½è²aÉÚ¥q£ãctE°¾kOIÃÁþAxÕo±<6F>"<—(7€`1FvÔT%Àþr£ë´´U @1µÅAíZ…¬šþ&{̘¹¦}À<YÑõ´A™ŸõúúΩÁH@<40>Á«©éîÓig½X¥¡†"‰«@ˆm¯a‡MýC%¢ùôº|ÀÕ¦¯6·<x„uëeþ¼4•£6¬Aó{évÅ®Ê U?8WÐG<›¥[¡€lª´Òn½% ¹a°»U!ÑÝ€ìÒÖ½c2ñg(RÅè¦è'¶RoðëÊlSGŒª­H'hl«hqobØ éÕ<C3A9>µÙÕ|ñX4Äkl¶Æ„8¯ª…<C2AA>â¬<C3A2>µ4"<22>Ð[¹«I”Nq<6ÉîË…ãUõèröãÎT;=a?7ÃxPÔ/C'Ø{™í1 £gÐØïsÆž<C386>ÐÚÒ»¸°Y¥ú"x…È6½Ö#T±Õ•:FF0CwY¿«ë«“®åŒ%@wÀQå"Ý*6ÛXJ˜¡H³Jm/â<^ÒÑd³Jp¸ÆÀØ€tNU S)0³af#–•_Ž1,E×\JI“Í*1FÓÊËÐzàñblSžn†^ËÀfÛúDÊ·ziøVXÆž-¿1ü_luµÑzn•Ž+:È,xëmX…'Ž$±¤Ÿº@lV š<7F>G uõªa)§Äî<C384>ÀØiËÊM Ëj)*ÔVq¤'•N— pƒ[T<0F>­*G¿\Á¼4Y-†Íf¶ÄÏFû¦/Îéæ—qftŽ@U[Ãf•Ðõô¡õå\™<1A>Í*1×l(*X€2ŸoÀ¾£Ð(Ž»+³[$ì_Uï<55>Í*ã
Ö^ÁÄúØ$±L¬`«¸ú°ô+ï¸4Lm;¬<>B´ñ­Ml·•V,aFôÙÈ>„§UÀ¾ƒ5é†aÊõ$ƒa9×2¿‡EÜ¥”aØŸ¾[ÙãÂTá­@C¨Rm¾—½b,Ëì†Ñ[a³Cè{í9Ùì­0ž9ß/³³s3Œ +„ð4c¶º•¬E'ôÏWdÑ>2bé$°×/Ö0Á˜X¾è†aµƒÔ9dP\ª¦;ƒH…Ú”úQ£a«?¢bÛ½MlTvæšæo<>¨C<>5aPl4«ézÅ j”^ïŠiƒzÅƘ½× a|«=J<12>CÛ²*±_'VgûSŸ"t0¥³°µ97L: aÇ “ö±Õ0ªMY<4D>†±ažÊ+®´`eF‰%µ¶ ¨ Ü]ÀRcï¾Þ k¥be5Åœƒ×Ô%c³JxìУA&/iãnƒð{ã¢SÞ7ßØjs ,Ж‰b®FøPÝQþ1vš^ €yúâø8{6«$§b“Pb0Ø2 ìU™aØÅ•«6±&¾¢Ë<C2A2>½¿±]Á®ê &ìT9Æ@üFÁ"ec5;¾@`#Ð÷5Œ
´C&Ö¨8Ù«Ñ°(=œ‰UNØ! ùKx!{Nlì¡Ø§9™šD±Ýwžv}ú ÎwÛ[˜Öl=ɱû¥,¸ÜØLØ0Õä<C395>~8ìúÊ9<C38A>ìp /Ëõl\¸,Ü[ÍàáG¹20 vç‹Š=9ñwýMé*“Ô„PµÃ%ŽÞ<C5BD>Â_HQÞ›=Ÿõå`Ê<vEd£qìxL”í9 ˜§[ìbèTKŬrŠ73cÕCÃÈRÇ4²7.Ö†+°Ó¡XØhl™
´Ç\FÇÄBj,;ä<C383>$]ü ƒ†ëÜE†0¸6*Ø&j0ì ÊÀæÏÃ0Ø_é.=1éaªÔVcËNƒàM$iØûø O<·£þV0 ®"ç[CÏ&Ë%1:Ͼ×ÜZLF‰`Ã`³HcëîPQ¥ö<C2A5>{¦$^‰5
0ÀI% &ÍŠ'”ûÜx\ÎÖÊØÝ ƒ.o:?ƒ¥¨Ghø%À”:±b»rb\Á°ÎµIû¡˜õø$ƪl <0C>&Æ®Àªø‡k¡ªìLQ¿q0ê;P§1aOÓ¨k“½“SV<53>ŽCýÆÁªU óÃÿÖ2¿7¤£`²!c»¼¤Ú<C2A4>}•aÔµ<C394>°`¯­³€q¹·:UxîÖ#ž~OEÔØ@XT±ÛÆÔà:Õô4{.kßn{Tñ0Û]âƒnìªû¶I<C2B6>öÜöz<~›Ôæ vîÆ»³Å¨bqXÄ>Uw†{m*qÔ È«©`µÒ‡<C392>X»ðø­†hØ™¤|tÃÎD Aù'[xýB°Õ6I&v&©hswÅHØ Ò0è”tQŽ H«#=±3Àž²&ŽÄÎT IRnx *½mˆØ™ +£? §§IH<49>õ‰3×kÁ0mÅÎg¿g¼{<7B>~`tÇAM´L#C½Õɼ†Ö  ía×ff2 SÆ<E280B9>Åç97ëÛLL"ãìsŒõÂsIûÕê:ÕÈ YevCç<43>;ŸB„`x"<t߃҃Ê<C692>b”†ÈE”ˆDÅ”3ö†…¢P%œÙ¤,æI<49>]£ê†LŽÙ R¼ÖÀé4aå°¿/;Jc/»¨|¾Ì%ÑÄ8`k`ð@àJd¿,Î’ë$a˜K¨än~,Kü&‰ë<E280B0>uèíùaáòâm4x U£Qb™®cäœqö¼^´
ÄAÝ3 ;S<>Øgƒu(¼ À<C380>ðhØ™ X.<2E>œ&ˆ |‡§’<19>€»Ø8ãl‡ Ã,y.³×.—%oÇÀA9‰LH|ŠéQo?SÁQàÊ—¥ž§ ÷Ã\Bxb'­ÅkqV¾ã4n†ÑA‡PvWó:Ø„¤fP7ÀØ9ÛS9$àMKáÄföb¸b\<5C>¤D°ÆT ×§ì_Ö<:Èj¦<>¸ ba÷ÓÙ!VhQø#Nuô<QUÜÀàM@ÅàÍúfË«ðÌüVpQ`ܹ =è`òØ–€}ˆaª!R,bŠ+¼2Áv“ ¬zh†$S #oAJ<E28093>…6ƒ¦¿I×£)¹%½«åQÀ:`“A•úÍS™Jh¯1„¯_ƒkI7L0,}ø÷i`˜Õ ¢2aô1®B§ ŒZ™ôàäNÒØ5jÇè$±=š-u@ oÕ!p^0Œ–êÄ`xÔõfø.@ùšñ)ù šÁÛëÁ²bb±LaXÙF:Ó3™v¤Ð?¤£ÅÍ%ñ4 °Wß»ðg¼·¦U¬óI°RÁÇ1%
À€aWÃÎT fi)X¼PX40Ëb؉ ÁëÆ.±ÅµÁ$n.rè}ÊÊisÛÜ­\©6Càý±w”M^Dë¼axkŒ-÷#$teOýßz×oRXk€c— šÍ½a0ûŒK ˆ!#®L@˜)ÙÐuD°¤àªaU1"ØäßÙ0ì<30>\¹ÿ%bµÜÙÂÎï™—Êtµ/Ø<>b<13>U÷eZ$ˆÅ²syR ß*Uħ…\ZÑ0l~X0n-`E7…<J•R(!þfa@F³ƒ<>(˜WZƒÎÀ¡ÆÂSÿœ[62”š¬V rwUÒ nÅ°y ¯¸µÈ\[õÄ:V:Ö¼—Ƀ1sÙbJàzÜWœ_´0üóÔºF:€AEÀ9â¤6p:ž51°ìØàY4\@Õ1ŠÁ«‡……J_<4A>ñ9åÀ 
ĘÌÏ$t¦q&Ià(^˜«m‡abg&•X{šØ™ @»Ø…†Ø&€g†!i†<69>™@€1ȲU‰<55>~o¨¿YÎL;ZLŠBg&€Ym­wÃÎL༢?Y/L@}åhØ™ À*³s¶ag&5׳MP»0öG=ìÚ… `»…*m³‰<C2B3>^<5E>MXëž @øÐÞ½æ˜1è%[Ã"þZ<C3BE>9"@ s×ãÄ °â¤Ï8Ì•'u÷ŒWÌbxueïĨ héÞ&< ִɹbŽ+pèE%ÛD€ÔŽ­£=¨{dsD€ØÁþásDX£/©‹%$ψÁ7Ê:ÒÀ “Ÿ q< nõO,{@ ~‰:FĦmž'æ˜1YB°#ψÁ¤i„LÌ1biòzbŽ  ìc«o^=àÚ“ˆsL€4}JÑ0Lj•I¹ð2ž Û }æ˜1ìæŠaŽ TvÍ-s«‡î˜¡šŠnXö¦ÞD€ÐìSKÈñBp”âPlx" &"æˆ18© à [јÓàz¸;-g{<7B>$O2Ì`x+Ž ¶‰!èÞ.NÌЯ“ãÒQuÌbQu±è‰%<25>é<EFBFBD>sD€ $î01G¤Á²zâÄ'ÄdÏÃ¿˜< E¬^ûàÁÑMˆ<>ª<>€9" <20>$l=<3D>Ú˜ÀZÄŽ…=Ö¯Oˆë²æ˜1XÔX rD€ËÞqHŠUOˆ­ȶÀ©Ì1üJy.ÀØ< fÛL€P„Gf“×<FUÛbÝ3b•£<E280A2> sL€¼ö”‡aŽ ƒSÛô‡çˆMÜð,€¼•²0Ç€åμ!v§Þ$€ašFÌb+ €Ê1€©þ] Ctââ°ž©Žm;#$ Ó?£.Àèw •¥³%Ô.è^fQS:[…}Ù&‚ÁËp·mIdÿuÌ´(Ù¢šv ‰û^ááEƒ*}ÇÊiO¼a
B†©0 ÕŒ—r€ØŠ s$€Þ͠ꆉÍMˆaoi¹ 1G»Zµ0Gˆáš¸Äƒ<C384>¸7 <09>•A<E280A2>²æH<00>BL†n­¹ ê[Ö<>˜²'àÄcñÌFë÷Šg¼ã¨ó¶¬f˜crÿ¼ ®Põ&þ(Wðä¹r<C2B9>a-˲K_óŠÁþƒ¥uñ ñŒÉ{<7B> €° ¹3èwc­0R ³a
5ÕÀ ÖD¡ëãUψeYó†9@ î[°W®.Pé½³Jg­yS"®Ä `8@©°aŽ“ø‡>J÷$ ²¨&dLÌbê—æHŸ¹¨æ$6< v0hœ s$XÄ:ˆê1s$XÀG‡k,Ý$€XrÓé¶I/ƒHeBŽԭĉÏàûÂွœ˜cÄÅà ¹„/Õ‘Ìѳ`Ðl< æX1ød}aŽ«âÑÈpJ¯ðÉ1©¡<13>cÀà¹Ñ1̱€J3W<E280B9>Bøž 5E]€À àÍq…ŒybŽ‹æüÃø™Ì±Ò LJQ3̱£Ú;Ô3 ¨ƒFª¹e( €r†RQ¢¦¤gÑð†Í©0 ¼úò6xÑ°Ú„ó(u`Þ„!HÁ <>àkY(—·z •+
XTjY<EFBFBD><EFBFBD>hÆvÁ^¡Ÿi· ,C4ìDŠp#eÄÀN4æKø`ãL4`Ã2Î4 †y<00>í¤{¡g(‡f/‰<>h|ÌYäEìD­<ÌÁ.áLr'ñP-\™PÉå®êµFžà_…ÃVK‰g"<22>9šT#v"°nêù+v"p0JjðJ"ˆ˜&2(Y.†<>ˆl-¾iïžÎD³Z¢Š ä3ÀœtI>+v"˜¬f©%b'"€7€“«Ë¥”3€Sç¸VÃND®wg0Þ°ÀoC㪯Rê‰@¦n®y©g&€]‘¡ºa'*€À:³ékg*<2A>œapÞ zLìD"|±®F˜éú<C3A9>`(¢`o”h؉ @;ÑcœßóLªpù„ÌÖ{&Ó¦ÙÀNL ÆKS——ézÏðâ2C†<43>˜ï€Ç2±`x(F)âLØ{&Ý LŠÀˆ<C380>˜@pjœ {Ïàa©*«ñÌÀ¸VÀ† {ÏY¶‰˜°wLë¬_×fMg&ͬQæë=Àì," µTîíh¿•{ÅËJÑòhà¬ñÂúÂÈÉÖ†cæÄ šÿáö·ÀAYΆ5¦¬>öþ®KºtB?ã·€š#²ÇfÔø·<17>4~©›+Ùì
ZNØŠá¢Yæë=8X8<58>'tb>ÎÈ|½g][Ò1_¿™@a˜§Ñc6l3¬uL˜­ßDœýf«¶VO€aÇC<C387>Ã($©¼Odæˆ0Ö| UdÌÖo*áÐ<C3A1>a¾yódXgR*6Ã($€Té0]¿Ù0ü?¨íj˜c…î9ü7[ÓýK K¢¾4Ç"ÚL×/6@N‡!2ÝÏl½©õÍ[… TÝ2Y¿É°L.ÖÏ$©•ši8æê7(¼’‹sÅ0ÇxùÛŒùæê7(ô‚*æµæ¨0'üE¿gÿ<æÁjýÈS<C388>Â<DQ+権 ?‡w˜¢ßT Ðccˆ æ¨+F ·{š˜£Œ:lA î0G¿©V.KBk†9* †òŒ†¹„0(UË"Â+ñ\ |iÄU]&é7`*RפaŽ <0B>ÛÀÛnºÌ™¤ß\ÆÚl³ô› ˜È<EFBFBD>¤È;‹Òõ{pÄ:Ö2<x`˜Ö¼B¨Àðƒ™\ýWùƒ=Ç5,Ë4bÅÐe`µ V
0mƒwm&®z*ÛòÔƒš]fé7JR»F€9*@ˆmlq-fé7ÆpúPw„YúMüSÝiئ˜P¶Hº§¬qpo><àÐæY…EÌQ<C38C>"9?غb˜£dXzõÜ`~S<>L&@†9*@§ªíÐð)³ô› v¢nç²÷Š¡=`¬Eðø<C3B0>úìIR]·íTþ:¾Ç**ìÅ:t<"™½¸i´é†E€'ç¬ÃÀª€ºêú¦º½j™´†B=ó–É]„%ƒ:ÇhÒ?6 ü¦HV̳B°Œ]ÚÂ3ă•J§ßÂ~êJV±òèÕbŽS£Êó4cxÈÊû ðŠÁ~‘º>txUŠµ-ýÒ@W<Ü\PxØ;xâbF^uÑS4˜âj3Gï·:¹æMª¶*6nPO¬Á¶cK°?»D¯à€äTƒ°¨%â–¨—°?zÔ€JÆÁ\K¢‰Ô1vÚëÆš@>ÍxãçpTó€0ÕPdè‰0¬)°.œÍaoeÁ:=Bó\<5C>áßñ.*LweVµÁeOAÕèfb`Η•¥ëžÛZ¢šIö{„3ªz¶Ë}õ‰ C` SòÃ<C3B2>!l
8 } Ž ,¤Œhz‡Õï𯸱×1þ°ØY“tÀF7n,îNºïEY°ÊTmiŠU(Ö¢Yw,é/ÐiQvwä@ +SŒ‡HñÄ]æ¤
dVr“{tƒÈ VHÂÝ0GJÍ,¼“WèÑSÞ×<C397>ŠÚ,fé7`h)¯8 ³ô› X¥ÿ<C2A5>µŒÿPv«¾zúŠ9åXõö\&Æg´ÊA™4#eÀÈ„: V6~I÷#øœÝB+ÝÖ¥Òézáù;ã•X¿t@J™ßÃJl óE0lFÚP}Lù§¬•p,o~©Ii-0HÀDdÅ0!XÚ6EeŤ`Ÿ°<C5B8>:o|Ð)ªtª}—¯1Õ' ×e5 ;p<>úD#LÈwò#ièrF”n1MûÈ“x ÍBr³7‡?$©D40hx¬ÌuõàšÄ¡#µ›…˜Ž‡##ãÌõ†yŒÌéÌoг˜”Ûë$èFf2D‡™KŠi¬.>ae6^<5E>G¬ÚδÌ[•Ì91Ð)¸ÔÜ[]‚¨\ÒÞ0x¿<78>ƒ ˃¬O>³”6 TŠ¸Óh+ƒ•\:Vö!¼µãV
#Ý?4:ד§$Þa¦e‰9*,gj©a˜£À`aðØ2<>$½“S1Ç€As[ÝÚ`~1˜ÅSéÒLúv9«Z2Ì1<C38C>,n§K°ê™«0væOñαÍøÌx¹¡î"“ô› <09><>a Íõæ™0ìAZlÃÈô8Rк b÷×ÈLïž °LšEw“ô›dÉåÂd6ÃÀ„ ù³þäðD€ÉbîP<C3AE>˜3K¿‰@bèÊÛFzx"<22>¸<14>1M¿‰´(ˆcC†9"<22>$qXžiúM°¨:VbÂ6z"<22>¶-RÌ°ü(ž³æˆˆ±V7<56>=`ò£5äxŒ^ý(êrs<€å+оpPà/<2F>m¿tës<X8to+æxH{U S.üàrïãöðÞ¢„öƒj€-)A0fFÁôQ`|qd¶Ñƒãíà‡e+ªK<C2AA>^ÔJêÅ0ɹTkL-䮯€m!Ài1ì=V¦D2ˆÅÆ¿qo±ŽØã
Ä,ý¢IJ·èžäh@bÆ{V—&“ô›`gc©ÐHV< ˆŒº†ÃBÑLÒoåªBˆ,†9Àª8nuÕcÌÖo-Sð26ÎÕÓÖ?€Óó[D:€ušfæê7  [ %<25>&äH@ä¿“L¾`Ý“žÚ€ót,Ì‘ÉAcÓ©sÍTý&ôÐÛÖ-ÉTý&мøÅ©ˆ<C2A9>9 E!pG3Ì0¸²Ø½üMŒ÷áYËî̱,o,:ŒY<C592>à¦àê=¬Å®Xð< ðÆád<[@G`wàB`yŽ :& »MW)¢'<02>å:ÑR'è¨ËÑ`Crít\à`9X“õËž À½ÄŠë%“cC3ä8&æø# pšÂ00{Bƒ=X¯p,Ð1^<5E>‰e_r™ £óÚÉ|3€ÅqF5á€)¥ nR<6E>˜x†<78><4A>Šc1µtêXAb6{¥Ü´€Xl·cÍeuYÔ¹$a2d)l0ªËdLJeb;OÎp2JÀÍ wÔg»c 2'è<>CVº€$!Bq™àæl"<22>‡ Ù°áBb$¯ãwzŸàfI jÆ_õaÏl1„<31>WͱÙgŽ#$Æv0=‡ nÀ`>ÜZÇ)KHPîoïc& `V°Ây'0'¦µµÀ¢ã ÀIÕ‰mž<6D>í÷,<2C> ˜<CB9C> %gïQHT+…5Si)¤ƒ¾„ÀÜT!²<08>ù¶aïWˆ<57>E9ðÓ˜àf LbñµÒÓ7]ˆ 1eJ\lH£F¼7ÛÀI¦<49>X±²ÃÈ`™Ì`¶ Û)‡jÞ¼b{%Áà”CØc2µƒ¹d|ÖP0{M Î=ü¨Õ×X^ÐËu|¯Ò=ô]ÏÉrSK)
ò ºà˜Ë_|!J$$0%7ÁMG#UÇ7cà¶M¡ÚÏÖKö a§i<C2A7><69>3p ÑribŽ407¾÷chç*"j«¥Ì˜Ð÷ ¬nI ¡ ÔÒ¨<1F>çIÁÖV÷¼<C3B7>´öµÖ :âif¥±€Ž9°¢*Îü<Àᨗïò5<73>ÞÖՖ&¸Éƒ ,4W´Q<C2B4>‡cH7}`2 ¬0Õ nþ€Ý 1^)ÿŠá|ã‹€;†ñbÐßð+S7 V¶J §„\Nƒ^•ÙøX¨~£`PýXú%Æ{•{ó<>Á¤k¸J1ðlû¢UëØòšÈ$†Ñ-ä§AÏW¹o"FÃðV0 Ìš9áˆYÿŠ5xÏÎ*1:BU‰N%¹iÂm5Ý´8!ü^&ïÀÒfîu88„ZѤ±`ðD9—ò”Lh¹Æ0e<30>~<7E>™‡Ú Ë#§O Á˜ˆ#F jKKfˆñ†¦< ¼kÎ*ól"RåñæLƳn¨Ê¤K6C<[Ãðs<C3B0>ÁLF~bP
ÿÿ¶éÅàS[° Õ†€éýE ¤¿á“™f‰Á1<49>Eë¹ J¼G,±Ž˽ÊN¬CçT<C3A7>²ë°<C3AB>%INÚ1\ž¬¼½JQÃb¨£¡4‡ŠXýêô¬»«LDë¢f>~¤E²Ü¨”œwNÇ:óÈ ôIÐl!“x°bX*¾)…\¸Â<C2B8>¢aðC:³ü1ÒéÔa¬ ÊaA8¹àšƒTépé^g>¥VÉJS™¨ö%¾âI6£B5´84 3ðt¾XZ<58>}Ë~_ʃ`¬cN»gäXEaáA“Äý¬%Æ0u30_&{ÅÇÌ,ÈÐ"#ÅF :¡ÌM¤±ÂÊt9Ëî/LRД 1SrQò²Q²¶:á<>Á¼3 !–¢$éˆ1n<31>Ú×*‡:4 [KZ°Ñ¬ÞŒ¡¨¦Ê˜¬9bÜèc@Ø<>¤ÿ½ÆnºAТÒ2×DVðz­!
€ÑqˆÄ`*œÍ¸IDB<>°ÖìˆDJV%‰Û …Ä’{9<>”'UÐb¡õÁ¶Å[NÞ 0;"!{Îa¶ùµÇÞ.ç18ðÜT"Q5 Øêù³…ª/Ài*²M˜¯zªAÀM&¸‡ðµ^G˜ ¹þiª¼¶í¾XŸHLÇÁJÛCÜäLY]<5D>Å‹¦<ÁM) +¤"ø0ÛÍ|?6¦ B‡Ã”%óý<53>0ö;\Óšé¢*:WĘ ¨;Vå¤ÙÌ‹ Ë Uuúx±LlÓ º/™<>g„™V„`jF1x»‰…1Z$ƒÍ•“Ú æãA_ëpˆAk¹œôàŽA dV'IAA×ÊÃ`X²•Àdvš+CÀ<a<>s…Cð ³þ"GW †õ<JK‰IËô¤ˆ áˆÑ„æLZüî<06>§/'<27>X/ñbPcÑ{“‡Õš 2 uX–¤« A 3ÚJ
VZ@8\¥OÛò.Ýj ÅøИ¨ÌàÃÞBuuÁ ¡U‡*çuÔKD7XôP×â./5Ûsì-†ùXÞä´¦ ªErZe+ó¬éݤõ(.y”J
ߺ‹¤ :è˪”׈,†~ζû8È6%DBß SˆLþ/n!{¸Q9´ 2Œ—Ø&Çp±0¶€˜þ_ì:®Ø ß­t‡œ±šyÓ<79>×1¶ÐzʆÁ.ðMùêº%¿Å#ó<>´Ô/Îj*7ÃK0J«óLM¢5²ÚAŽ•ù™D:´¾<C2B4><C2BE>,Ëü=ÆQL¿6ÃÚn:ÊÌßfFštÞÁ¦~te!é:Ê|S­/1LmÉXòMétúhXišwͨ6BJˆEsäðÖàáYzV¬ÀàH¸T1 /i'!¬f/Z—-bz(KÁ
6°0ɲT¬tVÚ1)Á6½€àrÆÐÚã—þ(çR®ñ†<C3B1>:lÔStƒ¶Žt}™ V? \ ò`*»3·­« %G2¤\²ÂÕšßLLìTÊ™•¢Q=Õ .šÁs£$}#™#Æ€Yy”äÆOؤÐúª9 ÕÑ&8¹1-G·<47>Àü#6rf´lkÒXtã S<C2A0>¡jfûèGÀᬕvˆGzá M" ~{:\Lß³Ú"W«y UK(ƒ­’`¸ÕÊgÙ(Áº¥ìÎ*]ü¯ÿj& ±¾XÀ"Å_•LíüS„Æÿë?í¢¾ò+Hñ›«ú˜ûƒ[+‡½îÉ®òý",÷üH6õo®P¤¡ûTs€àe`tN1Mó*/wÔÿèU¤ÊHÌ÷¯ÔþH¦™aCz ^ÒÊ)üÊmð®6þI]8<>xxµ1p ~”¥aìÚ(‰Ð?©ÕrïNÛþ÷¶¬×RËŸ ü‡;¦åÑñɃ®Ù¹bù£ÖÍ×?éžùÍOJkÎÚû‚IJ6±ÒÄŽ:ïý¼êy{_¬/ÉdæÑ{eÿäçÏûöÀè_çPÆïËG?—}ÞÜ·GÖŠå”Ù¥éòÑÏeŸ7÷…©d»Öë˜ìý£Ë®î\vffÅkm‡ÉÞ?ú¹ìóö¾½ðă<14>ŒŽ;—<>~.û¼iyç<79>ÙQ†5doý\öyÓrºrßÞ×Ï~.ý¼m9þi¹mðËG?—}®×Zý,üÝdoý\ö¹^ƒÉ£7H—Ò÷)|ÿìçÒÏulŸ»oòëg?—~®Ý ©Ý·ùõ³ŸK?×o,0»oôëg?ÞÎ5 }d_ÓÁšÒ÷Ï~.ý\Çyø _XmJ¿|öséçZ΃—Ý÷úþÑÏe å<“¶×½¾ôsÙè8_òË^¿|öséh9¨ñ—½~ùìçÒ?Ðsž¹²Û^¿|öséè9ßÚË^¿|öséè9°ã—½~ùìçÒ?Ðsƒ-ü{g ?<3F>Õ‡VKý=·z9Ö;Êâ"?‘ãå°`Äœ£z°nz8”}\j>ðôûziÍÒÆŸ‰ú@ ‰¨Û5Rrëäö(þ<>á·ë¤(üè)þ<>×k¥DøÉmR"ü$Âo×KIFïäV)þ<>
¸ ÇÁÓU = #JC$6Ê«ûfs”#0 , &OPÝá « ¶9<34>Ô5 ° ç€ÛeÁ£ÈË¿£:_¤ƒå0¤Šu$rE=AÉÂ5ûF+±X;s¹±,MfŠžÌö<C38C>ºR¤ƒ®iÌÓ§¤ƒ¾y³˜ìÈ~?ÎÅrÚ´te'èx=L,ƒlFžäÆR¯¿ðöJ H7;.„Êxw¥1'FÞW>É<13>÷=Ç``t¼ƒG2˘¥Þw`ÁÕ‚·}&Âܼƒy@¥Úgœà°bÄÌøü!®iw„Žcž)N°[¿b<18>Áz:Ųãè<>Ù„1Ü&>7g Fœä<C593> ܼCN‰B ×k¦DøÉíR"üS t½nJdÜ2ÑÙ}àfQôýÚ)ÖÝ6%Â?ð²Døí&()t8¹J„àd‰ðÛ<C3B0>^%Â?Ôf÷¡(üèB(þ¡~»ß%ÂO.†áê·ûMQ~tA”ÿP¿ÝoŒá'E‰ðõÛýæ(~ra”ÿP¿Ýo<C39D>¢ð££Dø‡úí~©Sn‡w9Q¸ÿTÃÝ.wÊíðN'þ©†»]òDáGw;‰ðO5Üí²'~rÇ“ÿTÃÝ.}¢ð£»žDø§îvù“?¹óI„ªán—@‰ð“»ŸDø‡î~ÉÆÑP"üC w»Ÿ‰²O®eÑê·û=M”}t=“ÿP¿Ù}MÄ.‡SiÞÚõ¾NñÖN®éѧœÒ Èõ6ÀÜ/ÑÇ4S×ôõ®1YÓO\1ö.‹ø÷~ZWÉÏã ÇO­D•×¾¸¿ÛÚóTxDÄ=žðˆ<C3B0>5 ª[½¥¿w àˆºXüå 3Þ2B/O¹¯*ÖÛôniIÄ7)óG„þ>WþŒÈoäÏý&;þŒÐoÒâÏý&þŒÐoá ý}ü¡7Ýÿ€ˆï³ë‰ý}Zý!¡¿Ï§?$ô»DúCb¿Ë ?%öÔùCb¿Ë™?$ö»dùSboþÚB¾MÅ?$ö÷9ø‡„þ>ùþ<C3B9>Ðï²î‰ý.Ýþ<C39D>ØïòìO‰ý&Áþ<C381>Øï2ëψ½¥ÔŸ¡W"Wx»÷®ç`'&ëúÑBïu»÷JÞ'DÞëu_JxŸz/Ô}©Ý}Bè½B÷¥h÷ ¡÷ÒÜ—jÝ'„Þkr_Êtz+Æ}©Ï}Bè5Üò„ˆ××ÚßGÄÞ*|_Š~z+í}©ö}D轤÷µÌ÷±÷ZÞ×úÞgĶ»F¸öˆØ{õîkEï#bïe»¯¥¼Ïˆ½†HòRüZ(üˆØ[9ðK…ð#BouÀ/¥Á<C2A5>½×ÿ¾Ö?"ö^øûZ üˆØ{Åïkð3bÛb¸}öˆØ{<7B>ïkÝïbWºÖþø"Dl†ôå^<5E>k†Ì+³|à½%é—gã„ä´ ËýÔæÿÁû÷€Áó ¼KRÿoOˆ~."}µ7?Þ?ųüÑÛHo ¾Üp<C39C><5F>°º.—q<:t"þtè~.ê‡îÍ1á÷CïWtèNDüáЈúÇ¡û<C2A1>7CW¾Òaô5:/iâùi/×a·Ëµy÷÷j…w³1LÁ»8x?<3F>ŸÇÔ7t"*k©yKÂáïˆà•½ž—˜¾JˆGBb@Çñ þ„ôw$DöšâEŸoDä¿#—žðBÈüÜ85¹©¿{‰òW$‘´ÿõ¯ðr<C3B0>oJ|•ÐþŠ„Ä;¬J o«û?ÿŽ„ÊkiXâúúý¯H€<11><><EFBFBD>uÞHø;ïPy+/d|3Jÿ×gw@ü¬îãoÖ)}tÖêà©ïµq…cö'{YßKàîBé‘{/~» }¤0î]í!œu^/Ôµûá#ü®îð&ö‰!~Wsxûpõ!Æñ«z'ßë_¯B|9ܶË::åv"ô~¨mztºíHèí0ÛEèÉ©¶¡÷Cl»Ð£ÓlGBo‡×.BON± ½Z»È<8½v¤âo‡Õ6™g§ÖþÀ®\…>eWî'ãv¡GGäN„ÞOÄíB<C3AD>ŽÆ<C5BD>½Ÿ„Û…‰;z;wzrîDèýäÛ.ôèÜÐÛ‰·Ð“£oGBo'Ý.BOŽ¼¹b·n»Ð££nàÿ]…>äÿ½§Û…<1E>«;z?F· =:Ow"ô~|nztŽîHèíØÜEèÉù¹¡÷ãr»Ð£ssGBoÇä.BOÎË ½<1D>»=9'wD™nÇâ6¡gçãþ€§]…>D!îgðv™'‡ñNDÞÏÞí2<C3AD>á}PþµËz(ZáÙ6¡Ûýú<7F>½»mä&í FöîžØ'8Ù»Fîb`eï}—½»Uä.öföæ>‘»Ô¿ÏÍÞÝ$r•ú;û‡°ÔEìca©+A»‰}‚¡½»´ä&ö Žö›Ø'XÚ»Jîbàiï®(¹‰}‚©½»œä.ö®öîZ»ØØÚ» InbŸàkÿˆ}*œ|£l7±Op¶wwŸÜÄ>ÁÚÞÝzrûo{wßÉ]ìÌíÝM'7±Op·wwœÜÅ>ÀÞÞÝnrû{w¯ÉUì# îÒ@±OåÚ®$î&õ÷î
Œê®3 •›Ô'xÜ^<5E>w•ö“{éj0âs®[ZÉi³U„ïÐæ¥Ï¤ôغÒ
•%<-a<H#öš’`>±±ðÇl<C387>$n&ï<>|iÅ;Îe¾Ñêô!—<E28094>ùèaw0« oˆ¡ø ªË‘ÕäbYT<59>U§“ `ùdÿ<64>fj÷½\V¡±ƒa±ôؤ<C398>œbÖYÙ©¯ÝÚ Š>K‡¤Æ~Ý£÷ˆéßE O•´ã¸`¾µ&×;«„°<E2809E>¯ùR¥YóÀp¯ñ£e¼œ¶j5Œï-Ž°aÁWYBÄf£#Ã0ÒC¨•ðÅzm*NÃœt02Lû\¦ñ(Nz5_Æf‰$—>ú61ÇÍkµŽ÷®Ù°†eÂ~©£‡í“n=|#?0ð×T Ãcfvè2oÔÆ×<30>½] kÍúñ6¶ëž-cŸhXÆLfÞWd˜vU ë´;¶]2Lš€ V¾/ZΫ”´ö%]x ËR§Øj!«XH]ºE·Ân“QúH)T:{“„_d¿«ñz¥”®ËVš¿Öî¹x ÍÉZa÷¯ŒW(œ¤nØj\-Xn>ÛÚdÙpZ¹y`Ù» ¯ÇÖDØ
måIÄXa4-È­åYfßd­ò8†¤ì3<12>̳YÊʱÞxüiŽxÐ3ƒïç7ǗŲî<C2B2>*<2A>Õ'x"°Ü-kXE@˜.=-*ä‚!©f?[üÙenX¸˜U<CB9C>OˆÙN5ªS€1V*ØNQ¨õÆV7ç§øóËiÔ0<C394>è hÜ+ˆ¡eø³ Ó“ÅŸ`Ž²“·Ÿ•#Ìc£EÄdÒõ Û̃zrÛµÈfŒ-H ! §0e¦ ÒøP1Ϯֆ±ÝkjÉV{ õØ ›Ý‰ âÒá¬ìN”°¬ÛNí.g^¶4öŽV,vÙPĤ­W䀊t4Vˆk³ö8†,¶ 3l6CS,h&bìNTÏT ,7%bÄàñDéùkX`§EÃØíÈ<C3AD>ÖÎÚO7meÓöb5ŸÓ<C5B8>èÄfFÃ|-º"€Uî"?fOÔÌ[v<>ífXJÉF%}%Î<>±W4L·e°ßd?]¯_Ë[×W…°5¤M11°`Ó±÷¸µs0±æ<[&æ<>eì`W¾<—†©m'‚µ‘½6^Ø@½Ö<C2BD>­&ÓŠËþ"ÛÚ{ŸÂ°
OÝŽÏ Øw°&Í0L¹žd0,¥Ç÷°ˆt…2Ì<32>ýéÛ±±=^À^34„*Õºw¶WŒe™Í0z+l}hu¯='[¿eÆ3Çû%öy®†±ýc<C3BD>Ã"ž¦wÃfï2â5ì„þù
˜medæøÐiàfG÷©V¾¼0<C2BC>ƒ‡ Ö`»BÀà-p16 ÃÂsG=ÉŒ¬`on­”™"ñ®%ËPä,s¦G(vd$^f߸3<16>Þ2ü«I¯?ÍL†—°Ë±Ó¢Ç™¥Ff_:%Øf<1E>¥û½¯HRÑóÌ4 b<C2A0>h3h°'¸©oÃÇò¥Ž˜ ©ÏŠybpŽË_A¦nô†àˆ:A­å€.tp™Ð&,ÿ,<¿fê£È¡æ(Áš5 "^º/Ð1VWb¥Ï(\ÑcͲ<C38D>¹…°KÆYý±æDJ§¥f$ñ€òë²1;{L$iTw°9I2{sÁ\þ"ÉáÌÞúžã,]FÏÉ@´™æ˜Í l8ÚÆOì!<21>vþÅÆ"è‹ÐÍ0¬vÐ2† ŠKÕtc £PÚ„bs%6»%*æØüm`½°O×0'xküCÅê,ƒb£YL×+íPt~WLÛÕ+ÖûèÄNã[ìQ¢xÚ¤U±€ý:°2š¡*Æ¡ƒ)}†­é¹aÒÐ0éd;n˜4“-†QmÊz4ŒíóT^ÞÚB XTa ª°Ksdb•Š“<C5A0> ÒÑ™Xá„9iϧXÄ Ùsb£`…6ÌÉÐ$Š­.ô„°ë[×W =æ2r󵫱l “z6|<>ôô3 ®qæ`pmT°MÔ`ØäŽÍŸºa°¿Òkz`ÒÑT!¨­ÊžÁˆÒ4°µþåa€£´MLZ &(µ±ñ¸œ»-•¾z*]^u~:KQ<4B>¯ø%Àä2°l»r`\ްƵIû¡˜uü$ƆªlÆÁªøûÖPU1Ø™¬~cgÔv  §A×&;)Ǥ.¦b>:§~cgCÕ¢…ùŠáKßëÒ_0Ú<30>±y^TíÎ.Ë0êÚ\X0Š×ÖYÀ¸Ük*<5ëO¿'‡¢ ªl'¬?É~ªØm}hð<04>jzš˜µ‹·½ ªx˜Š­žñA76ÕýÛÄK³n{=¿<>jó:ûxãÝÙpT±Ð­+bª;Á½6•ØË<C398>$<24>ÕT ºò°ZéÊN¬Þx|ŠZ|0ìÊ
†Åjô¼ƒUÝp)C_ Ka,ÎÅnŸÏšï`“~j°M[OÇÁµ"ϹÙò©Éñ­ãÇk³oæs#Ø7[Î5;Þ!É9(ýlîz=<3D>qfªœÿÐö^-ŽwH­Ë~Ì­—cÎó×âxGÈǬ«x:çÌÒ/¬çš¸x‡”wAiæWÔ™êXÓÎö8þ¬3U.odii<69>w)2¡6^ØæPX"„W°;ÞQ¢dÔûZ#þ¸3í(v-f×kw¼ƒêºÛŽ%²ÀËñŽÂHt™¯©'žaäºØn¸IqæWWä¹HT-òd€ípÄ£°<C2A3>CùÞ7ñ( óåYý-à&TFØE#˜þiþà3@&~ô|-8âÁÚ¥6°DÌô5ô™J%¬‚€Ñy€jÀæ…3¦ÅM<B1Ôß'¸•n+ÛƒØÞli<sÃ(Ò7ñàõ <20>á1e·ìˆ‡\´•²ÞÄŸ€fMQÍã˜qˆ¦G ¡e£€£X£(ý誌å3µ²‰°T˜Ø&ا¦õíyª#¬Âr¶r ×*fiZu¼CœQLºVÊótœã¼·ï ]Ñ&¸yGeMï:ö"àæÜðÕs2× ùÃÐz?G[<5B>ÐÖï¨Ô Š½,póŽªÿ3j4ï`]Ïá(]s'¢+ëßú¬…Œ‡ä‚ÔîþLtcÜ¡ÍÛÔÔ!#`¬à<C2AC>W½vX÷§¢yÝFfÎØ|•®Ç¢é È" ãð庆œ&¸yœ®+8Œt×jèUqw4žSƒËö77ïUàxÚóø³Ñ<C2B3>!9˜c{=mÚÁ]&¶i‡”æV*+ëàýø"~%Np³Ž&Îeô nÖÑŠT{ÀhH>º±sH^supå“sZ`ˆËM×{·SÉüÌ®wó('¸IG“𴤈lŽt4ž8cI ñŠîOI7ÖpóÀt°ëQ ©íþ˜4W4ÏŽæ ¸80ldr³!ÝŸ“æŠf<C5A0>=˜úìþ 4W4Vs<ÌëÃq©³I°i(éþ¨´Ü‡QöóŒcsÞ‡yˆËR<C38B>ß•î<`Æsq<>sðF h]6ßî,ØdH¦NlSŽÎ.Ñé‰mÆLOèkŒèGg­Ef¦4Np®Y,Ò8ÌLŽèG— vÍ°+ˆPþÑlõª-“‰]‰@ÌÚê]1ö…4 º%F]”ýFâìOOìJ°§¬¥#±+ˆÒ””›<>
97§ ?1Í5Ë++Â(Ü„£K@µñ¶… nÂÁ5 a—×ð #<1C>%ž£·fš~dG8¸z.— nÆÑ¥ëû¨‡%§FqŒ£_2<5F>ßœfmM¨;¹0Šc\½µÙÝÀüÑiÞ<69>DÑŽ .¡w`Ìj(Á6ã<36>[0ڱ܈Ñã`<60> ÜÛÖäð‡§;ãËðßúÑ&¸ +l씃þøô`$(‡4{£;ÆÁ«0²Üµg£îNP³Æ†§.g|w Ç8xF¢ï<ÁM9XeÃ(«Nt8ü!êÁ~ úZµ*়‚åÞ&¸)ÀŠY§+¡`p”ƒb0¥foBpSŽ!æy'„€rðJ çk ;ÊÁj¨“¼!¸)ð€¿a±rðZ h¶ÂT09ÊÁ\Yñ¨Ö—à¦CÎÒt;P%àæ,ºIðÃüj)º)óF7åR¦Ïe'¶)×/k²Zµ_õ‡ª‡œ–*¦ .Ê!ëŽ<>qvbrpG]^ @o"v¥¡S÷tîT ´Ñn
VG9¸€±­òVÀM9x{ O“Z¢à¦\Àa<C380>àÍŽr öiÄÃé¡2LáB«<42>¹.ýÙj€pmÕ¯°;ÊÁ+)£fÖ'¸(G9HNt}OpQì4†<34>a?ëŽX„k·"òå<>«½S`/Â6ÁE9UÑ«ÐowÊš <Ífç/\”<>ú æüœ”ƒÏÚu<C39A>À¦]<5D>"ࢅ«»åj×r©Ði³nLÀE9BA«Øò ïF°` <0`ØÕÝ°+IÚF
qS¹T]S”öšî´5A•'6!8íÇŒ[Œ£puc?CI« y3‚ðö> î¼5Aê)õ .ÊQž‰`ïHtwâºH|/2æš'¸Á¦õx}qð6{üâ<« Ð<>º&˜˜ò¶òBÝŒƒ  1\Œƒ c nT Ì2!Dó3 ]©@I8Š7&ÀjÛ.D˜Ø• @%veÐ.v¡!¶Å<C2B6> à™aHªaW&àa lUbW&€Çêoæ+ÀŽ“¢Ð• `VkmÍ°+pƒ—õ'Ë<> ¨¯ »2XeöÑ6ìÊ æZ² ª7&Àn©Î^¡Þ˜¶›/ÒDØ• àÙU°¶3ïÚ»Ã6&@ zÉÖC߈­ƒ6"@ s×ÂÀ6"@,bÅI×q˜«<CB9C>”ÕA^±<>ë+{'¶<11>€îmb~'Ī¶<Wl#Ä2zQIÄ µcëȇ<C388>”5²ŠmD€˜c7ñ<37>mDX¥/©ÅÇ<C385> ƒo”t¤<74>mL€L~4dãbiçÄà—¨cDlcÀ´éóÀ6&@ @l÷ygÄ`R¼´E&¶1bqðzb æÙÕVß¼ìL€k¿"JlcÄ éc †mL€X /³3b`¾uÃ6&@ »9ûlØÆ
¶Í8Ê!—wÂý·eöÉkb•^d7UÚÎt¤9Í läf…+?RÎiØ"ĸœíÖ á ØY`\m#„± Ì%Kb£Ý"à"©€éÞMpbÝꤋî6[ÐÒÕª~.ÁE8z6PÀE8¶Êr!ÛB1lÂQ êf3p2b>zCl1Ž"›â}ŽzŒrn {èæ±Õ}Û˜¡³nXvª^D€ÐèZKhã„à(…®X߉0˜hˆdØFˆÁስb©f<C2A9>9u¡‡»SS²ˆâðDÃ6" ÏaÅÄ ÝÛĉéÚéub\:ªŽ€mD€XPÝD,ìD€m“ûðFˆmD€ (î0±<30>H»eõĉÅ<E280B0>“=“ Ûˆƒ>pGLý…¸bPÄêµw]D€èS…l#HÂÖÓ© i#Xر°Çúµ¼b¤Äºl<C2BA>mL€,j(mD€ËÞ±<C39E>Š•<C5A0>%&Ä6" Ûÿ¥°<> à/PÊc†º3b&@±Åxd6yugÀ¨jkT¬íL€Xá($Ã6&@ ^{LÝ°<C39D> ƒS[õûΊ蛸¾³"ðVòÄ6,5æͱWõ"„° £Ð4b 6ÃÀÄ6P8ð!Õ¿‹^H@7†¡ñ2B 6#CÄ6À ïfPuÃÄæ"Ä°·´Ü…ØF8à »Zµ°<>Ã;Tq‰;ûr/e3l#<
¬%y8å(Âe!VšØbÄ°<ä"Ýal`û}R]qÀÿç -©tUP?ùíH1oÆA¬“qDÛrÑ<72>Ç.,û<>Zcue3Ž"wxðŽ¾Þ&¸Alb X6ãЮ×Ú`»3Ù1Cš7pRbX[G ­NlQ|(»<Å9¿îXvË°©<C2B0>Ž.ÊA°vIü§ .ÊAPºÅfÛå( ©LUÌ_u'³ ÖÀãСNpQ‚¾Ü"Dw6»pEå¿\œƒ W{ÌcbsÃïÃxW}žtlÒQ¤—8|ÇfÛ<íãÙÄxÒsqbtÄÔ°ÎÙ@w@vØ_6)à"–ÝŒß\¤ƒ`yç<>ÜmöcaêÄ&¸H‡6ké ˆ †]>_%mÒApÈé½äj&ډİÀE:Š”•Ô)ƒ جƒ Ýˆš&8YG‰4”®¹~;«M0óÆŸ¹FRÙ¬ƒ` <EFBFBD>1ºµÆ"€ª¯IwbL; 'î“¿ÛX±Àl´~/ï,€wU ÛX€Ü¯BM5°<35>«¢ÐõñÊΈ%Yó†m,€Ü7o¯\¶t@¡÷Î
ÊÀE;ŠT­Û\´ƒ <þ1]­äŽk«RiÛ6ÕÍ:Ê XÇÙ}`»0SÈð‚ô’{[ß[¤ƒƒGuÚæäŽlí¤Ó£Ãaà"Ó­É<C2AD>Ù&ÖövŽÍ9 *<2A>µº“˜q%¶‘
7iB&¸8A:kc¦±9A»¾D·Pv·a<C2B7>xjZç ˜ý!#ÙÝ&‡kÅBsIh±ÈߨLv‡· ôj?‡M9ˆiI‰<49>lv§· ²˜3O³Å{žãâÜâ3:/óê¡on¿þKngb¹]¹GL¬g1ÎþcíóßÿúOüèÿøŽ†Þ ¶‘bÿÐGi; (,ê<> éÛH1õK ÛHŸ9«æ$Öw@Ì1hœ ÛH°€uÔc¶‘`95Ö<XºH±å¦Ól^ó€6P'æwßìåÀ6@ÌS¼7lc$—ð:)ì,4ˆm,€|²6±<36>+âÑÈpJ¿ðÁ1©¡ÐÆ€Ás£3bØÆ
ôëýçµ57 ,t^=††5¯¹<>_LAÿÆÕˆ;øFÜüýò+ð˜ÄG¿O7‡sú¯Î(^bv?®bƼ5K+úýëô?<3F>C<EFBFBD>ס“ðè°ÉÕ]øßÛ\*/ <²&Kïç§ 3ÿ+p/?Åï.ÈŸëöߧÕìÖø\ù\Ø”ùÿüëÿ.ˆ)[ Í,^A
ì,€˜/1趱ޗɘ¶±`Áœ_bygÄ0~æ†ÛXi&%«¶±½Ø;”+ (ŽA#ÕÜ2 €r†RQ¢¦¤gÒðÌ©0
XTjY<EFBFBD>]hÆvÁ^¡]i· ,C0ìB²p#eÄÀ.4æKø`ýJ4`ÃÒ¯4 G݆í4ÛI÷BvWÈN³—Ä.4>æ(ò"v¡ŒV:s°³¿Ò€ÔH<T g¥Tr©©zd­ÑN𯼳ՒÕ$Žƒ&Õˆ]ˆ¬zþŠ]ˆŒì»¼I¦I‡ J@a"[oÚ»Ç+À쀖¨"ÈéJ0'MÏŠ]ˆ&«Zj‰Ø…à àäêrÉùJàTÀ9.Å° €ëÝŒ7ìBðÛиê«är!P€±™kžË• `W$(†fØ…
`°Îlúê•
ÄÍ0»P8oݾXS#ÌtýJ 0±7r0ì <>è1ŽïíLªpú„ÌÖïL ÄE³<45>]˜@%äª./Óõ;À‹Ë va¼oËÀ.L€á¡¤ˆ¯3a¿3è^øcRFìÂü¦Æ™°ß™|#,#Ue%\™× Ø0a¿3ÏDm"&ì7&€õ Ö¯k³Ä+€Â€fÖ( óõ;ÀìL"
ZNØŠáYæëw*àX8<58>taùú<C3B9> 8º¶¥c¾~1<>Ì0O¥ÇlØb4 X-ê˜0[¿ˆ 8ûÕVm);=æ Ûˆ@&Iå}"Ý°<C39D>cÍGWEÆlý¢ÝèÇ×<E280BA> kLJ…jØF2‰ U:L×/6 ÿ¶±<C2B6>þ›­éö¥…%Aßšcm¦ë' §Ã™îg¶^ÔúæµÀ…õªn™¬_dX"A—«nçÔŠÕ4 d^ÉŹlØÆxùÛˆùwæêÈô‚
浶Q`0Nø~ÏþyH<79>ÕúÑN2_Љ¢Vl£ ¤ü8 î0E¿¨@¦ÇÆA0l£¬<18>Þnq``ÔÉc jp‡9úE°rY\âk5l£Àðg(Ï`Ø–¥jYDx%;È_qU×<55>IúŘŠÔ5iØÆÈmàmW]æLÒ/. cm¶€YúE˜¶Á»VWv*ÛòÔ¼š]féJRšF€mT€6ÛØâZÌÒ/*Œáô®î³ô‹
0ø§ºÓ°E1¡Ôm´<E28098>
°Æa{ó¾SmUXÄ6*<2A>[— Û¨Y$ ^=×™¤_T Ñ€I<01>a S Õæ4|Ê,ý¢‰'´<>b~£‰•ÜäÍ <C38D>
$+$ánØFJM,¼“Wha§¼¯eµYÌÒ/*ÀÐRšqFºï4:×âNH¼ýHËÛ¨°”¨¥ºa ƒÇ(íL ÑIÒ;9Û˜0hn«[ëÌÒO&À³xÊÞ ]šQß.%UK†mL ‰ÛÇé¬ìL€Õ;ó§xçØb|f¼\WwIúÅÈÀ°<C380>ºf<C2BA>ZÝ™0ìAZlÃ6&<26>èqD¯uÄ`lÖv&À2!hÝ]LÒ/"<22>$— “Y Ûˆ&¤ËŸõ'ûN˜Õˆ9³ôD†¡¼m¤ûN"÷a”€"0¦é1clÈ°<C388>D @8Â3M¿ˆUÃjÑRLØÆ<C398>ÄeÛˆX~ÏY Ûˆˆ±V7õv"ÀäG%k6hã0xu—Õå¶ñ–¯@ûÂA,î<©lû¥[ØÆ€y§{[±<>€ô`±¥@ÌÒO¥tî©A ˆÌbÏêÒdìl, ÁòN£®ÞY(šIúE\UÙ°<C399>°*Ž[]õ³õ‹@Ëd¼Œ<C2BC>sÙiëÀéÝøÖb<01>`¦™¹úÅèC Äm$ ðßI&_°¶“žÚ€óä&¶‘ÉAcÓ©sÍTý"ôÐÛÖ-ÉTý"мøÅ¡ˆ<C2A1>m$@ŠBà÷jØFÀàÊb÷ò71Þng,[ÄôKºC°<43>`ycÑaÌÊ WÇèa-6ÅüÎ<oŽÆ³܈ì\,Ï>À<> ÈnÓ•DŠ¸ÏrŒh.ܨËÑ`CRiܸ€cÙ[“õË;€{‰ÙçKÆ<4B> 8†f0È¡Œ€ÀiòÝÀ´ìÎz<37>ðL,ûœò7Jà˜×ŽæÌ'`TN˜Rà"‰g¨8(o¬ F¸äf3R6V™Íž©-`ÛÍ͹,[ 6.I˜ ë"Œê2cØÊ„3ÍŸpqƒÈÝ"õÆIÁ¶±™#ôŽ“•.à¢Qˆ<51>D\¸øHàa|2¬o!2×ð;­ p1„(5á¯ú°žg¶ÂÆ«¦Pí³<C3AD>#DÆv0.’À`>ÜZÇ)è7¡=ÜßÖúMèÁ¬`…ÓO`N:Lkk<6B><EFBFBD>'s<*[<!FÚïQ 'àÌ0 'JÎÞ#nD!R­dÖLÅ} <09>¸¨B`ómÝÞ#m\!4åÀkŒ}€‹-0ˆÅWs\t!H( ËÆëc.ò… Ï”ÜaˆeŒTé<>Û
6¥ûb?[nÙƒŠ<C692>¦5v.ÎÀ5DËáâÀ6ÒÀÜøÚ<C3B8>¾^«ˆ¨­¦2cBO `µ4KJ¥Fýx<Oô¶¶ÚÎH+i_KàFíÀ¨4pc¬¨
#?°oÔ<6F>Ëwú<6D>ÞÖ•¸Èƒ ,4W°Qnc±ï.úÀdXa, »þþmÕ
~#LmÁ.¦÷'<27>ˆþ†Ofš%ø<>AHš ,ZÏU ‡ˆ ¦Â)ÐŒ<C390>DD!Ôk;ˆ¤d9ZX°•Pˆ,¹—ÓIi€P5dZl[¼åàÍÓF$dOÃ9L6_¡6àØÛ%@ð<:~€JDª†[=~6Sõy8MY¶ óõ]O5¸È÷¾ÖJ÷4×?u€×¶ÝÊÆ'"Óq°RÙö79†SEWàAñ¢1 pQ
è
©vf»™ïÇÆ”`!A¨`ïLY2ß?9c¿Ã5<C383> ™n/ª¢qEô±€ÚÆ*œ4yqa¹¡¡* F<>-ZÁJ (`ã ûViÄÓ¶¼K·˜‡Â·†î"iƒú²*åùÅE, …¡Ÿ“í>Že7"…M Ð7Ý"“ÿ“[È®Tu€ ãE¶‰à1\ì&Ì<>- ¦ÿ'» ŽË¶‚ Ì E²,+<2B>U‡vLJ°E/`¸œ1´öÅð¥?ʹ”k¼a£œ<C2A3>z Å ­†ãˆÕψtLe7æ¶uĸ‘ )—,pµÆ7£$•rb¥hPOu€“fðÜ(I_<49>戱 `TE¹ñ“%6)´¾êÁ%€YŽCBuÔ®ALËÑm'°$ÿÈ<C383>œmŒëzÛšô&Ýptª1TÕlý8œ¥ÐñH/<a¯IDáp<]5Y¹€Ð³0¢4DbÓ¡¼J·oÖ<6F>rx¦<78>eÁ¤ª;ìeuaÑ` ÃÄçÀ‚†»æ<E280BA>pcì!xiúwTç“t°F <0C>¤ÃC®¨'(Y8²fßh%&ëà0cgN7å¢ÉLñÓY¾À­ÉÑ5 iø”tÐï`“íì<C3AD>è÷3áœ-§M@Wv€ï ‡‰e<E280B0>ÌÈ“ÜXêõÞC‰ifÇ…Pï`â.WFÀÒÀÈ;àÊG¹c¢ñ¾çà ïàÌÜG©·€àØFpµàm@d‰0ï`žP.¶å'pVŒ˜ŸwRá¸x@è8æ™Â›õ›!†Ñ謧S,m¼ƒ"==00†ÛÄçælâaÁˆ£¼³<C2BC>wÈ)QhñjV<6A>QÝyF¡°„ƒ§%ŒiÄ^SÌ'Vþ˜­‘ÄÍà/-xÇ1²Ì7Z<37>>äò/0Ífµá 1?@u9ú<E28099>\,“*°jàrR¡Î<©€+Œ¦¹µ<Ëì¬UÇЀ”}Fâx6KY9Ö<1B>? p#ôÌà{…ñÍþeq‡¤û£Ècµ^ˆ,wMV¦KO
¹`HªÚÏæýì27,\Ì¢Ç'ÄlÇÔ)À˜l¥(Ôzc«ó“÷óË<C3B3>iT?Žè hÜË¡eø³vÓ“y?Ád'1<n?+G˜%ÇFˆÉ¤ë붘ô¸m×,g˜ <20>†€œÂ”™*Ìû!fÏ xlv|VÀd+ 3ÇNÿ¥<C3BF>y¸¶§ZùòÂ<%@­Ávy<76>Áàdl@‡…ÛÇŽÌz;XÁV·µš÷£Ì‰wÍÉ\†,g™=B±#=ò2û:Á•±ðôá_ z<>÷ÓÌdx»Ì;ÍzœYJ idÖ¥S-æáYºßÚŒ$e=ÏL*ˆ{€zð6|,_ꈩ˜'ç¸üÜÏ4Ã<34>ƒ~¸0@¡ÔJAèBç-âÁòÏÌók¦>²j¡Yà â¥Û7æÁêJ¬ô…Ëz¬Y¶1·vI"Ë~¬9Òi©ÙI< üšlÌÆÑbe;Ø%™½¸`ñ[þ"ÊáÌÞüÞÆ;Xº<04>ž¢<C5BE>ûÑfšc6+èK(aç¬ê†KéÛ·†cq.vûxÖ¸ñ0é§zÛ´år¼\+ðœ›-Ÿ7Þ!±uüx©öÍtÍcûj˹¤<C2B9>wHrJ?™»^.gœ™*ç?´½WòÆ;¤Öe?æÈÛ1gŒyO¦íKÞxGÈǨ«x9çÌÒ/¬ç’&8y‡”wAi8s€Ë~Ô™êXÓÎö8ûYgª\ÞÈRã'ïÈRdBm<±Å; þ°D$¯`ÛxGQos<6F>ìÇ<C3AC>iGÁ°K6»^ÚÆ;¨þ »íX" ¼6Þ ÂÎã5õÄ3Œ\Û 7)tg~uÙ<75><g‰ªžL°º<C2B0>xdr(ßà"™a¾4ª¿\ăÊ»¨{Ó?u?ø <0C>‰_?,_õñ`íRíX"fúê~ô™JÅÏ€a;òÕ€Í %fL x„:b¨¿ p&9
ÝV¶±½Yã"yæ†Q¤.âÁëA*ÃcË®i#TÊ|“ý4kŠJênÄ!ª<1E> öl<C3B6>¢ÜÏ@<17>`LŸ©æE<€uïÉ üÀñÀ>5­oÏS6âÁ
!,g+·pzÇx­l¦<C2A6>wˆ3ŠI×JyžŽÛxïíÀ;CWÔ.ÞQXÓ;<3B>½¸x÷"|õÍ5¨ûah½Ÿ£Î@hmï(Ô Š-OpñŽ¢ÿ3jÔ7ÞÁº·Qºº<C2BA>ˆZ0<02>KHRo ºíg¢+ã  ¦c¼ê¹ÃÚ~*š×m$æŒÍWiz,š’€,bé)ž\Ó<>Óï€ÓÕa»q€¶Œæµz•Fàâ•çÔàrùõÍÅ;ÂFe8žö<ûÙèÊ<C3A8>Ì‹±½í஀Ɇ
ó[´CJs2+•Këàýø"~% p±Ž*Îe´.ÖQ³T{ÀhÈý|tef—¼æëàÊ'ç´À®÷f§ùÙF:¸ÞÍ£à"UÂÓ"R°n¤£òÄK<02>W´ý”te §\¤ƒ]<5D><EFBFBD>ÅøhÛ<68>IsEcðìhž€“sÃF†!7ÒösÒ\Ñ ²{SŸm?(Í<15>Õœùa­oœCêl"lš%JÚ~TZîÃÈëyº[œƒ÷a$â²T`ßÏJ70㹌0ÁÅ9x# 4„.¾Ÿn,ØdH¦ lQŽÆ.Ñé<C391>LOèkô°ŽÆZÄLià$\³X¤¡™ìa#M*läÜœû‰i®Y^Yá{à"Mª•·- p®YØ»¼†g°6ÂÑXâÙ[­¦é{ÚWoÖå2ÀÅ8št}ïÅYrªç<C2AA>q´[&°ï'§Y[ãËJ.ô¼1®ÞRín`ûÑiÞ<69>áEÑöN¡w`Œj(Áã<>[0ªnD¯ã`<60> Ü[gK²ï‡§ãËðßš«\„ƒ6vÊAÁýøtg$(ù8{½mŒƒWa$¹kÏF};AÍžºñÝÞ7ÆÁ»0¢.ÊÁ*ÞDYt¢½ÛQwöÕתUåàu˜,÷:ÀE9Ì:] ýF9x!Sjö&åè`wB¸(¯ÄØ|Mä<>r°Úêdo.ÊÁÜáoX,€à¢¼Z„­0Œåà.¬xTëKpQŽ.giš¨pqÝDøÈΰýHµÝäq£€“rt)Óç2I[”ƒë—5YµØ¯î‡ª»œ–*¦NÊ!ëŽ<>qvbrp]^
<EFBFBD>rpc­rðö@ž&µD#ÁE9¸€ý<Á›6ÊÑÙ§§‡Ê\”£3… ­ÞǺÜÏV„k«~•€m£¼2hf}€“rdGr¢ë{€“rd§1l ûÙíˆ5A¸v3"OpR¹Ú;zö"¬œ”ƒ X½
ý¦ßNY„§Yíü¥€“r`1P4gÎ/ÁA9ˆñL¡]Ì/ÊA<C38A>—¼Ù)¹ºk*v<>°°(G
<EFBFBD>:êÆœ”ƒ ´Š-/å<>KÕ5Ei¯¹<C2AF>¶&¨ÃÀã §Ý<C2A7>¨1±É82W7ö3”´êŸã /aí¿<>·&ÈC>Æ6ÀI9²ã™öŽ´AßN\g‰ïÆ\Ó'ã Xµ¯ p2Þf<C39E>_n§® F¦üº­<_ã \ìBL'ã È™²u1ŽìäòN¸ÿ¶,ý:yM¬Ðl¦J}]™t"‡9<E280A1><39>\Œ#så''圆MÂAŒËÙnÝp<>ÆÅ6ïpÀ\²$6Øí NÂA<C382>
˜îÝá Ö¬NJ°°ÂfëZºRÔÏ%8 ÁD7RÏ
8 ÁZX.d[(øE8²—bAÝlÆAl<41>Þ›Œ#˦p½<70>QaQŽÌM<C38C>µ$gà¤YR¸,ÄŠ›Œƒ–‡\ àv Ø~T—àdðÿyBK*]ÔÏ@~%}HqkdÁ¶\ØÎcgý@­±:KÁ¼G;<xG_«œŒƒ 61†ÈŒHÈqh×Àkm°·3Ù1Cš7pPbX[.ûZ6)>”]ØßíXvË°©<C2B0>Ü'å Xš$þã'å (Ýbsµ‡m“rd†ÔSãW·“Ùçqh_8)Á½Ü‡ílvæ6
Ê89A®ö<C2AE>úÀ&ç †ß‡ñ.ú<Ñ-Ò¥—8|ÇjÛ<®ãÙÄxÒs<C392>qb“tÄÔ°ÎÙÀí€6ìð~Ù¤€“tŒXv#~Kp¥§Iœ}ÜÎh³ P<E280BA> 6ÁI:´YÜèZ8IAl0ìòñ*q]N—ØèÅí vf¢<66>œ¤#KYI™2˜€Å:Ú<>¨q€ƒuä@C‰áë'ngµ &Þø3ÖHÌu¬CA8iGj¢y[¢€“v„Ç߇«·ãÚÄŠTEÚ¶<C39A>rlgf
~ÓcMÖA<C396>^r«ó{“tcð¨ Û·#Ûp+éôèp8IÁ¼éÖ¸<C396>Ù&Ö<öv öÅ927©ïB89A:scƾ8A»¾D·PÚñ´NÎA0FúCFÒvt ®ðÉ/Α%¡Å"£2i;¼<>™ÚÅ ³øÉ/ÊALKJldÓvz 9Ó0[¬±ç9.Î->£ó2®úæpÿë¿äpx3´ù¿þ-§úKn/Ýþ¤qíÿþ×âÿÇp$ôF _ÿë?om¹¹±ô¦ <43>H¾÷ãÆïq±cgn¿·á¦„Œï~õO%ÐMäáœö«1Š‡9ÅÝ]Pÿ£W¡nIbG¿¥öG¨µðJtÃÑ‘ÿíàýÉÕò îbË'‰]À‹áÒã%9Øg 1Å>üä
{÷®ßYë{­êµÒÇêçú¦¼ÿç_ÿ?9<>
endstream endstream
endobj endobj
525 0 obj 525 0 obj
78670 78698
endobj endobj
526 0 obj 526 0 obj
[524 0 R] [524 0 R]
@ -4892,64 +4906,64 @@ xref
0000028171 00000 n 0000028171 00000 n
0000028226 00000 n 0000028226 00000 n
0000028281 00000 n 0000028281 00000 n
0000107029 00000 n 0000107057 00000 n
0000107052 00000 n 0000107080 00000 n
0000107079 00000 n 0000107107 00000 n
0000124222 00000 n 0000124250 00000 n
0000124083 00000 n 0000124111 00000 n
0000107277 00000 n 0000107305 00000 n
0000107532 00000 n 0000107560 00000 n
0000112507 00000 n 0000112535 00000 n
0000112485 00000 n 0000112513 00000 n
0000112605 00000 n 0000112633 00000 n
0000112625 00000 n 0000112653 00000 n
0000113114 00000 n 0000113142 00000 n
0000112784 00000 n 0000112812 00000 n
0000113548 00000 n 0000113576 00000 n
0000113569 00000 n 0000113597 00000 n
0000113825 00000 n 0000113853 00000 n
0000115468 00000 n 0000115496 00000 n
0000115446 00000 n 0000115474 00000 n
0000115558 00000 n 0000115586 00000 n
0000115578 00000 n 0000115606 00000 n
0000115969 00000 n 0000115997 00000 n
0000115738 00000 n 0000115766 00000 n
0000116282 00000 n 0000116310 00000 n
0000116303 00000 n 0000116331 00000 n
0000116555 00000 n 0000116583 00000 n
0000117967 00000 n 0000117995 00000 n
0000117945 00000 n 0000117973 00000 n
0000118054 00000 n 0000118082 00000 n
0000118073 00000 n 0000118101 00000 n
0000118464 00000 n 0000118492 00000 n
0000118233 00000 n 0000118261 00000 n
0000118776 00000 n 0000118804 00000 n
0000118797 00000 n 0000118825 00000 n
0000119049 00000 n 0000119077 00000 n
0000120621 00000 n 0000120649 00000 n
0000120599 00000 n 0000120627 00000 n
0000120712 00000 n 0000120740 00000 n
0000120732 00000 n 0000120760 00000 n
0000121123 00000 n 0000121151 00000 n
0000120892 00000 n 0000120920 00000 n
0000121435 00000 n 0000121463 00000 n
0000121456 00000 n 0000121484 00000 n
0000121712 00000 n 0000121740 00000 n
0000123248 00000 n 0000123276 00000 n
0000123226 00000 n 0000123254 00000 n
0000123339 00000 n 0000123367 00000 n
0000123359 00000 n 0000123387 00000 n
0000123750 00000 n 0000123778 00000 n
0000123519 00000 n 0000123547 00000 n
0000124062 00000 n 0000124090 00000 n
0000124145 00000 n 0000124173 00000 n
trailer trailer
<< <<
/Root 575 0 R /Root 575 0 R
/Info 1 0 R /Info 1 0 R
/ID [<53A9179B35E54B8B52EAF353F916CBBD> <53A9179B35E54B8B52EAF353F916CBBD>] /ID [<ABACEA8E075E5082C8BD17B0192862B6> <ABACEA8E075E5082C8BD17B0192862B6>]
/Size 576 /Size 576
>> >>
startxref startxref
133058 133086
%%EOF %%EOF

Binary file not shown.

Before

Width:  |  Height:  |  Size: 191 KiB

After

Width:  |  Height:  |  Size: 190 KiB

View File

@ -69,21 +69,108 @@ H1 = 1 - H2;
% The function generateCF can also be used to synthesize the complementary filters. % The function generateCF can also be used to synthesize the complementary filters.
% [H1, H2] = generateCF(W1, W2); % [H1, H2] = generateCF(W1, W2);
%% Bode plot of the Weighting filters and Obtained complementary filters %% Bode plot of the obtained complementary filters
figure; figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on; hold on;
plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '--', 'color', colors(1,:),'DisplayName', '$|W_1|^{-1}$'); set(gca,'ColorOrderIndex',1)
plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '--', 'color', colors(2,:),'DisplayName', '$|W_2|^{-1}$'); plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '--', 'DisplayName', '$|W_1|^{-1}$');
plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'color', [colors(1,:), 0.5], 'linewidth', 2.5,'DisplayName', '$H_1$'); set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'color', [colors(2,:), 0.5], 'linewidth', 2.5,'DisplayName', '$H_2$'); plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '--', 'DisplayName', '$|W_2|^{-1}$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$');
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$');
hold off; hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude'); set(gca, 'XTickLabel',[]); ylabel('Magnitude');
ylim([8e-4, 20]); ylim([8e-4, 20]);
xlim([freqs(1), freqs(end)]); yticks([1e-3, 1e-2, 1e-1, 1, 1e1]);
yticklabels({'', '$10^{-2}$', '', '$10^0$', ''})
leg = legend('location', 'south', 'FontSize', 8, 'NumColumns', 2); leg = legend('location', 'south', 'FontSize', 8, 'NumColumns', 2);
leg.ItemTokenSize(1) = 18; leg.ItemTokenSize(1) = 18;
% Phase
ax2 = nexttile;
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*phase(squeeze(freqresp(H1, freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*phase(squeeze(freqresp(H2, freqs, 'Hz'))), '-');
hold off;
set(gca, 'XScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
yticks([-180:90:180]);
ylim([-180, 200])
yticklabels({'-180', '', '0', '', '180'})
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
%% Design of "Closed-loop" complementary filters
% Design of the Weighting Functions
W1 = generateWF('n', 3, 'w0', 2*pi*10, 'G0', 1000, 'Ginf', 1/10, 'Gc', 0.45);
W2 = generateWF('n', 2, 'w0', 2*pi*10, 'G0', 1/10, 'Ginf', 1000, 'Gc', 0.45);
% Generalized plant for "closed-loop" complementary filter synthesis
P = [ W1 0 1;
-W1 W2 -1];
% Standard H-Infinity Synthesis
[L, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
% Complementary filters
H1 = inv(1 + L);
H2 = 1 - H1;
%% Bode plot of the obtained complementary filters after H-infinity mixed-sensitivity synthesis
figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '--', 'DisplayName', '$|W_1|^{-1}$');
set(gca,'ColorOrderIndex',2)
plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '--', 'DisplayName', '$|W_2|^{-1}$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$');
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$');
plot(freqs, abs(squeeze(freqresp(L, freqs, 'Hz'))), 'k--', 'DisplayName', '$|L|$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]); ylabel('Magnitude');
ylim([1e-3, 1e3]);
yticks([1e-3, 1e-2, 1e-1, 1, 1e1, 1e2, 1e3]);
yticklabels({'', '$10^{-2}$', '', '$10^0$', '', '$10^2$', ''});
leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 3);
leg.ItemTokenSize(1) = 18;
% Phase
ax2 = nexttile;
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*phase(squeeze(freqresp(H1, freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*phase(squeeze(freqresp(H2, freqs, 'Hz'))), '-');
hold off;
set(gca, 'XScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
yticks([-180:90:180]);
ylim([-180, 200])
yticklabels({'-180', '', '0', '', '180'})
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
%% Synthesis of a set of three complementary filters %% Synthesis of a set of three complementary filters
% Design of the Weighting Functions % Design of the Weighting Functions
W1 = generateWF('n', 2, 'w0', 2*pi*1, 'G0', 1/10, 'Ginf', 1000, 'Gc', 0.5); W1 = generateWF('n', 2, 'w0', 2*pi*1, 'G0', 1/10, 'Ginf', 1000, 'Gc', 0.5);
@ -108,16 +195,45 @@ H1 = 1 - H2 - H3;
%% Bode plot of the inverse weighting functions and of the three complementary filters obtained using the H-infinity synthesis %% Bode plot of the inverse weighting functions and of the three complementary filters obtained using the H-infinity synthesis
figure; figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on; hold on;
plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '--', 'color', colors(1,:),'DisplayName', '$|W_1|^{-1}$'); set(gca,'ColorOrderIndex',1)
plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '--', 'color', colors(2,:),'DisplayName', '$|W_2|^{-1}$'); plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '--', 'DisplayName', '$|W_1|^{-1}$');
plot(freqs, 1./abs(squeeze(freqresp(W3, freqs, 'Hz'))), '--', 'color', colors(3,:),'DisplayName', '$|W_3|^{-1}$'); set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'color', [colors(1,:), 0.5], 'linewidth', 2.5,'DisplayName', '$H_1$'); plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '--', 'DisplayName', '$|W_2|^{-1}$');
plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'color', [colors(2,:), 0.5], 'linewidth', 2.5,'DisplayName', '$H_2$'); set(gca,'ColorOrderIndex',3)
plot(freqs, abs(squeeze(freqresp(H3, freqs, 'Hz'))), '-', 'color', [colors(3,:), 0.5], 'linewidth', 2.5,'DisplayName', '$H_3$'); plot(freqs, 1./abs(squeeze(freqresp(W3, freqs, 'Hz'))), '--', 'DisplayName', '$|W_3|^{-1}$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$');
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$');
set(gca,'ColorOrderIndex',3)
plot(freqs, abs(squeeze(freqresp(H3, freqs, 'Hz'))), '-', 'DisplayName', '$H_3$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off; hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude'); ylabel('Magnitude');
xlim([freqs(1), freqs(end)]); ylim([1e-4, 20]); set(gca, 'XTickLabel',[]);
leg = legend('location', 'southeast', 'FontSize', 8); ylim([1e-4, 20]);
leg = legend('location', 'northeast', 'FontSize', 8);
leg.ItemTokenSize(1) = 18; leg.ItemTokenSize(1) = 18;
% Phase
ax2 = nexttile;
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*phase(squeeze(freqresp(H1, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*phase(squeeze(freqresp(H2, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',3)
plot(freqs, 180/pi*phase(squeeze(freqresp(H3, freqs, 'Hz'))));
hold off;
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
set(gca, 'XScale', 'log');
yticks([-180:90:180]); ylim([-220, 220]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);

View File

@ -1,248 +0,0 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
%% Path for functions, data and scripts
addpath('./src/'); % Path for functions
%% Colors for the figures
colors = colororder;
%% Initialize Frequency Vector
freqs = logspace(0, 3, 1000);
%% Compute Equation of motion
l = 1; h=2;
la = 0.5; % Horizontal position of actuators [m]
ha = 0.2; % Vertical of actuators [m]
m = 40; % Payload mass [kg]
I = 5; % Payload rotational inertia [kg m^2]
c = 2e2; % Actuator Damping [N/(m/s)]
k = 1e6; % Actuator Stiffness [N/m]
% Unit vectors of the actuators
s1 = [1;0];
s2 = [0;1];
s3 = [0;1];
% Stiffnesss and Damping matrices of the struts
Kr = diag([k,k,k]);
Cr = diag([c,c,c]);
% Location of the joints with respect to the center of mass
Mb1 = [-l/2;-ha];
Mb2 = [-la; -h/2];
Mb3 = [ la; -h/2];
% Jacobian matrix (Center of Mass)
J_CoM = [s1', Mb1(1)*s1(2)-Mb1(2)*s1(1);
s2', Mb2(1)*s2(2)-Mb2(2)*s2(1);
s3', Mb3(1)*s3(2)-Mb3(2)*s3(1)];
% Mass Matrix in frame {M}
M = diag([m,m,I]);
% Stiffness Matrix in frame {M}
K = J_CoM'*Kr*J_CoM;
% Damping Matrix in frame {M}
C = J_CoM'*Cr*J_CoM;
% Plant in the frame of the struts
G_L = J_CoM*inv(M*s^2 + C*s + K)*J_CoM';
figure;
tiledlayout(3, 3, 'TileSpacing', 'Compact', 'Padding', 'None');
for out_i = 1:3
for in_i = 1:3
nexttile;
plot(freqs, abs(squeeze(freqresp(G_L(out_i,in_i), freqs, 'Hz'))), 'k-', ...
'DisplayName', sprintf('$\\mathcal{L}_%i/\\tau_%i$', out_i, in_i));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlim([freqs(1), freqs(end)]); ylim([2e-8, 4e-5]);
xticks([1e0, 1e1, 1e2])
yticks([1e-7, 1e-6, 1e-5])
leg = legend('location', 'northeast', 'FontSize', 8);
leg.ItemTokenSize(1) = 18;
if in_i == 1
ylabel('Mag. [m/N]')
else
set(gca, 'YTickLabel',[]);
end
if out_i == 3
xlabel('Frequency [Hz]')
else
set(gca, 'XTickLabel',[]);
end
end
end
%% Jacobian Decoupling - Center of Mass
G_CoM = pinv(J_CoM)*G_L*pinv(J_CoM');
G_CoM.InputName = {'Fx', 'Fy', 'Mz'};
G_CoM.OutputName = {'Dx', 'Dy', 'Rz'};
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(G_CoM(1, 3), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$D_{x,\{M\}}/M_{z,\{M\}}$');
plot(freqs, abs(squeeze(freqresp(G_CoM(3, 1), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$R_{z,\{M\}}/F_{x,\{M\}}$');
plot(freqs, abs(squeeze(freqresp(G_CoM(1, 1), freqs, 'Hz'))), 'color', colors(1,:), 'DisplayName', '$D_{x,\{M\}}/F_{x,\{M\}}$');
plot(freqs, abs(squeeze(freqresp(G_CoM(2, 2), freqs, 'Hz'))), 'color', colors(2,:), 'DisplayName', '$D_{y,\{M\}}/F_{y,\{M\}}$');
plot(freqs, abs(squeeze(freqresp(G_CoM(3, 3), freqs, 'Hz'))), 'color', colors(3,:), 'DisplayName', '$R_{z,\{M\}}/M_{z,\{M\}}$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
ylim([1e-10, 1e-3]);
leg = legend('location', 'southwest', 'FontSize', 8);
leg.ItemTokenSize(1) = 18;
%% Jacobian Decoupling - Center of Mass
% Location of the joints with respect to the center of stiffness
Mb1 = [-l/2; 0];
Mb2 = [-la; -h/2+ha];
Mb3 = [ la; -h/2+ha];
% Jacobian matrix (Center of Stiffness)
J_CoK = [s1', Mb1(1)*s1(2)-Mb1(2)*s1(1);
s2', Mb2(1)*s2(2)-Mb2(2)*s2(1);
s3', Mb3(1)*s3(2)-Mb3(2)*s3(1)];
G_CoK = pinv(J_CoK)*G_L*pinv(J_CoK');
G_CoK.InputName = {'Fx', 'Fy', 'Mz'};
G_CoK.OutputName = {'Dx', 'Dy', 'Rz'};
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(G_CoK(1, 1), freqs, 'Hz'))), 'color', colors(1,:), 'DisplayName', '$D_{x,\{K\}}/F_{x,\{K\}}$');
plot(freqs, abs(squeeze(freqresp(G_CoK(2, 2), freqs, 'Hz'))), 'color', colors(2,:), 'DisplayName', '$D_{y,\{K\}}/F_{y,\{K\}}$');
plot(freqs, abs(squeeze(freqresp(G_CoK(3, 3), freqs, 'Hz'))), 'color', colors(3,:), 'DisplayName', '$R_{z,\{K\}}/M_{z,\{K\}}$');
plot(freqs, abs(squeeze(freqresp(G_CoK(1, 3), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$D_{x,\{K\}}/M_{z,\{K\}}$');
plot(freqs, abs(squeeze(freqresp(G_CoK(3, 1), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$R_{z,\{K\}}/F_{x,\{K\}}$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Kagnitude');
ylim([1e-10, 1e-3]);
leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2);
leg.ItemTokenSize(1) = 18;
%% Modal decoupling
% Compute the eigen vectors
[phi, wi] = eig(M\K);
% Sort the eigen vectors by increasing associated frequency
[~, i] = sort(diag(wi));
phi = phi(:, i);
% Plant in the modal space
Gm = inv(phi)*inv(J_CoM)*G_L*inv(J_CoM')*inv(phi');
%% Modal decoupled plant
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(Gm(1,1), freqs, 'Hz'))), 'color', colors(1,:), 'DisplayName', '$\mathcal{X}_{m,1}/\tau_{m,1}$');
plot(freqs, abs(squeeze(freqresp(Gm(2,2), freqs, 'Hz'))), 'color', colors(2,:), 'DisplayName', '$\mathcal{X}_{m,2}/\tau_{m,2}$');
plot(freqs, abs(squeeze(freqresp(Gm(3,3), freqs, 'Hz'))), 'color', colors(3,:), 'DisplayName', '$\mathcal{X}_{m,3}/\tau_{m,3}$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
ylim([1e-8, 1e-4]);
leg = legend('location', 'northeast', 'FontSize', 8);
leg.ItemTokenSize(1) = 18;
%% SVD Decoupling
wc = 2*pi*100; % Decoupling frequency [rad/s]
% System's response at the decoupling frequency
H1 = evalfr(G_L, j*wc);
% Real approximation of G(j.wc)
D = pinv(real(H1'*H1));
H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
[U,S,V] = svd(H1);
Gsvd = inv(U)*G_L*inv(V');
figure;
hold on;
for i_in = 1:3
for i_out = [i_in+1:3]
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(Gsvd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$G_{SVD}(i,j)\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for i_in_out = 1:3
plot(freqs, abs(squeeze(freqresp(Gsvd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_{SVD}(%d,%d)$', i_in_out, i_in_out));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
ylim([1e-10, 2e-4]);
leg = legend('location', 'northeast', 'FontSize', 8);
leg.ItemTokenSize(1) = 18;
%% Simscape model with relative motion sensor at alternative positions
mdl = 'detail_control_decoupling_test_model';
open(mdl)
deq = 0.2; % Length of the actuators [m]
% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Payload'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Payload'], 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Payload'], 3, 'openoutput'); io_i = io_i + 1;
G_L_alt = linearize(mdl, io);
G_L_alt.InputName = {'F1', 'F2', 'F3'};
G_L_alt.OutputName = {'d1', 'd2', 'd32'};
% SVD Decoupling with the new plant
wc = 2*pi*100; % Decoupling frequency [rad/s]
% System's response at the decoupling frequency
H1 = evalfr(G_L_alt, j*wc);
% Real approximation of G(j.wc)
D = pinv(real(H1'*H1));
H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
[U,S,V] = svd(H1);
Gsvd_alt = inv(U)*G_L_alt*inv(V');
%% Obtained plant after SVD decoupling - Relative motion sensors are not collocated with the actuators
figure;
hold on;
for i_in = 1:3
for i_out = [i_in+1:3]
plot(freqs, abs(squeeze(freqresp(Gsvd_alt(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(Gsvd_alt(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$G_{SVD}(i,j)\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for i_in_out = 1:3
plot(freqs, abs(squeeze(freqresp(Gsvd_alt(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_{SVD}(%d,%d)$', i_in_out, i_in_out));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
ylim([5e-11, 7e-5]);
leg = legend('location', 'southwest', 'FontSize', 8);
leg.ItemTokenSize(1) = 18;

View File

@ -1,238 +0,0 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
%% Path for functions, data and scripts
addpath('./src/'); % Path for functions
%% Colors for the figures
colors = colororder;
%% Initialize Frequency Vector
freqs = logspace(-1, 3, 1000);
%% Analytical Complementary Filters - Effect of alpha
freqs_study = logspace(-2, 2, 1000);
alphas = [0.1, 1, 10];
w0 = 2*pi*1;
s = tf('s');
figure;
hold on;
for i = 1:length(alphas)
alpha = alphas(i);
Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
plot(freqs_study, abs(squeeze(freqresp(Hh2, freqs_study, 'Hz'))), 'color', colors(i,:), 'DisplayName', sprintf('$\\alpha = %g$', alphas(i)));
plot(freqs_study, abs(squeeze(freqresp(Hl2, freqs_study, 'Hz'))), 'color', colors(i,:), 'HandleVisibility', 'off');
end
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Magnitude');
hold off;
ylim([1e-3, 20]);
leg = legend('location', 'northeast', 'FontSize', 8);
leg.ItemTokenSize(1) = 18;
%% Analytical Complementary Filters - Effect of w0
freqs_study = logspace(-1, 3, 1000);
alpha = [1];
w0s = [2*pi*1, 2*pi*10, 2*pi*100];
s = tf('s');
figure;
hold on;
for i = 1:length(w0s)
w0 =w0s(i);
Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
plot(freqs_study, abs(squeeze(freqresp(Hh2, freqs_study, 'Hz'))), 'color', colors(i,:), 'DisplayName', sprintf('$\\omega_0 = %g$ Hz', w0/2/pi));
plot(freqs_study, abs(squeeze(freqresp(Hl2, freqs_study, 'Hz'))), 'color', colors(i,:), 'HandleVisibility', 'off');
end
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
hold off;
xlim([freqs_study(1), freqs_study(end)]); ylim([1e-3, 20]);
leg = legend('location', 'southeast', 'FontSize', 8);
leg.ItemTokenSize(1) = 18;
%% Test model
freqs = logspace(0, 3, 1000); % Frequency Vector [Hz]
m = 20; % mass [kg]
k = 1e6; % stiffness [N/m]
c = 1e2; % damping [N/(m/s)]
% Plant dynamics
G = 1/(m*s^2 + c*s + k);
% Uncertainty weight
wI = generateWF('n', 2, 'w0', 2*pi*50, 'G0', 0.1, 'Ginf', 10, 'Gc', 1);
%% Bode plot of the plant with dynamical uncertainty
figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2,1]);
hold on;
plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz'))), 'k-', 'DisplayName', 'G');
plotMagUncertainty(wI, freqs, 'G', G, 'DisplayName', '$\Pi_i$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]);
ylim([1e-8, 7e-5]);
hold off;
leg = legend('location', 'northeast', 'FontSize', 8);
leg.ItemTokenSize(1) = 18;
% Phase
ax2 = nexttile;
hold on;
plotPhaseUncertainty(wI, freqs, 'G', G);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G, freqs, 'Hz')))), 'k-');
set(gca,'xscale','log');
yticks(-360:90:90);
ylim([-270 45]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
%% Analytical Complementary Filters
w0 = 2*pi*20;
alpha = 1;
Hh = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
Hl = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
%% Specifications
figure;
hold on;
plot([1, 100], [0.01, 100], ':', 'color', colors(2,:));
plot([300, 1000], [0.01, 0.01], ':', 'color', colors(1,:));
plot(freqs, 1./abs(squeeze(freqresp(wI, freqs, 'Hz'))), ':', 'color', colors(1,:));
plot(freqs, abs(squeeze(freqresp(Hl, freqs, 'Hz'))), '-', 'color', colors(1,:));
plot(freqs, abs(squeeze(freqresp(Hh, freqs, 'Hz'))), '-', 'color', colors(2,:));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
hold off;
xlim([freqs(1), freqs(end)]);
ylim([1e-3, 10]);
xticks([0.1, 1, 10, 100, 1000]);
%% Obtained controller
omega = 2*pi*1000;
K = 1/(Hh*G) * 1/((1+s/omega+(s/omega)^2));
K = zpk(minreal(K));
%% Bode plot of the controller K
figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
plot(freqs, abs(squeeze(freqresp(K*Hl, freqs, 'Hz'))), 'k-');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
ylim([8e3, 1e8])
% Phase
ax2 = nexttile;
plot(freqs, 180/pi*angle(squeeze(freqresp(K*Hl, freqs, 'Hz'))), 'k-');
set(gca,'xscale','log');
yticks(-180:45:180);
ylim([-180 45]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
num_delta_points = 50;
theta = linspace(0, 2*pi, num_delta_points);
delta_points = exp(1j * theta);
% Get frequency responses for all components
G_resp = squeeze(freqresp(G, freqs, 'Hz'));
K_resp = squeeze(freqresp(K, freqs, 'Hz'));
Hl_resp = squeeze(freqresp(Hl, freqs, 'Hz'));
wI_resp = squeeze(freqresp(wI, freqs, 'Hz'));
% Calculate nominal responses
nom_L = G_resp .* K_resp .* Hl_resp;
nom_S = 1 ./ (1 + nom_L);
nom_T = nom_L ./ (1 + nom_L);
% Store all the points in the complex plane that L can take
loop_region_points = zeros(length(freqs), num_delta_points);
% Initialize arrays to store magnitude bounds
S_mag_min = ones(length(freqs), 1) * inf;
S_mag_max = zeros(length(freqs), 1);
T_mag_min = ones(length(freqs), 1) * inf;
T_mag_max = zeros(length(freqs), 1);
% Calculate magnitude bounds for all delta values
for i = 1:num_delta_points
% Perturbed loop gain
loop_perturbed = nom_L .* (1 + wI_resp .* delta_points(i));
loop_region_points(:,i) = loop_perturbed;
% Perturbed sensitivity function
S_perturbed = 1 ./ (1 + loop_perturbed);
S_mag = abs(S_perturbed);
% Update S magnitude bounds
S_mag_min = min(S_mag_min, S_mag);
S_mag_max = max(S_mag_max, S_mag);
% Perturbed complementary sensitivity function
T_perturbed = loop_perturbed ./ (1 + loop_perturbed);
T_mag = abs(T_perturbed);
% Update T magnitude bounds
T_mag_min = min(T_mag_min, T_mag);
T_mag_max = max(T_mag_max, T_mag);
end
% At frequencies where |wI| > 1, T min is zero
T_mag_min(abs(wI_resp)>1) = 1e-10;
%% Nyquist plot to check Robust Stability
figure;
hold on;
plot(real(squeeze(freqresp(G*K*Hl, freqs, 'Hz'))), imag(squeeze(freqresp(G*K*Hl, freqs, 'Hz'))), 'k', 'DisplayName', '$L(j\omega)$ - Nominal');
plot(alphaShape(real(loop_region_points(:)), imag(loop_region_points(:)), 0.1), 'FaceColor', [0, 0, 0], 'EdgeColor', 'none', 'FaceAlpha', 0.3, 'DisplayName', '$L(j\omega)$ - $\forall G \in \Pi_i$');
plot(-1, 0, 'k+', 'MarkerSize', 5, 'HandleVisibility', 'off');
hold off;
grid on;
axis equal
xlim([-1.4, 0.2]); ylim([-1.2, 0.4]);
xticks(-1.4:0.2:0.2); yticks(-1.2:0.2:0.4);
xlabel('Real Part'); ylabel('Imaginary Part');
leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1);
leg.ItemTokenSize(1) = 18;
%% Robust Performance
figure;
hold on;
plot(freqs, abs(nom_S), 'color', colors(2,:), 'DisplayName', '$|S|$ - Nom.');
plot(freqs, abs(nom_T), 'color', colors(1,:), 'DisplayName', '$|T|$ - Nom.');
patch([freqs, fliplr(freqs)], [S_mag_max', fliplr(S_mag_min')], colors(2,:), 'FaceAlpha', 0.2, 'EdgeColor', 'none', 'HandleVisibility', 'off');
patch([freqs, fliplr(freqs)], [T_mag_max', fliplr(T_mag_min')], colors(1,:), 'FaceAlpha', 0.2, 'EdgeColor', 'none', 'HandleVisibility', 'off');
plot([1, 100], [0.01, 100], ':', 'color', colors(2,:), 'DisplayName', 'Specs.');
plot([300, 1000], [0.01, 0.01], ':', 'color', colors(1,:), 'DisplayName', 'Specs.');
plot(freqs, 1./abs(squeeze(freqresp(wI, freqs, 'Hz'))), ':', 'color', colors(1,:), 'HandleVisibility', 'off');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off;
xlabel('Frequency [Hz]'); ylabel('Magnitude');
xlim([freqs(1), freqs(end)]);
ylim([1e-4, 5]);
xticks([0.1, 1, 10, 100, 1000]);
leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 3);
leg.ItemTokenSize(1) = 18;

View File

@ -862,66 +862,6 @@ Input usage due to reference signal $r$ is determined by $\big|\frac{u}{r}\big|
Proper choice of $|K_r|$ is then useful to limit input usage due to change of reference signal. Proper choice of $|K_r|$ is then useful to limit input usage due to change of reference signal.
*** Tikz Figures
#+begin_src latex :file detail_control_decoupling_control_struts.pdf
\begin{tikzpicture}
\node[block] (Gl) {$\bm{G}_{\{\mathcal{L}\}}$};
% Connections and labels
\draw[<-] (Gl.west) -- ++(-0.8, 0) node[above right]{$\bm{\tau}$};
\draw[->] (Gl.east) -- ++( 0.8, 0) node[above left]{$\bm{\mathcal{L}}$};
\end{tikzpicture}
#+end_src
#+RESULTS:
[[file:figs/detail_control_decoupling_control_struts.png]]
#+begin_src latex :file detail_control_decoupling_control_jacobian_CoM.pdf
\begin{tikzpicture}
\node[block] (G) {$\bm{G}_{\{\mathcal{L}\}}$};
\node[block, left=0.6 of G] (Jt) {$\bm{J}_{\{M\}}^{-\intercal}$};
\node[block, right=0.6 of G] (Ja) {$\bm{J}_{\{M\}}^{-1}$};
% Connections and labels
\draw[<-] (Jt.west) -- ++(-1.4, 0) node[above right]{$\bm{\mathcal{F}}_{\{M\}}$};
\draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$};
\draw[->] (G.east) -- (Ja.west) node[above left]{$\bm{\mathcal{L}}$};
\draw[->] (Ja.east) -- ++( 1.4, 0) node[above left]{$\bm{\mathcal{X}}_{\{M\}}$};
\begin{scope}[on background layer]
\node[fit={(Jt.south west) (Ja.north east)}, fill=black!10!white, draw, dashed, inner sep=4pt] (Gx) {};
\node[above] at (Gx.north) {$\bm{G}_{\{M\}}$};
\end{scope}
\end{tikzpicture}
#+end_src
#+RESULTS:
[[file:figs/detail_control_decoupling_control_jacobian_CoM.png]]
#+begin_src latex :file detail_control_decoupling_control_jacobian_CoK.pdf
\begin{tikzpicture}
\node[block] (G) {$\bm{G}_{\{\mathcal{L}\}}$};
\node[block, left=0.6 of G] (Jt) {$\bm{J}_{\{K\}}^{-\intercal}$};
\node[block, right=0.6 of G] (Ja) {$\bm{J}_{\{K\}}^{-1}$};
% Connections and labels
\draw[<-] (Jt.west) -- ++(-1.4, 0) node[above right]{$\bm{\mathcal{F}}_{\{K\}}$};
\draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$};
\draw[->] (G.east) -- (Ja.west) node[above left]{$\bm{\mathcal{L}}$};
\draw[->] (Ja.east) -- ++( 1.4, 0) node[above left]{$\bm{\mathcal{X}}_{\{K\}}$};
\begin{scope}[on background layer]
\node[fit={(Jt.south west) (Ja.north east)}, fill=black!10!white, draw, dashed, inner sep=4pt] (Gx) {};
\node[above] at (Gx.north) {$\bm{G}_{\{K\}}$};
\end{scope}
\end{tikzpicture}
#+end_src
#+RESULTS:
[[file:figs/detail_control_decoupling_control_jacobian_CoK.png]]
** DONE [#A] Fix the outline ** DONE [#A] Fix the outline
CLOSED: [2025-04-03 Thu 12:01] CLOSED: [2025-04-03 Thu 12:01]
@ -999,41 +939,32 @@ Prefixes:
** DONE [#A] Finish writing "multiple sensor" control section ** DONE [#A] Finish writing "multiple sensor" control section
CLOSED: [2025-04-09 Wed 13:55] SCHEDULED: <2025-04-08 Tue> CLOSED: [2025-04-09 Wed 13:55] SCHEDULED: <2025-04-08 Tue>
** TODO [#A] Rework table that compares decoupling strategies
SCHEDULED: <2025-04-13 Sun>
** TODO [#B] Review of control for Stewart platforms? ** TODO [#B] Review of control for Stewart platforms?
[[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org::*Control][Control]] [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org::*Control][Control]]
Or html version: https://research.tdehaeze.xyz/stewart-simscape/docs/bibliography.html Or html version: https://research.tdehaeze.xyz/stewart-simscape/docs/bibliography.html
** CANC [#C] Discuss different strategies? ** TODO [#C] Discuss different strategies?
CLOSED: [2025-04-13 Sun 10:40]
- State "CANC" from "TODO" [2025-04-13 Sun 10:40]
- Robust control - Robust control
- Adaptive control - Adaptive control
- etc... - etc...
* Introduction :ignore: * Introduction :ignore:
Three critical elements for the control of parallel manipulators such as the Nano-Hexapod were identified: effective utilization and combination of multiple sensors, appropriate plant decoupling strategies, and robust controller design for the decoupled system. When controlling a MIMO system (specifically parallel manipulator such as the Stewart platform?)
During the conceptual design phase of the NASS, pragmatic approaches were implemented for each of these elements. - [ ] *Should the quick review of Stewart platform control be here?*
The High Authority Control-Low Authority Control (HAC-LAC) architecture was selected for combining sensors. In that case it should be possible to highlight three areas:
Control was implemented in the frame of the struts, leveraging the inherent low-frequency decoupling of the plant where all decoupled elements exhibited similar dynamics, thereby simplifying the Single-Input Single-Output (SISO) controller design process. - use of multiple sensors
For these decoupled plants, open-loop shaping techniques were employed to tune the individual controllers. - decoupling strategy
- control optimization
While these initial strategies proved effective in validating the NASS concept, this work explores alternative approaches with the potential to further enhance the performance. Several considerations:
Section ref:sec:detail_control_sensor examines different methods for combining multiple sensors, with particular emphasis on sensor fusion techniques that utilize complementary filters. - Section ref:sec:detail_control_sensor: How to most effectively use/combine multiple sensors
A novel approach for designing these filters is proposed, which allows optimization of the sensor fusion effectiveness. - Section ref:sec:detail_control_decoupling: How to decouple a system
- Section ref:sec:detail_control_cf: How to design the controller
Section ref:sec:detail_control_decoupling presents a comparative analysis of various decoupling strategies, including Jacobian decoupling, modal decoupling, and Singular Value Decomposition (SVD) decoupling.
Each method is evaluated in terms of its theoretical foundations, implementation requirements, and performance characteristics, providing insights into their respective advantages for different applications.
Finally, Section ref:sec:detail_control_cf addresses the challenge of controller design for decoupled plants.
A method for directly shaping closed-loop transfer functions using complementary filters is proposed, offering an intuitive approach to achieving desired performance specifications while ensuring robustness to plant uncertainty.
* Multiple Sensor Control * Multiple Sensor Control
:PROPERTIES: :PROPERTIES:
@ -1044,9 +975,10 @@ A method for directly shaping closed-loop transfer functions using complementary
** Introduction :ignore: ** Introduction :ignore:
The literature review of Stewart platforms revealed a wide diversity of designs with various sensor and actuator configurations. The literature review of Stewart platforms revealed a wide diversity of designs with various sensor and actuator configurations.
Control objectives (such as active damping, vibration isolation, or precise positioning) directly dictate sensor selection, whether inertial, force, or relative position sensors. Control objectives (such as active damping, vibration isolation, or precise positioning) dictate specific sensor configurations.
The selection between inertial sensors, force sensors, or relative position sensors is primarily determined by the system's control requirements.
In cases where multiple control objectives must be achieved simultaneously, as is the case for the Nano Active Stabilization System (NASS) where the Stewart platform must both position the sample and provide isolation from micro-station vibrations, combining multiple sensors within the control architecture has been demonstrated to yield significant performance benefits [[cite:&hauge04_sensor_contr_space_based_six]]. In cases where multiple control objectives must be achieved simultaneously, as is the case for the Nano Active Stabilization System (NASS) where the Stewart platform must both position the sample and provide isolation from micro-station vibrations, combining multiple sensors within the control architecture has been demonstrated to yield significant performance benefits.
From the literature, three principal approaches for combining sensors have been identified: High Authority Control-Low Authority Control (HAC-LAC), sensor fusion, and two-sensor control architectures. From the literature, three principal approaches for combining sensors have been identified: High Authority Control-Low Authority Control (HAC-LAC), sensor fusion, and two-sensor control architectures.
#+begin_src latex :file detail_control_sensor_arch_hac_lac.pdf #+begin_src latex :file detail_control_sensor_arch_hac_lac.pdf
@ -1171,7 +1103,7 @@ From the literature, three principal approaches for combining sensors have been
#+end_subfigure #+end_subfigure
#+end_figure #+end_figure
The HAC-LAC approach employs a dual-loop control strategy in which two control loops utilize different sensors for distinct purposes (Figure ref:fig:detail_control_sensor_arch_hac_lac). The HAC-LAC approach, implemented during the conceptual phase, employs a dual-loop control strategy in which two control loops utilize different sensors for distinct purposes (Figure ref:fig:detail_control_sensor_arch_hac_lac).
In [[cite:&li01_simul_vibrat_isolat_point_contr]], vibration isolation is provided by accelerometers collocated with the voice coil actuators, while external rotational sensors are utilized to achieve pointing control. In [[cite:&li01_simul_vibrat_isolat_point_contr]], vibration isolation is provided by accelerometers collocated with the voice coil actuators, while external rotational sensors are utilized to achieve pointing control.
In [[cite:&geng95_intel_contr_system_multip_degree]], force sensors collocated with the magnetostrictive actuators are used for active damping using decentralized IFF, and subsequently accelerometers are employed for adaptive vibration isolation. In [[cite:&geng95_intel_contr_system_multip_degree]], force sensors collocated with the magnetostrictive actuators are used for active damping using decentralized IFF, and subsequently accelerometers are employed for adaptive vibration isolation.
Similarly, in [[cite:&wang16_inves_activ_vibrat_isolat_stewar]], piezoelectric actuators with collocated force sensors are used in a decentralized manner to provide active damping while accelerometers are implemented in an adaptive feedback loop to suppress periodic vibrations. Similarly, in [[cite:&wang16_inves_activ_vibrat_isolat_stewar]], piezoelectric actuators with collocated force sensors are used in a decentralized manner to provide active damping while accelerometers are implemented in an adaptive feedback loop to suppress periodic vibrations.
@ -1179,7 +1111,7 @@ In [[cite:&xie17_model_contr_hybrid_passiv_activ]], force sensors are integrated
The second approach, sensor fusion (illustrated in Figure ref:fig:detail_control_sensor_arch_sensor_fusion), involves filtering signals from two sensors using complementary filters[fn:detail_control_1] and summing them to create an improved sensor signal. The second approach, sensor fusion (illustrated in Figure ref:fig:detail_control_sensor_arch_sensor_fusion), involves filtering signals from two sensors using complementary filters[fn:detail_control_1] and summing them to create an improved sensor signal.
In [[cite:&hauge04_sensor_contr_space_based_six]], geophones (used at low frequency) are merged with force sensors (used at high frequency). In [[cite:&hauge04_sensor_contr_space_based_six]], geophones (used at low frequency) are merged with force sensors (used at high frequency).
It is demonstrated that combining both sensors using sensor fusion can improve performance compared to using only one of the two sensors. It is demonstrated that combining both sensors using sensor fusion can improve performance compared to using the individual sensors independently.
In [[cite:&tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip]], sensor fusion architecture is implemented with an accelerometer and a force sensor. In [[cite:&tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip]], sensor fusion architecture is implemented with an accelerometer and a force sensor.
This implementation is shown to simultaneously achieve high damping of structural modes (through the force sensors) while maintaining very low vibration transmissibility (through the accelerometers). This implementation is shown to simultaneously achieve high damping of structural modes (through the force sensors) while maintaining very low vibration transmissibility (through the accelerometers).
@ -1192,21 +1124,26 @@ A "two-sensor control" approach was proven to perform better than controllers ba
A Linear Quadratic Regulator (LQG) was employed to optimize the two-input/one-output controller. A Linear Quadratic Regulator (LQG) was employed to optimize the two-input/one-output controller.
Beyond these three main approaches, other control architectures have been proposed for different purposes. Beyond these three main approaches, other control architectures have been proposed for different purposes.
For instance, in [[cite:&yang19_dynam_model_decoup_contr_flexib]], a first control loop utilizes force sensors and relative motion sensors to compensate for parasitic stiffness of the flexible joints. In [[cite:&yang19_dynam_model_decoup_contr_flexib]], a first control loop utilizes force sensors and relative motion sensors to compensate for parasitic stiffness of the flexible joints.
Subsequently, the system is decoupled in the modal space (facilitated by the removal of parasitic stiffness) and accelerometers are employed for vibration isolation. Subsequently, the system is decoupled in the modal space (facilitated by the removal of parasitic stiffness) and accelerometers are employed for vibration isolation.
The HAC-LAC architecture was previously investigated during the conceptual phase and successfully implemented to validate the NASS concept, demonstrating excellent performance. The HAC-LAC architecture was previously investigated during the conceptual phase and successfully implemented to validate the NASS concept, demonstrating excellent performance.
At the other end of the spectrum, the two-sensor approach yields greater control design freedom but introduces increased complexity in tuning, and thus was not pursued in this study. At the other end of the spectrum, the two-sensor approach yields greater control design freedom but introduces increased complexity in tuning, and thus was not pursued in this study.
This work instead focuses on sensor fusion, which represents a promising middle ground between the proven HAC-LAC approach and the more complex two-sensor control strategy. This work instead focuses on sensor fusion, which represents a promising middle ground between the proven HAC-LAC approach and the more complex two-sensor control strategy.
A review of sensor fusion is first presented in Section ref:ssec:detail_control_sensor_review. A review of sensor fusion is first presented (Section ref:ssec:detail_control_sensor_review), followed by an examination of the fundamental theoretical concepts (Section ref:ssec:detail_control_sensor_fusion_requirements).
Then, in Section ref:ssec:detail_control_sensor_fusion_requirements, both the robustness of the fusion and the noise characteristics of the resulting "fused sensor" are derived and expressed as functions of the complementary filters' norms. In this section, both the robustness of the fusion and the noise characteristics of the resulting "super sensor" are derived and expressed as functions of the complementary filters' norms.
A synthesis method for shaping complementary filters is proposed in Section ref:ssec:detail_control_sensor_hinf_method. A synthesis method for designing complementary filters that allow to shape their norms is proposed (Section ref:ssec:detail_control_sensor_hinf_method).
The investigation is then extended beyond the conventional two-sensor scenario, demonstrating how the proposed complementary filter synthesis can be generalized for applications requiring the fusion of three or more sensors (Section ref:ssec:detail_control_sensor_hinf_three_comp_filters). The investigation is then extended beyond the conventional two-sensor scenario, demonstrating how the proposed complementary filter synthesis can be generalized for applications requiring the fusion of three or more sensors (Section ref:ssec:detail_control_sensor_hinf_three_comp_filters).
** Review of Sensor Fusion ** Review of Sensor Fusion
<<ssec:detail_control_sensor_review>> <<ssec:detail_control_sensor_review>>
Sensors used to measure physical quantities have two primary limitations: measurement accuracy which is compromised by various noise sources (including electrical noise from conditioning electronics), and limited measurement bandwidth.
Sensor fusion offers a solution to these limitations by combining multiple sensors [[cite:&bendat57_optim_filter_indep_measur_two]].
By strategically selecting sensors with complementary characteristics, a "super sensor" can be created that combines the advantages of each individual sensor.
Measuring a physical quantity using sensors is always subject to several limitations. Measuring a physical quantity using sensors is always subject to several limitations.
First, the accuracy of the measurement is affected by various noise sources, such as electrical noise from the conditioning electronics. First, the accuracy of the measurement is affected by various noise sources, such as electrical noise from the conditioning electronics.
Second, the frequency range in which the measurement is relevant is bounded by the bandwidth of the sensor. Second, the frequency range in which the measurement is relevant is bounded by the bandwidth of the sensor.
@ -1220,7 +1157,7 @@ In other applications, sensor fusion is utilized to obtain an estimate of the me
More recently, the fusion of sensors measuring different physical quantities has been proposed to enhance control properties [[cite:&collette15_sensor_fusion_method_high_perfor;&yong16_high_speed_vertic_posit_stage]]. More recently, the fusion of sensors measuring different physical quantities has been proposed to enhance control properties [[cite:&collette15_sensor_fusion_method_high_perfor;&yong16_high_speed_vertic_posit_stage]].
In [[cite:&collette15_sensor_fusion_method_high_perfor]], an inertial sensor used for active vibration isolation is fused with a sensor collocated with the actuator to improve the stability margins of the feedback controller. In [[cite:&collette15_sensor_fusion_method_high_perfor]], an inertial sensor used for active vibration isolation is fused with a sensor collocated with the actuator to improve the stability margins of the feedback controller.
Beyond Stewart platforms, practical applications of sensor fusion are numerous. On top of Stewart platforms, practical applications of sensor fusion are numerous.
It is widely implemented for attitude estimation in autonomous vehicles such as unmanned aerial vehicles [[cite:&baerveldt97_low_cost_low_weigh_attit;&corke04_inert_visual_sensin_system_small_auton_helic;&jensen13_basic_uas]] and underwater vehicles [[cite:&pascoal99_navig_system_desig_using_time;&batista10_optim_posit_veloc_navig_filter_auton_vehic]]. It is widely implemented for attitude estimation in autonomous vehicles such as unmanned aerial vehicles [[cite:&baerveldt97_low_cost_low_weigh_attit;&corke04_inert_visual_sensin_system_small_auton_helic;&jensen13_basic_uas]] and underwater vehicles [[cite:&pascoal99_navig_system_desig_using_time;&batista10_optim_posit_veloc_navig_filter_auton_vehic]].
Sensor fusion offers significant benefits for high-performance positioning control as demonstrated in [[cite:&shaw90_bandw_enhan_posit_measur_using_measur_accel;&zimmermann92_high_bandw_orien_measur_contr;&min15_compl_filter_desig_angle_estim;&yong16_high_speed_vertic_posit_stage]]. Sensor fusion offers significant benefits for high-performance positioning control as demonstrated in [[cite:&shaw90_bandw_enhan_posit_measur_using_measur_accel;&zimmermann92_high_bandw_orien_measur_contr;&min15_compl_filter_desig_angle_estim;&yong16_high_speed_vertic_posit_stage]].
It has also been identified as a key technology for improving the performance of active vibration isolation systems [[cite:&tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip]]. It has also been identified as a key technology for improving the performance of active vibration isolation systems [[cite:&tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip]].
@ -1236,10 +1173,14 @@ In early implementations of complementary filtering, analog circuits were used t
While analog complementary filters remain in use today [[cite:&yong16_high_speed_vertic_posit_stage;&moore19_capac_instr_sensor_fusion_high_bandw_nanop]], digital implementation is now more common as it provides greater flexibility. While analog complementary filters remain in use today [[cite:&yong16_high_speed_vertic_posit_stage;&moore19_capac_instr_sensor_fusion_high_bandw_nanop]], digital implementation is now more common as it provides greater flexibility.
Various design methods have been developed to optimize complementary filters. Various design methods have been developed to optimize complementary filters.
The most straightforward approach utilizes analytical formulas, which depending on the application may be first order [[cite:&corke04_inert_visual_sensin_system_small_auton_helic;&yeh05_model_contr_hydraul_actuat_two;&yong16_high_speed_vertic_posit_stage]], second order [[cite:&baerveldt97_low_cost_low_weigh_attit;&stoten01_fusion_kinet_data_using_compos_filter;&jensen13_basic_uas]], or higher orders [[cite:&shaw90_bandw_enhan_posit_measur_using_measur_accel;&zimmermann92_high_bandw_orien_measur_contr;&stoten01_fusion_kinet_data_using_compos_filter;&collette15_sensor_fusion_method_high_perfor;&matichard15_seism_isolat_advan_ligo]]. The most straightforward approach utilizes analytical formulas.
Since the characteristics of the super sensor depend on proper complementary filter design [[cite:&dehaeze19_compl_filter_shapin_using_synth]], several optimization techniques have emerged—ranging from optimizing parameters for analytical formulas [[cite:&jensen13_basic_uas;&min15_compl_filter_desig_angle_estim;&fonseca15_compl]] to employing convex optimization tools [[cite:&hua04_polyp_fir_compl_filter_contr_system;&hua05_low_ligo]] such as linear matrix inequalities [[cite:&pascoal99_navig_system_desig_using_time]]. Depending on the application, these formulas may be of first order [[cite:&corke04_inert_visual_sensin_system_small_auton_helic;&yeh05_model_contr_hydraul_actuat_two;&yong16_high_speed_vertic_posit_stage]], second order [[cite:&baerveldt97_low_cost_low_weigh_attit;&stoten01_fusion_kinet_data_using_compos_filter;&jensen13_basic_uas]], or higher orders [[cite:&shaw90_bandw_enhan_posit_measur_using_measur_accel;&zimmermann92_high_bandw_orien_measur_contr;&stoten01_fusion_kinet_data_using_compos_filter;&collette15_sensor_fusion_method_high_perfor;&matichard15_seism_isolat_advan_ligo]].
As demonstrated in [[cite:&plummer06_optim_compl_filter_their_applic_motion_measur]], complementary filter design can be linked to the standard mixed-sensitivity control problem, allowing powerful classical control theory tools to be applied.
For example, in [[cite:&jensen13_basic_uas]], two gains of a Proportional Integral (PI) controller are optimized to minimize super sensor noise. Since the characteristics of the super sensor depend on the proper design of complementary filters [[cite:&dehaeze19_compl_filter_shapin_using_synth]], several optimization techniques have been developed.
Some approaches focus on finding optimal parameters for analytical formulas [[cite:&jensen13_basic_uas;&min15_compl_filter_desig_angle_estim;&fonseca15_compl]], while others employ convex optimization tools [[cite:&hua04_polyp_fir_compl_filter_contr_system;&hua05_low_ligo]] such as linear matrix inequalities [[cite:&pascoal99_navig_system_desig_using_time]].
As demonstrated in [[cite:&plummer06_optim_compl_filter_their_applic_motion_measur]], complementary filter design can be linked to the standard mixed-sensitivity control problem.
Consequently, the powerful tools developed for classical control theory can be applied to complementary filter design.
For example, in [[cite:&jensen13_basic_uas]], the two gains of a Proportional Integral (PI) controller are optimized to minimize super sensor noise.
All these complementary filter design methods share the common objective of creating a super sensor with desired characteristics, typically in terms of noise and dynamics. All these complementary filter design methods share the common objective of creating a super sensor with desired characteristics, typically in terms of noise and dynamics.
As reported in [[cite:&zimmermann92_high_bandw_orien_measur_contr;&plummer06_optim_compl_filter_their_applic_motion_measur]], phase shifts and magnitude bumps in the super sensor dynamics may occur if complementary filters are poorly designed or if sensors are improperly calibrated. As reported in [[cite:&zimmermann92_high_bandw_orien_measur_contr;&plummer06_optim_compl_filter_their_applic_motion_measur]], phase shifts and magnitude bumps in the super sensor dynamics may occur if complementary filters are poorly designed or if sensors are improperly calibrated.
@ -1247,7 +1188,7 @@ Therefore, the robustness of the fusion must be considered when designing comple
Despite the numerous design methods proposed in the literature, a simple approach that specifies desired super sensor characteristics while ensuring good fusion robustness has been lacking. Despite the numerous design methods proposed in the literature, a simple approach that specifies desired super sensor characteristics while ensuring good fusion robustness has been lacking.
Fortunately, both fusion robustness and super sensor characteristics can be linked to complementary filter magnitude [[cite:&dehaeze19_compl_filter_shapin_using_synth]]. Fortunately, both fusion robustness and super sensor characteristics can be linked to complementary filter magnitude [[cite:&dehaeze19_compl_filter_shapin_using_synth]].
Based on this relationship, the present work introduces an approach to designing complementary filters using $\mathcal{H}_\infty\text{-synthesis}$, which enables intuitive shaping of complementary filter magnitude in a straightforward manner. Based on this relationship, the present work introduces an approach to designing complementary filters using $\mathcal{H}_\infty$ synthesis, which enables intuitive shaping of complementary filter magnitude in a straightforward manner.
** Matlab Init :noexport:ignore: ** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
@ -1477,7 +1418,7 @@ The effects of imperfect normalization will be addressed subsequently.
In that case, the super sensor output $\hat{x}$ equals $x$ plus the filtered noise from both sensors eqref:eq:detail_control_sensor_estimate_perfect_dyn. In that case, the super sensor output $\hat{x}$ equals $x$ plus the filtered noise from both sensors eqref:eq:detail_control_sensor_estimate_perfect_dyn.
From this equation, it is evident that the complementary filters $H_1(s)$ and $H_2(s)$ operate solely on the sensor noise. From this equation, it is evident that the complementary filters $H_1(s)$ and $H_2(s)$ operate solely on the sensor noise.
Thus, this sensor fusion architecture allows filtering of sensor noise without introducing distortion in the measured physical quantity. Thus, this sensor fusion architecture allows filtering of sensor noise without introducing distortion in the measured physical quantity.
This fundamental property necessitates that the two filters are complementary. This fundamental property necessitates that the two filters must be complementary.
\begin{equation}\label{eq:detail_control_sensor_estimate_perfect_dyn} \begin{equation}\label{eq:detail_control_sensor_estimate_perfect_dyn}
\hat{x} = x + H_1(s) n_1 + H_2(s) n_2 \hat{x} = x + H_1(s) n_1 + H_2(s) n_2
@ -1499,14 +1440,16 @@ If the two sensors have identical noise characteristics ($\Phi_{n_1}(\omega) = \
This represents the simplest form of sensor fusion using complementary filters. This represents the simplest form of sensor fusion using complementary filters.
However, sensors typically exhibit high noise levels in different frequency regions. However, sensors typically exhibit high noise levels in different frequency regions.
In such cases, to reduce the noise of the super sensor, $|H_1(j\omega)|$ should be minimized when $\Phi_{n_1}(\omega)$ exceeds $\Phi_{n_2}(\omega)$, and $|H_2(j\omega)|$ should be minimized when $\Phi_{n_2}(\omega)$ exceeds $\Phi_{n_1}(\omega)$. In such cases, to reduce the noise of the super sensor, the norm $|H_1(j\omega)|$ should be minimized when $\Phi_{n_1}(\omega)$ exceeds $\Phi_{n_2}(\omega)$, and the norm $|H_2(j\omega)|$ should be minimized when $\Phi_{n_2}(\omega)$ exceeds $\Phi_{n_1}(\omega)$.
Therefore, by appropriately shaping the norm of the complementary filters, the noise of the super sensor can be minimized. Therefore, by appropriately shaping the norm of the complementary filters, the noise of the super sensor can be minimized.
**** Sensor Fusion Robustness **** Sensor Fusion Robustness
In practical systems, sensor normalization is rarely perfect, and condition eqref:eq:detail_control_sensor_perfect_dynamics is not fully satisfied. In practical systems, sensor normalization is rarely perfect, and condition eqref:eq:detail_control_sensor_perfect_dynamics is not fully satisfied.
To analyze such imperfections, a multiplicative input uncertainty is incorporated into the sensor dynamics (Figure ref:fig:detail_control_sensor_model_uncertainty). To analyze such imperfections, a multiplicative input uncertainty is incorporated into the sensor dynamics (Figure ref:fig:detail_control_sensor_model_uncertainty).
The nominal model is the estimated model used for normalization $\hat{G}_i(s)$, $\Delta_i(s)$ is any stable transfer function satisfying $|\Delta_i(j\omega)| \le 1,\ \forall\omega$, and $w_i(s)$ is a weighting transfer function representing the magnitude of uncertainty. The nominal model is the estimated model used for normalization $\hat{G}_i(s)$, $\Delta_i(s)$ is any stable transfer function satisfying $|\Delta_i(j\omega)| \le 1,\ \forall\omega$, and $w_i(s)$ is a weighting transfer function representing the magnitude of uncertainty.
The weight $w_i(s)$ is selected such that the actual sensor dynamics $G_i(j\omega)$ remains within the uncertain region represented by a circle in the complex plane, centered on $1$ with a radius equal to $|w_i(j\omega)|$.
Since the nominal sensor dynamics is taken as the normalized filter, the normalized sensor model can be further simplified as shown in Figure ref:fig:detail_control_sensor_model_uncertainty_simplified. Since the nominal sensor dynamics is taken as the normalized filter, the normalized sensor model can be further simplified as shown in Figure ref:fig:detail_control_sensor_model_uncertainty_simplified.
@ -1579,7 +1522,7 @@ Since the nominal sensor dynamics is taken as the normalized filter, the normali
#+attr_latex: :width 0.95\linewidth #+attr_latex: :width 0.95\linewidth
[[file:figs/detail_control_sensor_model_uncertainty.png]] [[file:figs/detail_control_sensor_model_uncertainty.png]]
#+end_subfigure #+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:detail_control_sensor_model_uncertainty_simplified}Simplified normalized sensor model} #+attr_latex: :caption \subcaption{\label{fig:detail_control_sensor_model_uncertainty_simplified}Simplified sensor model}
#+attr_latex: :options {0.38\textwidth} #+attr_latex: :options {0.38\textwidth}
#+begin_subfigure #+begin_subfigure
#+attr_latex: :width 0.95\linewidth #+attr_latex: :width 0.95\linewidth
@ -1591,6 +1534,11 @@ The sensor fusion architecture incorporating sensor models with dynamical uncert
The super sensor dynamics eqref:eq:detail_control_sensor_super_sensor_dyn_uncertainty is no longer unity but depends on the sensor dynamical uncertainty weights $w_i(s)$ and the complementary filters $H_i(s)$. The super sensor dynamics eqref:eq:detail_control_sensor_super_sensor_dyn_uncertainty is no longer unity but depends on the sensor dynamical uncertainty weights $w_i(s)$ and the complementary filters $H_i(s)$.
The dynamical uncertainty of the super sensor can be graphically represented in the complex plane by a circle centered on $1$ with a radius equal to $|w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)|$ (Figure ref:fig:detail_control_sensor_uncertainty_set_super_sensor). The dynamical uncertainty of the super sensor can be graphically represented in the complex plane by a circle centered on $1$ with a radius equal to $|w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)|$ (Figure ref:fig:detail_control_sensor_uncertainty_set_super_sensor).
The sensor fusion architecture with the sensor models including dynamical uncertainty is shown in Figure ref:fig:detail_control_sensor_fusion_dynamic_uncertainty.
The super sensor dynamics eqref:eq:detail_control_sensor_super_sensor_dyn_uncertainty is no longer equal to $1$ and now depends on the sensor dynamical uncertainty weights $w_i(s)$ as well as on the complementary filters $H_i(s)$.
The dynamical uncertainty of the super sensor can be graphically represented in the complex plane by a circle centered on $1$ with a radius equal to $|w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)|$ (Figure ref:fig:detail_control_sensor_uncertainty_set_super_sensor).
\begin{equation}\label{eq:detail_control_sensor_super_sensor_dyn_uncertainty} \begin{equation}\label{eq:detail_control_sensor_super_sensor_dyn_uncertainty}
\frac{\hat{x}}{x} = 1 + w_1(s) H_1(s) \Delta_1(s) + w_2(s) H_2(s) \Delta_2(s) \frac{\hat{x}}{x} = 1 + w_1(s) H_1(s) \Delta_1(s) + w_2(s) H_2(s) \Delta_2(s)
\end{equation} \end{equation}
@ -1718,7 +1666,7 @@ As it is generally desired to limit the dynamical uncertainty of the super senso
As established in Section ref:ssec:detail_control_sensor_fusion_requirements, the super sensor's noise characteristics and robustness are directly dependent on the complementary filters' norm. As established in Section ref:ssec:detail_control_sensor_fusion_requirements, the super sensor's noise characteristics and robustness are directly dependent on the complementary filters' norm.
A synthesis method enabling precise shaping of these norms would therefore offer substantial practical benefits. A synthesis method enabling precise shaping of these norms would therefore offer substantial practical benefits.
This section develops such an approach by formulating the design objective as a standard $\mathcal{H}_\infty$ optimization problem. This section develops such an approach by formulating the design objective as a standard $\mathcal{H}_\infty$ optimization problem.
The methodology for designing appropriate weighting functions (which specify desired complementary filter shape during synthesis) is examined in detail, and the efficacy of the proposed method is validated with a simple example. The methodology for designing appropriate weighting functions (which specify desired complementary filter shapes during synthesis) is examined in detail, and the efficacy of the proposed method is validated with a simple example.
**** Synthesis Objective **** Synthesis Objective
@ -1736,7 +1684,8 @@ Weighting transfer functions $W_1(s)$ and $W_2(s)$ are strategically selected to
**** Shaping of Complementary Filters using $\mathcal{H}_\infty$ synthesis **** Shaping of Complementary Filters using $\mathcal{H}_\infty$ synthesis
The synthesis objective can be expressed as a standard $\mathcal{H}_\infty$ optimization problem by considering the generalized plant $P(s)$ illustrated in Figure ref:fig:detail_control_sensor_h_infinity_robust_fusion_plant and mathematically described by eqref:eq:detail_control_sensor_generalized_plant. The synthesis objective can be readily expressed as a standard $\mathcal{H}_\infty$ optimization problem and solved using widely available computational tools.
Consider the generalized plant $P(s)$ illustrated in Figure ref:fig:detail_control_sensor_h_infinity_robust_fusion_plant and mathematically described by eqref:eq:detail_control_sensor_generalized_plant.
\begin{equation}\label{eq:detail_control_sensor_generalized_plant} \begin{equation}\label{eq:detail_control_sensor_generalized_plant}
\begin{bmatrix} z_1 \\ z_2 \\ v \end{bmatrix} = P(s) \begin{bmatrix} w\\u \end{bmatrix}; \quad P(s) = \begin{bmatrix}W_1(s) & -W_1(s) \\ 0 & \phantom{+}W_2(s) \\ 1 & 0 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ v \end{bmatrix} = P(s) \begin{bmatrix} w\\u \end{bmatrix}; \quad P(s) = \begin{bmatrix}W_1(s) & -W_1(s) \\ 0 & \phantom{+}W_2(s) \\ 1 & 0 \end{bmatrix}
@ -1805,7 +1754,7 @@ The synthesis objective can be expressed as a standard $\mathcal{H}_\infty$ opti
#+end_src #+end_src
#+name: fig:detail_control_sensor_h_infinity_robust_fusion #+name: fig:detail_control_sensor_h_infinity_robust_fusion
#+caption: Architecture for the $\mathcal{H}_\infty\text{-synthesis}$ of complementary filters #+caption: Architecture for the $\mathcal{H}_\infty$ synthesis of complementary filters
#+attr_latex: :options [htbp] #+attr_latex: :options [htbp]
#+begin_figure #+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:detail_control_sensor_h_infinity_robust_fusion_plant}Generalized plant} #+attr_latex: :caption \subcaption{\label{fig:detail_control_sensor_h_infinity_robust_fusion_plant}Generalized plant}
@ -1822,13 +1771,13 @@ The synthesis objective can be expressed as a standard $\mathcal{H}_\infty$ opti
#+end_subfigure #+end_subfigure
#+end_figure #+end_figure
Applying standard $\mathcal{H}_\infty\text{-synthesis}$ to the generalized plant $P(s)$ is equivalent to finding a stable filter $H_2(s)$ that, based on input $v$, generates an output signal $u$ such that the $\mathcal{H}_\infty$ norm of the system shown in Figure ref:fig:detail_control_sensor_h_infinity_robust_fusion_fb from $w$ to $[z_1, \ z_2]$ does not exceed unity, as expressed in eqref:eq:detail_control_sensor_hinf_syn_obj. Applying standard $\mathcal{H}_\infty$ synthesis to the generalized plant $P(s)$ is equivalent to finding a stable filter $H_2(s)$ that, based on input $v$, generates an output signal $u$ such that the $\mathcal{H}_\infty$ norm of the system shown in Figure ref:fig:detail_control_sensor_h_infinity_robust_fusion_fb from $w$ to $[z_1, \ z_2]$ does not exceed unity, as expressed in eqref:eq:detail_control_sensor_hinf_syn_obj.
\begin{equation}\label{eq:detail_control_sensor_hinf_syn_obj} \begin{equation}\label{eq:detail_control_sensor_hinf_syn_obj}
\left\|\begin{matrix} \left(1 - H_2(s)\right) W_1(s) \\ H_2(s) W_2(s) \end{matrix}\right\|_\infty \le 1 \left\|\begin{matrix} \left(1 - H_2(s)\right) W_1(s) \\ H_2(s) W_2(s) \end{matrix}\right\|_\infty \le 1
\end{equation} \end{equation}
By defining $H_1(s)$ as the complement of $H_2(s)$ eqref:eq:detail_control_sensor_definition_H1, the $\mathcal{H}_\infty\text{-synthesis}$ objective becomes equivalent to eqref:eq:detail_control_sensor_hinf_problem, ensuring that conditions eqref:eq:detail_control_sensor_hinf_cond_h1 and eqref:eq:detail_control_sensor_hinf_cond_h2 are satisfied. By defining $H_1(s)$ as the complement of $H_2(s)$ (eqref:eq:detail_control_sensor_definition_H1), the $\mathcal{H}_\infty$ synthesis objective becomes equivalent to eqref:eq:detail_control_sensor_hinf_problem, ensuring that conditions eqref:eq:detail_control_sensor_hinf_cond_h1 and eqref:eq:detail_control_sensor_hinf_cond_h2 are satisfied.
\begin{equation}\label{eq:detail_control_sensor_definition_H1} \begin{equation}\label{eq:detail_control_sensor_definition_H1}
H_1(s) \triangleq 1 - H_2(s) H_1(s) \triangleq 1 - H_2(s)
@ -1838,20 +1787,20 @@ By defining $H_1(s)$ as the complement of $H_2(s)$ eqref:eq:detail_control_senso
\left\|\begin{matrix} H_1(s) W_1(s) \\ H_2(s) W_2(s) \end{matrix}\right\|_\infty \le 1 \left\|\begin{matrix} H_1(s) W_1(s) \\ H_2(s) W_2(s) \end{matrix}\right\|_\infty \le 1
\end{equation} \end{equation}
Therefore, applying $\mathcal{H}_\infty\text{-synthesis}$ to the standard plant $P(s)$ generates two filters, $H_2(s)$ and $H_1(s) \triangleq 1 - H_2(s)$, that are complementary as required by eqref:eq:detail_control_sensor_comp_filter_problem_form, with norms bounded by the specified constraints in eqref:eq:detail_control_sensor_hinf_cond_h1 and eqref:eq:detail_control_sensor_hinf_cond_h2. Therefore, applying $\mathcal{H}_\infty$ synthesis to the standard plant $P(s)$ (eqref:eq:detail_control_sensor_generalized_plant) generates two filters, $H_2(s)$ and $H_1(s) \triangleq 1 - H_2(s)$, that are complementary as required by eqref:eq:detail_control_sensor_comp_filter_problem_form, with norms bounded by the specified constraints in eqref:eq:detail_control_sensor_hinf_cond_h1 and eqref:eq:detail_control_sensor_hinf_cond_h2.
It should be noted that there exists only an implication (not an equivalence) between the $\mathcal{H}_\infty$ norm condition in eqref:eq:detail_control_sensor_hinf_problem and the initial synthesis objectives in eqref:eq:detail_control_sensor_hinf_cond_h1 and eqref:eq:detail_control_sensor_hinf_cond_h2. It should be noted that there exists only an implication (not an equivalence) between the $\mathcal{H}_\infty$ norm condition in eqref:eq:detail_control_sensor_hinf_problem and the initial synthesis objectives in eqref:eq:detail_control_sensor_hinf_cond_h1 and eqref:eq:detail_control_sensor_hinf_cond_h2.
Consequently, the optimization may be somewhat conservative with respect to the set of filters on which it operates [[cite:&skogestad07_multiv_feedb_contr,Chap. 2.8.3]]. Consequently, the optimization may be somewhat conservative with respect to the set of filters on which it operates (see [[cite:&skogestad07_multiv_feedb_contr,Chap. 2.8.3]]).
**** Weighting Functions Design **** Weighting Functions Design
Weighting functions play a crucial role during synthesis by specifying the maximum allowable norms for the complementary filters. Weighting functions play a crucial role during synthesis by specifying the maximum allowable norms for the complementary filters.
The proper design of these weighting functions is essential for the successful implementation of the proposed $\mathcal{H}_\infty\text{-synthesis}$ approach. The proper design of these weighting functions is essential for the successful implementation of the proposed $\mathcal{H}_\infty$ synthesis approach.
Three key considerations should guide the design of weighting functions. Three key considerations should guide the design of weighting functions.
First, only proper and stable transfer functions should be employed. First, only proper and stable transfer functions should be employed.
Second, the order of the weighting functions should remain reasonably small to minimize computational costs associated with solving the optimization problem and to facilitate practical implementation of the filters (as the order of the synthesized filters equals the sum of the weighting functions' orders). Second, the order of the weighting functions should remain reasonably small to minimize computational costs associated with solving the optimization problem and to facilitate practical implementation of the filters (as the order of the synthesized filters equals the sum of the weighting functions' orders).
Third, the fundamental limitations imposed by the complementary property eqref:eq:detail_control_sensor_comp_filter must be respected, which implies that $|H_1(j\omega)|$ and $|H_2(j\omega)|$ cannot both be made small at the same frequency. Third, the fundamental limitations imposed by the complementary property (eqref:eq:detail_control_sensor_comp_filter) must be respected, which implies that $|H_1(j\omega)|$ and $|H_2(j\omega)|$ cannot both be made small at the same frequency.
When designing complementary filters, it is typically desirable to specify their slopes, "blending" frequency, and maximum gains at low and high frequencies. When designing complementary filters, it is typically desirable to specify their slopes, "blending" frequency, and maximum gains at low and high frequencies.
To facilitate the expression of these specifications, formula eqref:eq:detail_control_sensor_weight_formula is proposed for the design of weighting functions. To facilitate the expression of these specifications, formula eqref:eq:detail_control_sensor_weight_formula is proposed for the design of weighting functions.
@ -1999,7 +1948,7 @@ exportFig('figs/detail_control_sensor_hinf_filters_results.pdf', 'width', 'half'
[[file:figs/detail_control_sensor_hinf_filters_results.png]] [[file:figs/detail_control_sensor_hinf_filters_results.png]]
#+end_minipage #+end_minipage
Standard $\mathcal{H}_\infty\text{-synthesis}$ is then applied to the generalized plant shown in Figure ref:fig:detail_control_sensor_h_infinity_robust_fusion_plant. Standard $\mathcal{H}_\infty$ synthesis is then applied to the generalized plant shown in Figure ref:fig:detail_control_sensor_h_infinity_robust_fusion_plant.
This yields the filter $H_2(s)$ that minimizes the $\mathcal{H}_\infty$ norm from input $w$ to outputs $[z_1,\ z_2]^{\intercal}$. This yields the filter $H_2(s)$ that minimizes the $\mathcal{H}_\infty$ norm from input $w$ to outputs $[z_1,\ z_2]^{\intercal}$.
The resulting $\mathcal{H}_\infty$ norm is found to be close to unity, indicating successful synthesis: the norms of the complementary filters remain below the specified upper bounds. The resulting $\mathcal{H}_\infty$ norm is found to be close to unity, indicating successful synthesis: the norms of the complementary filters remain below the specified upper bounds.
This is confirmed by the Bode plots of the obtained complementary filters in Figure ref:fig:detail_control_sensor_hinf_filters_results. This is confirmed by the Bode plots of the obtained complementary filters in Figure ref:fig:detail_control_sensor_hinf_filters_results.
@ -2125,7 +2074,7 @@ The synthesis objective is to compute a set of $n$ stable transfer functions $[H
The transfer functions $[W_1(s),\ W_2(s),\ \dots,\ W_n(s)]$ are weights selected to specify the maximum complementary filters' norm during synthesis. The transfer functions $[W_1(s),\ W_2(s),\ \dots,\ W_n(s)]$ are weights selected to specify the maximum complementary filters' norm during synthesis.
This synthesis objective is closely related to the one described in Section ref:ssec:detail_control_sensor_hinf_method, and the proposed synthesis method represents a generalization of the approach previously presented. This synthesis objective is closely related to the one described in Section ref:ssec:detail_control_sensor_hinf_method, and the proposed synthesis method represents a generalization of the approach previously presented.
A set of $n$ complementary filters can be shaped by applying standard $\mathcal{H}_\infty\text{-synthesis}$ to the generalized plant $P_n(s)$ described by eqref:eq:detail_control_sensor_generalized_plant_n_filters. A set of $n$ complementary filters can be shaped by applying standard $\mathcal{H}_\infty$ synthesis to the generalized plant $P_n(s)$ described by eqref:eq:detail_control_sensor_generalized_plant_n_filters.
\begin{equation}\label{eq:detail_control_sensor_generalized_plant_n_filters} \begin{equation}\label{eq:detail_control_sensor_generalized_plant_n_filters}
\begin{bmatrix} z_1 \\ \vdots \\ z_n \\ v \end{bmatrix} = P_n(s) \begin{bmatrix} w \\ u_1 \\ \vdots \\ u_{n-1} \end{bmatrix}; \quad \begin{bmatrix} z_1 \\ \vdots \\ z_n \\ v \end{bmatrix} = P_n(s) \begin{bmatrix} w \\ u_1 \\ \vdots \\ u_{n-1} \end{bmatrix}; \quad
@ -2247,13 +2196,13 @@ Consider the generalized plant $P_3(s)$ shown in Figure ref:fig:detail_control_s
#+end_src #+end_src
#+name: fig:detail_control_sensor_comp_filter_three_hinf #+name: fig:detail_control_sensor_comp_filter_three_hinf
#+caption: Architecture for the $\mathcal{H}_\infty\text{-synthesis}$ of three complementary filters (\subref{fig:detail_control_sensor_comp_filter_three_hinf_fb}). Bode plot of the inverse weighting functions and of the three obtained complementary filters (\subref{fig:detail_control_sensor_three_complementary_filters_results}) #+caption: Architecture for the $\mathcal{H}_\infty$ synthesis of three complementary filters (\subref{fig:detail_control_sensor_comp_filter_three_hinf_fb}). Bode plot of the inverse weighting functions and of the three obtained complementary filters (\subref{fig:detail_control_sensor_three_complementary_filters_results})
#+attr_latex: :options [htbp] #+attr_latex: :options [htbp]
#+begin_figure #+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:detail_control_sensor_comp_filter_three_hinf_fb}Generalized plant with the synthesized filter} #+attr_latex: :caption \subcaption{\label{fig:detail_control_sensor_comp_filter_three_hinf_fb}Generalized plant with the synthesized filter}
#+attr_latex: :options {0.48\textwidth} #+attr_latex: :options {0.48\textwidth}
#+begin_subfigure #+begin_subfigure
#+attr_latex: :scale 0.9 #+attr_latex: :width 0.95\linewidth
[[file:figs/detail_control_sensor_comp_filter_three_hinf_fb.png]] [[file:figs/detail_control_sensor_comp_filter_three_hinf_fb.png]]
#+end_subfigure #+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:detail_control_sensor_three_complementary_filters_results}Weights and obtained filters} #+attr_latex: :caption \subcaption{\label{fig:detail_control_sensor_three_complementary_filters_results}Weights and obtained filters}
@ -2264,7 +2213,7 @@ Consider the generalized plant $P_3(s)$ shown in Figure ref:fig:detail_control_s
#+end_subfigure #+end_subfigure
#+end_figure #+end_figure
Standard $\mathcal{H}_\infty\text{-synthesis}$ is performed on the generalized plant $P_3(s)$. Standard $\mathcal{H}_\infty$ synthesis is performed on the generalized plant $P_3(s)$.
Two filters, $H_2(s)$ and $H_3(s)$, are obtained such that the $\mathcal{H}_\infty$ norm of the closed-loop transfer from $w$ to $[z_1,\ z_2,\ z_3]$ of the system in Figure ref:fig:detail_control_sensor_comp_filter_three_hinf_fb is less than one. Two filters, $H_2(s)$ and $H_3(s)$, are obtained such that the $\mathcal{H}_\infty$ norm of the closed-loop transfer from $w$ to $[z_1,\ z_2,\ z_3]$ of the system in Figure ref:fig:detail_control_sensor_comp_filter_three_hinf_fb is less than one.
Filter $H_1(s)$ is defined using eqref:eq:detail_control_sensor_h1_compl_h2_h3, thus ensuring the complementary property of the obtained set of filters. Filter $H_1(s)$ is defined using eqref:eq:detail_control_sensor_h1_compl_h2_h3, thus ensuring the complementary property of the obtained set of filters.
@ -2325,13 +2274,13 @@ exportFig('figs/detail_control_sensor_three_complementary_filters_results.pdf',
:UNNUMBERED: t :UNNUMBERED: t
:END: :END:
A new method for designing complementary filters using the $\mathcal{H}_\infty\text{-synthesis}$ has been proposed. A new method for designing complementary filters using the $\mathcal{H}_\infty$ synthesis has been proposed.
This approach allows shaping of the filter magnitudes through the use of weighting functions during synthesis. This approach allows shaping of the filter magnitudes through the use of weighting functions during synthesis.
This capability is particularly valuable in practice since the characteristics of the super sensor are directly linked to the complementary filters' magnitude. This capability is particularly valuable in practice since the characteristics of the super sensor are directly linked to the complementary filters' magnitude.
Consequently, typical sensor fusion objectives can be effectively translated into requirements on the magnitudes of the filters. Consequently, typical sensor fusion objectives can be effectively translated into requirements on the magnitudes of the filters.
For the NASS, the HAC-LAC strategy was found to perform well and to offer the advantages of being both intuitive to understand and straightforward to tune. For the Nano Active Stabilization System (NASS), the High Authority Control-Integral Force Feedback (HAC-IFF) strategy was found to perform well and to offer the advantages of being both intuitive to understand and straightforward to tune.
Looking forward, it would be interesting to investigate how sensor fusion (particularly between the force sensors and external metrology) compares to the HAC-IFF approach in terms of performance and robustness. Looking forward, it would be interesting to investigate how sensor fusion (particularly between the force sensor and external metrology) compares to the HAC-IFF approach in terms of performance and robustness.
* Decoupling * Decoupling
:PROPERTIES: :PROPERTIES:
@ -2341,7 +2290,7 @@ Looking forward, it would be interesting to investigate how sensor fusion (parti
** Introduction :ignore: ** Introduction :ignore:
The control of parallel manipulators (and any MIMO system in general) typically involves a two-step approach: first decoupling the plant dynamics (using various strategies discussed in this section), followed by the application of SISO control for the decoupled plant (discussed in section ref:sec:detail_control_cf). The control of parallel manipulators (and any MIMO system in general) typically involves a two-step approach: first decoupling the plant dynamics using various strategies, which will be discussed in this section, followed by the application of SISO control for the decoupled plant (discussed in section ref:sec:detail_control_cf).
When sensors are integrated within the struts, decentralized control may be applied, as the system is already well decoupled at low frequency. When sensors are integrated within the struts, decentralized control may be applied, as the system is already well decoupled at low frequency.
For instance, [[cite:&furutani04_nanom_cuttin_machin_using_stewar]] implemented a system where each strut consists of piezoelectric stack actuators and eddy current displacement sensors, with separate PI controllers for each strut. For instance, [[cite:&furutani04_nanom_cuttin_machin_using_stewar]] implemented a system where each strut consists of piezoelectric stack actuators and eddy current displacement sensors, with separate PI controllers for each strut.
@ -2353,24 +2302,23 @@ This approach enables the implementation of controllers in a defined frame.
It has been applied with various sensor types including force sensors [[cite:&mcinroy00_desig_contr_flexur_joint_hexap]], relative displacement sensors [[cite:&kim00_robus_track_contr_desig_dof_paral_manip]], and inertial sensors [[cite:&li01_simul_vibrat_isolat_point_contr;&abbas14_vibrat_stewar_platf]]. It has been applied with various sensor types including force sensors [[cite:&mcinroy00_desig_contr_flexur_joint_hexap]], relative displacement sensors [[cite:&kim00_robus_track_contr_desig_dof_paral_manip]], and inertial sensors [[cite:&li01_simul_vibrat_isolat_point_contr;&abbas14_vibrat_stewar_platf]].
The Cartesian frame in which the system is decoupled is typically chosen at the point of interest (i.e., where the motion is of interest) or at the center of mass. The Cartesian frame in which the system is decoupled is typically chosen at the point of interest (i.e., where the motion is of interest) or at the center of mass.
Modal decoupling represents another noteworthy decoupling strategy, wherein the "local" plant inputs and outputs are mapped to the modal space. Modal control represents another noteworthy decoupling strategy, wherein the "local" plant inputs and outputs are mapped to the modal space.
In this approach, multiple SISO plants, each corresponding to a single mode, can be controlled independently. In this approach, multiple SISO plants, each corresponding to a single mode, can be controlled independently.
This decoupling strategy has been implemented for active damping applications [[cite:&holterman05_activ_dampin_based_decoup_colloc_contr]], which is logical as it is often desirable to dampen specific modes. This decoupling strategy has been implemented for active damping applications [[cite:&holterman05_activ_dampin_based_decoup_colloc_contr]], which is logical as it is often desirable to dampen specific modes.
The strategy has also been employed in [[cite:&pu11_six_degree_of_freed_activ]] for vibration isolation purposes using geophones, and in [[cite:&yang19_dynam_model_decoup_contr_flexib]] using force sensors. The strategy has also been employed in [[cite:&pu11_six_degree_of_freed_activ]] for vibration isolation purposes using geophones, and in [[cite:&yang19_dynam_model_decoup_contr_flexib]] using force sensors.
Another completely different strategy would be to implement a multivariable control directly on the coupled system. Another completely different strategy, is to use implement a multivariable control directly on the coupled system.
$\mathcal{H}_\infty$ and $\mu\text{-synthesis}$ were applied to a Stewart platform model in [[cite:&lei08_multi_objec_robus_activ_vibrat]]. $\mathcal{H}_\infty$ and $\mu\text{-synthesis}$ were applied to a Stewart platform model in [[cite:&lei08_multi_objec_robus_activ_vibrat]].
In [[cite:&xie17_model_contr_hybrid_passiv_activ]], decentralized force feedback was first applied, followed by $\mathcal{H}_2\text{-synthesis}$ for vibration isolation based on accelerometers. In [[cite:&xie17_model_contr_hybrid_passiv_activ]], decentralized force feedback was first applied, followed by $\mathcal{H}_2$ synthesis for vibration isolation based on accelerometers.
$\mathcal{H}_\infty\text{-synthesis}$ was also employed in [[cite:&jiao18_dynam_model_exper_analy_stewar]] for active damping based on accelerometers. $\mathcal{H}_\infty$ synthesis was also employed in [[cite:&jiao18_dynam_model_exper_analy_stewar]] for active damping based on accelerometers.
A comparative study between $\mathcal{H}_\infty\text{-synthesis}$ and decentralized control in the frame of the struts was performed in [[cite:&thayer02_six_axis_vibrat_isolat_system]]. [[cite:&thayer02_six_axis_vibrat_isolat_system]] compared $\mathcal{H}_\infty$ synthesis with decentralized control in the frame of the struts.
Their experimental closed-loop results indicated that the $\mathcal{H}_\infty$ controller did not outperform the decentralized controller in the frame of the struts. Their experimental closed-loop results indicated that the $\mathcal{H}_\infty$ controller did not outperform the decentralized controller in the frame of the struts.
These limitations were attributed to the model's poor ability to predict off-diagonal dynamics, which is crucial for $\mathcal{H}_\infty\text{-synthesis}$. These limitations were attributed to the model's poor ability to predict off-diagonal dynamics, which is crucial for $\mathcal{H}_\infty$ synthesis.
The purpose of this section is to compare several methods for the decoupling of parallel manipulators, an analysis that appears to be lacking in the literature. The purpose of this section is to compare several methods for the decoupling of parallel manipulators, an analysis that appears to be lacking in the literature.
A simplified parallel manipulator model is introduced in Section ref:ssec:detail_control_decoupling_model as a test case for evaluating decoupling strategies. The analysis begins in Section ref:ssec:detail_control_decoupling_model with the introduction of a simplified parallel manipulator model that serves as the foundation for evaluating various decoupling strategies.
The decentralized plant (transfer functions from actuators to sensors integrated in the struts) is examined in Section ref:ssec:detail_control_decoupling_decentralized. Sections ref:ssec:detail_control_decoupling_jacobian through ref:ssec:detail_control_decoupling_svd systematically examine three distinct approaches: Jacobian matrix decoupling, modal decoupling, and Singular Value Decomposition (SVD) decoupling, respectively.
Three approaches are investigated across subsequent sections: Jacobian matrix decoupling (Section ref:ssec:detail_control_decoupling_jacobian), modal decoupling (Section ref:ssec:detail_control_decoupling_modal), and Singular Value Decomposition (SVD) decoupling (Section ref:ssec:detail_control_decoupling_svd). The comparative assessment of these three methodologies, along with concluding observations, is provided in Section ref:ssec:detail_control_decoupling_comp.
Finally, a comparative analysis with concluding observations is provided in Section ref:ssec:detail_control_decoupling_comp.
** Matlab Init :noexport:ignore: ** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
@ -2492,11 +2440,24 @@ The dynamics in the frame of the struts are first examined.
The equation of motion relating actuator forces $\bm{\mathcal{\tau}}$ to strut relative motion $\bm{\mathcal{L}}$ is derived from equation eqref:eq:detail_control_decoupling_plant_cartesian by mapping the Cartesian motion of the mass to the relative motion of the struts using the Jacobian matrix $\bm{J}_{\{M\}}$ defined in eqref:eq:detail_control_decoupling_jacobian_CoM. The equation of motion relating actuator forces $\bm{\mathcal{\tau}}$ to strut relative motion $\bm{\mathcal{L}}$ is derived from equation eqref:eq:detail_control_decoupling_plant_cartesian by mapping the Cartesian motion of the mass to the relative motion of the struts using the Jacobian matrix $\bm{J}_{\{M\}}$ defined in eqref:eq:detail_control_decoupling_jacobian_CoM.
The obtained transfer function from $\bm{\mathcal{\tau}}$ to $\bm{\mathcal{L}}$ is shown in eqref:eq:detail_control_decoupling_plant_decentralized. The obtained transfer function from $\bm{\mathcal{\tau}}$ to $\bm{\mathcal{L}}$ is shown in eqref:eq:detail_control_decoupling_plant_decentralized.
#+begin_src latex :file detail_control_decoupling_control_struts.pdf
\begin{tikzpicture}
\node[block] (Gl) {$\bm{G}_{\{\mathcal{L}\}}$};
% Connections and labels
\draw[<-] (Gl.west) -- ++(-0.8, 0) node[above right]{$\bm{\tau}$};
\draw[->] (Gl.east) -- ++( 0.8, 0) node[above left]{$\bm{\mathcal{L}}$};
\end{tikzpicture}
#+end_src
#+RESULTS:
# [[file:figs/detail_control_decoupling_control_struts.png]]
\begin{equation}\label{eq:detail_control_decoupling_plant_decentralized} \begin{equation}\label{eq:detail_control_decoupling_plant_decentralized}
\frac{\bm{\mathcal{L}}}{\bm{\mathcal{\tau}}}(s) = \bm{G}_{\mathcal{L}}(s) = \left( \bm{J}_{\{M\}}^{-\intercal} \bm{M}_{\{M\}} \bm{J}_{\{M\}}^{-1} s^2 + \bm{\mathcal{C}} s + \bm{\mathcal{K}} \right)^{-1} \frac{\bm{\mathcal{L}}}{\bm{\mathcal{\tau}}}(s) = \bm{G}_{\mathcal{L}}(s) = \left( \bm{J}_{\{M\}}^{-\intercal} \bm{M}_{\{M\}} \bm{J}_{\{M\}}^{-1} s^2 + \bm{\mathcal{C}} s + \bm{\mathcal{K}} \right)^{-1}
\end{equation} \end{equation}
At low frequencies, the plant converges to a diagonal constant matrix whose diagonal elements are equal to the actuator stiffnesses eqref:eq:detail_control_decoupling_plant_decentralized_low_freq. At low frequencies, the plant converges to a diagonal constant matrix whose diagonal elements are related to the actuator stiffnesses eqref:eq:detail_control_decoupling_plant_decentralized_low_freq.
At high frequencies, the plant converges to the mass matrix mapped in the frame of the struts, which is generally highly non-diagonal. At high frequencies, the plant converges to the mass matrix mapped in the frame of the struts, which is generally highly non-diagonal.
\begin{equation}\label{eq:detail_control_decoupling_plant_decentralized_low_freq} \begin{equation}\label{eq:detail_control_decoupling_plant_decentralized_low_freq}
@ -2564,7 +2525,7 @@ for out_i = 1:3
xlim([freqs(1), freqs(end)]); ylim([2e-8, 4e-5]); xlim([freqs(1), freqs(end)]); ylim([2e-8, 4e-5]);
xticks([1e0, 1e1, 1e2]) xticks([1e0, 1e1, 1e2])
yticks([1e-7, 1e-6, 1e-5]) yticks([1e-7, 1e-6, 1e-5])
leg = legend('location', 'northeast', 'FontSize', 8); leg = legend('location', 'southwest', 'FontSize', 8);
leg.ItemTokenSize(1) = 18; leg.ItemTokenSize(1) = 18;
if in_i == 1 if in_i == 1
@ -2595,7 +2556,7 @@ exportFig('figs/detail_control_decoupling_coupled_plant_bode.pdf', 'width', 'ful
<<ssec:detail_control_decoupling_jacobian>> <<ssec:detail_control_decoupling_jacobian>>
**** Jacobian Matrix **** Jacobian Matrix
The Jacobian matrix $\bm{J}_{\{O\}}$ serves a dual purpose in the decoupling process: it converts strut velocity $\dot{\mathcal{L}}$ to payload velocity and angular velocity $\dot{\bm{\mathcal{X}}}_{\{O\}}$, and it transforms actuator forces $\bm{\tau}$ to forces/torque applied on the payload $\bm{\mathcal{F}}_{\{O\}}$, as expressed in equation eqref:eq:detail_control_decoupling_jacobian. The Jacobian matrix serves a dual purpose in the decoupling process: it converts strut velocity $\dot{\mathcal{L}}$ to payload velocity and angular velocity $\dot{\bm{\mathcal{X}}}_{\{O\}}$, and it transforms actuator forces $\bm{\tau}$ to forces/torque applied on the payload $\bm{\mathcal{F}}_{\{O\}}$, as expressed in equation eqref:eq:detail_control_decoupling_jacobian.
\begin{subequations}\label{eq:detail_control_decoupling_jacobian} \begin{subequations}\label{eq:detail_control_decoupling_jacobian}
\begin{align} \begin{align}
@ -2657,6 +2618,28 @@ When the decoupling frame is located at the center of mass (frame $\{M\}$ in Fig
\end{bmatrix} \end{bmatrix}
\end{equation} \end{equation}
#+begin_src latex :file detail_control_decoupling_control_jacobian_CoM.pdf
\begin{tikzpicture}
\node[block] (G) {$\bm{G}_{\{\mathcal{L}\}}$};
\node[block, left=0.6 of G] (Jt) {$\bm{J}_{\{M\}}^{-\intercal}$};
\node[block, right=0.6 of G] (Ja) {$\bm{J}_{\{M\}}^{-1}$};
% Connections and labels
\draw[<-] (Jt.west) -- ++(-1.4, 0) node[above right]{$\bm{\mathcal{F}}_{\{M\}}$};
\draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$};
\draw[->] (G.east) -- (Ja.west) node[above left]{$\bm{\mathcal{L}}$};
\draw[->] (Ja.east) -- ++( 1.4, 0) node[above left]{$\bm{\mathcal{X}}_{\{M\}}$};
\begin{scope}[on background layer]
\node[fit={(Jt.south west) (Ja.north east)}, fill=black!10!white, draw, dashed, inner sep=4pt] (Gx) {};
\node[above] at (Gx.north) {$\bm{G}_{\{M\}}$};
\end{scope}
\end{tikzpicture}
#+end_src
#+RESULTS:
# [[file:figs/detail_control_decoupling_control_jacobian_CoM.png]]
Analytical formula of the plant $\bm{G}_{\{M\}}(s)$ is derived eqref:eq:detail_control_decoupling_plant_CoM. Analytical formula of the plant $\bm{G}_{\{M\}}(s)$ is derived eqref:eq:detail_control_decoupling_plant_CoM.
\begin{equation}\label{eq:detail_control_decoupling_plant_CoM} \begin{equation}\label{eq:detail_control_decoupling_plant_CoM}
@ -2730,6 +2713,28 @@ exportFig('figs/detail_control_decoupling_jacobian_plant_CoM.pdf', 'width', 'hal
**** Center Of Stiffness **** Center Of Stiffness
#+begin_src latex :file detail_control_decoupling_control_jacobian_CoK.pdf
\begin{tikzpicture}
\node[block] (G) {$\bm{G}_{\{\mathcal{L}\}}$};
\node[block, left=0.6 of G] (Jt) {$\bm{J}_{\{K\}}^{-\intercal}$};
\node[block, right=0.6 of G] (Ja) {$\bm{J}_{\{K\}}^{-1}$};
% Connections and labels
\draw[<-] (Jt.west) -- ++(-1.4, 0) node[above right]{$\bm{\mathcal{F}}_{\{K\}}$};
\draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$};
\draw[->] (G.east) -- (Ja.west) node[above left]{$\bm{\mathcal{L}}$};
\draw[->] (Ja.east) -- ++( 1.4, 0) node[above left]{$\bm{\mathcal{X}}_{\{K\}}$};
\begin{scope}[on background layer]
\node[fit={(Jt.south west) (Ja.north east)}, fill=black!10!white, draw, dashed, inner sep=4pt] (Gx) {};
\node[above] at (Gx.north) {$\bm{G}_{\{K\}}$};
\end{scope}
\end{tikzpicture}
#+end_src
#+RESULTS:
# [[file:figs/detail_control_decoupling_control_jacobian_CoK.png]]
When the decoupling frame is located at the center of stiffness, the Jacobian matrix and its inverse are expressed as in eqref:eq:detail_control_decoupling_jacobian_CoK_inverse. When the decoupling frame is located at the center of stiffness, the Jacobian matrix and its inverse are expressed as in eqref:eq:detail_control_decoupling_jacobian_CoK_inverse.
\begin{equation}\label{eq:detail_control_decoupling_jacobian_CoK_inverse} \begin{equation}\label{eq:detail_control_decoupling_jacobian_CoK_inverse}
@ -2749,7 +2754,7 @@ However, it could alternatively be determined through analytical methods to ensu
It should be noted that the existence of such a center of stiffness (i.e. a frame $\{K\}$ for which $\bm{J}_{\{K\}}^{\intercal} \bm{\mathcal{K}} \bm{J}_{\{K\}}$ is diagonal) is not guaranteed for arbitrary systems. It should be noted that the existence of such a center of stiffness (i.e. a frame $\{K\}$ for which $\bm{J}_{\{K\}}^{\intercal} \bm{\mathcal{K}} \bm{J}_{\{K\}}$ is diagonal) is not guaranteed for arbitrary systems.
This property is typically achievable only in systems exhibiting specific symmetrical characteristics, as is the case in the present example. This property is typically achievable only in systems exhibiting specific symmetrical characteristics, as is the case in the present example.
The analytical expression for the plant in this configuration was then computed eqref:eq:detail_control_decoupling_plant_CoK. The analytical expression for the plant in this configuration was then computed ref:eq:detail_control_decoupling_plant_CoK.
\begin{equation}\label{eq:detail_control_decoupling_plant_CoK} \begin{equation}\label{eq:detail_control_decoupling_plant_CoK}
\frac{\bm{\mathcal{X}}_{\{K\}}}{\bm{\mathcal{F}}_{\{K\}}}(s) = \bm{G}_{\{K\}}(s) = \left( \bm{J}_{\{K\}}^{\intercal} \bm{J}_{\{M\}}^{-\intercal} \bm{M}_{\{M\}} \bm{J}_{\{M\}}^{-1} \bm{J}_{\{K\}} s^2 + \bm{J}_{\{K\}}^{\intercal} \bm{\mathcal{C}} \bm{J}_{\{K\}} s + \bm{J}_{\{K\}}^{\intercal} \bm{\mathcal{K}} \bm{J}_{\{K\}} \right)^{-1} \frac{\bm{\mathcal{X}}_{\{K\}}}{\bm{\mathcal{F}}_{\{K\}}}(s) = \bm{G}_{\{K\}}(s) = \left( \bm{J}_{\{K\}}^{\intercal} \bm{J}_{\{M\}}^{-\intercal} \bm{M}_{\{M\}} \bm{J}_{\{M\}}^{-1} \bm{J}_{\{K\}} s^2 + \bm{J}_{\{K\}}^{\intercal} \bm{\mathcal{C}} \bm{J}_{\{K\}} s + \bm{J}_{\{K\}}^{\intercal} \bm{\mathcal{K}} \bm{J}_{\{K\}} \right)^{-1}
@ -2765,6 +2770,7 @@ The plant is well decoupled below the suspension mode with the lowest frequency
The physical reason for high-frequency coupling is illustrated in Figure ref:fig:detail_control_decoupling_model_test_CoK. The physical reason for high-frequency coupling is illustrated in Figure ref:fig:detail_control_decoupling_model_test_CoK.
When a high-frequency force is applied at a point not aligned with the center of mass, it induces rotation around the center of mass. When a high-frequency force is applied at a point not aligned with the center of mass, it induces rotation around the center of mass.
This phenomenon explains the coupling observed between different degrees of freedom at higher frequencies.
#+begin_src matlab #+begin_src matlab
%% Jacobian Decoupling - Center of Mass %% Jacobian Decoupling - Center of Mass
@ -2828,6 +2834,7 @@ exportFig('figs/detail_control_decoupling_jacobian_plant_CoK.pdf', 'width', 'hal
**** Theory :ignore: **** Theory :ignore:
Modal decoupling represents an approach based on the principle that a mechanical system's behavior can be understood as a combination of contributions from various modes [[cite:&rankers98_machin]]. Modal decoupling represents an approach based on the principle that a mechanical system's behavior can be understood as a combination of contributions from various modes [[cite:&rankers98_machin]].
To convert the dynamics in the modal space, the equation of motion are first written with respect to the center of mass eqref:eq:detail_control_decoupling_equation_motion_CoM. To convert the dynamics in the modal space, the equation of motion are first written with respect to the center of mass eqref:eq:detail_control_decoupling_equation_motion_CoM.
\begin{equation}\label{eq:detail_control_decoupling_equation_motion_CoM} \begin{equation}\label{eq:detail_control_decoupling_equation_motion_CoM}
@ -2966,7 +2973,7 @@ exportFig('figs/detail_control_decoupling_modal_plant.pdf', 'width', 'half', 'he
<<ssec:detail_control_decoupling_svd>> <<ssec:detail_control_decoupling_svd>>
**** Singular Value Decomposition **** Singular Value Decomposition
Singular Value Decomposition (SVD) represents a powerful mathematical tool with extensive applications in data analysis [[cite:&brunton22_data, chapt. 1]] and multivariable control systems where it is particularly valuable for analyzing directional properties in multivariable systems [[cite:&skogestad07_multiv_feedb_contr]]. Singular Value Decomposition (SVD) represents a powerful mathematical tool with extensive applications in data analysis [[cite:&brunton22_data, chapt. 1]] and multivariable control systems [[cite:&skogestad07_multiv_feedb_contr]], where it is particularly valuable for analyzing directional properties in multivariable systems.
The SVD constitutes a unique matrix decomposition applicable to any complex matrix $\bm{X} \in \mathbb{C}^{n \times m}$, expressed as: The SVD constitutes a unique matrix decomposition applicable to any complex matrix $\bm{X} \in \mathbb{C}^{n \times m}$, expressed as:
@ -3104,8 +3111,8 @@ exportFig('figs/detail_control_decoupling_svd_plant.pdf', 'width', 'wide', 'heig
[[file:figs/detail_control_decoupling_svd_plant.png]] [[file:figs/detail_control_decoupling_svd_plant.png]]
As it was surprising to obtain such a good decoupling at all frequencies, a variant system with identical dynamics but different sensor configurations was examined. As it was surprising to obtain such a good decoupling at all frequencies, a variant system with identical dynamics but different sensor configurations was examined.
Instead of using relative motion sensors collocated with the struts, three relative motion sensors were positioned as shown in Figure ref:fig:detail_control_decoupling_model_test_alt. Instead of using relative motion sensors aligned with the struts, three relative motion sensors were positioned as shown in Figure ref:fig:detail_control_decoupling_model_test_alt.
Although Jacobian matrices could theoretically be used to map these sensors to the frame of the struts, application of the same SVD decoupling procedure yielded the plant response shown in Figure ref:fig:detail_control_decoupling_svd_alt_plant, which exhibits significantly greater coupling. Although Jacobian matrices could theoretically map between these different sensor arrangements, application of the same SVD decoupling procedure yielded the plant response shown in Figure ref:fig:detail_control_decoupling_svd_alt_plant, which exhibits significantly greater coupling.
Notably, the coupling demonstrates local minima near the decoupling frequency, consistent with the fact that the decoupling matrices were derived specifically for that frequency point. Notably, the coupling demonstrates local minima near the decoupling frequency, consistent with the fact that the decoupling matrices were derived specifically for that frequency point.
#+begin_src matlab #+begin_src matlab
@ -3213,7 +3220,8 @@ SVD decoupling generally results in a loss of physical meaning for the "control
The quality of decoupling achieved through these methods also exhibits distinct characteristics. The quality of decoupling achieved through these methods also exhibits distinct characteristics.
Jacobian decoupling performance depends on the chosen reference frame, with optimal decoupling at low frequencies when aligned at the center of stiffness, or at high frequencies when aligned with the center of mass. Jacobian decoupling performance depends on the chosen reference frame, with optimal decoupling at low frequencies when aligned at the center of stiffness, or at high frequencies when aligned with the center of mass.
Systems designed with coincident centers of mass and stiffness may achieve excellent decoupling using this approach. Systems designed with coincident centers of mass and stiffness may achieve excellent decoupling using this approach.
Modal decoupling offers good decoupling across all frequencies, though its effectiveness relies on the model accuracy, with discrepancies potentially resulting in significant off-diagonal elements. Modal decoupling offers good decoupling across all frequencies, though its effectiveness relies on the accuracy of the system model, with discrepancies potentially resulting in significant off-diagonal elements.
The diagonal elements typically manifest as second-order low-pass filters, facilitating straightforward control design.
SVD decoupling can be implemented using measured data without requiring a model, with optimal performance near the chosen decoupling frequency, though its effectiveness may diminish at other frequencies and depends on the quality of the real approximation of the response at the selected frequency point. SVD decoupling can be implemented using measured data without requiring a model, with optimal performance near the chosen decoupling frequency, though its effectiveness may diminish at other frequencies and depends on the quality of the real approximation of the response at the selected frequency point.
#+name: tab:detail_control_decoupling_strategies_comp #+name: tab:detail_control_decoupling_strategies_comp
@ -3221,24 +3229,34 @@ SVD decoupling can be implemented using measured data without requiring a model,
#+attr_latex: :environment tabularx :width \linewidth :align lXXX #+attr_latex: :environment tabularx :width \linewidth :align lXXX
#+attr_latex: :center t :booktabs t :font \scriptsize #+attr_latex: :center t :booktabs t :font \scriptsize
| | *Jacobian* | *Modal* | *SVD* | | | *Jacobian* | *Modal* | *SVD* |
|-----------------------+-----------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------| |-----------------------+----------------------------------------------------------------------------------------+-----------------------------------------------------------------------+------------------------------------------------------------------|
| *Philosophy* | Topology Driven | Physics Driven | Data Driven | | *Philosophy* | Topology Driven | Physics Driven | Data Driven |
|-----------------------+-----------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------| |-----------------------+----------------------------------------------------------------------------------------+-----------------------------------------------------------------------+------------------------------------------------------------------|
| *Requirements* | Known geometry | Known equations of motion | Identified FRF | | *Requirements* | Known geometry | Known equations of motion | Identified FRF |
|-----------------------+-----------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------| |-----------------------+----------------------------------------------------------------------------------------+-----------------------------------------------------------------------+------------------------------------------------------------------|
| *Decoupling Matrices* | Jacobian matrix $\bm{J}_{\{O\}}$ | Eigenvectors $\bm{\Phi}$ | SVD matrices $\bm{U}$ and $\bm{V}$ | | *Decoupling Matrices* | Decoupling using $\bm{J}_{\{O\}}$ obtained from geometry | Decoupling using $\bm{\Phi}$ obtained from modal decomposition | Decoupling using $\bm{U}$ and $\bm{V}$ obtained from SVD |
|-----------------------+-----------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------| |-----------------------+----------------------------------------------------------------------------------------+-----------------------------------------------------------------------+------------------------------------------------------------------|
| *Decoupled Plant* | $\bm{G}_{\{O\}}(s) = \bm{J}_{\{O\}}^{-1} \bm{G}_{\mathcal{L}}(s) \bm{J}_{\{O\}}^{-\intercal}$ | $\bm{G}_m(s) = \bm{\Phi}^{-1} \bm{G}_{\mathcal{X}}(s) \bm{\Phi}^{-\intercal}$ | $\bm{G}_{\text{SVD}}(s) = \bm{U}^{-1} \bm{G}(s) \bm{V}^{-\intercal}$ | | *Decoupled Plant* | $\bm{G}_{\{O\}}(s) = \bm{J}_{\{O\}}^{-1} \bm{G}_{\mathcal{L}}(s) \bm{J}_{\{O\}}^{-\intercal}$ | $\bm{G}_m(s) = \bm{\Phi}^{-1} \bm{G}_{\mathcal{X}}(s) \bm{\Phi}^{-\intercal}$ | $\bm{G}_{\text{SVD}}(s) = \bm{U}^{-1} \bm{G}(s) \bm{V}^{-\intercal}$ |
|-----------------------+-----------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------| |-----------------------+----------------------------------------------------------------------------------------+-----------------------------------------------------------------------+------------------------------------------------------------------|
| *Controller* | $\bm{K}_{\{O\}}(s) = \bm{J}_{\{O\}}^{-\intercal} \bm{K}_{d}(s) \bm{J}_{\{O\}}^{-1}$ | $\bm{K}_m(s) = \bm{\Phi}^{-\intercal} \bm{K}_{d}(s) \bm{\Phi}^{-1}$ | $\bm{K}_{\text{SVD}}(s) = \bm{V}^{-\intercal} \bm{K}_{d}(s) \bm{U}^{-1}$ | | *Controller* | $\bm{K}_{\{O\}}(s) = \bm{J}_{\{O\}}^{-\intercal} \bm{K}_{d}(s) \bm{J}_{\{O\}}^{-1}$ | $\bm{K}_m(s) = \bm{\Phi}^{-\intercal} \bm{K}_{d}(s) \bm{\Phi}^{-1}$ | $\bm{K}_{\text{SVD}}(s) = \bm{V}^{-\intercal} \bm{K}_{d}(s) \bm{U}^{-1}$ |
|-----------------------+-----------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------| |-----------------------+----------------------------------------------------------------------------------------+-----------------------------------------------------------------------+------------------------------------------------------------------|
| *Interpretation* | Forces/Torques to Displacement/Rotation in chosen frame | Inputs (resp. outputs) to excite (resp. sense) individual modes | Directions of max to min controllability/observability | | *Interpretation* | Forces/Torques to Displacement/Rotation in chosen frame | Inputs to excite individual modes | Directions of max to min controllability/observability |
|-----------------------+-----------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------| | | | Output to sense individual modes | |
| *Effectiveness* | Decoupling at low or high frequency depending on the chosen frame | Good decoupling at all frequencies | Good decoupling near the chosen frequency | |-----------------------+----------------------------------------------------------------------------------------+-----------------------------------------------------------------------+------------------------------------------------------------------|
|-----------------------+-----------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------| | *Properties* | Decoupling at low or high frequency depending on the chosen frame | Good decoupling at all frequencies | Good decoupling near the chosen frequency |
| *Pros* | Retain physical meaning of inputs / outputs. Controller acts on a meaningfully "frame" | Ability to target specific modes. Simple $2^{nd}$ order diagonal plants | Good Decoupling near the crossover. Very General and requires no model | |-----------------------+----------------------------------------------------------------------------------------+-----------------------------------------------------------------------+------------------------------------------------------------------|
|-----------------------+-----------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------| | *Pros* | Physical inputs / outputs | Target specific modes | Good Decoupling near the crossover |
| *Cons* | Good decoupling at all frequency can only be obtained for specific mechanical architecture | Relies on the accuracy of equation of motions. Robustness to unmodelled dynamics may be poor | Loss of physical meaning of inputs /outputs. Decoupling away from the chosen frequency may be poor | | | Good decoupling at High frequency (diagonal mass matrix if Jacobian taken at the CoM) | 2nd order diagonal plant | Very General |
| | Good decoupling at Low frequency (if Jacobian taken at specific point) | | |
| | Easy integration of meaningful reference inputs | | |
| | | | |
|-----------------------+----------------------------------------------------------------------------------------+-----------------------------------------------------------------------+------------------------------------------------------------------|
| *Cons* | Coupling between force/rotation may be high at low frequency (non diagonal terms in K) | Need analytical equations | Loose the physical meaning of inputs /outputs |
| | Limited to parallel mechanisms (?) | | Decoupling depends on the real approximation validity |
| | If good decoupling at all frequencies => requires specific mechanical architecture | | Diagonal plants may not be easy to control |
|-----------------------+----------------------------------------------------------------------------------------+-----------------------------------------------------------------------+------------------------------------------------------------------|
| *Applicability* | Parallel Mechanisms | Systems whose dynamics that can be expressed with M and K matrices | Very general |
| | Only small motion for the Jacobian matrix to stay constant | | Need FRF data (either experimentally or analytically) |
* Closed-Loop Shaping using Complementary Filters * Closed-Loop Shaping using Complementary Filters
:PROPERTIES: :PROPERTIES:
@ -3251,23 +3269,27 @@ SVD decoupling can be implemented using measured data without requiring a model,
Once the system is properly decoupled using one of the approaches described in Section ref:sec:detail_control_decoupling, SISO controllers can be individually tuned for each decoupled "directions". Once the system is properly decoupled using one of the approaches described in Section ref:sec:detail_control_decoupling, SISO controllers can be individually tuned for each decoupled "directions".
Several ways to design a controller to obtain a given performance while ensuring good robustness properties can be implemented. Several ways to design a controller to obtain a given performance while ensuring good robustness properties can be implemented.
In some cases "fixed" controller structures are utilized, such as PI and PID controllers, whose parameters are manually tuned [[cite:&furutani04_nanom_cuttin_machin_using_stewar;&du14_piezo_actuat_high_precis_flexib;&yang19_dynam_model_decoup_contr_flexib]]. # Add reference
In some cases, "fixed" controller structures are utilized, such as PI and PID controllers [[cite:&furutani04_nanom_cuttin_machin_using_stewar;&du14_piezo_actuat_high_precis_flexib;&yang19_dynam_model_decoup_contr_flexib]].
In such cases, the controller coefficients are manually tuned to obtain acceptable performance and robustness.
Another popular method is Open-Loop shaping, which was used during the conceptual phase. Another popular method is Open-Loop shaping, that was used during the conceptual phase after the plan was decoupled in the frame of the struts.
Open-loop shaping involves tuning the controller through a series of "standard" filters (leads, lags, notches, low-pass filters, ...) to shape the open-loop transfer function $G(s)K(s)$ according to desired specifications, including bandwidth, gain and phase margins [[cite:&schmidt20_desig_high_perfor_mechat_third_revis_edition, chapt. 4.4.7]]. The idea of open-loop shaping is to tune the controller (using a series of standard leads, lags, notches, low pass filters) such that the open-loop transfer function $G(s)K(s)$ is made according to specification (i.e.
Open-Loop shaping is very popular because the open-loop transfer function is a linear function of the controller, making it relatively straightforward to tune the controller to achieve desired open-loop characteristics. bandwidth, gain and phase margins, gain at a specific frequency, etc...) [[cite:&schmidt20_desig_high_perfor_mechat_third_revis_edition, chapt. 4.4.7]].
Another key advantage is that controllers can be tuned directly from measured frequency response functions of the plant without requiring an explicit model. Open-Loop shaping is very popular because the open-loop transfer function depends linearly on the controller, making it relatively straightforward to tune the controller to achieve desired open-loop characteristics.
Another key advantage is that controllers can be tuned directly from measured frequency response functions without requiring an explicit plant model.
However, the behavior (i.e. performance) of a feedback system is a function of closed-loop transfer functions. However, the behavior (i.e. performance) of a feedback system is a function of closed-loop transfer functions [[cite:&skogestad07_multiv_feedb_contr, chapt. 3]].
Specifications can therefore be expressed in terms of the magnitude of closed-loop transfer functions, such as the sensitivity, plant sensitivity, and complementary sensitivity transfer functions [[cite:&skogestad07_multiv_feedb_contr, chapt. 3]]. Specifications can therefore be expressed in terms of the magnitude of closed-loop transfer functions, such as the sensitivity, plant sensitivity, and complementary sensitivity transfer functions.
With open-loop shaping, closed-loop transfer functions are changed only indirectly, which may make it difficult to directly address the specifications that are in terms of the closed-loop transfer functions. With open-loop shaping, closed-loop transfer functions are changed only indirectly, which may make it difficult to directly address the specifications that are in terms of the closed-loop transfer functions.
In order to synthesize a controller that directly shapes the closed-loop transfer functions (and therefore the performance metric), $\mathcal{H}_\infty\text{-synthesis}$ may be used [[cite:&skogestad07_multiv_feedb_contr]]. In order to synthesize a controller that directly shapes the closed-loop transfer functions (and therefore the performance metric), $\mathcal{H}_\infty$ loop-shaping may be used [[cite:&skogestad07_multiv_feedb_contr]].
This approach requires a good model of the plant and expertise in selecting weighting functions that will define the wanted shape of different closed-loop transfer functions [[cite:&bibel92_guidel_h]]. This approach requires a good model of the plant and expertise in selecting weighting functions that will define the wanted shape of different closed-loop transfer functions [[cite:&bibel92_guidel_h]].
$\mathcal{H}_{\infty}\text{-synthesis}$ has been applied for the Stewart platform [[cite:&jiao18_dynam_model_exper_analy_stewar]], yet when benchmarked against more basic decentralized controllers, the performance gains proved small [[cite:&thayer02_six_axis_vibrat_isolat_system;&hauge04_sensor_contr_space_based_six]]. $\mathcal{H}_{\infty}$ synthesis has been applied for the Stewart platform [[cite:&jiao18_dynam_model_exper_analy_stewar]], but comparative studies with more simple decentralized controllers did not show large improvements [[cite:&thayer02_six_axis_vibrat_isolat_system;&hauge04_sensor_contr_space_based_six]].
In this section, an alternative controller synthesis scheme is proposed in which complementary filters are used for directly shaping the closed-loop transfer functions (i.e., directly addressing the closed-loop performances). In this section, an alternative controller synthesis scheme is proposed in which complementary filters are used for directly shaping the closed-loop transfer functions (i.e., directly addressing the closed-loop performances).
In Section ref:ssec:detail_control_cf_control_arch, the proposed control architecture is presented.
In Section ref:ssec:detail_control_cf_control_arch, the proposed control architecture including the complementary filters is presented.
In Section ref:ssec:detail_control_cf_trans_perf, typical performance requirements are translated into the shape of the complementary filters. In Section ref:ssec:detail_control_cf_trans_perf, typical performance requirements are translated into the shape of the complementary filters.
The design of the complementary filters is briefly discussed in Section ref:ssec:detail_control_cf_analytical_complementary_filters, and analytical formulas are proposed such that it is possible to change the closed-loop behavior of the system in real time. The design of the complementary filters is briefly discussed in Section ref:ssec:detail_control_cf_analytical_complementary_filters, and analytical formulas are proposed such that it is possible to change the closed-loop behavior of the system in real time.
Finally, in Section ref:ssec:detail_control_cf_simulations, a numerical example is used to show how the proposed control architecture can be implemented in practice. Finally, in Section ref:ssec:detail_control_cf_simulations, a numerical example is used to show how the proposed control architecture can be implemented in practice.
@ -3300,9 +3322,10 @@ freqs = logspace(-1, 3, 1000);
<<ssec:detail_control_cf_control_arch>> <<ssec:detail_control_cf_control_arch>>
**** Virtual Sensor Fusion **** Virtual Sensor Fusion
The idea of using complementary filters in the control architecture originates from sensor fusion techniques [[cite:&collette15_sensor_fusion_method_high_perfor]], where two sensors are combined using complementary filters. The concept of using complementary filters in control architecture originates from sensor fusion techniques [[cite:&collette15_sensor_fusion_method_high_perfor]], where two sensors are combined using complementary filters.
Building upon this concept, "virtual sensor fusion" [[cite:&verma20_virtual_sensor_fusion_high_precis_contr]] replaces one physical sensor with a model $G$ of the plant. Building upon this concept, "virtual sensor fusion" [[cite:&verma20_virtual_sensor_fusion_high_precis_contr]] replaces one physical sensor with a model $G$ of the plant.
The corresponding control architecture is illustrated in Figure ref:fig:detail_control_cf_arch, where $G^\prime$ represents the physical plant to be controlled, $G$ is a model of the plant, $k$ is the controller, and $H_L$ and $H_H$ are complementary filters satisfying $H_L(s) + H_H(s) = 1$.
The control architecture is illustrated in Figure ref:fig:detail_control_cf_arch, where $G^\prime$ represents the physical plant to be controlled, $G$ is a model of the plant, $k$ is the controller, and $H_L$ and $H_H$ are complementary filters satisfying $H_L(s) + H_H(s) = 1$.
In this arrangement, the physical plant is controlled at low frequencies, while the plant model is utilized at high frequencies to enhance robustness. In this arrangement, the physical plant is controlled at low frequencies, while the plant model is utilized at high frequencies to enhance robustness.
#+begin_src latex :file detail_control_cf_arch.pdf #+begin_src latex :file detail_control_cf_arch.pdf
@ -3409,14 +3432,14 @@ Consequently, this structure is mathematically equivalent to the single-loop arc
When considering the extreme case of very high values for $k$, the effective controller $K(s)$ converges to the inverse of the plant model multiplied by the inverse of the high-pass filter, as expressed in eqref:eq:detail_control_cf_high_k. When considering the extreme case of very high values for $k$, the effective controller $K(s)$ converges to the inverse of the plant model multiplied by the inverse of the high-pass filter, as expressed in eqref:eq:detail_control_cf_high_k.
\begin{equation}\label{eq:detail_control_cf_high_k} \begin{equation}\label{eq:detail_control_cf_high_k}
\lim_{k\to\infty} K(s) = \lim_{k\to\infty} \frac{k}{1+H_H(s) G(s) k} = \big( H_H(s) G(s) \big)^{-1} \lim_{k\to\infty} K(s) = \lim_{k\to\infty} \frac{k}{1+H_H(s) G(s) k} = \left( H_H(s) G(s) \right)^{-1}
\end{equation} \end{equation}
If the resulting $K$ is improper, a low-pass filter with sufficiently high corner frequency can be added to ensure its causal realization. If the resulting $K$ is improper, a low-pass filter with sufficiently high corner frequency can be added to ensure its causal realization.
Furthermore, for $K$ to be stable, both $G$ and $H_H$ must be minimum phase transfer functions. Furthermore, for $K$ to be stable, both $G$ and $H_H$ must be minimum phase transfer functions.
With these assumptions, the resulting control architecture is illustrated in Figure ref:fig:detail_control_cf_arch_class, where the complementary filters $H_L$ and $H_H$ remain the only tuning parameters. With these assumptions, the resulting control architecture is illustrated in Figure ref:fig:detail_control_cf_arch_class, where the complementary filters $H_L$ and $H_H$ remain the only tuning parameters.
The dynamics of this closed-loop system are described by equations eqref:eq:detail_control_cf_cl_system_y and eqref:eq:detail_control_cf_cl_system_y. The dynamics of this closed-loop system are described by eqref:eq:detail_control_cf_sf_cl_tf_K_inf.
#+begin_src latex :file detail_control_cf_arch_class.pdf #+begin_src latex :file detail_control_cf_arch_class.pdf
\tikzset{block/.default={0.8cm}{0.6cm}} \tikzset{block/.default={0.8cm}{0.6cm}}
@ -3461,7 +3484,7 @@ The dynamics of this closed-loop system are described by equations eqref:eq:deta
\end{align} \end{align}
\end{subequations} \end{subequations}
At frequencies where the model accurately represents the physical plant ($G^{-1} G^{\prime} \approx 1$), the denominator simplifies to $H_H + G^\prime G^{-1} H_L \approx H_H + H_L = 1$, and the closed-loop transfer functions are then described by equations eqref:eq:detail_control_cf_cl_performance_y and eqref:eq:detail_control_cf_cl_performance_u. At frequencies where the model accurately represents the physical plant ($G^{-1} G^{\prime} \approx 1$), the denominator simplifies to $H_H + G^\prime G^{-1} H_L \approx H_H + H_L = 1$, and the closed-loop transfer functions are described by eqref:eq:detail_control_cf_sf_cl_tf_K_inf_perfect.
\begin{subequations}\label{eq:detail_control_cf_sf_cl_tf_K_inf_perfect} \begin{subequations}\label{eq:detail_control_cf_sf_cl_tf_K_inf_perfect}
\begin{alignat}{5} \begin{alignat}{5}
@ -3471,16 +3494,16 @@ At frequencies where the model accurately represents the physical plant ($G^{-1}
\end{subequations} \end{subequations}
The sensitivity transfer function equals the high-pass filter $S = \frac{y}{dy} = H_H$, and the complementary sensitivity transfer function equals the low-pass filter $T = \frac{y}{n} = H_L$. The sensitivity transfer function equals the high-pass filter $S = \frac{y}{dy} = H_H$, and the complementary sensitivity transfer function equals the low-pass filter $T = \frac{y}{n} = H_L$.
Hence, when the plant model closely approximates the actual dynamics, the closed-loop transfer functions converge to the designed complementary filters, allowing direct translation of performance requirements into the design of the complementary. Hence, when the plant model closely approximates the actual system, the closed-loop behavior becomes fully determined by the designed complementary filters, enabling direct translation of performance requirements into filter design.
** Translating the performance requirements into the shape of the complementary filters ** Translating the performance requirements into the shapes of the complementary filters
<<ssec:detail_control_cf_trans_perf>> <<ssec:detail_control_cf_trans_perf>>
**** Introduction :ignore: **** Introduction :ignore:
Performance specifications in a feedback system can usually be expressed as upper bounds on the magnitudes of closed-loop transfer functions such as the sensitivity and complementary sensitivity transfer functions [[cite:&bibel92_guidel_h]]. Performance specifications in feedback systems can be expressed as upper bounds on the magnitudes of closed-loop transfer functions such that the sensitivity $|S(j\omega)|$ and complementary sensitivity $|T(j\omega)|$ transfer functions [[cite:&bibel92_guidel_h]].
The design of a controller $K(s)$ to obtain the desired shape of these closed-loop transfer functions is known as closed-loop shaping. The design of a controller $K(s)$ to achieve desired shapes of these closed-loop transfer functions is known as closed-loop shaping.
In the proposed control architecture, the closed-loop transfer functions eqref:eq:detail_control_cf_sf_cl_tf_K_inf are expressed in terms of the complementary filters $H_L(s)$ and $H_H(s)$ rather than directly through the controller $K(s)$. In the proposed control architecture, the closed-loop transfer functions eqref:eq:detail_control_cf_sf_cl_tf_K_inf are expressed in terms of the complementary filters $H_L(s)$ and $H_H(s)$ rather than directly through the controller $K(s)$.
Therefore, performance requirements must be translated into constraints on the shape of these complementary filters. Therefore, performance requirements must be translated into constraints on the shapes of these complementary filters.
**** Nominal Stability (NS) **** Nominal Stability (NS)
A closed-loop system is stable when all its elements (here $K$, $G^\prime$, and $H_L$) are stable and the sensitivity function $S = \frac{1}{1 + G^\prime K H_L}$ is stable. A closed-loop system is stable when all its elements (here $K$, $G^\prime$, and $H_L$) are stable and the sensitivity function $S = \frac{1}{1 + G^\prime K H_L}$ is stable.
@ -3492,7 +3515,6 @@ Consequently, stable and minimum phase complementary filters must be employed.
**** Nominal Performance (NP) **** Nominal Performance (NP)
Performance specifications can be formalized using weighting functions $w_H$ and $w_L$, where performance is achieved when eqref:eq:detail_control_cf_weights is satisfied. Performance specifications can be formalized using weighting functions $w_H$ and $w_L$, where performance is achieved when eqref:eq:detail_control_cf_weights is satisfied.
The weighting functions define the maximum magnitude of the closed-loop transfer functions as a function of frequency, effectively determining their "shape".
\begin{subequations}\label{eq:detail_control_cf_weights} \begin{subequations}\label{eq:detail_control_cf_weights}
\begin{align} \begin{align}
@ -3501,7 +3523,7 @@ The weighting functions define the maximum magnitude of the closed-loop transfer
\end{align} \end{align}
\end{subequations} \end{subequations}
For the nominal system, $S = H_H$ and $T = H_L$, hence the performance specifications can be converted on the shape of the complementary filters eqref:eq:detail_control_cf_nominal_performance. For the nominal system, where $S = H_H$ and $T = H_L$, nominal performance is ensured by satisfying eqref:eq:detail_control_cf_nominal_performance.
\begin{equation}\label{eq:detail_control_cf_nominal_performance} \begin{equation}\label{eq:detail_control_cf_nominal_performance}
\Aboxed{\text{NP} \Longleftrightarrow {\begin{cases*} \Aboxed{\text{NP} \Longleftrightarrow {\begin{cases*}
@ -3510,20 +3532,23 @@ For the nominal system, $S = H_H$ and $T = H_L$, hence the performance specifica
\end{cases*}}} \end{cases*}}}
\end{equation} \end{equation}
Typical performance requirements can therefore be translated into constraints on the complementary filters.
For disturbance rejection, the magnitude of the sensitivity function $|S(j\omega)| = |H_H(j\omega)|$ should be minimized, particularly at low frequencies where disturbances are usually most prominent. For disturbance rejection, the magnitude of the sensitivity function $|S(j\omega)| = |H_H(j\omega)|$ should be minimized, particularly at low frequencies where disturbances are usually most prominent.
Similarly, for noise attenuation, the magnitude of the complementary sensitivity function $|T(j\omega)| = |H_L(j\omega)|$ should be minimized, especially at high frequencies where measurement noise typically dominates. Similarly, for noise attenuation, the magnitude of the complementary sensitivity function $|T(j\omega)| = |H_L(j\omega)|$ should be minimized, especially at high frequencies where measurement noise typically dominates.
The closed-loop bandwidth can be effectively limited by ensuring that $|T(j\omega)|$ remains below $\frac{1}{\sqrt{2}}$ at frequencies above the maximum desired bandwidth.
By carefully selecting the shapes of these complementary filters, nominal performance specifications can be directly addressed in an intuitive manner.
Classical stability margins (gain and phase margins) are also related to the maximum amplitude of the sensitivity transfer function. Classical stability margins (gain and phase margins) are also related to the maximum amplitude of the sensitivity transfer function.
Typically, maintaining $|S|_{\infty} \le 2$ ensures a gain margin of at least 2 and a phase margin of at least $\SI{29}{\degree}$. Typically, maintaining $|S|_{\infty} \le 2$ ensures a gain margin of at least 2 and a phase margin of at least $\SI{29}{\degree}$.
Therefore, by carefully selecting the shape of the complementary filters, nominal performance specifications can be directly addressed in an intuitive manner.
**** Robust Stability (RS) **** Robust Stability (RS)
Robust stability refers to a control system's ability to maintain stability despite discrepancies between the actual system $G^\prime$ and the model $G$ used for controller design. Robust stability refers to a control system's ability to maintain stability despite discrepancies between the actual system $G^\prime$ and the model $G$ used for controller design.
These discrepancies may arise from unmodeled dynamics or nonlinearities. These discrepancies may arise from unmodeled dynamics or nonlinearities.
To represent these model-plant differences, input multiplicative uncertainty as illustrated in Figure ref:fig:detail_control_cf_input_uncertainty is employed. To represent these model-plant differences, input multiplicative uncertainty as illustrated in Figure ref:fig:detail_control_cf_input_uncertainty is employed.
The set of possible plants $\Pi_i$ is described by eqref:eq:detail_control_cf_multiplicative_uncertainty, with the weighting function $w_I$ selected such that all possible plants $G^\prime$ are contained within the set $\Pi_i$. The set of possible plants $\Pi_i$ is described by eqref:eq:detail_control_cf_multiplicative_uncertainty.
With the weighting function $w_I$ selected such that all possible plants $G^\prime$ are contained within the set $\Pi_i$.
\begin{equation}\label{eq:detail_control_cf_multiplicative_uncertainty} \begin{equation}\label{eq:detail_control_cf_multiplicative_uncertainty}
\Pi_i: \quad G^\prime(s) = G(s)\big(1 + w_I(s)\Delta_I(s)\big); \quad |\Delta_I(j\omega)| \le 1 \ \forall\omega \Pi_i: \quad G^\prime(s) = G(s)\big(1 + w_I(s)\Delta_I(s)\big); \quad |\Delta_I(j\omega)| \le 1 \ \forall\omega
@ -3591,7 +3616,8 @@ After algebraic manipulation, robust stability is guaranteed when the low-pass c
**** Robust Performance (RP) **** Robust Performance (RP)
Robust performance ensures that performance specifications eqref:eq:detail_control_cf_weights are met even when the plant dynamics fluctuates within specified bounds eqref:eq:detail_control_cf_robust_perf_S. Robust performance ensures that performance specifications eqref:eq:detail_control_cf_weights are met even as plant dynamics varies within specified bounds.
This requires the performance condition to be valid for all possible plants in the defined uncertainty set $\Pi_i$:
\begin{equation}\label{eq:detail_control_cf_robust_perf_S} \begin{equation}\label{eq:detail_control_cf_robust_perf_S}
\text{RP} \Longleftrightarrow |w_H(j\omega) S(j\omega)| \le 1 \quad \forall G^\prime \in \Pi_I, \ \forall\omega \text{RP} \Longleftrightarrow |w_H(j\omega) S(j\omega)| \le 1 \quad \forall G^\prime \in \Pi_I, \ \forall\omega
@ -3610,8 +3636,8 @@ Therefore, for SISO systems, ensuring robust stability and nominal performance i
** Complementary filter design ** Complementary filter design
<<ssec:detail_control_cf_analytical_complementary_filters>> <<ssec:detail_control_cf_analytical_complementary_filters>>
As proposed in Section ref:sec:detail_control_sensor, complementary filters can be shaped using standard $\mathcal{H}_{\infty}\text{-synthesis}$ techniques. As proposed in Section ref:sec:detail_control_sensor, complementary filters can be shaped using standard $\mathcal{H}_{\infty}$ synthesis techniques.
This approach is particularly well-suited since performance requirements were expressed as upper bounds on the magnitude of the complementary filters. This approach is particularly well-suited since performance requirements were expressed as upper bounds on the magnitude of the complementary filters (Section ref:ssec:detail_control_cf_trans_perf).
Alternatively, analytical formulas for complementary filters may be employed. Alternatively, analytical formulas for complementary filters may be employed.
For some applications, first-order complementary filters as shown in Equation eqref:eq:detail_control_cf_1st_order are sufficient. For some applications, first-order complementary filters as shown in Equation eqref:eq:detail_control_cf_1st_order are sufficient.
@ -3632,7 +3658,7 @@ These filters can be transformed into the digital domain using the Bilinear tran
\end{align} \end{align}
\end{subequations} \end{subequations}
A significant advantage of using analytical formulas for complementary filters is that key parameters such as $\omega_0$ can be tuned in real-time, as illustrated in Figure ref:fig:detail_control_cf_arch_tunable_params. A significant advantage of using analytical formulas for complementary filters is that key parameters such as $\omega_0$ can be modified in real-time, as illustrated in Figure ref:fig:detail_control_cf_arch_tunable_params.
This real-time tunability allows rapid testing of different control bandwidths to evaluate performance and robustness characteristics. This real-time tunability allows rapid testing of different control bandwidths to evaluate performance and robustness characteristics.
#+begin_src latex :file detail_control_cf_arch_tunable_params.pdf #+begin_src latex :file detail_control_cf_arch_tunable_params.pdf
@ -3680,7 +3706,7 @@ This real-time tunability allows rapid testing of different control bandwidths t
For many practical applications, first order complementary filters are not sufficient. For many practical applications, first order complementary filters are not sufficient.
Specifically, a slope of $+2$ at low frequencies for the sensitivity transfer function (enabling accurate tracking of ramp inputs) and a slope of $-2$ for the complementary sensitivity transfer function are often desired. Specifically, a slope of $+2$ at low frequencies for the sensitivity transfer function (enabling accurate tracking of ramp inputs) and a slope of $-2$ for the complementary sensitivity transfer function are often desired.
For these cases, the complementary filters analytical formula in Equation eqref:eq:detail_control_cf_2nd_order is proposed. For these cases, the second-order complementary filters presented in Equation eqref:eq:detail_control_cf_2nd_order are proposed.
\begin{subequations}\label{eq:detail_control_cf_2nd_order} \begin{subequations}\label{eq:detail_control_cf_2nd_order}
\begin{align} \begin{align}
@ -3690,15 +3716,18 @@ For these cases, the complementary filters analytical formula in Equation eqref:
\end{subequations} \end{subequations}
The influence of parameters $\alpha$ and $\omega_0$ on the frequency response of these complementary filters is illustrated in Figure ref:fig:detail_control_cf_analytical_effect. The influence of parameters $\alpha$ and $\omega_0$ on the frequency response of these complementary filters is illustrated in Figure ref:fig:detail_control_cf_analytical_effect.
The parameter $\alpha$ primarily affects the damping characteristics near the crossover frequency as well as high and low frequency magnitudes, while $\omega_0$ determines the frequency at which the transition between high-pass and low-pass behavior occurs. The parameter $\alpha$ primarily affects the damping characteristics near the crossover frequency, while $\omega_0$ determines the frequency at which the transition between high-pass and low-pass behavior occurs.
These filters can also be implemented in the digital domain with analytical formulas, preserving the ability to adjust $\alpha$ and $\omega_0$ in real-time. These filters can also be implemented in the digital domain with analytical formulas, preserving the ability to adjust $\alpha$ and $\omega_0$ in real-time.
The presented analytical formulations offer an attractive balance between design simplicity and performance.
This capability to tune parameters in real-time is particularly valuable during commissioning of the controller.
#+begin_src matlab :exports none :results none #+begin_src matlab :exports none :results none
%% Analytical Complementary Filters - Effect of alpha %% Analytical Complementary Filters - Effect of alpha
freqs_study = logspace(-2, 2, 1000); freqs_study = logspace(-2, 2, 1000);
alphas = [0.1, 1, 10]; alphas = [0.1, 1, 10];
w0 = 2*pi*1; w0 = 2*pi*1;
s = tf('s'); s = tf('s')
figure; figure;
hold on; hold on;
@ -3726,7 +3755,7 @@ exportFig('figs/detail_control_cf_analytical_effect_alpha.pdf', 'width', 'half',
freqs_study = logspace(-1, 3, 1000); freqs_study = logspace(-1, 3, 1000);
alpha = [1]; alpha = [1];
w0s = [2*pi*1, 2*pi*10, 2*pi*100]; w0s = [2*pi*1, 2*pi*10, 2*pi*100];
s = tf('s'); s = tf('s')
figure; figure;
hold on; hold on;
@ -3771,17 +3800,17 @@ exportFig('figs/detail_control_cf_analytical_effect_w0.pdf', 'width', 'half', 'h
<<ssec:detail_control_cf_simulations>> <<ssec:detail_control_cf_simulations>>
**** Procedure :ignore: **** Procedure :ignore:
To implement the proposed control architecture in practice, the following procedure is proposed: To systematically apply the proposed control technique, the following procedure is recommended:
1. Identify the plant to be controlled to obtain the plant model $G$. 1. Identify the plant to be controlled to obtain the plant model $G$.
2. Design the weighting function $w_I$ such that all possible plants $G^\prime$ are contained within the uncertainty set $\Pi_i$. 2. Design the weighting function $w_I$ such that all possible plants $G^\prime$ are contained in the uncertainty set $\Pi_i$.
3. Translate performance requirements into upper bounds on the complementary filters as explained in Section ref:ssec:detail_control_cf_trans_perf. 3. Translate performance requirements into upper bounds on the complementary filters as explained in Section ref:ssec:detail_control_cf_trans_perf.
4. Design the weighting functions $w_H$ and $w_L$ and generate the complementary filters using $\mathcal{H}_{\infty}\text{-synthesis}$ as described in Section ref:ssec:detail_control_sensor_hinf_method. 4. Design the weighting functions $w_H$ and $w_L$ and generate the complementary filters using $\mathcal{H}_{\infty}\text{-synthesis}$ as described in Section ref:ssec:detail_control_sensor_hinf_method.
If the synthesis fails to produce filters satisfying the defined upper bounds, either revise the requirements or develop a more accurate model $G$ that will allow for a smaller $w_I$. If the synthesis fails to produce filters satisfying the defined upper bounds, either revise the requirements or develop a more accurate model $G$ that will allow for a smaller $w_I$.
For simpler cases, the analytical formulas for complementary filters presented in Section ref:ssec:detail_control_cf_analytical_complementary_filters can be employed. For simpler cases, the analytical formulas for complementary filters presented in Section ref:ssec:detail_control_cf_analytical_complementary_filters can be employed.
5. If $K(s) = H_H^{-1}(s) G^{-1}(s)$ is not proper, add low-pass filters with sufficiently high corner frequencies to ensure realizability. 5. If $K(s) = H_H^{-1}(s) G^{-1}(s)$ is not proper, add low-pass filters with sufficiently high corner frequencies to ensure realizability.
**** Plant :ignore: **** Plant
To evaluate this control architecture, a simple test model representative of many synchrotron positioning stages is utilized (Figure ref:fig:detail_control_cf_test_model). To evaluate this control architecture, a simple test model representative of many synchrotron positioning stages is utilized (Figure ref:fig:detail_control_cf_test_model).
In this model, a payload with mass $m$ is positioned on top of a stage. In this model, a payload with mass $m$ is positioned on top of a stage.
@ -3794,11 +3823,13 @@ The positioning stage itself is characterized by stiffness $k$, internal damping
The model of the plant $G(s)$ from actuator force $F$ to displacement $y$ is described by Equation eqref:eq:detail_control_cf_test_plant_tf. The model of the plant $G(s)$ from actuator force $F$ to displacement $y$ is described by Equation eqref:eq:detail_control_cf_test_plant_tf.
\begin{equation}\label{eq:detail_control_cf_test_plant_tf} \begin{equation}\label{eq:detail_control_cf_test_plant_tf}
G(s) = \frac{1}{m s^2 + c s + k}, \quad m = \SI{20}{\kg},\ k = 1\si{\N/\mu\m},\ c = 10^2\si{\N\per(\m\per\s)} G(s) = \frac{1}{m s^2 + c s + k}
\end{equation} \end{equation}
The plant dynamics include uncertainties related to limited support compliance, unmodeled flexible dynamics and payload dynamics. The parameter values are set to $m = \SI{20}{\kg}$, $k = 1\si{\N/\mu\m}$, and $c = 10^2\si{\N\per(\m\per\s)}$.
These uncertainties are represented using a multiplicative input uncertainty weight eqref:eq:detail_control_cf_test_plant_uncertainty, which specifies the magnitude of uncertainty as a function of frequency.
The plant dynamics include uncertainties related to limited support compliance, unmodeled flexible dynamics, payload dynamics, and other factors.
These uncertainties are represented using a multiplicative input uncertainty weight eqref:eq:detail_control_cf_test_plant_uncertainty., which specifies the magnitude of uncertainty as a function of frequency:
\begin{equation}\label{eq:detail_control_cf_test_plant_uncertainty} \begin{equation}\label{eq:detail_control_cf_test_plant_uncertainty}
w_I(s) = 10 \cdot \frac{(s+100)^2}{(s+1000)^2} w_I(s) = 10 \cdot \frac{(s+100)^2}{(s+1000)^2}
@ -3877,9 +3908,9 @@ exportFig('figs/detail_control_cf_bode_plot_mech_sys.pdf', 'width', 'half', 'hei
**** Requirements and choice of complementary filters **** Requirements and choice of complementary filters
As discussed in Section ref:ssec:detail_control_cf_trans_perf, nominal performance requirements can be expressed as upper bounds on the shape of the complementary filters. As discussed in Section ref:ssec:detail_control_cf_trans_perf, nominal performance requirements can be expressed as upper bounds on the shapes of the complementary filters.
For this example, the requirements are: For this example, the requirements are:
- track ramp inputs (i.e. constant velocity scans) with zero steady-state error: a $+2$ slope at low frequencies for the magnitude of the sensitivity function $|S(j\omega)|$ is required - to track ramp inputs (constant velocity scans) with zero steady-state error, which necessitates a $+2$ slope at low frequencies for the magnitude of the sensitivity function $|S(j\omega)|$
- filtering of measurement noise above $\SI{300}{Hz}$, where sensor noise is significant (requiring a filtering factor of approximately 100 above this frequency) - filtering of measurement noise above $\SI{300}{Hz}$, where sensor noise is significant (requiring a filtering factor of approximately 100 above this frequency)
- maximizing disturbance rejection - maximizing disturbance rejection
@ -3889,9 +3920,8 @@ This condition is satisfied when the magnitude of the low-pass complementary fil
Robust performance is achieved when both nominal performance and robust stability conditions are simultaneously satisfied. Robust performance is achieved when both nominal performance and robust stability conditions are simultaneously satisfied.
All requirements imposed on $H_L$ and $H_H$ are visualized in Figure ref:fig:detail_control_cf_specs_S_T. All requirements imposed on $H_L$ and $H_H$ are visualized in Figure ref:fig:detail_control_cf_specs_S_T.
While $\mathcal{H}_\infty\text{-synthesis}$ could be employed to design the complementary filters, analytical formulas were used for this relatively simple example. While $\mathcal{H}_\infty$ synthesis could be employed to design the complementary filters, analytical formulas were used for this relatively simple example.
The second-order complementary filters from Equation eqref:eq:detail_control_cf_2nd_order were selected with parameters $\alpha = 1$ and $\omega_0 = 2\pi \cdot 20\,\text{Hz}$. Specifically, the second-order complementary filters from Equation eqref:eq:detail_control_cf_2nd_order were selected, providing the desired $+2$ and $-2$ slopes, with parameters $\alpha = 1$ and $\omega_0 = 2\pi \cdot 20$ Hz.
There magnitudes are displayed in Figure ref:fig:detail_control_cf_specs_S_T, confirming that these complementary filters are fulfilling the specifications.
#+name: fig:detail_control_cf_specs_S_T_obtained_filters #+name: fig:detail_control_cf_specs_S_T_obtained_filters
#+caption: Performance requirement and complementary filters used (\subref{fig:detail_control_cf_specs_S_T}). Obtained controller from the complementary filters and the plant inverse is shown in (\subref{fig:detail_control_cf_bode_Kfb}). #+caption: Performance requirement and complementary filters used (\subref{fig:detail_control_cf_specs_S_T}). Obtained controller from the complementary filters and the plant inverse is shown in (\subref{fig:detail_control_cf_bode_Kfb}).
@ -4128,7 +4158,7 @@ In this section, a control architecture in which complementary filters are used
This approach differs from traditional open-loop shaping in that no controller is manually designed; rather, appropriate complementary filters are selected to achieve the desired closed-loop behavior. This approach differs from traditional open-loop shaping in that no controller is manually designed; rather, appropriate complementary filters are selected to achieve the desired closed-loop behavior.
The method shares conceptual similarities with mixed-sensitivity $\mathcal{H}_{\infty}\text{-synthesis}$, as both approaches aim to shape closed-loop transfer functions, but with notable distinctions in implementation and complexity. The method shares conceptual similarities with mixed-sensitivity $\mathcal{H}_{\infty}\text{-synthesis}$, as both approaches aim to shape closed-loop transfer functions, but with notable distinctions in implementation and complexity.
While $\mathcal{H}_{\infty}\text{-synthesis}$ offers greater flexibility and can be readily generalized to MIMO plants, the presented approach provides a simpler alternative that requires minimal design effort. While $\mathcal{H}_{\infty}\text{-synthesis}$ synthesis offers greater flexibility and can be readily generalized to MIMO plants, the presented approach provides a simpler alternative that requires minimal design effort.
Implementation only necessitates extracting a model of the plant and selecting appropriate analytical complementary filters, making it particularly interesting for applications where simplicity and intuitive parameter tuning are valued. Implementation only necessitates extracting a model of the plant and selecting appropriate analytical complementary filters, making it particularly interesting for applications where simplicity and intuitive parameter tuning are valued.
Due to time constraints, an extensive literature review comparing this approach with similar existing architectures, such as Internal Model Control [[cite:&saxena12_advan_inter_model_contr_techn]], was not conducted. Due to time constraints, an extensive literature review comparing this approach with similar existing architectures, such as Internal Model Control [[cite:&saxena12_advan_inter_model_contr_techn]], was not conducted.
@ -4143,21 +4173,6 @@ It will be experimentally validated with the NASS during the experimental phase.
:END: :END:
<<sec:detail_control_conclusion>> <<sec:detail_control_conclusion>>
In order to optimize the control of the Nano Active Stabilization System, several aspects of control theory were studied.
Different approaches to combine sensors were compared in Section ref:sec:detail_control_sensor.
While High Authority Control-Low Authority Control (HAC-LAC) was successfully applied during the conceptual design phase, the focus of this work was extended to sensor fusion techniques where two or more sensors are combined using complementary filters.
It was demonstrated that the performance of such fusion depends significantly on the magnitude of the complementary filters.
To address this challenge, a synthesis method based on $\mathcal{H}_\infty\text{-synthesis}$ was proposed, allowing for intuitive shaping of the complementary filters through weighting functions.
For the NASS, while HAC-LAC remains a natural way to combine sensors, the potential benefits of sensor fusion merit further investigation.
Various decoupling strategies for parallel manipulators were examined in Section ref:sec:detail_control_decoupling, including decentralized control, Jacobian decoupling, modal decoupling, and Singular Value Decomposition (SVD) decoupling.
The main characteristics of each approach were highlighted, providing valuable insights into their respective strengths and limitations.
Among the examined methods, Jacobian decoupling was determined to be most appropriate for the NASS, as it provides straightforward implementation while preserving the physical meaning of inputs and outputs.
With the system successfully decoupled, attention shifted to designing appropriate SISO controllers for each decoupled direction.
A control architecture for directly shaping closed-loop transfer functions was proposed.
It is based on complementary filters that can be designed using either the proposed $\mathcal{H}_\infty\text{-synthesis}$ approach described earlier or through analytical formulas.
Experimental validation of this method on the NASS will be conducted during the experimental tests on ID31.
* Bibliography :ignore: * Bibliography :ignore:
#+latex: \printbibliography[heading=bibintoc,title={Bibliography}] #+latex: \printbibliography[heading=bibintoc,title={Bibliography}]

Binary file not shown.

View File

@ -1,4 +1,4 @@
% Created 2025-04-13 Sun 17:08 % Created 2025-04-11 Fri 14:30
% Intended LaTeX compiler: pdflatex % Intended LaTeX compiler: pdflatex
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt} \documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
@ -23,29 +23,32 @@
\tableofcontents \tableofcontents
\clearpage \clearpage
Three critical elements for the control of parallel manipulators such as the Nano-Hexapod were identified: effective utilization and combination of multiple sensors, appropriate plant decoupling strategies, and robust controller design for the decoupled system. When controlling a MIMO system (specifically parallel manipulator such as the Stewart platform?)
During the conceptual design phase of the NASS, pragmatic approaches were implemented for each of these elements. \begin{itemize}
The High Authority Control-Low Authority Control (HAC-LAC) architecture was selected for combining sensors. \item[{$\square$}] \textbf{Should the quick review of Stewart platform control be here?}
Control was implemented in the frame of the struts, leveraging the inherent low-frequency decoupling of the plant where all decoupled elements exhibited similar dynamics, thereby simplifying the Single-Input Single-Output (SISO) controller design process. In that case it should be possible to highlight three areas:
For these decoupled plants, open-loop shaping techniques were employed to tune the individual controllers. \begin{itemize}
\item use of multiple sensors
\item decoupling strategy
\item control optimization
\end{itemize}
\end{itemize}
While these initial strategies proved effective in validating the NASS concept, this work explores alternative approaches with the potential to further enhance the performance. Several considerations:
Section \ref{sec:detail_control_sensor} examines different methods for combining multiple sensors, with particular emphasis on sensor fusion techniques that utilize complementary filters. \begin{itemize}
A novel approach for designing these filters is proposed, which allows optimization of the sensor fusion effectiveness. \item Section \ref{sec:detail_control_sensor}: How to most effectively use/combine multiple sensors
\item Section \ref{sec:detail_control_decoupling}: How to decouple a system
Section \ref{sec:detail_control_decoupling} presents a comparative analysis of various decoupling strategies, including Jacobian decoupling, modal decoupling, and Singular Value Decomposition (SVD) decoupling. \item Section \ref{sec:detail_control_cf}: How to design the controller
Each method is evaluated in terms of its theoretical foundations, implementation requirements, and performance characteristics, providing insights into their respective advantages for different applications. \end{itemize}
Finally, Section \ref{sec:detail_control_cf} addresses the challenge of controller design for decoupled plants.
A method for directly shaping closed-loop transfer functions using complementary filters is proposed, offering an intuitive approach to achieving desired performance specifications while ensuring robustness to plant uncertainty.
\chapter{Multiple Sensor Control} \chapter{Multiple Sensor Control}
\label{sec:detail_control_sensor} \label{sec:detail_control_sensor}
The literature review of Stewart platforms revealed a wide diversity of designs with various sensor and actuator configurations. The literature review of Stewart platforms revealed a wide diversity of designs with various sensor and actuator configurations.
Control objectives (such as active damping, vibration isolation, or precise positioning) directly dictate sensor selection, whether inertial, force, or relative position sensors. Control objectives (such as active damping, vibration isolation, or precise positioning) dictate specific sensor configurations.
The selection between inertial sensors, force sensors, or relative position sensors is primarily determined by the system's control requirements.
In cases where multiple control objectives must be achieved simultaneously, as is the case for the Nano Active Stabilization System (NASS) where the Stewart platform must both position the sample and provide isolation from micro-station vibrations, combining multiple sensors within the control architecture has been demonstrated to yield significant performance benefits \cite{hauge04_sensor_contr_space_based_six}. In cases where multiple control objectives must be achieved simultaneously, as is the case for the Nano Active Stabilization System (NASS) where the Stewart platform must both position the sample and provide isolation from micro-station vibrations, combining multiple sensors within the control architecture has been demonstrated to yield significant performance benefits.
From the literature, three principal approaches for combining sensors have been identified: High Authority Control-Low Authority Control (HAC-LAC), sensor fusion, and two-sensor control architectures. From the literature, three principal approaches for combining sensors have been identified: High Authority Control-Low Authority Control (HAC-LAC), sensor fusion, and two-sensor control architectures.
\begin{figure}[htbp] \begin{figure}[htbp]
@ -72,7 +75,7 @@ From the literature, three principal approaches for combining sensors have been
\caption{\label{fig:detail_control_control_multiple_sensors}Different control strategies when using multiple sensors. High Authority Control / Low Authority Control (\subref{fig:detail_control_sensor_arch_hac_lac}). Sensor Fusion (\subref{fig:detail_control_sensor_arch_sensor_fusion}). Two-Sensor Control (\subref{fig:detail_control_sensor_arch_two_sensor_control})} \caption{\label{fig:detail_control_control_multiple_sensors}Different control strategies when using multiple sensors. High Authority Control / Low Authority Control (\subref{fig:detail_control_sensor_arch_hac_lac}). Sensor Fusion (\subref{fig:detail_control_sensor_arch_sensor_fusion}). Two-Sensor Control (\subref{fig:detail_control_sensor_arch_two_sensor_control})}
\end{figure} \end{figure}
The HAC-LAC approach employs a dual-loop control strategy in which two control loops utilize different sensors for distinct purposes (Figure \ref{fig:detail_control_sensor_arch_hac_lac}). The HAC-LAC approach, implemented during the conceptual phase, employs a dual-loop control strategy in which two control loops utilize different sensors for distinct purposes (Figure \ref{fig:detail_control_sensor_arch_hac_lac}).
In \cite{li01_simul_vibrat_isolat_point_contr}, vibration isolation is provided by accelerometers collocated with the voice coil actuators, while external rotational sensors are utilized to achieve pointing control. In \cite{li01_simul_vibrat_isolat_point_contr}, vibration isolation is provided by accelerometers collocated with the voice coil actuators, while external rotational sensors are utilized to achieve pointing control.
In \cite{geng95_intel_contr_system_multip_degree}, force sensors collocated with the magnetostrictive actuators are used for active damping using decentralized IFF, and subsequently accelerometers are employed for adaptive vibration isolation. In \cite{geng95_intel_contr_system_multip_degree}, force sensors collocated with the magnetostrictive actuators are used for active damping using decentralized IFF, and subsequently accelerometers are employed for adaptive vibration isolation.
Similarly, in \cite{wang16_inves_activ_vibrat_isolat_stewar}, piezoelectric actuators with collocated force sensors are used in a decentralized manner to provide active damping while accelerometers are implemented in an adaptive feedback loop to suppress periodic vibrations. Similarly, in \cite{wang16_inves_activ_vibrat_isolat_stewar}, piezoelectric actuators with collocated force sensors are used in a decentralized manner to provide active damping while accelerometers are implemented in an adaptive feedback loop to suppress periodic vibrations.
@ -80,7 +83,7 @@ In \cite{xie17_model_contr_hybrid_passiv_activ}, force sensors are integrated in
The second approach, sensor fusion (illustrated in Figure \ref{fig:detail_control_sensor_arch_sensor_fusion}), involves filtering signals from two sensors using complementary filters\footnote{A set of two complementary filters are two transfer functions that sum to one.} and summing them to create an improved sensor signal. The second approach, sensor fusion (illustrated in Figure \ref{fig:detail_control_sensor_arch_sensor_fusion}), involves filtering signals from two sensors using complementary filters\footnote{A set of two complementary filters are two transfer functions that sum to one.} and summing them to create an improved sensor signal.
In \cite{hauge04_sensor_contr_space_based_six}, geophones (used at low frequency) are merged with force sensors (used at high frequency). In \cite{hauge04_sensor_contr_space_based_six}, geophones (used at low frequency) are merged with force sensors (used at high frequency).
It is demonstrated that combining both sensors using sensor fusion can improve performance compared to using only one of the two sensors. It is demonstrated that combining both sensors using sensor fusion can improve performance compared to using the individual sensors independently.
In \cite{tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip}, sensor fusion architecture is implemented with an accelerometer and a force sensor. In \cite{tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip}, sensor fusion architecture is implemented with an accelerometer and a force sensor.
This implementation is shown to simultaneously achieve high damping of structural modes (through the force sensors) while maintaining very low vibration transmissibility (through the accelerometers). This implementation is shown to simultaneously achieve high damping of structural modes (through the force sensors) while maintaining very low vibration transmissibility (through the accelerometers).
@ -93,20 +96,25 @@ A ``two-sensor control'' approach was proven to perform better than controllers
A Linear Quadratic Regulator (LQG) was employed to optimize the two-input/one-output controller. A Linear Quadratic Regulator (LQG) was employed to optimize the two-input/one-output controller.
Beyond these three main approaches, other control architectures have been proposed for different purposes. Beyond these three main approaches, other control architectures have been proposed for different purposes.
For instance, in \cite{yang19_dynam_model_decoup_contr_flexib}, a first control loop utilizes force sensors and relative motion sensors to compensate for parasitic stiffness of the flexible joints. In \cite{yang19_dynam_model_decoup_contr_flexib}, a first control loop utilizes force sensors and relative motion sensors to compensate for parasitic stiffness of the flexible joints.
Subsequently, the system is decoupled in the modal space (facilitated by the removal of parasitic stiffness) and accelerometers are employed for vibration isolation. Subsequently, the system is decoupled in the modal space (facilitated by the removal of parasitic stiffness) and accelerometers are employed for vibration isolation.
The HAC-LAC architecture was previously investigated during the conceptual phase and successfully implemented to validate the NASS concept, demonstrating excellent performance. The HAC-LAC architecture was previously investigated during the conceptual phase and successfully implemented to validate the NASS concept, demonstrating excellent performance.
At the other end of the spectrum, the two-sensor approach yields greater control design freedom but introduces increased complexity in tuning, and thus was not pursued in this study. At the other end of the spectrum, the two-sensor approach yields greater control design freedom but introduces increased complexity in tuning, and thus was not pursued in this study.
This work instead focuses on sensor fusion, which represents a promising middle ground between the proven HAC-LAC approach and the more complex two-sensor control strategy. This work instead focuses on sensor fusion, which represents a promising middle ground between the proven HAC-LAC approach and the more complex two-sensor control strategy.
A review of sensor fusion is first presented in Section \ref{ssec:detail_control_sensor_review}. A review of sensor fusion is first presented (Section \ref{ssec:detail_control_sensor_review}), followed by an examination of the fundamental theoretical concepts (Section \ref{ssec:detail_control_sensor_fusion_requirements}).
Then, in Section \ref{ssec:detail_control_sensor_fusion_requirements}, both the robustness of the fusion and the noise characteristics of the resulting ``fused sensor'' are derived and expressed as functions of the complementary filters' norms. In this section, both the robustness of the fusion and the noise characteristics of the resulting ``super sensor'' are derived and expressed as functions of the complementary filters' norms.
A synthesis method for shaping complementary filters is proposed in Section \ref{ssec:detail_control_sensor_hinf_method}. A synthesis method for designing complementary filters that allow to shape their norms is proposed (Section \ref{ssec:detail_control_sensor_hinf_method}).
The investigation is then extended beyond the conventional two-sensor scenario, demonstrating how the proposed complementary filter synthesis can be generalized for applications requiring the fusion of three or more sensors (Section \ref{ssec:detail_control_sensor_hinf_three_comp_filters}). The investigation is then extended beyond the conventional two-sensor scenario, demonstrating how the proposed complementary filter synthesis can be generalized for applications requiring the fusion of three or more sensors (Section \ref{ssec:detail_control_sensor_hinf_three_comp_filters}).
\section{Review of Sensor Fusion} \section{Review of Sensor Fusion}
\label{ssec:detail_control_sensor_review} \label{ssec:detail_control_sensor_review}
Sensors used to measure physical quantities have two primary limitations: measurement accuracy which is compromised by various noise sources (including electrical noise from conditioning electronics), and limited measurement bandwidth.
Sensor fusion offers a solution to these limitations by combining multiple sensors \cite{bendat57_optim_filter_indep_measur_two}.
By strategically selecting sensors with complementary characteristics, a ``super sensor'' can be created that combines the advantages of each individual sensor.
Measuring a physical quantity using sensors is always subject to several limitations. Measuring a physical quantity using sensors is always subject to several limitations.
First, the accuracy of the measurement is affected by various noise sources, such as electrical noise from the conditioning electronics. First, the accuracy of the measurement is affected by various noise sources, such as electrical noise from the conditioning electronics.
Second, the frequency range in which the measurement is relevant is bounded by the bandwidth of the sensor. Second, the frequency range in which the measurement is relevant is bounded by the bandwidth of the sensor.
@ -120,7 +128,7 @@ In other applications, sensor fusion is utilized to obtain an estimate of the me
More recently, the fusion of sensors measuring different physical quantities has been proposed to enhance control properties \cite{collette15_sensor_fusion_method_high_perfor,yong16_high_speed_vertic_posit_stage}. More recently, the fusion of sensors measuring different physical quantities has been proposed to enhance control properties \cite{collette15_sensor_fusion_method_high_perfor,yong16_high_speed_vertic_posit_stage}.
In \cite{collette15_sensor_fusion_method_high_perfor}, an inertial sensor used for active vibration isolation is fused with a sensor collocated with the actuator to improve the stability margins of the feedback controller. In \cite{collette15_sensor_fusion_method_high_perfor}, an inertial sensor used for active vibration isolation is fused with a sensor collocated with the actuator to improve the stability margins of the feedback controller.
Beyond Stewart platforms, practical applications of sensor fusion are numerous. On top of Stewart platforms, practical applications of sensor fusion are numerous.
It is widely implemented for attitude estimation in autonomous vehicles such as unmanned aerial vehicles \cite{baerveldt97_low_cost_low_weigh_attit,corke04_inert_visual_sensin_system_small_auton_helic,jensen13_basic_uas} and underwater vehicles \cite{pascoal99_navig_system_desig_using_time,batista10_optim_posit_veloc_navig_filter_auton_vehic}. It is widely implemented for attitude estimation in autonomous vehicles such as unmanned aerial vehicles \cite{baerveldt97_low_cost_low_weigh_attit,corke04_inert_visual_sensin_system_small_auton_helic,jensen13_basic_uas} and underwater vehicles \cite{pascoal99_navig_system_desig_using_time,batista10_optim_posit_veloc_navig_filter_auton_vehic}.
Sensor fusion offers significant benefits for high-performance positioning control as demonstrated in \cite{shaw90_bandw_enhan_posit_measur_using_measur_accel,zimmermann92_high_bandw_orien_measur_contr,min15_compl_filter_desig_angle_estim,yong16_high_speed_vertic_posit_stage}. Sensor fusion offers significant benefits for high-performance positioning control as demonstrated in \cite{shaw90_bandw_enhan_posit_measur_using_measur_accel,zimmermann92_high_bandw_orien_measur_contr,min15_compl_filter_desig_angle_estim,yong16_high_speed_vertic_posit_stage}.
It has also been identified as a key technology for improving the performance of active vibration isolation systems \cite{tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip}. It has also been identified as a key technology for improving the performance of active vibration isolation systems \cite{tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip}.
@ -136,10 +144,14 @@ In early implementations of complementary filtering, analog circuits were used t
While analog complementary filters remain in use today \cite{yong16_high_speed_vertic_posit_stage,moore19_capac_instr_sensor_fusion_high_bandw_nanop}, digital implementation is now more common as it provides greater flexibility. While analog complementary filters remain in use today \cite{yong16_high_speed_vertic_posit_stage,moore19_capac_instr_sensor_fusion_high_bandw_nanop}, digital implementation is now more common as it provides greater flexibility.
Various design methods have been developed to optimize complementary filters. Various design methods have been developed to optimize complementary filters.
The most straightforward approach utilizes analytical formulas, which depending on the application may be first order \cite{corke04_inert_visual_sensin_system_small_auton_helic,yeh05_model_contr_hydraul_actuat_two,yong16_high_speed_vertic_posit_stage}, second order \cite{baerveldt97_low_cost_low_weigh_attit,stoten01_fusion_kinet_data_using_compos_filter,jensen13_basic_uas}, or higher orders \cite{shaw90_bandw_enhan_posit_measur_using_measur_accel,zimmermann92_high_bandw_orien_measur_contr,stoten01_fusion_kinet_data_using_compos_filter,collette15_sensor_fusion_method_high_perfor,matichard15_seism_isolat_advan_ligo}. The most straightforward approach utilizes analytical formulas.
Since the characteristics of the super sensor depend on proper complementary filter design \cite{dehaeze19_compl_filter_shapin_using_synth}, several optimization techniques have emerged—ranging from optimizing parameters for analytical formulas \cite{jensen13_basic_uas,min15_compl_filter_desig_angle_estim,fonseca15_compl} to employing convex optimization tools \cite{hua04_polyp_fir_compl_filter_contr_system,hua05_low_ligo} such as linear matrix inequalities \cite{pascoal99_navig_system_desig_using_time}. Depending on the application, these formulas may be of first order \cite{corke04_inert_visual_sensin_system_small_auton_helic,yeh05_model_contr_hydraul_actuat_two,yong16_high_speed_vertic_posit_stage}, second order \cite{baerveldt97_low_cost_low_weigh_attit,stoten01_fusion_kinet_data_using_compos_filter,jensen13_basic_uas}, or higher orders \cite{shaw90_bandw_enhan_posit_measur_using_measur_accel,zimmermann92_high_bandw_orien_measur_contr,stoten01_fusion_kinet_data_using_compos_filter,collette15_sensor_fusion_method_high_perfor,matichard15_seism_isolat_advan_ligo}.
As demonstrated in \cite{plummer06_optim_compl_filter_their_applic_motion_measur}, complementary filter design can be linked to the standard mixed-sensitivity control problem, allowing powerful classical control theory tools to be applied.
For example, in \cite{jensen13_basic_uas}, two gains of a Proportional Integral (PI) controller are optimized to minimize super sensor noise. Since the characteristics of the super sensor depend on the proper design of complementary filters \cite{dehaeze19_compl_filter_shapin_using_synth}, several optimization techniques have been developed.
Some approaches focus on finding optimal parameters for analytical formulas \cite{jensen13_basic_uas,min15_compl_filter_desig_angle_estim,fonseca15_compl}, while others employ convex optimization tools \cite{hua04_polyp_fir_compl_filter_contr_system,hua05_low_ligo} such as linear matrix inequalities \cite{pascoal99_navig_system_desig_using_time}.
As demonstrated in \cite{plummer06_optim_compl_filter_their_applic_motion_measur}, complementary filter design can be linked to the standard mixed-sensitivity control problem.
Consequently, the powerful tools developed for classical control theory can be applied to complementary filter design.
For example, in \cite{jensen13_basic_uas}, the two gains of a Proportional Integral (PI) controller are optimized to minimize super sensor noise.
All these complementary filter design methods share the common objective of creating a super sensor with desired characteristics, typically in terms of noise and dynamics. All these complementary filter design methods share the common objective of creating a super sensor with desired characteristics, typically in terms of noise and dynamics.
As reported in \cite{zimmermann92_high_bandw_orien_measur_contr,plummer06_optim_compl_filter_their_applic_motion_measur}, phase shifts and magnitude bumps in the super sensor dynamics may occur if complementary filters are poorly designed or if sensors are improperly calibrated. As reported in \cite{zimmermann92_high_bandw_orien_measur_contr,plummer06_optim_compl_filter_their_applic_motion_measur}, phase shifts and magnitude bumps in the super sensor dynamics may occur if complementary filters are poorly designed or if sensors are improperly calibrated.
@ -147,7 +159,7 @@ Therefore, the robustness of the fusion must be considered when designing comple
Despite the numerous design methods proposed in the literature, a simple approach that specifies desired super sensor characteristics while ensuring good fusion robustness has been lacking. Despite the numerous design methods proposed in the literature, a simple approach that specifies desired super sensor characteristics while ensuring good fusion robustness has been lacking.
Fortunately, both fusion robustness and super sensor characteristics can be linked to complementary filter magnitude \cite{dehaeze19_compl_filter_shapin_using_synth}. Fortunately, both fusion robustness and super sensor characteristics can be linked to complementary filter magnitude \cite{dehaeze19_compl_filter_shapin_using_synth}.
Based on this relationship, the present work introduces an approach to designing complementary filters using \(\mathcal{H}_\infty\text{-synthesis}\), which enables intuitive shaping of complementary filter magnitude in a straightforward manner. Based on this relationship, the present work introduces an approach to designing complementary filters using \(\mathcal{H}_\infty\) synthesis, which enables intuitive shaping of complementary filter magnitude in a straightforward manner.
\section{Sensor Fusion and Complementary Filters Requirements} \section{Sensor Fusion and Complementary Filters Requirements}
\label{ssec:detail_control_sensor_fusion_requirements} \label{ssec:detail_control_sensor_fusion_requirements}
A general sensor fusion architecture using complementary filters is shown in Figure \ref{fig:detail_control_sensor_fusion_overview}, where multiple sensors (in this case two) measure the same physical quantity \(x\). A general sensor fusion architecture using complementary filters is shown in Figure \ref{fig:detail_control_sensor_fusion_overview}, where multiple sensors (in this case two) measure the same physical quantity \(x\).
@ -219,7 +231,7 @@ The effects of imperfect normalization will be addressed subsequently.
In that case, the super sensor output \(\hat{x}\) equals \(x\) plus the filtered noise from both sensors \eqref{eq:detail_control_sensor_estimate_perfect_dyn}. In that case, the super sensor output \(\hat{x}\) equals \(x\) plus the filtered noise from both sensors \eqref{eq:detail_control_sensor_estimate_perfect_dyn}.
From this equation, it is evident that the complementary filters \(H_1(s)\) and \(H_2(s)\) operate solely on the sensor noise. From this equation, it is evident that the complementary filters \(H_1(s)\) and \(H_2(s)\) operate solely on the sensor noise.
Thus, this sensor fusion architecture allows filtering of sensor noise without introducing distortion in the measured physical quantity. Thus, this sensor fusion architecture allows filtering of sensor noise without introducing distortion in the measured physical quantity.
This fundamental property necessitates that the two filters are complementary. This fundamental property necessitates that the two filters must be complementary.
\begin{equation}\label{eq:detail_control_sensor_estimate_perfect_dyn} \begin{equation}\label{eq:detail_control_sensor_estimate_perfect_dyn}
\hat{x} = x + H_1(s) n_1 + H_2(s) n_2 \hat{x} = x + H_1(s) n_1 + H_2(s) n_2
@ -241,13 +253,15 @@ If the two sensors have identical noise characteristics (\(\Phi_{n_1}(\omega) =
This represents the simplest form of sensor fusion using complementary filters. This represents the simplest form of sensor fusion using complementary filters.
However, sensors typically exhibit high noise levels in different frequency regions. However, sensors typically exhibit high noise levels in different frequency regions.
In such cases, to reduce the noise of the super sensor, \(|H_1(j\omega)|\) should be minimized when \(\Phi_{n_1}(\omega)\) exceeds \(\Phi_{n_2}(\omega)\), and \(|H_2(j\omega)|\) should be minimized when \(\Phi_{n_2}(\omega)\) exceeds \(\Phi_{n_1}(\omega)\). In such cases, to reduce the noise of the super sensor, the norm \(|H_1(j\omega)|\) should be minimized when \(\Phi_{n_1}(\omega)\) exceeds \(\Phi_{n_2}(\omega)\), and the norm \(|H_2(j\omega)|\) should be minimized when \(\Phi_{n_2}(\omega)\) exceeds \(\Phi_{n_1}(\omega)\).
Therefore, by appropriately shaping the norm of the complementary filters, the noise of the super sensor can be minimized. Therefore, by appropriately shaping the norm of the complementary filters, the noise of the super sensor can be minimized.
\paragraph{Sensor Fusion Robustness} \paragraph{Sensor Fusion Robustness}
In practical systems, sensor normalization is rarely perfect, and condition \eqref{eq:detail_control_sensor_perfect_dynamics} is not fully satisfied. In practical systems, sensor normalization is rarely perfect, and condition \eqref{eq:detail_control_sensor_perfect_dynamics} is not fully satisfied.
To analyze such imperfections, a multiplicative input uncertainty is incorporated into the sensor dynamics (Figure \ref{fig:detail_control_sensor_model_uncertainty}). To analyze such imperfections, a multiplicative input uncertainty is incorporated into the sensor dynamics (Figure \ref{fig:detail_control_sensor_model_uncertainty}).
The nominal model is the estimated model used for normalization \(\hat{G}_i(s)\), \(\Delta_i(s)\) is any stable transfer function satisfying \(|\Delta_i(j\omega)| \le 1,\ \forall\omega\), and \(w_i(s)\) is a weighting transfer function representing the magnitude of uncertainty. The nominal model is the estimated model used for normalization \(\hat{G}_i(s)\), \(\Delta_i(s)\) is any stable transfer function satisfying \(|\Delta_i(j\omega)| \le 1,\ \forall\omega\), and \(w_i(s)\) is a weighting transfer function representing the magnitude of uncertainty.
The weight \(w_i(s)\) is selected such that the actual sensor dynamics \(G_i(j\omega)\) remains within the uncertain region represented by a circle in the complex plane, centered on \(1\) with a radius equal to \(|w_i(j\omega)|\).
Since the nominal sensor dynamics is taken as the normalized filter, the normalized sensor model can be further simplified as shown in Figure \ref{fig:detail_control_sensor_model_uncertainty_simplified}. Since the nominal sensor dynamics is taken as the normalized filter, the normalized sensor model can be further simplified as shown in Figure \ref{fig:detail_control_sensor_model_uncertainty_simplified}.
@ -262,7 +276,7 @@ Since the nominal sensor dynamics is taken as the normalized filter, the normali
\begin{center} \begin{center}
\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_control_sensor_model_uncertainty_simplified.png} \includegraphics[scale=1,width=0.95\linewidth]{figs/detail_control_sensor_model_uncertainty_simplified.png}
\end{center} \end{center}
\subcaption{\label{fig:detail_control_sensor_model_uncertainty_simplified}Simplified normalized sensor model} \subcaption{\label{fig:detail_control_sensor_model_uncertainty_simplified}Simplified sensor model}
\end{subfigure} \end{subfigure}
\caption{\label{fig:detail_control_sensor_models_uncertainty}Sensor models with dynamical uncertainty} \caption{\label{fig:detail_control_sensor_models_uncertainty}Sensor models with dynamical uncertainty}
\end{figure} \end{figure}
@ -271,6 +285,11 @@ The sensor fusion architecture incorporating sensor models with dynamical uncert
The super sensor dynamics \eqref{eq:detail_control_sensor_super_sensor_dyn_uncertainty} is no longer unity but depends on the sensor dynamical uncertainty weights \(w_i(s)\) and the complementary filters \(H_i(s)\). The super sensor dynamics \eqref{eq:detail_control_sensor_super_sensor_dyn_uncertainty} is no longer unity but depends on the sensor dynamical uncertainty weights \(w_i(s)\) and the complementary filters \(H_i(s)\).
The dynamical uncertainty of the super sensor can be graphically represented in the complex plane by a circle centered on \(1\) with a radius equal to \(|w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)|\) (Figure \ref{fig:detail_control_sensor_uncertainty_set_super_sensor}). The dynamical uncertainty of the super sensor can be graphically represented in the complex plane by a circle centered on \(1\) with a radius equal to \(|w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)|\) (Figure \ref{fig:detail_control_sensor_uncertainty_set_super_sensor}).
The sensor fusion architecture with the sensor models including dynamical uncertainty is shown in Figure \ref{fig:detail_control_sensor_fusion_dynamic_uncertainty}.
The super sensor dynamics \eqref{eq:detail_control_sensor_super_sensor_dyn_uncertainty} is no longer equal to \(1\) and now depends on the sensor dynamical uncertainty weights \(w_i(s)\) as well as on the complementary filters \(H_i(s)\).
The dynamical uncertainty of the super sensor can be graphically represented in the complex plane by a circle centered on \(1\) with a radius equal to \(|w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)|\) (Figure \ref{fig:detail_control_sensor_uncertainty_set_super_sensor}).
\begin{equation}\label{eq:detail_control_sensor_super_sensor_dyn_uncertainty} \begin{equation}\label{eq:detail_control_sensor_super_sensor_dyn_uncertainty}
\frac{\hat{x}}{x} = 1 + w_1(s) H_1(s) \Delta_1(s) + w_2(s) H_2(s) \Delta_2(s) \frac{\hat{x}}{x} = 1 + w_1(s) H_1(s) \Delta_1(s) + w_2(s) H_2(s) \Delta_2(s)
\end{equation} \end{equation}
@ -298,7 +317,7 @@ As it is generally desired to limit the dynamical uncertainty of the super senso
As established in Section \ref{ssec:detail_control_sensor_fusion_requirements}, the super sensor's noise characteristics and robustness are directly dependent on the complementary filters' norm. As established in Section \ref{ssec:detail_control_sensor_fusion_requirements}, the super sensor's noise characteristics and robustness are directly dependent on the complementary filters' norm.
A synthesis method enabling precise shaping of these norms would therefore offer substantial practical benefits. A synthesis method enabling precise shaping of these norms would therefore offer substantial practical benefits.
This section develops such an approach by formulating the design objective as a standard \(\mathcal{H}_\infty\) optimization problem. This section develops such an approach by formulating the design objective as a standard \(\mathcal{H}_\infty\) optimization problem.
The methodology for designing appropriate weighting functions (which specify desired complementary filter shape during synthesis) is examined in detail, and the efficacy of the proposed method is validated with a simple example. The methodology for designing appropriate weighting functions (which specify desired complementary filter shapes during synthesis) is examined in detail, and the efficacy of the proposed method is validated with a simple example.
\paragraph{Synthesis Objective} \paragraph{Synthesis Objective}
The primary objective is to shape the norms of two filters \(H_1(s)\) and \(H_2(s)\) while ensuring they maintain their complementary property as defined in \eqref{eq:detail_control_sensor_comp_filter}. The primary objective is to shape the norms of two filters \(H_1(s)\) and \(H_2(s)\) while ensuring they maintain their complementary property as defined in \eqref{eq:detail_control_sensor_comp_filter}.
@ -314,7 +333,8 @@ Weighting transfer functions \(W_1(s)\) and \(W_2(s)\) are strategically selecte
\end{subequations} \end{subequations}
\paragraph{Shaping of Complementary Filters using \(\mathcal{H}_\infty\) synthesis} \paragraph{Shaping of Complementary Filters using \(\mathcal{H}_\infty\) synthesis}
The synthesis objective can be expressed as a standard \(\mathcal{H}_\infty\) optimization problem by considering the generalized plant \(P(s)\) illustrated in Figure \ref{fig:detail_control_sensor_h_infinity_robust_fusion_plant} and mathematically described by \eqref{eq:detail_control_sensor_generalized_plant}. The synthesis objective can be readily expressed as a standard \(\mathcal{H}_\infty\) optimization problem and solved using widely available computational tools.
Consider the generalized plant \(P(s)\) illustrated in Figure \ref{fig:detail_control_sensor_h_infinity_robust_fusion_plant} and mathematically described by \eqref{eq:detail_control_sensor_generalized_plant}.
\begin{equation}\label{eq:detail_control_sensor_generalized_plant} \begin{equation}\label{eq:detail_control_sensor_generalized_plant}
\begin{bmatrix} z_1 \\ z_2 \\ v \end{bmatrix} = P(s) \begin{bmatrix} w\\u \end{bmatrix}; \quad P(s) = \begin{bmatrix}W_1(s) & -W_1(s) \\ 0 & \phantom{+}W_2(s) \\ 1 & 0 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ v \end{bmatrix} = P(s) \begin{bmatrix} w\\u \end{bmatrix}; \quad P(s) = \begin{bmatrix}W_1(s) & -W_1(s) \\ 0 & \phantom{+}W_2(s) \\ 1 & 0 \end{bmatrix}
@ -333,16 +353,16 @@ The synthesis objective can be expressed as a standard \(\mathcal{H}_\infty\) op
\end{center} \end{center}
\subcaption{\label{fig:detail_control_sensor_h_infinity_robust_fusion_fb}Generalized plant with the synthesized filter} \subcaption{\label{fig:detail_control_sensor_h_infinity_robust_fusion_fb}Generalized plant with the synthesized filter}
\end{subfigure} \end{subfigure}
\caption{\label{fig:detail_control_sensor_h_infinity_robust_fusion}Architecture for the \(\mathcal{H}_\infty\text{-synthesis}\) of complementary filters} \caption{\label{fig:detail_control_sensor_h_infinity_robust_fusion}Architecture for the \(\mathcal{H}_\infty\) synthesis of complementary filters}
\end{figure} \end{figure}
Applying standard \(\mathcal{H}_\infty\text{-synthesis}\) to the generalized plant \(P(s)\) is equivalent to finding a stable filter \(H_2(s)\) that, based on input \(v\), generates an output signal \(u\) such that the \(\mathcal{H}_\infty\) norm of the system shown in Figure \ref{fig:detail_control_sensor_h_infinity_robust_fusion_fb} from \(w\) to \([z_1, \ z_2]\) does not exceed unity, as expressed in \eqref{eq:detail_control_sensor_hinf_syn_obj}. Applying standard \(\mathcal{H}_\infty\) synthesis to the generalized plant \(P(s)\) is equivalent to finding a stable filter \(H_2(s)\) that, based on input \(v\), generates an output signal \(u\) such that the \(\mathcal{H}_\infty\) norm of the system shown in Figure \ref{fig:detail_control_sensor_h_infinity_robust_fusion_fb} from \(w\) to \([z_1, \ z_2]\) does not exceed unity, as expressed in \eqref{eq:detail_control_sensor_hinf_syn_obj}.
\begin{equation}\label{eq:detail_control_sensor_hinf_syn_obj} \begin{equation}\label{eq:detail_control_sensor_hinf_syn_obj}
\left\|\begin{matrix} \left(1 - H_2(s)\right) W_1(s) \\ H_2(s) W_2(s) \end{matrix}\right\|_\infty \le 1 \left\|\begin{matrix} \left(1 - H_2(s)\right) W_1(s) \\ H_2(s) W_2(s) \end{matrix}\right\|_\infty \le 1
\end{equation} \end{equation}
By defining \(H_1(s)\) as the complement of \(H_2(s)\) \eqref{eq:detail_control_sensor_definition_H1}, the \(\mathcal{H}_\infty\text{-synthesis}\) objective becomes equivalent to \eqref{eq:detail_control_sensor_hinf_problem}, ensuring that conditions \eqref{eq:detail_control_sensor_hinf_cond_h1} and \eqref{eq:detail_control_sensor_hinf_cond_h2} are satisfied. By defining \(H_1(s)\) as the complement of \(H_2(s)\) (\eqref{eq:detail_control_sensor_definition_H1}), the \(\mathcal{H}_\infty\) synthesis objective becomes equivalent to \eqref{eq:detail_control_sensor_hinf_problem}, ensuring that conditions \eqref{eq:detail_control_sensor_hinf_cond_h1} and \eqref{eq:detail_control_sensor_hinf_cond_h2} are satisfied.
\begin{equation}\label{eq:detail_control_sensor_definition_H1} \begin{equation}\label{eq:detail_control_sensor_definition_H1}
H_1(s) \triangleq 1 - H_2(s) H_1(s) \triangleq 1 - H_2(s)
@ -352,19 +372,19 @@ By defining \(H_1(s)\) as the complement of \(H_2(s)\) \eqref{eq:detail_control_
\left\|\begin{matrix} H_1(s) W_1(s) \\ H_2(s) W_2(s) \end{matrix}\right\|_\infty \le 1 \left\|\begin{matrix} H_1(s) W_1(s) \\ H_2(s) W_2(s) \end{matrix}\right\|_\infty \le 1
\end{equation} \end{equation}
Therefore, applying \(\mathcal{H}_\infty\text{-synthesis}\) to the standard plant \(P(s)\) generates two filters, \(H_2(s)\) and \(H_1(s) \triangleq 1 - H_2(s)\), that are complementary as required by \eqref{eq:detail_control_sensor_comp_filter_problem_form}, with norms bounded by the specified constraints in \eqref{eq:detail_control_sensor_hinf_cond_h1} and \eqref{eq:detail_control_sensor_hinf_cond_h2}. Therefore, applying \(\mathcal{H}_\infty\) synthesis to the standard plant \(P(s)\) (\eqref{eq:detail_control_sensor_generalized_plant}) generates two filters, \(H_2(s)\) and \(H_1(s) \triangleq 1 - H_2(s)\), that are complementary as required by \eqref{eq:detail_control_sensor_comp_filter_problem_form}, with norms bounded by the specified constraints in \eqref{eq:detail_control_sensor_hinf_cond_h1} and \eqref{eq:detail_control_sensor_hinf_cond_h2}.
It should be noted that there exists only an implication (not an equivalence) between the \(\mathcal{H}_\infty\) norm condition in \eqref{eq:detail_control_sensor_hinf_problem} and the initial synthesis objectives in \eqref{eq:detail_control_sensor_hinf_cond_h1} and \eqref{eq:detail_control_sensor_hinf_cond_h2}. It should be noted that there exists only an implication (not an equivalence) between the \(\mathcal{H}_\infty\) norm condition in \eqref{eq:detail_control_sensor_hinf_problem} and the initial synthesis objectives in \eqref{eq:detail_control_sensor_hinf_cond_h1} and \eqref{eq:detail_control_sensor_hinf_cond_h2}.
Consequently, the optimization may be somewhat conservative with respect to the set of filters on which it operates \cite[,Chap. 2.8.3]{skogestad07_multiv_feedb_contr}. Consequently, the optimization may be somewhat conservative with respect to the set of filters on which it operates (see \cite[,Chap. 2.8.3]{skogestad07_multiv_feedb_contr}).
\paragraph{Weighting Functions Design} \paragraph{Weighting Functions Design}
Weighting functions play a crucial role during synthesis by specifying the maximum allowable norms for the complementary filters. Weighting functions play a crucial role during synthesis by specifying the maximum allowable norms for the complementary filters.
The proper design of these weighting functions is essential for the successful implementation of the proposed \(\mathcal{H}_\infty\text{-synthesis}\) approach. The proper design of these weighting functions is essential for the successful implementation of the proposed \(\mathcal{H}_\infty\) synthesis approach.
Three key considerations should guide the design of weighting functions. Three key considerations should guide the design of weighting functions.
First, only proper and stable transfer functions should be employed. First, only proper and stable transfer functions should be employed.
Second, the order of the weighting functions should remain reasonably small to minimize computational costs associated with solving the optimization problem and to facilitate practical implementation of the filters (as the order of the synthesized filters equals the sum of the weighting functions' orders). Second, the order of the weighting functions should remain reasonably small to minimize computational costs associated with solving the optimization problem and to facilitate practical implementation of the filters (as the order of the synthesized filters equals the sum of the weighting functions' orders).
Third, the fundamental limitations imposed by the complementary property \eqref{eq:detail_control_sensor_comp_filter} must be respected, which implies that \(|H_1(j\omega)|\) and \(|H_2(j\omega)|\) cannot both be made small at the same frequency. Third, the fundamental limitations imposed by the complementary property (\eqref{eq:detail_control_sensor_comp_filter}) must be respected, which implies that \(|H_1(j\omega)|\) and \(|H_2(j\omega)|\) cannot both be made small at the same frequency.
When designing complementary filters, it is typically desirable to specify their slopes, ``blending'' frequency, and maximum gains at low and high frequencies. When designing complementary filters, it is typically desirable to specify their slopes, ``blending'' frequency, and maximum gains at low and high frequencies.
To facilitate the expression of these specifications, formula \eqref{eq:detail_control_sensor_weight_formula} is proposed for the design of weighting functions. To facilitate the expression of these specifications, formula \eqref{eq:detail_control_sensor_weight_formula} is proposed for the design of weighting functions.
@ -426,7 +446,7 @@ Parameter & \(W_1(s)\) & \(W_2(s)\)\\
\end{center} \end{center}
\end{minipage} \end{minipage}
Standard \(\mathcal{H}_\infty\text{-synthesis}\) is then applied to the generalized plant shown in Figure \ref{fig:detail_control_sensor_h_infinity_robust_fusion_plant}. Standard \(\mathcal{H}_\infty\) synthesis is then applied to the generalized plant shown in Figure \ref{fig:detail_control_sensor_h_infinity_robust_fusion_plant}.
This yields the filter \(H_2(s)\) that minimizes the \(\mathcal{H}_\infty\) norm from input \(w\) to outputs \([z_1,\ z_2]^{\intercal}\). This yields the filter \(H_2(s)\) that minimizes the \(\mathcal{H}_\infty\) norm from input \(w\) to outputs \([z_1,\ z_2]^{\intercal}\).
The resulting \(\mathcal{H}_\infty\) norm is found to be close to unity, indicating successful synthesis: the norms of the complementary filters remain below the specified upper bounds. The resulting \(\mathcal{H}_\infty\) norm is found to be close to unity, indicating successful synthesis: the norms of the complementary filters remain below the specified upper bounds.
This is confirmed by the Bode plots of the obtained complementary filters in Figure \ref{fig:detail_control_sensor_hinf_filters_results}. This is confirmed by the Bode plots of the obtained complementary filters in Figure \ref{fig:detail_control_sensor_hinf_filters_results}.
@ -472,7 +492,7 @@ The synthesis objective is to compute a set of \(n\) stable transfer functions \
The transfer functions \([W_1(s),\ W_2(s),\ \dots,\ W_n(s)]\) are weights selected to specify the maximum complementary filters' norm during synthesis. The transfer functions \([W_1(s),\ W_2(s),\ \dots,\ W_n(s)]\) are weights selected to specify the maximum complementary filters' norm during synthesis.
This synthesis objective is closely related to the one described in Section \ref{ssec:detail_control_sensor_hinf_method}, and the proposed synthesis method represents a generalization of the approach previously presented. This synthesis objective is closely related to the one described in Section \ref{ssec:detail_control_sensor_hinf_method}, and the proposed synthesis method represents a generalization of the approach previously presented.
A set of \(n\) complementary filters can be shaped by applying standard \(\mathcal{H}_\infty\text{-synthesis}\) to the generalized plant \(P_n(s)\) described by \eqref{eq:detail_control_sensor_generalized_plant_n_filters}. A set of \(n\) complementary filters can be shaped by applying standard \(\mathcal{H}_\infty\) synthesis to the generalized plant \(P_n(s)\) described by \eqref{eq:detail_control_sensor_generalized_plant_n_filters}.
\begin{equation}\label{eq:detail_control_sensor_generalized_plant_n_filters} \begin{equation}\label{eq:detail_control_sensor_generalized_plant_n_filters}
\begin{bmatrix} z_1 \\ \vdots \\ z_n \\ v \end{bmatrix} = P_n(s) \begin{bmatrix} w \\ u_1 \\ \vdots \\ u_{n-1} \end{bmatrix}; \quad \begin{bmatrix} z_1 \\ \vdots \\ z_n \\ v \end{bmatrix} = P_n(s) \begin{bmatrix} w \\ u_1 \\ \vdots \\ u_{n-1} \end{bmatrix}; \quad
@ -512,7 +532,7 @@ Consider the generalized plant \(P_3(s)\) shown in Figure \ref{fig:detail_contro
\begin{figure}[htbp] \begin{figure}[htbp]
\begin{subfigure}{0.48\textwidth} \begin{subfigure}{0.48\textwidth}
\begin{center} \begin{center}
\includegraphics[scale=1,scale=0.9]{figs/detail_control_sensor_comp_filter_three_hinf_fb.png} \includegraphics[scale=1,width=0.95\linewidth]{figs/detail_control_sensor_comp_filter_three_hinf_fb.png}
\end{center} \end{center}
\subcaption{\label{fig:detail_control_sensor_comp_filter_three_hinf_fb}Generalized plant with the synthesized filter} \subcaption{\label{fig:detail_control_sensor_comp_filter_three_hinf_fb}Generalized plant with the synthesized filter}
\end{subfigure} \end{subfigure}
@ -522,10 +542,10 @@ Consider the generalized plant \(P_3(s)\) shown in Figure \ref{fig:detail_contro
\end{center} \end{center}
\subcaption{\label{fig:detail_control_sensor_three_complementary_filters_results}Weights and obtained filters} \subcaption{\label{fig:detail_control_sensor_three_complementary_filters_results}Weights and obtained filters}
\end{subfigure} \end{subfigure}
\caption{\label{fig:detail_control_sensor_comp_filter_three_hinf}Architecture for the \(\mathcal{H}_\infty\text{-synthesis}\) of three complementary filters (\subref{fig:detail_control_sensor_comp_filter_three_hinf_fb}). Bode plot of the inverse weighting functions and of the three obtained complementary filters (\subref{fig:detail_control_sensor_three_complementary_filters_results})} \caption{\label{fig:detail_control_sensor_comp_filter_three_hinf}Architecture for the \(\mathcal{H}_\infty\) synthesis of three complementary filters (\subref{fig:detail_control_sensor_comp_filter_three_hinf_fb}). Bode plot of the inverse weighting functions and of the three obtained complementary filters (\subref{fig:detail_control_sensor_three_complementary_filters_results})}
\end{figure} \end{figure}
Standard \(\mathcal{H}_\infty\text{-synthesis}\) is performed on the generalized plant \(P_3(s)\). Standard \(\mathcal{H}_\infty\) synthesis is performed on the generalized plant \(P_3(s)\).
Two filters, \(H_2(s)\) and \(H_3(s)\), are obtained such that the \(\mathcal{H}_\infty\) norm of the closed-loop transfer from \(w\) to \([z_1,\ z_2,\ z_3]\) of the system in Figure \ref{fig:detail_control_sensor_comp_filter_three_hinf_fb} is less than one. Two filters, \(H_2(s)\) and \(H_3(s)\), are obtained such that the \(\mathcal{H}_\infty\) norm of the closed-loop transfer from \(w\) to \([z_1,\ z_2,\ z_3]\) of the system in Figure \ref{fig:detail_control_sensor_comp_filter_three_hinf_fb} is less than one.
Filter \(H_1(s)\) is defined using \eqref{eq:detail_control_sensor_h1_compl_h2_h3}, thus ensuring the complementary property of the obtained set of filters. Filter \(H_1(s)\) is defined using \eqref{eq:detail_control_sensor_h1_compl_h2_h3}, thus ensuring the complementary property of the obtained set of filters.
@ -535,17 +555,17 @@ Filter \(H_1(s)\) is defined using \eqref{eq:detail_control_sensor_h1_compl_h2_h
Figure \ref{fig:detail_control_sensor_three_complementary_filters_results} displays the three synthesized complementary filters (solid lines), confirming the successful synthesis. Figure \ref{fig:detail_control_sensor_three_complementary_filters_results} displays the three synthesized complementary filters (solid lines), confirming the successful synthesis.
\section*{Conclusion} \section*{Conclusion}
A new method for designing complementary filters using the \(\mathcal{H}_\infty\text{-synthesis}\) has been proposed. A new method for designing complementary filters using the \(\mathcal{H}_\infty\) synthesis has been proposed.
This approach allows shaping of the filter magnitudes through the use of weighting functions during synthesis. This approach allows shaping of the filter magnitudes through the use of weighting functions during synthesis.
This capability is particularly valuable in practice since the characteristics of the super sensor are directly linked to the complementary filters' magnitude. This capability is particularly valuable in practice since the characteristics of the super sensor are directly linked to the complementary filters' magnitude.
Consequently, typical sensor fusion objectives can be effectively translated into requirements on the magnitudes of the filters. Consequently, typical sensor fusion objectives can be effectively translated into requirements on the magnitudes of the filters.
For the NASS, the HAC-LAC strategy was found to perform well and to offer the advantages of being both intuitive to understand and straightforward to tune. For the Nano Active Stabilization System (NASS), the High Authority Control-Integral Force Feedback (HAC-IFF) strategy was found to perform well and to offer the advantages of being both intuitive to understand and straightforward to tune.
Looking forward, it would be interesting to investigate how sensor fusion (particularly between the force sensors and external metrology) compares to the HAC-IFF approach in terms of performance and robustness. Looking forward, it would be interesting to investigate how sensor fusion (particularly between the force sensor and external metrology) compares to the HAC-IFF approach in terms of performance and robustness.
\chapter{Decoupling} \chapter{Decoupling}
\label{sec:detail_control_decoupling} \label{sec:detail_control_decoupling}
The control of parallel manipulators (and any MIMO system in general) typically involves a two-step approach: first decoupling the plant dynamics (using various strategies discussed in this section), followed by the application of SISO control for the decoupled plant (discussed in section \ref{sec:detail_control_cf}). The control of parallel manipulators (and any MIMO system in general) typically involves a two-step approach: first decoupling the plant dynamics using various strategies, which will be discussed in this section, followed by the application of SISO control for the decoupled plant (discussed in section \ref{sec:detail_control_cf}).
When sensors are integrated within the struts, decentralized control may be applied, as the system is already well decoupled at low frequency. When sensors are integrated within the struts, decentralized control may be applied, as the system is already well decoupled at low frequency.
For instance, \cite{furutani04_nanom_cuttin_machin_using_stewar} implemented a system where each strut consists of piezoelectric stack actuators and eddy current displacement sensors, with separate PI controllers for each strut. For instance, \cite{furutani04_nanom_cuttin_machin_using_stewar} implemented a system where each strut consists of piezoelectric stack actuators and eddy current displacement sensors, with separate PI controllers for each strut.
@ -557,24 +577,23 @@ This approach enables the implementation of controllers in a defined frame.
It has been applied with various sensor types including force sensors \cite{mcinroy00_desig_contr_flexur_joint_hexap}, relative displacement sensors \cite{kim00_robus_track_contr_desig_dof_paral_manip}, and inertial sensors \cite{li01_simul_vibrat_isolat_point_contr,abbas14_vibrat_stewar_platf}. It has been applied with various sensor types including force sensors \cite{mcinroy00_desig_contr_flexur_joint_hexap}, relative displacement sensors \cite{kim00_robus_track_contr_desig_dof_paral_manip}, and inertial sensors \cite{li01_simul_vibrat_isolat_point_contr,abbas14_vibrat_stewar_platf}.
The Cartesian frame in which the system is decoupled is typically chosen at the point of interest (i.e., where the motion is of interest) or at the center of mass. The Cartesian frame in which the system is decoupled is typically chosen at the point of interest (i.e., where the motion is of interest) or at the center of mass.
Modal decoupling represents another noteworthy decoupling strategy, wherein the ``local'' plant inputs and outputs are mapped to the modal space. Modal control represents another noteworthy decoupling strategy, wherein the ``local'' plant inputs and outputs are mapped to the modal space.
In this approach, multiple SISO plants, each corresponding to a single mode, can be controlled independently. In this approach, multiple SISO plants, each corresponding to a single mode, can be controlled independently.
This decoupling strategy has been implemented for active damping applications \cite{holterman05_activ_dampin_based_decoup_colloc_contr}, which is logical as it is often desirable to dampen specific modes. This decoupling strategy has been implemented for active damping applications \cite{holterman05_activ_dampin_based_decoup_colloc_contr}, which is logical as it is often desirable to dampen specific modes.
The strategy has also been employed in \cite{pu11_six_degree_of_freed_activ} for vibration isolation purposes using geophones, and in \cite{yang19_dynam_model_decoup_contr_flexib} using force sensors. The strategy has also been employed in \cite{pu11_six_degree_of_freed_activ} for vibration isolation purposes using geophones, and in \cite{yang19_dynam_model_decoup_contr_flexib} using force sensors.
Another completely different strategy would be to implement a multivariable control directly on the coupled system. Another completely different strategy, is to use implement a multivariable control directly on the coupled system.
\(\mathcal{H}_\infty\) and \(\mu\text{-synthesis}\) were applied to a Stewart platform model in \cite{lei08_multi_objec_robus_activ_vibrat}. \(\mathcal{H}_\infty\) and \(\mu\text{-synthesis}\) were applied to a Stewart platform model in \cite{lei08_multi_objec_robus_activ_vibrat}.
In \cite{xie17_model_contr_hybrid_passiv_activ}, decentralized force feedback was first applied, followed by \(\mathcal{H}_2\text{-synthesis}\) for vibration isolation based on accelerometers. In \cite{xie17_model_contr_hybrid_passiv_activ}, decentralized force feedback was first applied, followed by \(\mathcal{H}_2\) synthesis for vibration isolation based on accelerometers.
\(\mathcal{H}_\infty\text{-synthesis}\) was also employed in \cite{jiao18_dynam_model_exper_analy_stewar} for active damping based on accelerometers. \(\mathcal{H}_\infty\) synthesis was also employed in \cite{jiao18_dynam_model_exper_analy_stewar} for active damping based on accelerometers.
A comparative study between \(\mathcal{H}_\infty\text{-synthesis}\) and decentralized control in the frame of the struts was performed in \cite{thayer02_six_axis_vibrat_isolat_system}. \cite{thayer02_six_axis_vibrat_isolat_system} compared \(\mathcal{H}_\infty\) synthesis with decentralized control in the frame of the struts.
Their experimental closed-loop results indicated that the \(\mathcal{H}_\infty\) controller did not outperform the decentralized controller in the frame of the struts. Their experimental closed-loop results indicated that the \(\mathcal{H}_\infty\) controller did not outperform the decentralized controller in the frame of the struts.
These limitations were attributed to the model's poor ability to predict off-diagonal dynamics, which is crucial for \(\mathcal{H}_\infty\text{-synthesis}\). These limitations were attributed to the model's poor ability to predict off-diagonal dynamics, which is crucial for \(\mathcal{H}_\infty\) synthesis.
The purpose of this section is to compare several methods for the decoupling of parallel manipulators, an analysis that appears to be lacking in the literature. The purpose of this section is to compare several methods for the decoupling of parallel manipulators, an analysis that appears to be lacking in the literature.
A simplified parallel manipulator model is introduced in Section \ref{ssec:detail_control_decoupling_model} as a test case for evaluating decoupling strategies. The analysis begins in Section \ref{ssec:detail_control_decoupling_model} with the introduction of a simplified parallel manipulator model that serves as the foundation for evaluating various decoupling strategies.
The decentralized plant (transfer functions from actuators to sensors integrated in the struts) is examined in Section \ref{ssec:detail_control_decoupling_decentralized}. Sections \ref{ssec:detail_control_decoupling_jacobian} through \ref{ssec:detail_control_decoupling_svd} systematically examine three distinct approaches: Jacobian matrix decoupling, modal decoupling, and Singular Value Decomposition (SVD) decoupling, respectively.
Three approaches are investigated across subsequent sections: Jacobian matrix decoupling (Section \ref{ssec:detail_control_decoupling_jacobian}), modal decoupling (Section \ref{ssec:detail_control_decoupling_modal}), and Singular Value Decomposition (SVD) decoupling (Section \ref{ssec:detail_control_decoupling_svd}). The comparative assessment of these three methodologies, along with concluding observations, is provided in Section \ref{ssec:detail_control_decoupling_comp}.
Finally, a comparative analysis with concluding observations is provided in Section \ref{ssec:detail_control_decoupling_comp}.
\section{Test Model} \section{Test Model}
\label{ssec:detail_control_decoupling_model} \label{ssec:detail_control_decoupling_model}
@ -674,7 +693,7 @@ The obtained transfer function from \(\bm{\mathcal{\tau}}\) to \(\bm{\mathcal{L}
\frac{\bm{\mathcal{L}}}{\bm{\mathcal{\tau}}}(s) = \bm{G}_{\mathcal{L}}(s) = \left( \bm{J}_{\{M\}}^{-\intercal} \bm{M}_{\{M\}} \bm{J}_{\{M\}}^{-1} s^2 + \bm{\mathcal{C}} s + \bm{\mathcal{K}} \right)^{-1} \frac{\bm{\mathcal{L}}}{\bm{\mathcal{\tau}}}(s) = \bm{G}_{\mathcal{L}}(s) = \left( \bm{J}_{\{M\}}^{-\intercal} \bm{M}_{\{M\}} \bm{J}_{\{M\}}^{-1} s^2 + \bm{\mathcal{C}} s + \bm{\mathcal{K}} \right)^{-1}
\end{equation} \end{equation}
At low frequencies, the plant converges to a diagonal constant matrix whose diagonal elements are equal to the actuator stiffnesses \eqref{eq:detail_control_decoupling_plant_decentralized_low_freq}. At low frequencies, the plant converges to a diagonal constant matrix whose diagonal elements are related to the actuator stiffnesses \eqref{eq:detail_control_decoupling_plant_decentralized_low_freq}.
At high frequencies, the plant converges to the mass matrix mapped in the frame of the struts, which is generally highly non-diagonal. At high frequencies, the plant converges to the mass matrix mapped in the frame of the struts, which is generally highly non-diagonal.
\begin{equation}\label{eq:detail_control_decoupling_plant_decentralized_low_freq} \begin{equation}\label{eq:detail_control_decoupling_plant_decentralized_low_freq}
@ -694,7 +713,7 @@ Depending on the symmetry present in the system, certain diagonal elements may e
\label{ssec:detail_control_decoupling_jacobian} \label{ssec:detail_control_decoupling_jacobian}
\paragraph{Jacobian Matrix} \paragraph{Jacobian Matrix}
The Jacobian matrix \(\bm{J}_{\{O\}}\) serves a dual purpose in the decoupling process: it converts strut velocity \(\dot{\mathcal{L}}\) to payload velocity and angular velocity \(\dot{\bm{\mathcal{X}}}_{\{O\}}\), and it transforms actuator forces \(\bm{\tau}\) to forces/torque applied on the payload \(\bm{\mathcal{F}}_{\{O\}}\), as expressed in equation \eqref{eq:detail_control_decoupling_jacobian}. The Jacobian matrix serves a dual purpose in the decoupling process: it converts strut velocity \(\dot{\mathcal{L}}\) to payload velocity and angular velocity \(\dot{\bm{\mathcal{X}}}_{\{O\}}\), and it transforms actuator forces \(\bm{\tau}\) to forces/torque applied on the payload \(\bm{\mathcal{F}}_{\{O\}}\), as expressed in equation \eqref{eq:detail_control_decoupling_jacobian}.
\begin{subequations}\label{eq:detail_control_decoupling_jacobian} \begin{subequations}\label{eq:detail_control_decoupling_jacobian}
\begin{align} \begin{align}
@ -799,7 +818,7 @@ However, it could alternatively be determined through analytical methods to ensu
It should be noted that the existence of such a center of stiffness (i.e. a frame \(\{K\}\) for which \(\bm{J}_{\{K\}}^{\intercal} \bm{\mathcal{K}} \bm{J}_{\{K\}}\) is diagonal) is not guaranteed for arbitrary systems. It should be noted that the existence of such a center of stiffness (i.e. a frame \(\{K\}\) for which \(\bm{J}_{\{K\}}^{\intercal} \bm{\mathcal{K}} \bm{J}_{\{K\}}\) is diagonal) is not guaranteed for arbitrary systems.
This property is typically achievable only in systems exhibiting specific symmetrical characteristics, as is the case in the present example. This property is typically achievable only in systems exhibiting specific symmetrical characteristics, as is the case in the present example.
The analytical expression for the plant in this configuration was then computed \eqref{eq:detail_control_decoupling_plant_CoK}. The analytical expression for the plant in this configuration was then computed \ref{eq:detail_control_decoupling_plant_CoK}.
\begin{equation}\label{eq:detail_control_decoupling_plant_CoK} \begin{equation}\label{eq:detail_control_decoupling_plant_CoK}
\frac{\bm{\mathcal{X}}_{\{K\}}}{\bm{\mathcal{F}}_{\{K\}}}(s) = \bm{G}_{\{K\}}(s) = \left( \bm{J}_{\{K\}}^{\intercal} \bm{J}_{\{M\}}^{-\intercal} \bm{M}_{\{M\}} \bm{J}_{\{M\}}^{-1} \bm{J}_{\{K\}} s^2 + \bm{J}_{\{K\}}^{\intercal} \bm{\mathcal{C}} \bm{J}_{\{K\}} s + \bm{J}_{\{K\}}^{\intercal} \bm{\mathcal{K}} \bm{J}_{\{K\}} \right)^{-1} \frac{\bm{\mathcal{X}}_{\{K\}}}{\bm{\mathcal{F}}_{\{K\}}}(s) = \bm{G}_{\{K\}}(s) = \left( \bm{J}_{\{K\}}^{\intercal} \bm{J}_{\{M\}}^{-\intercal} \bm{M}_{\{M\}} \bm{J}_{\{M\}}^{-1} \bm{J}_{\{K\}} s^2 + \bm{J}_{\{K\}}^{\intercal} \bm{\mathcal{C}} \bm{J}_{\{K\}} s + \bm{J}_{\{K\}}^{\intercal} \bm{\mathcal{K}} \bm{J}_{\{K\}} \right)^{-1}
@ -815,6 +834,7 @@ The plant is well decoupled below the suspension mode with the lowest frequency
The physical reason for high-frequency coupling is illustrated in Figure \ref{fig:detail_control_decoupling_model_test_CoK}. The physical reason for high-frequency coupling is illustrated in Figure \ref{fig:detail_control_decoupling_model_test_CoK}.
When a high-frequency force is applied at a point not aligned with the center of mass, it induces rotation around the center of mass. When a high-frequency force is applied at a point not aligned with the center of mass, it induces rotation around the center of mass.
This phenomenon explains the coupling observed between different degrees of freedom at higher frequencies.
\begin{figure}[htbp] \begin{figure}[htbp]
\begin{subfigure}{0.48\textwidth} \begin{subfigure}{0.48\textwidth}
@ -834,6 +854,7 @@ When a high-frequency force is applied at a point not aligned with the center of
\section{Modal Decoupling} \section{Modal Decoupling}
\label{ssec:detail_control_decoupling_modal} \label{ssec:detail_control_decoupling_modal}
Modal decoupling represents an approach based on the principle that a mechanical system's behavior can be understood as a combination of contributions from various modes \cite{rankers98_machin}. Modal decoupling represents an approach based on the principle that a mechanical system's behavior can be understood as a combination of contributions from various modes \cite{rankers98_machin}.
To convert the dynamics in the modal space, the equation of motion are first written with respect to the center of mass \eqref{eq:detail_control_decoupling_equation_motion_CoM}. To convert the dynamics in the modal space, the equation of motion are first written with respect to the center of mass \eqref{eq:detail_control_decoupling_equation_motion_CoM}.
\begin{equation}\label{eq:detail_control_decoupling_equation_motion_CoM} \begin{equation}\label{eq:detail_control_decoupling_equation_motion_CoM}
@ -914,7 +935,7 @@ Each of these diagonal elements corresponds to a specific mode, as shown in Figu
\label{ssec:detail_control_decoupling_svd} \label{ssec:detail_control_decoupling_svd}
\paragraph{Singular Value Decomposition} \paragraph{Singular Value Decomposition}
Singular Value Decomposition (SVD) represents a powerful mathematical tool with extensive applications in data analysis \cite[, chapt. 1]{brunton22_data} and multivariable control systems where it is particularly valuable for analyzing directional properties in multivariable systems \cite{skogestad07_multiv_feedb_contr}. Singular Value Decomposition (SVD) represents a powerful mathematical tool with extensive applications in data analysis \cite[, chapt. 1]{brunton22_data} and multivariable control systems \cite{skogestad07_multiv_feedb_contr}, where it is particularly valuable for analyzing directional properties in multivariable systems.
The SVD constitutes a unique matrix decomposition applicable to any complex matrix \(\bm{X} \in \mathbb{C}^{n \times m}\), expressed as: The SVD constitutes a unique matrix decomposition applicable to any complex matrix \(\bm{X} \in \mathbb{C}^{n \times m}\), expressed as:
@ -991,8 +1012,8 @@ Additionally, the diagonal terms manifest as second-order dynamic systems, facil
\end{figure} \end{figure}
As it was surprising to obtain such a good decoupling at all frequencies, a variant system with identical dynamics but different sensor configurations was examined. As it was surprising to obtain such a good decoupling at all frequencies, a variant system with identical dynamics but different sensor configurations was examined.
Instead of using relative motion sensors collocated with the struts, three relative motion sensors were positioned as shown in Figure \ref{fig:detail_control_decoupling_model_test_alt}. Instead of using relative motion sensors aligned with the struts, three relative motion sensors were positioned as shown in Figure \ref{fig:detail_control_decoupling_model_test_alt}.
Although Jacobian matrices could theoretically be used to map these sensors to the frame of the struts, application of the same SVD decoupling procedure yielded the plant response shown in Figure \ref{fig:detail_control_decoupling_svd_alt_plant}, which exhibits significantly greater coupling. Although Jacobian matrices could theoretically map between these different sensor arrangements, application of the same SVD decoupling procedure yielded the plant response shown in Figure \ref{fig:detail_control_decoupling_svd_alt_plant}, which exhibits significantly greater coupling.
Notably, the coupling demonstrates local minima near the decoupling frequency, consistent with the fact that the decoupling matrices were derived specifically for that frequency point. Notably, the coupling demonstrates local minima near the decoupling frequency, consistent with the fact that the decoupling matrices were derived specifically for that frequency point.
\begin{figure}[htbp] \begin{figure}[htbp]
@ -1035,7 +1056,8 @@ SVD decoupling generally results in a loss of physical meaning for the ``control
The quality of decoupling achieved through these methods also exhibits distinct characteristics. The quality of decoupling achieved through these methods also exhibits distinct characteristics.
Jacobian decoupling performance depends on the chosen reference frame, with optimal decoupling at low frequencies when aligned at the center of stiffness, or at high frequencies when aligned with the center of mass. Jacobian decoupling performance depends on the chosen reference frame, with optimal decoupling at low frequencies when aligned at the center of stiffness, or at high frequencies when aligned with the center of mass.
Systems designed with coincident centers of mass and stiffness may achieve excellent decoupling using this approach. Systems designed with coincident centers of mass and stiffness may achieve excellent decoupling using this approach.
Modal decoupling offers good decoupling across all frequencies, though its effectiveness relies on the model accuracy, with discrepancies potentially resulting in significant off-diagonal elements. Modal decoupling offers good decoupling across all frequencies, though its effectiveness relies on the accuracy of the system model, with discrepancies potentially resulting in significant off-diagonal elements.
The diagonal elements typically manifest as second-order low-pass filters, facilitating straightforward control design.
SVD decoupling can be implemented using measured data without requiring a model, with optimal performance near the chosen decoupling frequency, though its effectiveness may diminish at other frequencies and depends on the quality of the real approximation of the response at the selected frequency point. SVD decoupling can be implemented using measured data without requiring a model, with optimal performance near the chosen decoupling frequency, though its effectiveness may diminish at other frequencies and depends on the quality of the real approximation of the response at the selected frequency point.
\begin{table}[htbp] \begin{table}[htbp]
@ -1050,19 +1072,29 @@ SVD decoupling can be implemented using measured data without requiring a model,
\midrule \midrule
\textbf{Requirements} & Known geometry & Known equations of motion & Identified FRF\\ \textbf{Requirements} & Known geometry & Known equations of motion & Identified FRF\\
\midrule \midrule
\textbf{Decoupling Matrices} & Jacobian matrix \(\bm{J}_{\{O\}}\) & Eigenvectors \(\bm{\Phi}\) & SVD matrices \(\bm{U}\) and \(\bm{V}\)\\ \textbf{Decoupling Matrices} & Decoupling using \(\bm{J}_{\{O\}}\) obtained from geometry & Decoupling using \(\bm{\Phi}\) obtained from modal decomposition & Decoupling using \(\bm{U}\) and \(\bm{V}\) obtained from SVD\\
\midrule \midrule
\textbf{Decoupled Plant} & \(\bm{G}_{\{O\}}(s) = \bm{J}_{\{O\}}^{-1} \bm{G}_{\mathcal{L}}(s) \bm{J}_{\{O\}}^{-\intercal}\) & \(\bm{G}_m(s) = \bm{\Phi}^{-1} \bm{G}_{\mathcal{X}}(s) \bm{\Phi}^{-\intercal}\) & \(\bm{G}_{\text{SVD}}(s) = \bm{U}^{-1} \bm{G}(s) \bm{V}^{-\intercal}\)\\ \textbf{Decoupled Plant} & \(\bm{G}_{\{O\}}(s) = \bm{J}_{\{O\}}^{-1} \bm{G}_{\mathcal{L}}(s) \bm{J}_{\{O\}}^{-\intercal}\) & \(\bm{G}_m(s) = \bm{\Phi}^{-1} \bm{G}_{\mathcal{X}}(s) \bm{\Phi}^{-\intercal}\) & \(\bm{G}_{\text{SVD}}(s) = \bm{U}^{-1} \bm{G}(s) \bm{V}^{-\intercal}\)\\
\midrule \midrule
\textbf{Controller} & \(\bm{K}_{\{O\}}(s) = \bm{J}_{\{O\}}^{-\intercal} \bm{K}_{d}(s) \bm{J}_{\{O\}}^{-1}\) & \(\bm{K}_m(s) = \bm{\Phi}^{-\intercal} \bm{K}_{d}(s) \bm{\Phi}^{-1}\) & \(\bm{K}_{\text{SVD}}(s) = \bm{V}^{-\intercal} \bm{K}_{d}(s) \bm{U}^{-1}\)\\ \textbf{Controller} & \(\bm{K}_{\{O\}}(s) = \bm{J}_{\{O\}}^{-\intercal} \bm{K}_{d}(s) \bm{J}_{\{O\}}^{-1}\) & \(\bm{K}_m(s) = \bm{\Phi}^{-\intercal} \bm{K}_{d}(s) \bm{\Phi}^{-1}\) & \(\bm{K}_{\text{SVD}}(s) = \bm{V}^{-\intercal} \bm{K}_{d}(s) \bm{U}^{-1}\)\\
\midrule \midrule
\textbf{Interpretation} & Forces/Torques to Displacement/Rotation in chosen frame & Inputs (resp. outputs) to excite (resp. sense) individual modes & Directions of max to min controllability/observability\\ \textbf{Interpretation} & Forces/Torques to Displacement/Rotation in chosen frame & Inputs to excite individual modes & Directions of max to min controllability/observability\\
& & Output to sense individual modes & \\
\midrule \midrule
\textbf{Effectiveness} & Decoupling at low or high frequency depending on the chosen frame & Good decoupling at all frequencies & Good decoupling near the chosen frequency\\ \textbf{Properties} & Decoupling at low or high frequency depending on the chosen frame & Good decoupling at all frequencies & Good decoupling near the chosen frequency\\
\midrule \midrule
\textbf{Pros} & Retain physical meaning of inputs / outputs. Controller acts on a meaningfully ``frame'' & Ability to target specific modes. Simple \(2^{nd}\) order diagonal plants & Good Decoupling near the crossover. Very General and requires no model\\ \textbf{Pros} & Physical inputs / outputs & Target specific modes & Good Decoupling near the crossover\\
& Good decoupling at High frequency (diagonal mass matrix if Jacobian taken at the CoM) & 2nd order diagonal plant & Very General\\
& Good decoupling at Low frequency (if Jacobian taken at specific point) & & \\
& Easy integration of meaningful reference inputs & & \\
& & & \\
\midrule \midrule
\textbf{Cons} & Good decoupling at all frequency can only be obtained for specific mechanical architecture & Relies on the accuracy of equation of motions. Robustness to unmodelled dynamics may be poor & Loss of physical meaning of inputs /outputs. Decoupling away from the chosen frequency may be poor\\ \textbf{Cons} & Coupling between force/rotation may be high at low frequency (non diagonal terms in K) & Need analytical equations & Loose the physical meaning of inputs /outputs\\
& Limited to parallel mechanisms (?) & & Decoupling depends on the real approximation validity\\
& If good decoupling at all frequencies => requires specific mechanical architecture & & Diagonal plants may not be easy to control\\
\midrule
\textbf{Applicability} & Parallel Mechanisms & Systems whose dynamics that can be expressed with M and K matrices & Very general\\
& Only small motion for the Jacobian matrix to stay constant & & Need FRF data (either experimentally or analytically)\\
\bottomrule \bottomrule
\end{tabularx} \end{tabularx}
\end{table} \end{table}
@ -1072,23 +1104,26 @@ SVD decoupling can be implemented using measured data without requiring a model,
Once the system is properly decoupled using one of the approaches described in Section \ref{sec:detail_control_decoupling}, SISO controllers can be individually tuned for each decoupled ``directions''. Once the system is properly decoupled using one of the approaches described in Section \ref{sec:detail_control_decoupling}, SISO controllers can be individually tuned for each decoupled ``directions''.
Several ways to design a controller to obtain a given performance while ensuring good robustness properties can be implemented. Several ways to design a controller to obtain a given performance while ensuring good robustness properties can be implemented.
In some cases ``fixed'' controller structures are utilized, such as PI and PID controllers, whose parameters are manually tuned \cite{furutani04_nanom_cuttin_machin_using_stewar,du14_piezo_actuat_high_precis_flexib,yang19_dynam_model_decoup_contr_flexib}. In some cases, ``fixed'' controller structures are utilized, such as PI and PID controllers \cite{furutani04_nanom_cuttin_machin_using_stewar,du14_piezo_actuat_high_precis_flexib,yang19_dynam_model_decoup_contr_flexib}.
In such cases, the controller coefficients are manually tuned to obtain acceptable performance and robustness.
Another popular method is Open-Loop shaping, which was used during the conceptual phase. Another popular method is Open-Loop shaping, that was used during the conceptual phase after the plan was decoupled in the frame of the struts.
Open-loop shaping involves tuning the controller through a series of ``standard'' filters (leads, lags, notches, low-pass filters, \ldots{}) to shape the open-loop transfer function \(G(s)K(s)\) according to desired specifications, including bandwidth, gain and phase margins \cite[, chapt. 4.4.7]{schmidt20_desig_high_perfor_mechat_third_revis_edition}. The idea of open-loop shaping is to tune the controller (using a series of standard leads, lags, notches, low pass filters) such that the open-loop transfer function \(G(s)K(s)\) is made according to specification (i.e.
Open-Loop shaping is very popular because the open-loop transfer function is a linear function of the controller, making it relatively straightforward to tune the controller to achieve desired open-loop characteristics. bandwidth, gain and phase margins, gain at a specific frequency, etc\ldots{}) \cite[, chapt. 4.4.7]{schmidt20_desig_high_perfor_mechat_third_revis_edition}.
Another key advantage is that controllers can be tuned directly from measured frequency response functions of the plant without requiring an explicit model. Open-Loop shaping is very popular because the open-loop transfer function depends linearly on the controller, making it relatively straightforward to tune the controller to achieve desired open-loop characteristics.
Another key advantage is that controllers can be tuned directly from measured frequency response functions without requiring an explicit plant model.
However, the behavior (i.e. performance) of a feedback system is a function of closed-loop transfer functions. However, the behavior (i.e. performance) of a feedback system is a function of closed-loop transfer functions \cite[, chapt. 3]{skogestad07_multiv_feedb_contr}.
Specifications can therefore be expressed in terms of the magnitude of closed-loop transfer functions, such as the sensitivity, plant sensitivity, and complementary sensitivity transfer functions \cite[, chapt. 3]{skogestad07_multiv_feedb_contr}. Specifications can therefore be expressed in terms of the magnitude of closed-loop transfer functions, such as the sensitivity, plant sensitivity, and complementary sensitivity transfer functions.
With open-loop shaping, closed-loop transfer functions are changed only indirectly, which may make it difficult to directly address the specifications that are in terms of the closed-loop transfer functions. With open-loop shaping, closed-loop transfer functions are changed only indirectly, which may make it difficult to directly address the specifications that are in terms of the closed-loop transfer functions.
In order to synthesize a controller that directly shapes the closed-loop transfer functions (and therefore the performance metric), \(\mathcal{H}_\infty\text{-synthesis}\) may be used \cite{skogestad07_multiv_feedb_contr}. In order to synthesize a controller that directly shapes the closed-loop transfer functions (and therefore the performance metric), \(\mathcal{H}_\infty\) loop-shaping may be used \cite{skogestad07_multiv_feedb_contr}.
This approach requires a good model of the plant and expertise in selecting weighting functions that will define the wanted shape of different closed-loop transfer functions \cite{bibel92_guidel_h}. This approach requires a good model of the plant and expertise in selecting weighting functions that will define the wanted shape of different closed-loop transfer functions \cite{bibel92_guidel_h}.
\(\mathcal{H}_{\infty}\text{-synthesis}\) has been applied for the Stewart platform \cite{jiao18_dynam_model_exper_analy_stewar}, yet when benchmarked against more basic decentralized controllers, the performance gains proved small \cite{thayer02_six_axis_vibrat_isolat_system,hauge04_sensor_contr_space_based_six}. \(\mathcal{H}_{\infty}\) synthesis has been applied for the Stewart platform \cite{jiao18_dynam_model_exper_analy_stewar}, but comparative studies with more simple decentralized controllers did not show large improvements \cite{thayer02_six_axis_vibrat_isolat_system,hauge04_sensor_contr_space_based_six}.
In this section, an alternative controller synthesis scheme is proposed in which complementary filters are used for directly shaping the closed-loop transfer functions (i.e., directly addressing the closed-loop performances). In this section, an alternative controller synthesis scheme is proposed in which complementary filters are used for directly shaping the closed-loop transfer functions (i.e., directly addressing the closed-loop performances).
In Section \ref{ssec:detail_control_cf_control_arch}, the proposed control architecture is presented.
In Section \ref{ssec:detail_control_cf_control_arch}, the proposed control architecture including the complementary filters is presented.
In Section \ref{ssec:detail_control_cf_trans_perf}, typical performance requirements are translated into the shape of the complementary filters. In Section \ref{ssec:detail_control_cf_trans_perf}, typical performance requirements are translated into the shape of the complementary filters.
The design of the complementary filters is briefly discussed in Section \ref{ssec:detail_control_cf_analytical_complementary_filters}, and analytical formulas are proposed such that it is possible to change the closed-loop behavior of the system in real time. The design of the complementary filters is briefly discussed in Section \ref{ssec:detail_control_cf_analytical_complementary_filters}, and analytical formulas are proposed such that it is possible to change the closed-loop behavior of the system in real time.
Finally, in Section \ref{ssec:detail_control_cf_simulations}, a numerical example is used to show how the proposed control architecture can be implemented in practice. Finally, in Section \ref{ssec:detail_control_cf_simulations}, a numerical example is used to show how the proposed control architecture can be implemented in practice.
@ -1096,9 +1131,10 @@ Finally, in Section \ref{ssec:detail_control_cf_simulations}, a numerical exampl
\label{ssec:detail_control_cf_control_arch} \label{ssec:detail_control_cf_control_arch}
\paragraph{Virtual Sensor Fusion} \paragraph{Virtual Sensor Fusion}
The idea of using complementary filters in the control architecture originates from sensor fusion techniques \cite{collette15_sensor_fusion_method_high_perfor}, where two sensors are combined using complementary filters. The concept of using complementary filters in control architecture originates from sensor fusion techniques \cite{collette15_sensor_fusion_method_high_perfor}, where two sensors are combined using complementary filters.
Building upon this concept, ``virtual sensor fusion'' \cite{verma20_virtual_sensor_fusion_high_precis_contr} replaces one physical sensor with a model \(G\) of the plant. Building upon this concept, ``virtual sensor fusion'' \cite{verma20_virtual_sensor_fusion_high_precis_contr} replaces one physical sensor with a model \(G\) of the plant.
The corresponding control architecture is illustrated in Figure \ref{fig:detail_control_cf_arch}, where \(G^\prime\) represents the physical plant to be controlled, \(G\) is a model of the plant, \(k\) is the controller, and \(H_L\) and \(H_H\) are complementary filters satisfying \(H_L(s) + H_H(s) = 1\).
The control architecture is illustrated in Figure \ref{fig:detail_control_cf_arch}, where \(G^\prime\) represents the physical plant to be controlled, \(G\) is a model of the plant, \(k\) is the controller, and \(H_L\) and \(H_H\) are complementary filters satisfying \(H_L(s) + H_H(s) = 1\).
In this arrangement, the physical plant is controlled at low frequencies, while the plant model is utilized at high frequencies to enhance robustness. In this arrangement, the physical plant is controlled at low frequencies, while the plant model is utilized at high frequencies to enhance robustness.
\begin{figure}[htbp] \begin{figure}[htbp]
@ -1124,14 +1160,14 @@ Consequently, this structure is mathematically equivalent to the single-loop arc
When considering the extreme case of very high values for \(k\), the effective controller \(K(s)\) converges to the inverse of the plant model multiplied by the inverse of the high-pass filter, as expressed in \eqref{eq:detail_control_cf_high_k}. When considering the extreme case of very high values for \(k\), the effective controller \(K(s)\) converges to the inverse of the plant model multiplied by the inverse of the high-pass filter, as expressed in \eqref{eq:detail_control_cf_high_k}.
\begin{equation}\label{eq:detail_control_cf_high_k} \begin{equation}\label{eq:detail_control_cf_high_k}
\lim_{k\to\infty} K(s) = \lim_{k\to\infty} \frac{k}{1+H_H(s) G(s) k} = \big( H_H(s) G(s) \big)^{-1} \lim_{k\to\infty} K(s) = \lim_{k\to\infty} \frac{k}{1+H_H(s) G(s) k} = \left( H_H(s) G(s) \right)^{-1}
\end{equation} \end{equation}
If the resulting \(K\) is improper, a low-pass filter with sufficiently high corner frequency can be added to ensure its causal realization. If the resulting \(K\) is improper, a low-pass filter with sufficiently high corner frequency can be added to ensure its causal realization.
Furthermore, for \(K\) to be stable, both \(G\) and \(H_H\) must be minimum phase transfer functions. Furthermore, for \(K\) to be stable, both \(G\) and \(H_H\) must be minimum phase transfer functions.
With these assumptions, the resulting control architecture is illustrated in Figure \ref{fig:detail_control_cf_arch_class}, where the complementary filters \(H_L\) and \(H_H\) remain the only tuning parameters. With these assumptions, the resulting control architecture is illustrated in Figure \ref{fig:detail_control_cf_arch_class}, where the complementary filters \(H_L\) and \(H_H\) remain the only tuning parameters.
The dynamics of this closed-loop system are described by equations \eqref{eq:detail_control_cf_cl_system_y} and \eqref{eq:detail_control_cf_cl_system_y}. The dynamics of this closed-loop system are described by \eqref{eq:detail_control_cf_sf_cl_tf_K_inf}.
\begin{figure}[htbp] \begin{figure}[htbp]
\centering \centering
@ -1146,7 +1182,7 @@ The dynamics of this closed-loop system are described by equations \eqref{eq:det
\end{align} \end{align}
\end{subequations} \end{subequations}
At frequencies where the model accurately represents the physical plant (\(G^{-1} G^{\prime} \approx 1\)), the denominator simplifies to \(H_H + G^\prime G^{-1} H_L \approx H_H + H_L = 1\), and the closed-loop transfer functions are then described by equations \eqref{eq:detail_control_cf_cl_performance_y} and \eqref{eq:detail_control_cf_cl_performance_u}. At frequencies where the model accurately represents the physical plant (\(G^{-1} G^{\prime} \approx 1\)), the denominator simplifies to \(H_H + G^\prime G^{-1} H_L \approx H_H + H_L = 1\), and the closed-loop transfer functions are described by \eqref{eq:detail_control_cf_sf_cl_tf_K_inf_perfect}.
\begin{subequations}\label{eq:detail_control_cf_sf_cl_tf_K_inf_perfect} \begin{subequations}\label{eq:detail_control_cf_sf_cl_tf_K_inf_perfect}
\begin{alignat}{5} \begin{alignat}{5}
@ -1156,14 +1192,14 @@ At frequencies where the model accurately represents the physical plant (\(G^{-1
\end{subequations} \end{subequations}
The sensitivity transfer function equals the high-pass filter \(S = \frac{y}{dy} = H_H\), and the complementary sensitivity transfer function equals the low-pass filter \(T = \frac{y}{n} = H_L\). The sensitivity transfer function equals the high-pass filter \(S = \frac{y}{dy} = H_H\), and the complementary sensitivity transfer function equals the low-pass filter \(T = \frac{y}{n} = H_L\).
Hence, when the plant model closely approximates the actual dynamics, the closed-loop transfer functions converge to the designed complementary filters, allowing direct translation of performance requirements into the design of the complementary. Hence, when the plant model closely approximates the actual system, the closed-loop behavior becomes fully determined by the designed complementary filters, enabling direct translation of performance requirements into filter design.
\section{Translating the performance requirements into the shape of the complementary filters} \section{Translating the performance requirements into the shapes of the complementary filters}
\label{ssec:detail_control_cf_trans_perf} \label{ssec:detail_control_cf_trans_perf}
Performance specifications in a feedback system can usually be expressed as upper bounds on the magnitudes of closed-loop transfer functions such as the sensitivity and complementary sensitivity transfer functions \cite{bibel92_guidel_h}. Performance specifications in feedback systems can be expressed as upper bounds on the magnitudes of closed-loop transfer functions such that the sensitivity \(|S(j\omega)|\) and complementary sensitivity \(|T(j\omega)|\) transfer functions \cite{bibel92_guidel_h}.
The design of a controller \(K(s)\) to obtain the desired shape of these closed-loop transfer functions is known as closed-loop shaping. The design of a controller \(K(s)\) to achieve desired shapes of these closed-loop transfer functions is known as closed-loop shaping.
In the proposed control architecture, the closed-loop transfer functions \eqref{eq:detail_control_cf_sf_cl_tf_K_inf} are expressed in terms of the complementary filters \(H_L(s)\) and \(H_H(s)\) rather than directly through the controller \(K(s)\). In the proposed control architecture, the closed-loop transfer functions \eqref{eq:detail_control_cf_sf_cl_tf_K_inf} are expressed in terms of the complementary filters \(H_L(s)\) and \(H_H(s)\) rather than directly through the controller \(K(s)\).
Therefore, performance requirements must be translated into constraints on the shape of these complementary filters. Therefore, performance requirements must be translated into constraints on the shapes of these complementary filters.
\paragraph{Nominal Stability (NS)} \paragraph{Nominal Stability (NS)}
A closed-loop system is stable when all its elements (here \(K\), \(G^\prime\), and \(H_L\)) are stable and the sensitivity function \(S = \frac{1}{1 + G^\prime K H_L}\) is stable. A closed-loop system is stable when all its elements (here \(K\), \(G^\prime\), and \(H_L\)) are stable and the sensitivity function \(S = \frac{1}{1 + G^\prime K H_L}\) is stable.
For the nominal system (\(G^\prime = G\)), the sensitivity transfer function equals the high-pass filter: \(S(s) = H_H(s)\). For the nominal system (\(G^\prime = G\)), the sensitivity transfer function equals the high-pass filter: \(S(s) = H_H(s)\).
@ -1173,7 +1209,6 @@ Consequently, stable and minimum phase complementary filters must be employed.
\paragraph{Nominal Performance (NP)} \paragraph{Nominal Performance (NP)}
Performance specifications can be formalized using weighting functions \(w_H\) and \(w_L\), where performance is achieved when \eqref{eq:detail_control_cf_weights} is satisfied. Performance specifications can be formalized using weighting functions \(w_H\) and \(w_L\), where performance is achieved when \eqref{eq:detail_control_cf_weights} is satisfied.
The weighting functions define the maximum magnitude of the closed-loop transfer functions as a function of frequency, effectively determining their ``shape''.
\begin{subequations}\label{eq:detail_control_cf_weights} \begin{subequations}\label{eq:detail_control_cf_weights}
\begin{align} \begin{align}
@ -1182,7 +1217,7 @@ The weighting functions define the maximum magnitude of the closed-loop transfer
\end{align} \end{align}
\end{subequations} \end{subequations}
For the nominal system, \(S = H_H\) and \(T = H_L\), hence the performance specifications can be converted on the shape of the complementary filters \eqref{eq:detail_control_cf_nominal_performance}. For the nominal system, where \(S = H_H\) and \(T = H_L\), nominal performance is ensured by satisfying \eqref{eq:detail_control_cf_nominal_performance}.
\begin{equation}\label{eq:detail_control_cf_nominal_performance} \begin{equation}\label{eq:detail_control_cf_nominal_performance}
\Aboxed{\text{NP} \Longleftrightarrow {\begin{cases*} \Aboxed{\text{NP} \Longleftrightarrow {\begin{cases*}
@ -1191,19 +1226,22 @@ For the nominal system, \(S = H_H\) and \(T = H_L\), hence the performance speci
\end{cases*}}} \end{cases*}}}
\end{equation} \end{equation}
Typical performance requirements can therefore be translated into constraints on the complementary filters.
For disturbance rejection, the magnitude of the sensitivity function \(|S(j\omega)| = |H_H(j\omega)|\) should be minimized, particularly at low frequencies where disturbances are usually most prominent. For disturbance rejection, the magnitude of the sensitivity function \(|S(j\omega)| = |H_H(j\omega)|\) should be minimized, particularly at low frequencies where disturbances are usually most prominent.
Similarly, for noise attenuation, the magnitude of the complementary sensitivity function \(|T(j\omega)| = |H_L(j\omega)|\) should be minimized, especially at high frequencies where measurement noise typically dominates. Similarly, for noise attenuation, the magnitude of the complementary sensitivity function \(|T(j\omega)| = |H_L(j\omega)|\) should be minimized, especially at high frequencies where measurement noise typically dominates.
The closed-loop bandwidth can be effectively limited by ensuring that \(|T(j\omega)|\) remains below \(\frac{1}{\sqrt{2}}\) at frequencies above the maximum desired bandwidth.
By carefully selecting the shapes of these complementary filters, nominal performance specifications can be directly addressed in an intuitive manner.
Classical stability margins (gain and phase margins) are also related to the maximum amplitude of the sensitivity transfer function. Classical stability margins (gain and phase margins) are also related to the maximum amplitude of the sensitivity transfer function.
Typically, maintaining \(|S|_{\infty} \le 2\) ensures a gain margin of at least 2 and a phase margin of at least \(\SI{29}{\degree}\). Typically, maintaining \(|S|_{\infty} \le 2\) ensures a gain margin of at least 2 and a phase margin of at least \(\SI{29}{\degree}\).
Therefore, by carefully selecting the shape of the complementary filters, nominal performance specifications can be directly addressed in an intuitive manner.
\paragraph{Robust Stability (RS)} \paragraph{Robust Stability (RS)}
Robust stability refers to a control system's ability to maintain stability despite discrepancies between the actual system \(G^\prime\) and the model \(G\) used for controller design. Robust stability refers to a control system's ability to maintain stability despite discrepancies between the actual system \(G^\prime\) and the model \(G\) used for controller design.
These discrepancies may arise from unmodeled dynamics or nonlinearities. These discrepancies may arise from unmodeled dynamics or nonlinearities.
To represent these model-plant differences, input multiplicative uncertainty as illustrated in Figure \ref{fig:detail_control_cf_input_uncertainty} is employed. To represent these model-plant differences, input multiplicative uncertainty as illustrated in Figure \ref{fig:detail_control_cf_input_uncertainty} is employed.
The set of possible plants \(\Pi_i\) is described by \eqref{eq:detail_control_cf_multiplicative_uncertainty}, with the weighting function \(w_I\) selected such that all possible plants \(G^\prime\) are contained within the set \(\Pi_i\). The set of possible plants \(\Pi_i\) is described by \eqref{eq:detail_control_cf_multiplicative_uncertainty}.
With the weighting function \(w_I\) selected such that all possible plants \(G^\prime\) are contained within the set \(\Pi_i\).
\begin{equation}\label{eq:detail_control_cf_multiplicative_uncertainty} \begin{equation}\label{eq:detail_control_cf_multiplicative_uncertainty}
\Pi_i: \quad G^\prime(s) = G(s)\big(1 + w_I(s)\Delta_I(s)\big); \quad |\Delta_I(j\omega)| \le 1 \ \forall\omega \Pi_i: \quad G^\prime(s) = G(s)\big(1 + w_I(s)\Delta_I(s)\big); \quad |\Delta_I(j\omega)| \le 1 \ \forall\omega
@ -1238,7 +1276,8 @@ After algebraic manipulation, robust stability is guaranteed when the low-pass c
\end{equation} \end{equation}
\paragraph{Robust Performance (RP)} \paragraph{Robust Performance (RP)}
Robust performance ensures that performance specifications \eqref{eq:detail_control_cf_weights} are met even when the plant dynamics fluctuates within specified bounds \eqref{eq:detail_control_cf_robust_perf_S}. Robust performance ensures that performance specifications \eqref{eq:detail_control_cf_weights} are met even as plant dynamics varies within specified bounds.
This requires the performance condition to be valid for all possible plants in the defined uncertainty set \(\Pi_i\):
\begin{equation}\label{eq:detail_control_cf_robust_perf_S} \begin{equation}\label{eq:detail_control_cf_robust_perf_S}
\text{RP} \Longleftrightarrow |w_H(j\omega) S(j\omega)| \le 1 \quad \forall G^\prime \in \Pi_I, \ \forall\omega \text{RP} \Longleftrightarrow |w_H(j\omega) S(j\omega)| \le 1 \quad \forall G^\prime \in \Pi_I, \ \forall\omega
@ -1256,8 +1295,8 @@ Therefore, for SISO systems, ensuring robust stability and nominal performance i
\section{Complementary filter design} \section{Complementary filter design}
\label{ssec:detail_control_cf_analytical_complementary_filters} \label{ssec:detail_control_cf_analytical_complementary_filters}
As proposed in Section \ref{sec:detail_control_sensor}, complementary filters can be shaped using standard \(\mathcal{H}_{\infty}\text{-synthesis}\) techniques. As proposed in Section \ref{sec:detail_control_sensor}, complementary filters can be shaped using standard \(\mathcal{H}_{\infty}\) synthesis techniques.
This approach is particularly well-suited since performance requirements were expressed as upper bounds on the magnitude of the complementary filters. This approach is particularly well-suited since performance requirements were expressed as upper bounds on the magnitude of the complementary filters (Section \ref{ssec:detail_control_cf_trans_perf}).
Alternatively, analytical formulas for complementary filters may be employed. Alternatively, analytical formulas for complementary filters may be employed.
For some applications, first-order complementary filters as shown in Equation \eqref{eq:detail_control_cf_1st_order} are sufficient. For some applications, first-order complementary filters as shown in Equation \eqref{eq:detail_control_cf_1st_order} are sufficient.
@ -1278,7 +1317,7 @@ These filters can be transformed into the digital domain using the Bilinear tran
\end{align} \end{align}
\end{subequations} \end{subequations}
A significant advantage of using analytical formulas for complementary filters is that key parameters such as \(\omega_0\) can be tuned in real-time, as illustrated in Figure \ref{fig:detail_control_cf_arch_tunable_params}. A significant advantage of using analytical formulas for complementary filters is that key parameters such as \(\omega_0\) can be modified in real-time, as illustrated in Figure \ref{fig:detail_control_cf_arch_tunable_params}.
This real-time tunability allows rapid testing of different control bandwidths to evaluate performance and robustness characteristics. This real-time tunability allows rapid testing of different control bandwidths to evaluate performance and robustness characteristics.
\begin{figure}[htbp] \begin{figure}[htbp]
@ -1289,7 +1328,7 @@ This real-time tunability allows rapid testing of different control bandwidths t
For many practical applications, first order complementary filters are not sufficient. For many practical applications, first order complementary filters are not sufficient.
Specifically, a slope of \(+2\) at low frequencies for the sensitivity transfer function (enabling accurate tracking of ramp inputs) and a slope of \(-2\) for the complementary sensitivity transfer function are often desired. Specifically, a slope of \(+2\) at low frequencies for the sensitivity transfer function (enabling accurate tracking of ramp inputs) and a slope of \(-2\) for the complementary sensitivity transfer function are often desired.
For these cases, the complementary filters analytical formula in Equation \eqref{eq:detail_control_cf_2nd_order} is proposed. For these cases, the second-order complementary filters presented in Equation \eqref{eq:detail_control_cf_2nd_order} are proposed.
\begin{subequations}\label{eq:detail_control_cf_2nd_order} \begin{subequations}\label{eq:detail_control_cf_2nd_order}
\begin{align} \begin{align}
@ -1299,9 +1338,12 @@ For these cases, the complementary filters analytical formula in Equation \eqref
\end{subequations} \end{subequations}
The influence of parameters \(\alpha\) and \(\omega_0\) on the frequency response of these complementary filters is illustrated in Figure \ref{fig:detail_control_cf_analytical_effect}. The influence of parameters \(\alpha\) and \(\omega_0\) on the frequency response of these complementary filters is illustrated in Figure \ref{fig:detail_control_cf_analytical_effect}.
The parameter \(\alpha\) primarily affects the damping characteristics near the crossover frequency as well as high and low frequency magnitudes, while \(\omega_0\) determines the frequency at which the transition between high-pass and low-pass behavior occurs. The parameter \(\alpha\) primarily affects the damping characteristics near the crossover frequency, while \(\omega_0\) determines the frequency at which the transition between high-pass and low-pass behavior occurs.
These filters can also be implemented in the digital domain with analytical formulas, preserving the ability to adjust \(\alpha\) and \(\omega_0\) in real-time. These filters can also be implemented in the digital domain with analytical formulas, preserving the ability to adjust \(\alpha\) and \(\omega_0\) in real-time.
The presented analytical formulations offer an attractive balance between design simplicity and performance.
This capability to tune parameters in real-time is particularly valuable during commissioning of the controller.
\begin{figure}[htbp] \begin{figure}[htbp]
\begin{subfigure}{0.48\textwidth} \begin{subfigure}{0.48\textwidth}
\begin{center} \begin{center}
@ -1319,17 +1361,18 @@ These filters can also be implemented in the digital domain with analytical form
\end{figure} \end{figure}
\section{Numerical Example} \section{Numerical Example}
\label{ssec:detail_control_cf_simulations} \label{ssec:detail_control_cf_simulations}
To implement the proposed control architecture in practice, the following procedure is proposed: To systematically apply the proposed control technique, the following procedure is recommended:
\begin{enumerate} \begin{enumerate}
\item Identify the plant to be controlled to obtain the plant model \(G\). \item Identify the plant to be controlled to obtain the plant model \(G\).
\item Design the weighting function \(w_I\) such that all possible plants \(G^\prime\) are contained within the uncertainty set \(\Pi_i\). \item Design the weighting function \(w_I\) such that all possible plants \(G^\prime\) are contained in the uncertainty set \(\Pi_i\).
\item Translate performance requirements into upper bounds on the complementary filters as explained in Section \ref{ssec:detail_control_cf_trans_perf}. \item Translate performance requirements into upper bounds on the complementary filters as explained in Section \ref{ssec:detail_control_cf_trans_perf}.
\item Design the weighting functions \(w_H\) and \(w_L\) and generate the complementary filters using \(\mathcal{H}_{\infty}\text{-synthesis}\) as described in Section \ref{ssec:detail_control_sensor_hinf_method}. \item Design the weighting functions \(w_H\) and \(w_L\) and generate the complementary filters using \(\mathcal{H}_{\infty}\text{-synthesis}\) as described in Section \ref{ssec:detail_control_sensor_hinf_method}.
If the synthesis fails to produce filters satisfying the defined upper bounds, either revise the requirements or develop a more accurate model \(G\) that will allow for a smaller \(w_I\). If the synthesis fails to produce filters satisfying the defined upper bounds, either revise the requirements or develop a more accurate model \(G\) that will allow for a smaller \(w_I\).
For simpler cases, the analytical formulas for complementary filters presented in Section \ref{ssec:detail_control_cf_analytical_complementary_filters} can be employed. For simpler cases, the analytical formulas for complementary filters presented in Section \ref{ssec:detail_control_cf_analytical_complementary_filters} can be employed.
\item If \(K(s) = H_H^{-1}(s) G^{-1}(s)\) is not proper, add low-pass filters with sufficiently high corner frequencies to ensure realizability. \item If \(K(s) = H_H^{-1}(s) G^{-1}(s)\) is not proper, add low-pass filters with sufficiently high corner frequencies to ensure realizability.
\end{enumerate} \end{enumerate}
\paragraph{Plant}
To evaluate this control architecture, a simple test model representative of many synchrotron positioning stages is utilized (Figure \ref{fig:detail_control_cf_test_model}). To evaluate this control architecture, a simple test model representative of many synchrotron positioning stages is utilized (Figure \ref{fig:detail_control_cf_test_model}).
In this model, a payload with mass \(m\) is positioned on top of a stage. In this model, a payload with mass \(m\) is positioned on top of a stage.
@ -1342,11 +1385,13 @@ The positioning stage itself is characterized by stiffness \(k\), internal dampi
The model of the plant \(G(s)\) from actuator force \(F\) to displacement \(y\) is described by Equation \eqref{eq:detail_control_cf_test_plant_tf}. The model of the plant \(G(s)\) from actuator force \(F\) to displacement \(y\) is described by Equation \eqref{eq:detail_control_cf_test_plant_tf}.
\begin{equation}\label{eq:detail_control_cf_test_plant_tf} \begin{equation}\label{eq:detail_control_cf_test_plant_tf}
G(s) = \frac{1}{m s^2 + c s + k}, \quad m = \SI{20}{\kg},\ k = 1\si{\N/\mu\m},\ c = 10^2\si{\N\per(\m\per\s)} G(s) = \frac{1}{m s^2 + c s + k}
\end{equation} \end{equation}
The plant dynamics include uncertainties related to limited support compliance, unmodeled flexible dynamics and payload dynamics. The parameter values are set to \(m = \SI{20}{\kg}\), \(k = 1\si{\N/\mu\m}\), and \(c = 10^2\si{\N\per(\m\per\s)}\).
These uncertainties are represented using a multiplicative input uncertainty weight \eqref{eq:detail_control_cf_test_plant_uncertainty}, which specifies the magnitude of uncertainty as a function of frequency.
The plant dynamics include uncertainties related to limited support compliance, unmodeled flexible dynamics, payload dynamics, and other factors.
These uncertainties are represented using a multiplicative input uncertainty weight \eqref{eq:detail_control_cf_test_plant_uncertainty}., which specifies the magnitude of uncertainty as a function of frequency:
\begin{equation}\label{eq:detail_control_cf_test_plant_uncertainty} \begin{equation}\label{eq:detail_control_cf_test_plant_uncertainty}
w_I(s) = 10 \cdot \frac{(s+100)^2}{(s+1000)^2} w_I(s) = 10 \cdot \frac{(s+100)^2}{(s+1000)^2}
@ -1371,10 +1416,10 @@ Figure \ref{fig:detail_control_cf_bode_plot_mech_sys} illustrates both the nomin
\end{figure} \end{figure}
\paragraph{Requirements and choice of complementary filters} \paragraph{Requirements and choice of complementary filters}
As discussed in Section \ref{ssec:detail_control_cf_trans_perf}, nominal performance requirements can be expressed as upper bounds on the shape of the complementary filters. As discussed in Section \ref{ssec:detail_control_cf_trans_perf}, nominal performance requirements can be expressed as upper bounds on the shapes of the complementary filters.
For this example, the requirements are: For this example, the requirements are:
\begin{itemize} \begin{itemize}
\item track ramp inputs (i.e. constant velocity scans) with zero steady-state error: a \(+2\) slope at low frequencies for the magnitude of the sensitivity function \(|S(j\omega)|\) is required \item to track ramp inputs (constant velocity scans) with zero steady-state error, which necessitates a \(+2\) slope at low frequencies for the magnitude of the sensitivity function \(|S(j\omega)|\)
\item filtering of measurement noise above \(\SI{300}{Hz}\), where sensor noise is significant (requiring a filtering factor of approximately 100 above this frequency) \item filtering of measurement noise above \(\SI{300}{Hz}\), where sensor noise is significant (requiring a filtering factor of approximately 100 above this frequency)
\item maximizing disturbance rejection \item maximizing disturbance rejection
\end{itemize} \end{itemize}
@ -1385,9 +1430,8 @@ This condition is satisfied when the magnitude of the low-pass complementary fil
Robust performance is achieved when both nominal performance and robust stability conditions are simultaneously satisfied. Robust performance is achieved when both nominal performance and robust stability conditions are simultaneously satisfied.
All requirements imposed on \(H_L\) and \(H_H\) are visualized in Figure \ref{fig:detail_control_cf_specs_S_T}. All requirements imposed on \(H_L\) and \(H_H\) are visualized in Figure \ref{fig:detail_control_cf_specs_S_T}.
While \(\mathcal{H}_\infty\text{-synthesis}\) could be employed to design the complementary filters, analytical formulas were used for this relatively simple example. While \(\mathcal{H}_\infty\) synthesis could be employed to design the complementary filters, analytical formulas were used for this relatively simple example.
The second-order complementary filters from Equation \eqref{eq:detail_control_cf_2nd_order} were selected with parameters \(\alpha = 1\) and \(\omega_0 = 2\pi \cdot 20\,\text{Hz}\). Specifically, the second-order complementary filters from Equation \eqref{eq:detail_control_cf_2nd_order} were selected, providing the desired \(+2\) and \(-2\) slopes, with parameters \(\alpha = 1\) and \(\omega_0 = 2\pi \cdot 20\) Hz.
There magnitudes are displayed in Figure \ref{fig:detail_control_cf_specs_S_T}, confirming that these complementary filters are fulfilling the specifications.
\begin{figure}[htbp] \begin{figure}[htbp]
\begin{subfigure}{0.48\textwidth} \begin{subfigure}{0.48\textwidth}
@ -1448,7 +1492,7 @@ In this section, a control architecture in which complementary filters are used
This approach differs from traditional open-loop shaping in that no controller is manually designed; rather, appropriate complementary filters are selected to achieve the desired closed-loop behavior. This approach differs from traditional open-loop shaping in that no controller is manually designed; rather, appropriate complementary filters are selected to achieve the desired closed-loop behavior.
The method shares conceptual similarities with mixed-sensitivity \(\mathcal{H}_{\infty}\text{-synthesis}\), as both approaches aim to shape closed-loop transfer functions, but with notable distinctions in implementation and complexity. The method shares conceptual similarities with mixed-sensitivity \(\mathcal{H}_{\infty}\text{-synthesis}\), as both approaches aim to shape closed-loop transfer functions, but with notable distinctions in implementation and complexity.
While \(\mathcal{H}_{\infty}\text{-synthesis}\) offers greater flexibility and can be readily generalized to MIMO plants, the presented approach provides a simpler alternative that requires minimal design effort. While \(\mathcal{H}_{\infty}\text{-synthesis}\) synthesis offers greater flexibility and can be readily generalized to MIMO plants, the presented approach provides a simpler alternative that requires minimal design effort.
Implementation only necessitates extracting a model of the plant and selecting appropriate analytical complementary filters, making it particularly interesting for applications where simplicity and intuitive parameter tuning are valued. Implementation only necessitates extracting a model of the plant and selecting appropriate analytical complementary filters, making it particularly interesting for applications where simplicity and intuitive parameter tuning are valued.
Due to time constraints, an extensive literature review comparing this approach with similar existing architectures, such as Internal Model Control \cite{saxena12_advan_inter_model_contr_techn}, was not conducted. Due to time constraints, an extensive literature review comparing this approach with similar existing architectures, such as Internal Model Control \cite{saxena12_advan_inter_model_contr_techn}, was not conducted.
@ -1458,21 +1502,5 @@ The control architecture has been presented for SISO systems, but can be applied
It will be experimentally validated with the NASS during the experimental phase. It will be experimentally validated with the NASS during the experimental phase.
\chapter*{Conclusion} \chapter*{Conclusion}
\label{sec:detail_control_conclusion} \label{sec:detail_control_conclusion}
In order to optimize the control of the Nano Active Stabilization System, several aspects of control theory were studied.
Different approaches to combine sensors were compared in Section \ref{sec:detail_control_sensor}.
While High Authority Control-Low Authority Control (HAC-LAC) was successfully applied during the conceptual design phase, the focus of this work was extended to sensor fusion techniques where two or more sensors are combined using complementary filters.
It was demonstrated that the performance of such fusion depends significantly on the magnitude of the complementary filters.
To address this challenge, a synthesis method based on \(\mathcal{H}_\infty\text{-synthesis}\) was proposed, allowing for intuitive shaping of the complementary filters through weighting functions.
For the NASS, while HAC-LAC remains a natural way to combine sensors, the potential benefits of sensor fusion merit further investigation.
Various decoupling strategies for parallel manipulators were examined in Section \ref{sec:detail_control_decoupling}, including decentralized control, Jacobian decoupling, modal decoupling, and Singular Value Decomposition (SVD) decoupling.
The main characteristics of each approach were highlighted, providing valuable insights into their respective strengths and limitations.
Among the examined methods, Jacobian decoupling was determined to be most appropriate for the NASS, as it provides straightforward implementation while preserving the physical meaning of inputs and outputs.
With the system successfully decoupled, attention shifted to designing appropriate SISO controllers for each decoupled direction.
A control architecture for directly shaping closed-loop transfer functions was proposed.
It is based on complementary filters that can be designed using either the proposed \(\mathcal{H}_\infty\text{-synthesis}\) approach described earlier or through analytical formulas.
Experimental validation of this method on the NASS will be conducted during the experimental tests on ID31.
\printbibliography[heading=bibintoc,title={Bibliography}] \printbibliography[heading=bibintoc,title={Bibliography}]
\end{document} \end{document}