This repository has been archived on 2025-04-18. You can view files and clone it, but cannot push or open issues or pull requests.
phd-control/matlab/detail_control_2_decoupling.m

249 lines
8.2 KiB
Matlab

%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
%% Path for functions, data and scripts
addpath('./src/'); % Path for functions
%% Colors for the figures
colors = colororder;
%% Initialize Frequency Vector
freqs = logspace(0, 3, 1000);
%% Compute Equation of motion
l = 1; h=2;
la = 0.5; % Horizontal position of actuators [m]
ha = 0.2; % Vertical of actuators [m]
m = 40; % Payload mass [kg]
I = 5; % Payload rotational inertia [kg m^2]
c = 2e2; % Actuator Damping [N/(m/s)]
k = 1e6; % Actuator Stiffness [N/m]
% Unit vectors of the actuators
s1 = [1;0];
s2 = [0;1];
s3 = [0;1];
% Stiffnesss and Damping matrices of the struts
Kr = diag([k,k,k]);
Cr = diag([c,c,c]);
% Location of the joints with respect to the center of mass
Mb1 = [-l/2;-ha];
Mb2 = [-la; -h/2];
Mb3 = [ la; -h/2];
% Jacobian matrix (Center of Mass)
J_CoM = [s1', Mb1(1)*s1(2)-Mb1(2)*s1(1);
s2', Mb2(1)*s2(2)-Mb2(2)*s2(1);
s3', Mb3(1)*s3(2)-Mb3(2)*s3(1)];
% Mass Matrix in frame {M}
M = diag([m,m,I]);
% Stiffness Matrix in frame {M}
K = J_CoM'*Kr*J_CoM;
% Damping Matrix in frame {M}
C = J_CoM'*Cr*J_CoM;
% Plant in the frame of the struts
G_L = J_CoM*inv(M*s^2 + C*s + K)*J_CoM';
figure;
tiledlayout(3, 3, 'TileSpacing', 'Compact', 'Padding', 'None');
for out_i = 1:3
for in_i = 1:3
nexttile;
plot(freqs, abs(squeeze(freqresp(G_L(out_i,in_i), freqs, 'Hz'))), 'k-', ...
'DisplayName', sprintf('$\\mathcal{L}_%i/\\tau_%i$', out_i, in_i));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlim([freqs(1), freqs(end)]); ylim([2e-8, 4e-5]);
xticks([1e0, 1e1, 1e2])
yticks([1e-7, 1e-6, 1e-5])
leg = legend('location', 'northeast', 'FontSize', 8);
leg.ItemTokenSize(1) = 18;
if in_i == 1
ylabel('Mag. [m/N]')
else
set(gca, 'YTickLabel',[]);
end
if out_i == 3
xlabel('Frequency [Hz]')
else
set(gca, 'XTickLabel',[]);
end
end
end
%% Jacobian Decoupling - Center of Mass
G_CoM = pinv(J_CoM)*G_L*pinv(J_CoM');
G_CoM.InputName = {'Fx', 'Fy', 'Mz'};
G_CoM.OutputName = {'Dx', 'Dy', 'Rz'};
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(G_CoM(1, 3), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$D_{x,\{M\}}/M_{z,\{M\}}$');
plot(freqs, abs(squeeze(freqresp(G_CoM(3, 1), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$R_{z,\{M\}}/F_{x,\{M\}}$');
plot(freqs, abs(squeeze(freqresp(G_CoM(1, 1), freqs, 'Hz'))), 'color', colors(1,:), 'DisplayName', '$D_{x,\{M\}}/F_{x,\{M\}}$');
plot(freqs, abs(squeeze(freqresp(G_CoM(2, 2), freqs, 'Hz'))), 'color', colors(2,:), 'DisplayName', '$D_{y,\{M\}}/F_{y,\{M\}}$');
plot(freqs, abs(squeeze(freqresp(G_CoM(3, 3), freqs, 'Hz'))), 'color', colors(3,:), 'DisplayName', '$R_{z,\{M\}}/M_{z,\{M\}}$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
ylim([1e-10, 1e-3]);
leg = legend('location', 'southwest', 'FontSize', 8);
leg.ItemTokenSize(1) = 18;
%% Jacobian Decoupling - Center of Mass
% Location of the joints with respect to the center of stiffness
Mb1 = [-l/2; 0];
Mb2 = [-la; -h/2+ha];
Mb3 = [ la; -h/2+ha];
% Jacobian matrix (Center of Stiffness)
J_CoK = [s1', Mb1(1)*s1(2)-Mb1(2)*s1(1);
s2', Mb2(1)*s2(2)-Mb2(2)*s2(1);
s3', Mb3(1)*s3(2)-Mb3(2)*s3(1)];
G_CoK = pinv(J_CoK)*G_L*pinv(J_CoK');
G_CoK.InputName = {'Fx', 'Fy', 'Mz'};
G_CoK.OutputName = {'Dx', 'Dy', 'Rz'};
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(G_CoK(1, 1), freqs, 'Hz'))), 'color', colors(1,:), 'DisplayName', '$D_{x,\{K\}}/F_{x,\{K\}}$');
plot(freqs, abs(squeeze(freqresp(G_CoK(2, 2), freqs, 'Hz'))), 'color', colors(2,:), 'DisplayName', '$D_{y,\{K\}}/F_{y,\{K\}}$');
plot(freqs, abs(squeeze(freqresp(G_CoK(3, 3), freqs, 'Hz'))), 'color', colors(3,:), 'DisplayName', '$R_{z,\{K\}}/M_{z,\{K\}}$');
plot(freqs, abs(squeeze(freqresp(G_CoK(1, 3), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$D_{x,\{K\}}/M_{z,\{K\}}$');
plot(freqs, abs(squeeze(freqresp(G_CoK(3, 1), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$R_{z,\{K\}}/F_{x,\{K\}}$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Kagnitude');
ylim([1e-10, 1e-3]);
leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2);
leg.ItemTokenSize(1) = 18;
%% Modal decoupling
% Compute the eigen vectors
[phi, wi] = eig(M\K);
% Sort the eigen vectors by increasing associated frequency
[~, i] = sort(diag(wi));
phi = phi(:, i);
% Plant in the modal space
Gm = inv(phi)*inv(J_CoM)*G_L*inv(J_CoM')*inv(phi');
%% Modal decoupled plant
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(Gm(1,1), freqs, 'Hz'))), 'color', colors(1,:), 'DisplayName', '$\mathcal{X}_{m,1}/\tau_{m,1}$');
plot(freqs, abs(squeeze(freqresp(Gm(2,2), freqs, 'Hz'))), 'color', colors(2,:), 'DisplayName', '$\mathcal{X}_{m,2}/\tau_{m,2}$');
plot(freqs, abs(squeeze(freqresp(Gm(3,3), freqs, 'Hz'))), 'color', colors(3,:), 'DisplayName', '$\mathcal{X}_{m,3}/\tau_{m,3}$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
ylim([1e-8, 1e-4]);
leg = legend('location', 'northeast', 'FontSize', 8);
leg.ItemTokenSize(1) = 18;
%% SVD Decoupling
wc = 2*pi*100; % Decoupling frequency [rad/s]
% System's response at the decoupling frequency
H1 = evalfr(G_L, j*wc);
% Real approximation of G(j.wc)
D = pinv(real(H1'*H1));
H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
[U,S,V] = svd(H1);
Gsvd = inv(U)*G_L*inv(V');
figure;
hold on;
for i_in = 1:3
for i_out = [i_in+1:3]
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(Gsvd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$G_{SVD}(i,j)\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for i_in_out = 1:3
plot(freqs, abs(squeeze(freqresp(Gsvd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_{SVD}(%d,%d)$', i_in_out, i_in_out));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
ylim([1e-10, 2e-4]);
leg = legend('location', 'northeast', 'FontSize', 8);
leg.ItemTokenSize(1) = 18;
%% Simscape model with relative motion sensor at alternative positions
mdl = 'detail_control_decoupling_test_model';
open(mdl)
deq = 0.2; % Length of the actuators [m]
% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Payload'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Payload'], 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Payload'], 3, 'openoutput'); io_i = io_i + 1;
G_L_alt = linearize(mdl, io);
G_L_alt.InputName = {'F1', 'F2', 'F3'};
G_L_alt.OutputName = {'d1', 'd2', 'd32'};
% SVD Decoupling with the new plant
wc = 2*pi*100; % Decoupling frequency [rad/s]
% System's response at the decoupling frequency
H1 = evalfr(G_L_alt, j*wc);
% Real approximation of G(j.wc)
D = pinv(real(H1'*H1));
H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
[U,S,V] = svd(H1);
Gsvd_alt = inv(U)*G_L_alt*inv(V');
%% Obtained plant after SVD decoupling - Relative motion sensors are not collocated with the actuators
figure;
hold on;
for i_in = 1:3
for i_out = [i_in+1:3]
plot(freqs, abs(squeeze(freqresp(Gsvd_alt(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(Gsvd_alt(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$G_{SVD}(i,j)\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for i_in_out = 1:3
plot(freqs, abs(squeeze(freqresp(Gsvd_alt(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_{SVD}(%d,%d)$', i_in_out, i_in_out));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
ylim([5e-11, 7e-5]);
leg = legend('location', 'southwest', 'FontSize', 8);
leg.ItemTokenSize(1) = 18;